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Abstract. We investigate the relationship between Poincaré recurrence and topological
entropy of a dynamical system (X, f ). For 0≤ α ≤ β ≤∞, let D(α, β) be the set of x
with lower and upper recurrence rates α and β, respectively. Under the assumptions that
the system is not minimal and that the map f is positively expansive and satisfies the
specification condition, we show that for any open subset ∅ 6=U ⊆ X , D(α, β) ∩U has
the full topological entropy of X . This extends a result of Feng and Wu [The Hausdorff
dimension of recurrence sets in symbolic spaces. Nonlinearity 14 (2001), 81–85] for
symbolic spaces.

1. Introduction
Let X be a compact metric space and let f be a continuous transformation on X . We
call the pair (X, f ) a dynamical system. The orbit of a point x ∈ X is the set of iterates
of x under f , i.e. the sequence { f k(x)}∞k=0. Since X is compact, under some measure-
preserving property most orbits are expected to return to the neighborhoods of their starting
points. Indeed, the famous Poincaré recurrence theorem says that if µ is an f -invariant
probability measure on X and A is a measurable subset with positive measure, then for
almost all points x in A, the orbit of x will return to A infinitely many times.

To study quantitatively the recurrence behavior of the dynamical system, we define, for
any point x in a subset A of X , the first (Poincaré) return time of x to A as

τA(x)= inf{i > 0 : f i (x) ∈ A}.

Let {An} be a sequence of sets shrinking to the point x ; it is natural to consider the
exponential rate of increase of the quantity τAn (x). In 1993, Ornstein and Weiss [20]
first analyzed this rate for a partition under the action of f . Let ξ be a finite partition of
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X and let ξ−n(x) be the intersection of all the elements of ξ , f −1(ξ), . . . , f −n+1(ξ) that
contain x . It was proved that if µ is f -ergodic, then with probability one,

lim
n→∞

1
n

log τξ−n(x)(x)= hµ( f, ξ),

where hµ( f, ξ) is the measure-theoretic entropy of f with respect to the partition ξ . This
remarkable theorem points out that the chaotic behavior of a system, which is described
by hµ( f, ξ), is reflected in the local recurrence rate of the generic orbits. The theorem
generated a great deal of interest, and further substantial investigations can be found in
the literature. For example, in [26] the partition ξ−n(x) was replaced by balls of radius r
centered at x ; it was shown that if f is a piecewise C1+α monotonic interval map, then for
an f -ergodic measure µ with positive entropy,

lim
r→0

log τB(x,r)(x)

− log r
= dimH(µ) µ-a.e. (1)

Other results in this direction can be found in [2, 3]. Here dimH(µ) denotes the Hausdorff
dimension of µ, which equals limr→0 log(µ(B(x, r))/log r (the local dimension of µ) for
µ-almost all x (see [8]).

The expression in (1) resembles the local dimension of a measure in the theory of
multifractal formalism. Indeed, Feng and Wu [15] undertook the first investigation of this
on the full shift spaces of finite symbols. Let 6N be the canonical infinite product space
of finite symbols with the shift map S. Given any Gibbs measure µ on (6N, S) associated
with a Hölder continuous potential, it is well known that for the level sets

Kα :=

{
x ∈6N : − lim

n→∞

1
n

log µ([x]n)= α
}

(where [x]n is the standard cylinder set), dimH(Kα) is (a multiple of) the entropy of a
certain Gibbs measure µα induced by µ and the potential [21]; moreover, the dimension
spectrum 9(α)= dimH(Kα) is a strictly concave function. For the local recurrence, it was
shown that for any 0≤ α ≤ β ≤∞,

dimH

{
x ∈6N : lim

n→∞

1
n

log τ[x]n (x)= α, lim
n→∞

1
n

log τ[x]n (x)= β
}
= dimH(6

N). (2)

This unusual conclusion is significantly different from the local dimensions, as the
dimension spectrum is a constant. The result was also extended in [27] to conformal
repellers, and in [19] to self-conformal sets satisfying the strong open set condition.

In this paper, we will consider recurrence by making use of the Bowen metric on the
dynamical system. Recall that the nth Bowen metric on (X, f ) is defined by

dn(x, y) :=max{d( f i (x), f i (y)) : i = 0, 1, . . . , n − 1} for all x, y ∈ X. (3)

This is a basic notion in the study of topological entropy [6, 21, 32]. It is also useful in
connection with measure-theoretic entropy hµ( f ) [7, 16]; in [7], Brin and Katok showed
that if µ is an f -ergodic measure on X , then

hµ( f )=− lim
ε→0

lim
n→∞

1
n

log µ(Bn(x, ε)) µ-a.e.,

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 27 Aug 2009 IP address: 137.189.49.138

Spectrum of Poincaré recurrence 1919

where Bn(x, ε) is the nth Bowen ball of radius ε centered at x . We define the local
(Poincaré) recurrence rates τ(x) and τ(x) by

lim
ε→0

lim
n→∞

1
n

log τBn(x,ε)(x) and lim
ε→0

lim
n→∞

1
n

log τBn(x,ε)(x), (4)

respectively. Based on the results by Ornstein and Weiss [20] and Katok [16], in [29] one of
the authors proved that for any f -invariant probability measure µ on X with hµ( f ) <∞,

τ(x)= τ(x)= hµ( f, x) µ-a.e.,

where hµ( f, x) (=−limε→0 limn→∞(1/n) log µ(Bn(x, ε)) a.e.) is the local entropy of µ
at x . (See also [10] for a different approach to proving the same result.) This reveals the
connection between the local recurrence rates and the entropy of the measure in terms of
the Bowen metric.

Our goal in this paper is to consider the spectrum structure due to the recurrence, as in
(2); our set-up for the recurrence is to use Bowen balls on the dynamical systems and to
consider the topological entropy. We assume that the map f is positively expansive and
satisfies the specification condition (SPEC). The exact definitions are given in §2 and §3.
Roughly speaking, a map f is positively expansive if it increases the distance between
any two distinct points in an iteration; f has the SPEC if one can always find a single
orbit to interpolate between different pieces of orbits, up to a pre-assigned error. There are
well-known examples of dynamical systems with the SPEC—for example, the canonical
symbolic space with the shift map or, more generally, the mixing subshifts of finite type
[9]. There are also some expanding dynamical systems that are factors of subshifts of
finite type [25] and hence have the SPEC if the systems are mixing [30] (e.g. the mixing
conformal repellers). On the other hand, there are dynamical systems with the SPEC that
cannot be embedded into a symbolic space. We shall discuss this in more detail in §3.

For 0≤ α ≤ β ≤∞, let

D(α, β)= {x ∈ X : τ(x)= α, τ(x)= β}

be level sets for Poincaré recurrence, and let ht ( f, A) be the topological entropy of a subset
A ⊆ X . Our main theorem is the following.

THEOREM 1.1. Let (X, f ) be a non-minimal dynamical system which is positively
expansive and satisfies the specification condition. Then, for any 0≤ α ≤ β ≤∞ and for
any non-empty open set U of X, we have

ht ( f,U ∩ D(α, β))= ht ( f, X).

By a non-minimal dynamical system, we mean { f k(x)}k 6= X for some x ∈ X . The
theorem says that D(α, β) always has the full topological entropy ht ( f, X) (as in (2)).
It differs from the multifractal theory for local entropy of a measure µ. In some sense
this is attributable to the fact that for a given Gibbs measure µ associated with a potential
ϕ, the condition hµ( f, x)= α is equivalent to limn→∞(1/n)

∑n−1
i=0 ϕ( f i+ j (x))= α′ (for

some α′) for all j ; this places a restriction on the collection of possible pieces of orbits
{ f j (x), . . . , f j+n−1(x)} for all j ∈ N, whereas τ(x)= α (and also τ(x)= β) imposes a
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much weaker restriction on those pieces. We will see later that such limits may only depend
on the orbit of x in a sequence of positions with ‘zero density’ in N (see Propositions 5.2
and 5.4). Hence the freedom of choosing orbits in other places implies that the set D(α, β)
is as large as X in the sense of topological entropy.

The proof of the theorem relies on constructing sufficiently many x that have the
desired recurrence rates α and β. The main idea, inspired by [13, 31], is to use the
Moran fractal. A Moran fractal is a Cantor-type set defined by iteration; it has a tractable
structure and has been used extensively for estimating entropies and dimensions (see e.g.
[1, 11, 17, 18, 21, 22]). In our context, we will make use of a special dynamically defined
(by the Bowen metric) Moran fractal (Definition 4.1). There are two major steps in the
construction; in the first step, we prove the following.

PROPOSITION 1.2. Suppose (X, f ) is a positively expansive dynamical system which
satisfies the SPEC. Then there exists a dynamically defined Moran fractal F ⊂ X such
that ht ( f, F)= ht ( f, X).

This proposition is proved via Theorem 4.3 and Propositions 4.4 and 4.6. Note that
in this step there is no restriction on recurrence rates for the elements in F . Our next
step, actually the more elaborate step, is to modify the elements y ∈ F to form another
Moran fractal F ′ having approximately the same entropy, while at the same time each
x ∈ F ′ has the required recurrence rates. The technique is to keep adding the previous
segment inductively to an appropriate position in the later part of the orbit sequence of y
to ensure recurrence, and meanwhile use the SPEC to ‘shadow’ the sequence by another
approximating orbit sequence of x .

We organize the paper as follows. In §2 we define topological entropy and positively
expansive maps, and present some preliminary properties. We introduce the specification
condition in §3, and set up the shadowing maps of the orbits. Proposition 1.2 is then proved
in §4, and the proof of Theorem 1.1 is in §5. The insertion of the segments into the orbit
sequences of F to obtain the prescribed recurrence rates is a rather complicated procedure;
we divide the proof into three subsections to clarify the construction of D(α, β). Some of
the technical lemmas are deferred to Appendix A.

2. Preliminaries
Throughout this paper we assume that X is a compact metric space and that f : X→ X is a
continuous map. We call such (X, f ) a dynamical system and we let dn denote the Bowen
metric as defined in (3). We adopt the following definition of topological entropy [21].

Definition 2.1. Let (X, f ) be a dynamical system. Given any subset Z ⊆ X , we define, for
ε > 0, s > 0 and N > 0,

m(Z; s, N , ε)= inf
0

∑
i

e−sni ,

where 0 = {Bni (xi , ε)}i is any collection of ni th Bowen balls, with mini ni > N , that
covers Z . Let

m(Z; s, ε)= lim
N→∞

m(Z; s, N , ε)= sup
N>0

m(Z; s, N , ε).
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The critical value ht ( f, Z; ε) is defined as

m(Z; s, ε)=

{
+∞, s < ht ( f, Z; ε),
0, s > ht ( f, Z; ε).

The topological entropy of Z is then defined as ht ( f, Z)= limε→0 ht ( f, Z; ε). In
particular, if Z = X , then we write ht ( f ) for simplicity.

The quantity m(Z; s, N , ε) is non-decreasing with respect to N ; hence the limit
m(Z; s, ε) exists. The critical value ht ( f, Z; ε) is non-increasing with respect to ε, so
the limit as ε→ 0 exists and the notion of topological entropy is well defined.

We say two metrics d and d ′ on X are uniformly (topologically) equivalent if the identity
maps are uniformly continuous with respect to the two metrics. It is easy to show that the
topological entropy ht ( f, Z) and the recurrence exponents τ(·), τ(·) are independent of
the uniformly equivalent metric used.

Definition 2.2. Let (X, f ) be a dynamical system. The map f is said to be positively
expansive if there exists γ > 0 such that for any x 6= y ∈ X ,

d( f n(x), f n(y)) > γ for some n > 0. (5)

In this case, we call (X, f ) a positively expansive system. (In what follows we will fix the
expansive constant γ .)

This class of maps was introduced by Williams [33] and Eisenberg [12]. It is known [23]
that for a compact metric space X, f : X→ X being positively expansive is equivalent to
the existence of a compatible metric d ′ on X and constants η > 0, λ > 1 such that

d ′( f (x), f (y))≥ λd ′(x, y) for all d ′(x, y) < η. (6)

For any finite cover C of X , define diam C to be the maximum of the diameters of the
members of C. Also let C−n =

∨n−1
i=0 f −i (C) be the family of intersections of members of

f −i (C). Using the same proof as [32, Theorem 5.23] for expansive homeomorphisms, we
have the following.

LEMMA 2.3. Let (X, f ) be a positively expansive system. For any finite cover C of X with
diam C ≤ γ , limn→∞ diam C−n = 0.

LEMMA 2.4. Let (X, f ) be a positively expansive system. Then for any δ < γ/4 and any
ε > 0, there exists N > 0 (which depends on δ, ε) such that

dn+N (x, y)≤ δ ⇒ dn(x, y) < ε for all n > 0. (7)

Proof. This lemma has appeared elsewhere in the literature, but we provide a proof here
for the reader’s convenience.

Choose x1, . . . , xk such that {B(xi , γ /2− 2δ)}ki=1 is a cover of X . Let
C = {B(xi , γ /2) : 1≤ i ≤ k}; this is also a finite cover of X , with diam C ≤ γ . Hence,
by Lemma 2.3, there is N > 0 such that diam C−N < ε. Note that C has Lebesgue
number 2δ. (To see this, take x ∈ B(xi , γ /2− 2δ) for some i ≤ k; then d(x, y) < 2δ gives
d(y, xi ) < γ/2. Hence x , y ∈ B(xi , γ /2).) Now dn+N (x, y)≤ δ implies f i x and f i y
belong to the same element of C for 0≤ i ≤ n + N − 1. Consequently f i (x) and f i (y)
belong to the same element of C−N for 0≤ i ≤ n − 1, and dn(x, y) < diam C−N < ε. 2
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A set E ⊆ X is called (n, ε)-separated if for any x 6= y in E , dn(x, y)≥ ε. E is called
maximal if it attains the maximal cardinality. We use sn(ε) to denote the cardinality of a
maximal (n, ε)-separated set in X . It is known [32, Theorem 7.9] that for any continuous
map f on X ,

ht ( f )= lim
ε→∞

lim
n→∞

1
n

log sn(ε)= lim
ε→∞

lim
n→∞

1
n

log sn(ε). (8)

THEOREM 2.5. Let (X, f ) be a positively expansive system. Then for any δ < γ/4,

ht ( f )= lim
n→∞

1
n

log sn(δ).

Proof. Let 0< ε < δ and let N be such that (7) holds. Then we have

sn+N (δ)≥ sn(ε)≥ sn(δ),

and the conclusion follows from (8). 2

To conclude this section, we show that the recurrence exponents τ(·), τ (·) defined in
(4) can be simplified if we assume the positively expansive property on f . Moreover, we
can put it in a slightly more general form which will be used later (in Proposition 5.2 and
Lemma 5.7).

PROPOSITION 2.6. Let (X, f ) be a positively expansive system and let γ be an
associated expansive constant. Let {pn}

∞

n=0 be a strictly increasing sequence such that
limn→∞ pn+1/pn = 1. Then for any δ < γ/4, we have

τ(x)= lim
n→∞

1
pn

log τBpn (x,δ)(x),

and similarly for τ(x).

Proof. It suffices to consider the case pn = n. The general case follows by observing that
for any sequence {an}

∞

n=0 in R, limn→∞ an/n = limn→∞ apn/pn if limn→∞ pn+1/pn = 1
and limn→∞ pn =∞.

Let 0< ε < δ and let N be such that (7) holds. Then we have Bn+N (x, δ)⊆ Bn(x, ε)⊆
Bn(x, δ), and so

τBn+N (x,δ)(x)≥ τBn(x,ε)(x)≥ τBn(x,δ)(x).

The desired equality follows from the definition of τ(·), τ(·). 2

COROLLARY 2.7. Let 6N be the canonical infinite product space of finite symbols
with the shift map S. Let {pn}

∞

n=0 be a strictly increasing sequence such that
limn→∞ pn+1/pn = 1. Then

τ(x)= lim
n→∞

1
pn

log τ[x]pn
(x),

and similarly for τ(x). (Here [x]n is the cylinder set determined by the first n coordinates
of x.)

The proof follows easily upon noticing that for given ε > 0, Bn(x, ε) coincides with
[x]n+N for some N , and then applying the above proposition.
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3. The specification condition
The notion of specification, introduced by Bowen [5], says that one can always find a single
orbit to interpolate between different pieces of orbits.

Definition 3.1. Let (X, f ) be a dynamical system; f is said to satisfy the condition of
specification (SPEC) if for any ε > 0, there exists an integer m(ε) such that for arbitrary
finite intervals of integers I j = [a j , a j + n j − 1] ∩ N, 0≤ j < k, with

dist(Ii , I j ) > m(ε) for all i 6= j

and for any y0, . . . , yk−1 in X , there exists a point x ∈ X satisfying

d( f p(x), f p−a j (y j )) < ε for all p ∈ I j and 0≤ j < k. (9)

(We follow the tradition not requiring x to be periodic, which is slightly different
from the original definition in [5].) For y ∈ X , we let y|l = {y, . . . , f l−1(y)} denote the
orbit of y of length `. In the case where dist(Ii , I j )= m + 1, a point x satisfying (9) is
said to ε-shadow the pieces y0|n0 , . . . , yk−1|nk−1 (with gaps m(ε)). The constant m(ε)
can be interpreted as the time for switching over from one orbit to the other, up to an
approximation of ε; we fix m(ε) for future use.

There are important classes of positively expansive maps that satisfy the SPEC. The
most basic example is the shift map on the full symbolic space; another example is X , a
subshift space of finite type with shift map mixing on X [9]. A map f on X is said to be
(Ruelle) expanding if it is open and positively expansive ([25, p. 143]; see also [24, pp. 3–4]
for examples of positively expansive maps that are not open). An expanding map has
Markov partitions of arbitrarily small size; hence the system is a factor of a subshift of finite
type [25], and has the SPEC if the system is mixing. It follows that topologically mixing
conformal repellers (see e.g. [21]) also satisfy the SPEC. The requirement of existence of
a finite Markov partition is stronger than the SPEC. Indeed, consider the one-parameter
transformations {Tβ}β>1 on [0, 1] defined by taking Tβ(x)= βx (mod 1). Clearly each
map is positively expansive. The following results are known for Tβ [4, 28]: (i) the set of
β such that Tβ admits a finite Markov partition is at most countable; and (ii) the set of β
such that Tβ satisfies the SPEC has Hausdorff dimension 1 and Lebesgue measure 0.

The following orbit specification lemma [30] (stated in a slightly different way in our
context) provides a method of finding a single orbit to approximate an infinite sequence
{yi }
∞

i=0 simultaneously.

LEMMA 3.2. Let (X, f ) be a dynamical system that satisfies the SPEC. Let {εk}
∞

k=0↘ 0
be a sequence of positive numbers, and let mk = m(εk − εk+1). Then for any increasing
sequence of disjoint finite intervals of integers Ik = [ak, ak + nk − 1], with ak+1 − (ak +

nk)≥ mk , and any sequence {yk}
∞

k=0 ∈ X, there exists x ∈ X such that

d( f j (x), f j−ak (yk))≤ εk for j ∈ Ik, k ∈ N. (10)

(In the case a0 = 0 and ak+1 − (ak + nk)= mk , a point x satisfying (10) is said to {εk}-
shadow the sequence of pieces {yk |nk }

∞

k=0 with gaps {mk}
∞

k=0.)
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FIGURE 1. Approximation by means of the orbit specification lemma.

Proof. The construction is given in [30] for a special case; we include a proof for
completeness. Without loss of generality, assume that a0 = 0. Set lk = ak + nk ,
ε′k = εk − εk+1 and mk := m(ε′k) for k ∈ N. We define a sequence xk ∈ X by induction
(see Figure 1). Let x0 = y0. Since a1 − n0 ≥ m0, by the definition of SPEC there exists
x1 ∈ X such that

dl0(x1, x0) < ε
′

0 and dn1( f a1(x1), y1) < ε
′

0.

Suppose we have already constructed xk . Let xk+1 be such that

dlk (xk+1, xk) < ε
′

k and dnk+1( f ak+1(xk+1), yk+1) < ε
′

k . (11)

Such a point exists due to the SPEC. The sequence {xk}
∞

k=0 forms a Cauchy sequence, as

d(xk, xk+1) < dlk (xk, xk+1) < ε
′

k

and
∑
∞

k=0 ε
′

k = ε0 <∞. Let x be the limit point of {xk}
∞

k=0. It then follows from (11) that

d( f j (xk), f j−an (yn)) <

k∑
i=n

ε′i < εn for j ∈ In, k ≥ n.

The conclusion for x follows from taking limits with respect to k. 2

It is clear that the above construction implies the next result.

COROLLARY 3.3. Let {xi }
∞

i=0 and {li }∞i=0 be as in the proof of Lemma 3.2. Then xi

satisfies (11) with respect to {yk}k≤i , and the sequence {Bli (xi , 2εi )}
∞

i=0 decreases to x.

We will generalize the orbit specification lemma a little, and introduce some notation to be
used in the rest of the paper. Let X be the collection of initial segments of the orbits of
x ∈ X , i.e.

X = {x |n : x ∈ X, n ≥ 1}.

Let X N be the N -tuples of elements in X .
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(i) Fix ε > 0 and let m(ε) be as in the definition of SPEC. Suppose that
(y0|n0 , . . . , yN−1|nN−1) ∈ X N is given, and take x to be a point which ε-shadows {yk}k<N

with gaps m(ε) (note that there may be more than one x satisfying the requirement; we fix
one of these choices). Let l =

∑N−1
k=0 nk + (N − 1)m(ε), and define 8ε on X N by

8ε(y0|n0 , . . . , yN−1|nN−1)= x |l .

Intuitively, 8ε glues the orbits together with error bound ε and gaps of length m(ε).
(ii) More generally, for {εk}

∞

k=0↘ 0, let ε′k = εk − εk+1 and let mk = m(ε′k) be as
in Definition 3.1. Given (y0|n0 , . . . , yN−1|nN−1 , . . .) ∈ XN, take x to be a point as in
Lemma 3.2 which {εk}-shadows the sequence {yk |nk }

∞

k=0 with gaps mk . We then define

8{εk }(y0|n0 , . . . , yN−1|nN−1 , . . .)= x .

In this way, 8{εk }(·) gives a point whose orbit shadows the given sequence of finite orbits
with accuracies {εk}

∞

k=0 and gaps {mk}
∞

k=0. For later use, we write8{εk }(y0|n0 , . . . , yN |nN )

for the point xN obtained as in Lemma 3.2 for the selection of x .
(iii) Let {z j }

∞

j=0 ∈ X
N be a sequence of orbit segments. We group the sequence

into blocks as {zjk }
∞

k=0 where zj0 = {z0, . . . , z j0}, zj1 = {z j0+1, . . . , z j1} and so on. We
denote the new sequence by z for convenience. Let x =8(z) be chosen by first setting
yk =8ε(zjk ) as in (i), then 8{εk }(y0, y1, . . .) as in (ii). We see that the orbit of x is within
ε + ε0 distance of the {z j } j in corresponding places.

In order to ease the notation for later on, we introduce two ‘fictitious’ symbols {FGk}
∞

k=0
and `, and write the block sequence as

z= z0 ` · · · ` z j0 FG0 z j0+1 ` · · · ` z j1 FG1 · · · (12)

where the z j connected by ` means that we will ε-shadow each such block by (i), and
the {FGk}k means that we will {εk}-shadow the resulting sequence. We also assign a length
m(ε) for ` and a length mk for FGk with respect to ε′k = εk − εk+1. For the {ε′k} with a
certain convergence rate, we can estimate the length of mk (see Lemma 4.5).

4. Dynamically defined Moran fractals
In this section we introduce a dynamically defined Moran fractal, which is a Cantor-type
set (cf. [21, Ch. 5]). The entropy of this set is trackable, and our main purpose is to use
it to obtain the lower bound of the topological entropy ht ( f, ·). The fractal we define is
a generalization of the constructions used in [13, 14] for symbolic spaces and in [31] for
dynamical systems satisfying the SPEC.

Let Q be a subset of N∞. A word i0 . . . in is called Q-admissible if i0 . . . inin+1 . . .

belongs to Q for some in+1in+2 . . . . Let Qn denote the Q-admissible words of length
n + 1. We assume that #Qn is finite for each n.

Definition 4.1. (cf. [21, Ch. 5]) Let (X, d) be a compact metric space, and let f be a
continuous transformation on X . A dynamically defined Moran fractal F of X modeled by
Q is defined by

F =
∞⋂

n=0

⋃
(i0...in)

Q-admissible

1i0...in ,
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where the 1i0...in are closed subsets (called basic sets) in the nth level which satisfy:
(C1) 1i0...in j ⊆1i0...in for all i0 . . . in j that are Q-admissible;
(C2) limn→∞ diam 1i0...in = 0;
(C3) (dynamical separation condition) there exist δ > 0 and {ln}∞n=0 ↑∞ such that, for

large n, dln (1i0...in , 1 j0... jn )≥ δ for any (i0 . . . in) 6= ( j0 . . . jn).

The set Q gives the number of basic sets in each step. In the following, we will show
that Q, together with {ln}∞n=0, provides an estimation of the topological entropy of the
limit set (Theorem 4.3). This is due to the intuitive fact that the topological entropy of a set
represents the exponential growth of the number of orbit segments that can be distinguished
in the Bowen metric dn (with a certain accuracy). First we need a relationship between
topological entropy and measure-theoretical entropy. Define the lower local entropy of a
probability measure µ at x ∈ X as

hµ( f, x)=− lim
ε→0

lim
n→∞

1
n

log µ(Bn(x, ε)).

The upper local entropy hµ( f, x) is defined similarly.

PROPOSITION 4.2. Let (X, f ) be a dynamical system, and let µ be a probability measure
on X. Then for any Borel subset Z of X with positive measure, we have:
(i) if hµ( f, x)≥ s for µ-almost all x ∈ Z, then ht ( f, Z)≥ s;

(ii) if hµ( f, x)≤ s for every x ∈ Z, then ht ( f, Z)≤ s.

We omit the proof as it is analogous to the Hausdorff dimension case by using
Definition 2.1 (see [21, Theorem 7.4], [29]). Let diam|dn (E) be the diameter of a set
E in the Bowen metric dn .

THEOREM 4.3. Let F be a Moran fractal defined by Q =
∏
∞

k=0{1, . . . , ck}, as in
Definition 4.1. Assume that ln in (C3) satisfies limn→∞ ln+1/ ln = 1. Then for any open
set U which has non-empty intersection with F, we have

ht ( f, F ∩U )≥ lim
n→∞

1
ln
(log #Qn)= lim

n→∞

1
ln

log
n∏

i=0

ci . (13)

Moreover, if f is positively expansive, then the equality in (13) holds provided that
r = limn→∞ supi0...in

{diam|dln
1i0...in }< γ/4, where γ is an expansive constant as in (5).

Proof. For any i0 . . . in ∈ Qn , define the probability p(i0 . . . in)= (#Qn)
−1. By using the

Kolmogorov consistency theorem, there exists a probability measure µ on F such that

µ(1i0...in )= p(i0 . . . in) > 0. (14)

Then for any open set U that has non-empty intersection with F , we have µ(F ∩U ) > 0.
Suppose n > l0 and let k ≥ 0 be such that lk < n ≤ lk+1. Observe that for any x ∈ F and
ε < δ/2 (where δ is as in (C3)), at most one basic set 1i0...ik intersects Bn(x, ε). Thus

µ(Bn(x, ε))= µ(Bn(x, ε) ∩ F)≤ µ(1i0...ik )=

( k∏
i=0

ci

)−1

.
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This gives (13) by using (i) of Proposition 4.2.
For the second part of the theorem, we have by Lemma 2.4 that for any 0< ε < r , there

is N0 such that

diam|dlk−N0
1i0...ik < ε for any i0 . . . ik ∈ Qk and lk ≥ N0.

Hence for x ∈ F and lk < n ≤ lk+1, there is some i0 . . . ik+1 such that 1i0...ik+1 ⊆

Bn−N0(x, ε). Using this and (14), we get the upper bound of ht ( f, F ∩U ) by applying
(ii) of Proposition 4.2. 2

In the following, we construct a dynamically defined Moran fractal when the system
satisfies the SPEC. We will adopt the notations and construction of 8(z) in part (iii) near
the end of §3.

Construction M. Let Ck = {zk
1, . . . , zk

ck
}, k ∈ N, be subsets of X with cardinalities ck . Let

Q =
∏
∞

k=0{1, . . . , ck}
Nk , where {Nk}

∞

k=0 is an arbitrary sequence of numbers in N. For
each i ∈ Q, we define a point xi as follows. Write i as

i= i0 . . . ik . . . with |ik | = Nk .

Let
h(i)= z0

i0(0)|n0 ` z0
i0(1)|n0 · · · ` z0

i0(N0−1)|n0 FG0 z1
i1(0)|n1 ` · · · . (15)

be the block sequence as in (12) (ik( j) denotes the j th coordinate of ik), and let xi =

8(h(i)).

For the orbit { f j (xi)} j , we see from the SPEC and the orbit specification lemma that for
the gaps in the ε-shadowing corresponding to the part `, the length of the orbit is m, and
for the gaps in the εk-shadowing corresponding to FGk , the length is mk . For convenience of
counting, we use the convention of assigning a length m for ` and mk for FGk , as described
in the last paragraph of §3.

PROPOSITION 4.4. Let F = {xi =8(h(i)) : i ∈ Q}. If we assume that the points in
Ck are δ-separated in the Bowen metric dnk , with δ > 2(ε + ε0) and limk→∞(nk+1 +

mk+1)/Nk = 0, then F is a Moran fractal modeled by Q.
Moreover, if (X, f ) is a positively expansive system and {nk}

∞

k=0 is strictly increasing,
then for any open set U that has non-empty intersection with F,

lim
k→∞

1
nk

log ck ≤ ht ( f, F ∩U )≤ lim
k→∞

1
nk

log ck .

Proof. Let i= i0i1 . . . ∈ Q with |ii | = Ni . For k ∈ N, we let

yik =8ε(z
k
ik (0)|nk , . . . , zk

ik (Nk−1)|nk )

and then let
xi0···ik =8{εk }(yi0 , yi1 , . . . , yik ).

Define tk =
∑k

i=0 Ni − 1; this is the index such that i0 . . . ik = i0 . . . itk . Let ln be the
length of the sequence in (15) up to the nth block; then

ln =


k∑

i=0

(n′i + mi )− mk if n = tk for some k,

k∑
i=0

(n′i + mi )+ (n − tk)(m + nk+1)− m if tk < n < tk+1,
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where n′i = Ni (ni + m)− m. For any i0 . . . in ∈ Qn , let

1i0...in =


Bltk

(xi0...itk
, 2εk) if n = tk,⋃

in+1,...,itk

1i0···itk
if tk−1 < n < tk .

By using Lemma 3.2 and Corollary 3.3, we can easily check that F and {1i0...in } satisfy
the requirement of Definition 4.1. The last statement in the proposition follows from
Theorem 4.3, by observing that log #Qn =

∑k
i=0 Ni log ci + (n − tk) log ck+1 and

lim
n→∞

1
ln

( k∑
i=0

Ni ni + (n − tk)nk+1

)
= 1,

where k is such that tk ≤ n < tk+1. 2

As an application of the theorem, we show that for dynamical systems which are
positively expansive and which satisfy the SPEC, there are plenty of Moran fractals by
Construction M with full topological entropy. Moreover, we have good control of the
mk’s, i.e. the lengths of the FGk gaps. We need the following lemma.

LEMMA 4.5. Let (X, f ) be a positively expansive system (with d as in (6)) which satisfies
the specification condition. For 0< ε < η, p > 1 and k ∈ N,

m

(
ε

k p

)
≤ p

log k

log λ
+ 2+ m(ε).

Proof. Let N = [plog k/log λ] + 2 (where [a] is the integer part of a). By invoking the
expansive property of d in (6) repeatedly, we deduce from dN (x, y) < ε that

λN−1d(x, y)≤ d( f N−1(x), f N−1(y)) < dN (x, y) < ε,

i.e. d(x, y) < k−pε. For any I j = [a j , a j + n j ] ( j ≤ n) with dist(Ii , I j ) > m(ε)+ N , we
let I ′j = [a j , a j + n j + N ] ( j ≤ n). Then any point that ε-shadows y j in I ′j must k−pε-
shadow y j in I j . The conclusion follows from the definition of m(·). 2

PROPOSITION 4.6. Let (X, f ) be a positively expansive system which satisfies the
specification condition. There exists a subset F ⊆ X by Construction M, with mk ≤ O(k),
such that ht ( f, F)= ht ( f ).

Proof. We may assume the metric d on X satisfies (6). Take ε < 1
5 min{η, γ /4}, where η

is from (6) and γ is an expansive constant as in (5). Let p > 1. By Lemma 4.5, there is K
such that

m

(
ε

k p

)
≤ k + m(ε) for k ≥ K .

Let εk =
∑
∞

j=k+K ε/j p. As k increases, εk decreases to zero since
∑
∞

k=1 ε/k p <∞. By

taking K to be large, we can assume ε0 <
1
4ε. Moreover, mk = m(εk − εk+1) satisfies

mk = m

(
ε

(k + K )p

)
≤ k0 + k where k0 = K + m(ε).
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Let {nk}
∞

k=0 and {Nk}
∞

k=0 be strictly increasing sequences with limk→∞(nk+1/Nk)= 0.
We take Ck to be any maximal (nk, δ)-separated set with 2(ε + ε0) < δ < γ/4. By
Theorem 2.5,

lim
k→∞

1
nk

log #Ck = ht ( f ).

Hence the set F defined by Construction M using ε, {εk}, {nk}, {Nk} and Ck above has
entropy ht ( f ) by Proposition 4.4. 2

5. The proof of the main theorem
In this section we give a proof of our main result, Theorem 1.1. The technique is to
construct a Moran fractal, arbitrarily close to having full entropy, such that each of its
elements has the pre-assigned upper and lower exponential recurrence rates. Such a fractal
is derived from the one in Proposition 4.6. The construction for obtaining the right rates
is rather complicated notation-wise. We will therefore present it in three subsections,
which deal with three cases of increasing complexity: the full symbolic space, the general
symbolic space, and finally the dynamical system (X, f ) with the SPEC. In order to make
the main idea of the proof clearer, we leave some of the not-so-essential and tedious
lemmas to Appendix A.

5.1. The full symbolic space. Let {pk}
∞

k=0 and {qk}
∞

k=0 be two strictly increasing
sequences with pk+1 < qk . We define two other sequences {p′k}

∞

k=0 and {q ′k}
∞

k=0 as follows:
set p′

−1 = 1, q−1 = 0, and let

p′k = pk +
∑

qi<pk

(p′i + 1), q ′k = qk +
∑
i<k

(p′i + 1). (16)

It is easy to see that pi < q j if and only if p′i < q ′j .

LEMMA 5.1. For any 0≤ α ≤ β ≤∞, there exist {pk}
∞

k=0 and {qk}
∞

k=0 with pk+1 < qk

such that the sequences {p′k}
∞

k=0, {q ′k}
∞

k=0 defined by (16) satisfy (for each k)

p′k < qk − qk−1, (17)

lim
k→∞

k∑
i=−1

p′i/qk = 0, (18)

lim
k→∞

p′k/p′k−1 = 1, (19)

lim
k→∞

(log q ′k)/p′k = α, lim
k→∞

(log q ′k)/p′k = β. (20)

This elementary proof is given in Appendix A. (We can take, for example, pk = k and
qk = C[eαpk ] for some C > 1 when 0< α = β <∞.) Now let 6N be an infinite product
of finite symbols with the shift map S. It is well known that (6N, S) is a positively
expanding dynamical system and that the canonical cylinders coincide with the Bowen
balls. Moreover, (6N, S) has the SPEC, and the words can be joined together directly. We
want to construct a set of y ∈6N so that the recurrence rates satisfy

τ(y)= α and τ(y)= β.
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FIGURE 2. The positions of the pk and qk .

The idea is similar to that in [15], and involves adding in the initial pieces of the given
sequence y recursively. In our construction, however, the places to insert such pieces are
fixed beforehand; this is needed in the general case.

We proceed inductively with the construction . Let A be a proper subset of 6. Let
{pk}

∞

k=0 and {qk}
∞

k=0 be as in Lemma 5.1. Choose x= x(0)x(1) . . . ∈AN (where x(i)
denotes the i th coordinate of x) and write it as

x= σ0σ1 . . . σk . . . with |σ0 . . . σk | = qk

(see Figure 2) and also as

x= τ0τ1 . . . τk . . . with |τ0 . . . τk | = pk .

Our construction is to recursively insert the τ0 . . . τk of x between the σk and σk+1 as
follows. Let {p′k}

∞

k=0 and {q ′k}
∞

k=0 be defined as in (16). We choose a ∈A, b ∈Ac and
w0 = bb as ‘markers’ for the recurrence. Let x0 = w0σ0. Suppose we have constructed wi

and xi with |wi | = p′i−1 + 1 and |xi | = q ′i for i ≤ k. Inductively, let xk+1 = xkwk+1σk+1,
where

wk+1 =

{
(xk)|p′k

a if pk ≤ qi < pk+1 for some i,

(xk)|p′k
b otherwise.

(21)

Hence |wk+1| = p′k + 1 and |xk+1| = q ′k+1. It follows that p′k and q ′k satisfy the equations
in (16).

Finally, we let

3(x)=
∞⋂

k=0

[xk] = w0σ0w1 . . . σkwk+1 . . .

and let 3(AN) denote all the 3(x), with x ∈AN. We define the first return time for the
shift map S on 6N with respect to y|p′k as

Rk(y)=min{i > 0 : Si (y)|p′k = y|p′k } for all y ∈6+, k ≥ 0.

As an illustration, we shall use the x= σ0σ2 . . .= τ0τ1 . . . in Figure 2 to explain the
construction and the first return time. According to the construction,

3(x)= (bb)σ0 (bbτ0b)σ1 (bbτ0τ1a)σ2 (bbσ0bbτ0bσ1|p2−q0b)σ3 · · ·

q ′0 q ′1 q ′2 q ′3

(the symbols within parentheses are the inserted segments). Letting y=3(x), we have

y|p′0 = (bb)τ0 = (bb)σ0|p0 ,

y|p′1 = (bb)τ0τ1 = (bb)σ0|p1 ,

y|p′2 = (bb)τ0τ1τ2|q0−p1(bbτ0b)Sq0−p1(τ2)= (bb)σ0(bbτ0b)σ1|p2−q0 .
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(Note that from Figure 2, σ0σ1|p2−q0 = τ0τ1τ2.) Write Ri = Ri (y). It is clear that
R0 ≤ R1 ≤ R2 and Ri ≤ q ′i for i = 0, 1, 2. Since b does not appear in σ0, we have R0 = q ′0.
Next, observe that R1 6= R0 since τ1 does not contain b and hence (bbτ0b) is not a prefix
of y|p′1 . Then we must have R1 = q ′1, because otherwise y|2 = bb would appear in bτ0bσ1

or b would be the end symbol of σ1, contradicting the fact that τ0, σ1 do not contain b.
We have R2 6= R1, since the subword (bbτ0b) of y|p′2 does not appear in σ2. Notice that
τ0τ1aσ2 is composed of symbols from A; this forces R2 = q ′2, since otherwise y|2 = bb
would appear in bτ0τ1aσ2 or b would be the suffix of σ2.

PROPOSITION 5.2. Rk(y)= q ′k for y ∈3(AN). Consequently,

τ(y)= α and τ(y)= β for all y ∈3(AN). (22)

Proof. We express y as

y= w0σ0w1σ1w2 . . . σk
|←−−−−−q ′k−−−−−→|

wk+1 . . . .

Note that |wk+1| = p′k + 1. It is clear that if n = q ′k , then

Sn(y)|p′k = wk+1|p′k
= y|p′k .

The proof of q ′k being smallest follows from a direct check of the construction and an
inductive argument; it is omitted here, but the details can be found in [29] (the idea is the
same as in the above illustration). We obtain (22) by applying Corollary 2.7 to y and using
Rk(y)= q ′k together with Lemma 5.1. 2

Proof of Theorem 1.1 in the case of the full symbolic space. The result in this case
was already known in [15]. We provide this new proof in order to motivate the more
complicated case of a dynamical system in §5.3.

Assume 0, 1 ∈6. Let n ∈ N be fixed and let A= {0a0a1 . . . an−10 : a j ∈6}. The
set A consists of words of length n + 2 which begin and end with 0. (Here A⊂6n+2

instead of 6, but this does not affect the construction of 3 and the recurrence behavior.)
Consider AN; this is a dynamically defined Moran fractal with Q =

∏
∞

0 {1, 2, . . . , #A}
and lk = (n + 2)k, and the kth level sets are cylinders [τ ] with τ ∈Ak . Theorem 4.3 then
yields

ht (S,AN)=
1

n + 2
log #A=

n

n + 2
ht (S),

where ht (S)= log #6. Hence for any ε > 0, ht (S,AN) > ht (S)− ε for large n.
Next, we let

a = 00 . . . 0 ∈A and b = 11 . . . 1 ∈Ac

be words made up of 0 or 1, with length n + 2. We change the definition of {p′k} and {q ′k}
accordingly: set p′

−1 = |b| = n + 2, q−1 = 0 and let

p′k = pk +
∑

qi<pk

(p′i + |b|), q ′k = qk +
∑
i<k

(p′i + |b|).

Given 0≤ α ≤ β ≤∞, let {pk} and {qk} satisfy Lemma 5.1. We have by Proposition 5.2
that 3(AN)⊆ D(α, β) and hence ht (S, D(α, β))≥ ht (S, 3(AN)).
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FIGURE 3. The positions of σk , τk , ηk and FGk .

Finally, we estimate the entropy of 3(AN). We see that 3(AN) is also a dynamically
defined Moran fractal with Q′ = Q and l ′k = lk +6qi<lk p′i , and the kth level sets are
cylinders of length l ′k that intersect 3(AN). Hence

ht (S, 3(AN))≥ lim
k→∞

1
l ′k

log #Q′n ≥ lim
k→∞

lk
l ′k

ht (S,AN).

Since limk→∞
∑

i≤k p′i/qk = 0, it follows that limk→∞ lk/ l ′k = 1 and

ht (S, D(α, β))≥ ht (S, 3(AN)) > ht (S)− ε.

As ε > 0 is arbitrary, this shows ht (S, D(α, β))= ht (S) and the theorem is proved. 2

5.2. The general symbolic space. We generalize the construction in §5.1 to some Moran
fractals in the symbolic space; the procedure is similar to that in Construction M. This
construction will be extended to the more elaborate case of dynamical systems in §5.3. Let
A be a proper subset of 6 and let A∗ denote the set of finite words admissible in AN. We
will consider those x of 6N that can be expressed as

x=η0 FG0 η1 FG1 . . . ηk−1 FGk−1
|←−−−−−−−−`k−−−−−−−→|

. . . , (23)

where ηk belongs to A∗ with |ηk | = n′k and |η0 FG0 . . . ηk−1 FGk−1 | = `k . We also let
| FGk | = mk . (Note that FGk may not belong to A∗. The expression above is an extension
of the one in §5.1 where FGk’s do not appear; moreover, the expression resembles the
sequence in (15) without the `’s.) It is clear that n′k + `k < `k+1.

As in the previous section, we write x ∈6N as

x = σ0σ1 . . . σk . . . with |σ0 . . . σk | = qk,

and x = τ0τ1 . . . τk . . . with |τ0 . . . τk | = pk .

The specific choice of the above sequences comes from Lemma 5.3. For example, we
can take n′k = O([ek4

]) and mk = k so that n′k dominates the length of `k+1; let {pk} be
the set of numbers (of an arithmetic progression) satisfying (29), and choose qk to satisfy
Lemma 5.3 (e.g. qk ≈ O([eαpk ]) in the case where 0< α = β <∞). Comparing with (23)
(see Figure 3), we see that it could happen that σk, τk 6∈A∗; hence Proposition 5.2 does not
follow directly. Thus we need to modify the previous construction slightly to accommodate
the extra FGk’s.

Take a ∈A, b ∈Ac and w0 = bb as before. Assume σ0 does not contain w0

as a segment (otherwise adjust w0 = bb . . . b to be longer). We use induction to
construct sequences {xk}, {wk}, {p′k}, {q

′

k}, {σ
′

k} and {r j } for l j ≤ qk (which is used as
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FIGURE 4. The positions in z and the insertion of b.

an indicator function). We take `0 < q0. Let p′
−1 = 1 and q−1 = 0, and set σ ′0 = σ0,

x0 = w0σ0 and ri =∞ for `i ≤ q0. Suppose we have already constructed the sequences
up to the kth step, such that

p′k = pk +
∑

q j<pk

(p′j + 1)+
∑

r j<pk

1, (24)

q ′k = qk +
∑

q j<qk

(p′j + 1)+
∑

r j<qk

1. (25)

We proceed to the (k + 1)th step as follows. Let

σk+1 = η
T
s FGs ηs+1 . . . FGt−1 η

T
t , (26)

where ηT
s and ηT

t are truncated segments from ηs and ηt , respectively.
(i) We will modify the above ηi in σk+1 to η′i so that the new piece FGi η

′

i does not
contain z= xk |p′k+1

as a segment. (Note that p′k+1 is defined since pk+1 < qk and ri with
li ≤ qk has been determined in the kth step.)

Observe that z|2 = bb does not appear in the ηi ; hence the only situation in which σk+1

may contain z is as shown in Figure 4 for some l ≤ mi−1. Thus, we consider ηi with
s + 1≤ i ≤ t . If b appears in Smi−1(z) (not counting b in the FGk’s in z), we let η′i = ηi and
ri =∞; otherwise, we insert b into ηi at position j to form η′i , i.e.

η′i = ηi (0) . . . ηi ( j − 1)bηi ( j) . . . ηi (n
′

i − 1), (27)

where j ∈ (mi−1, pk+1) is such that

z(ξ + j) ∈A for any 1≤ ξ ≤ mi−1. (28)

Let ri = `i + j . The existence of such j follows from the choice of the sequences {pi },
{qi }, {n′i } and {`i } (Lemma A.2 in Appendix A). Intuitively, the symbols of Smi−1(z) belong
toA except for those in the FGi . Since the total length of such FGi ’s is very small compared
with that of Smi−1(z), there must exist some j such that (28) holds.

(ii) We define σ ′k+1 = σk+1 and rs =∞ if σk+1 = η
T
s in (26); otherwise, let

σ ′k+1 = ηs
T
FGs η

′

s+1 . . . FGt−1 η
′
t
T
,

using (i). Note that no segment of σ ′k+1 equals xk |p′k+1
. We then define

xk+1 = xkwk+1σ
′

k+1,
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where

wk+1 =

{
(xk)|p′k

a if pk ≤ qi < pk+1 for some i,

(xk)|p′k
b otherwise

is as in (21).
Finally, we define, for x in (23),

3′(x)=
∞⋂

k=0

[xk] = w0σ
′

0w1 . . . σ
′

kwk+1 . . . .

As in §5.1, we need to choose {pk} and {qk} to have the desired properties.

LEMMA 5.3. For any 0≤ α ≤ β ≤∞, there exist {pk}
∞

k=0 and {qk}
∞

k=0 with pk+1 < qk ,

`i < pk < `i + n′i for some i, (29)

and ` j + 4pk < qk < ` j + n′j − 4pk for some j; (30)

the sequences {p′k}
∞

k=0, {q ′k}
∞

k=0 defined by (24) and (25) satisfy p′k < 3pk and (18)–(20).

The proof is in Appendix A, modified from Lemma 5.1.
Note that p′k < 3pk , and (30) implies (17).

PROPOSITION 5.4. Let F be the set of x in (23). Then, for any y ∈ F ′ =3′(F), we have
Rk(y)= q ′k and

τ(y)= α, τ(y)= β.

The proof of this proposition is again deferred to Appendix A. We note that, by using
Theorem 4.3, it can be shown that the set F is a Moran fractal with the same entropy as
AN (which is log #A) if limn→∞

∑
li<n mi/n = 0; the same is true for F ′ if, moreover,

limk→∞
∑

i≤k p′i/qk = 0.

5.3. The dynamical system case. Let (X, f ) be a dynamical system with the SPEC, and
let F be the Moran fractal as in Proposition 4.6, consisting of xi =8(h(i)) with

h(i)= η0
0 FG0 η

0
1 FG1 . . . FGk−1 η

0
k . . . (31)

and η0
k = zk1|nk ` zk2|nk · · · ` zk Nk |nk . We shall convert each xi into another x ′i which

satisfies
τ(x ′i)= α, τ(x ′i)= β.

This is done by adapting the main idea in the previous section to change h(i) ∈ XN into
another sequence in G(h(i)) ∈ XN that has the specified recurrence rate; the SPEC (i.e.,
8) is then used to push the sequence down into X and to obtain F ′ (see item (iii) near the
end of §3).

We let ε > 0 and ε0 < ε/4. For fixed n ∈ N, let {nk}, {Nk} be the two sequences in the
Moran set F as given in Proposition 4.6; for example, we can take

nk = n(k + k0)
4 and Nk = [e

(k+k0)
4
], (32)

with mk ≤ k + k0. Let u∗, v∗ ∈ X be such that d(u∗, O f (v∗)) > 8ε (ε� γ /4, where γ is
the expansive constant in (5)).
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The construction of G(h(i)) is as follows. Recall that the symbol ` represents the
ε-shadow and is assigned a length m = m(ε). First we change h(i) slightly. For each
η0

k , define ηk by breaking each zk j |nk into segments of orbits of equal length n and then
inserting ` u∗ ` in between, so that

ηk = zk1|n ` u∗ ` f n(zk1)|n ` u∗ ` · · · ` u∗ ` f nk−n(zk1)|n ` u∗

` · · · zk Nk |n ` u∗ ` f n(zk Nk )|n ` u∗ ` · · · ` u∗ ` f nk−n(zk Nk )|n . (33)

In this way, ` u∗ ` appears periodically in ηk . Let

G1(h(i))= η0 FG0 η1 . . . FGk−1 ηk . . . .

With this adjustment, v∗|s (for s > n + 2m) will not appear in 8ε(ηi ) because
d(u∗, O f (v∗)) > 8ε. (By 8ε(ηi ) we mean any orbit of length |ηi | that ε-shadows the
pieces in ηi with ` omitted.) Let n′k = |ηk |, mk = | FGk | and `k = |η0 FG0 . . . ηk−1 FGk−1|.

Then, by (32), we have n′k = O(k4ek4
)� mk .

Next, we define new elements a, b and w0 like those in §5.2:
(i) a =` u∗ ` u∗ ` · · · u∗ ` with |a|> n + 4(2m + 1);
(ii) b =` u∗ ` v∗|ŝ ` u∗ ` with |a| = |b|;
(iii) w0 = u∗ ` v∗|r̂ ` u∗ ` with r̂ >max{k0, |a|}, where k0 is as in (32).
Let q−1 = 0, p′′

−1 = |w0| − |v| − m and

p′′k = pk +
∑

q j<pk

(p′′j + |v| + m)+
∑

r ′j<pk

|v|, (34)

q ′′k = qk +
∑

q j<qk

(p′′j + |v| + m)+
∑

r ′j<qk

|v|, (35)

where r ′j is to be constructed as in §5.2, counting the position at which we insert the
segment b. (The term m in the first sum of both (34) and (35) corresponds to the extra `

in (36) below.)
Write y= σ0σ1 . . . σk . . . with |σ0 . . . σk | = qk . In the following, we define {σ ′k} and

{yk}.
(i) For

σk+1 = η
T
s FGs ηs+1 . . . FGt−1 η

T
t

as in (26), we modify it to σ ′k+1 so that no segment of σ ′k+1 contains z= yk |p′′k+1
(analogous

to what was done in §5.2). For s + 1≤ i ≤ t , since u∗ appears in every n + 2m + 1
symbols of ηi , if a segment of O f (v

∗) with length n + 2m + 1 already appears in Smi−1(z)
(not counting the ` and FGt in z), then, by observing d(u∗, O f (v∗)) > 8ε, the requirement
is fulfilled; in this case we can just take η′i = ηi and set r ′i =∞. Otherwise, we let

η′i = ηi (0) . . . ηi ( j − 1)bηi ( j) . . . ηi (n
′

i − 1)

and r ′i = `i + j , where j is such that u∗ appears in every n + 2m + 1 symbols of

z(ξ + j) . . . z(ξ + j + |v| − 1) for each ξ ≤ mi−1.
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(ii) We define yk+1 = ykwk+1σ
′

k+1, where

wk+1 =

{
` (yk)|p′′k

a if pk ≤ qi < pk+1 for some i,

` (yk)|p′′k
b otherwise.

(36)

Note that the above yk is not necessarily a segment of an orbit. Hence, to complete the
construction, we need to make a further refinement:

w′k+1 =

{
`8(yk)|p′′k

a if pk ≤ qi < pk+1 for some i,

`8(yk)|p′′k
b otherwise,

where 8 is the shadowing function defined in (iii) at the end of §3. (We make the
convention that once η′i is determined, so are 8ε(η′i ) and 8{εi }(η

′

0 FG0 . . . FGi−1 η
′

i ).) Now
let

G(h(i))= w0σ
′

0w
′

1σ
′

1w
′

2σ
′

2 . . . w
′

kσ
′

k . . . , (37)

and let x ′i =8(G(h(i))). We collect all the x ′i with i ∈ Q in Construction M and denote
this set by F ′. We will see, in Lemma 5.8, that F ′ is a Moran fractal.

The main theorem follows from the following lemmas. As before, we need conditions
on {pk} and {qk} to ensure the recurrence property. The proof is analogous to the arguments
for Lemmas 5.1 and 5.3 and hence is omitted.

LEMMA 5.5. For any 0≤ α ≤ β ≤∞, there exist {pk}
∞

k=0 and {qk}
∞

k=0, with pk+1 < qk ,
which satisfy (for each k)

2M < pk − pk−1,

`i + 2M < pk < `i + n′i − 2M for some i, (38)

and ` j + 4pk < qk < ` j + n′j − 4pk for some j, (39)

where M = n + 2m + 1; the sequences {p′′k }
∞

k=0, {q ′′k }
∞

k=0 defined by (34) and (35) satisfy
p′k < 3pk and (18)–(20).

The selection of pk , qk is after the construction of G1(·). We may take, for example,
pk = O(3k M) so that each pk is the end position of a piece of length n in (33), and then
omit some items and relabel the sequence so that (38) holds. Take qk (which depends on
α, β) as in the proof of Lemma 5.3 (see Appendix A); then adjust the sequence to satisfy
(39). We may assume that each qk avoids the places of `. Hence the construction will not
disturb the ` in the process of cutting and inserting the recurrence pieces.

We now consider the recurrence behavior of the G(h(i)) in (37). Let S be the (left) shift
map on XN. For x, x ′ ∈ XN, we let

dn(x, x ′) :=max{d(x(i), x ′(i)) : i = 0, 1, . . . , n − 1},

where d is the metric on X . Note that dn is a semi-metric on XN.

LEMMA 5.6. Let z = G(h(i)) as in (37). Then for any k ∈ N, we have

dp′′k
(z, Si (z)) > 5ε for all m < i < q ′′k ,

dp′′k
(z, Si (z))≤ ε + ε0 for i = q ′′k + m.
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Proof. Let z′ = w0σ
′

0w1σ
′

1w2σ
′

2 . . . wkσ
′

k . . . ∈ XN be the sequence corresponding to z.
By the same argument as in Proposition 5.4, we obtain that for any m < i < q ′′k , there
exists some j < p′′k such that

either z′( j)= u∗, (Si (z′)) ( j) ∈ O f (v
∗),

or z′( j) ∈ O f (v
∗), (Si (z′)) ( j)= u∗.

Recall that d(u∗, O f (v∗)) > 8ε. This implies

dp′′k
(z′, Si (z′)) > 8ε for all m < i < q ′′k . (40)

From the definition of map 8, we see that

d|wk |(wk, w
′

k)≤ ε + ε0.

(Here we assume that w′k also (ε + ε0)-shadows ` and FGk of wk in the corresponding
positions. This will not affect the following argument as (40) is deduced from
d(u∗, O f (v∗)) > 8ε.) Hence

dl(z, z′)≤ ε + ε0 for any l ∈ N (41)

and the first statement of the lemma follows by (40). Equation (41) implies the second
statement by observing that dp′′k

(z′, Si (z′))= 0 for i = q ′′k + m. 2

As a consequence of Lemma 5.6, we have the following.

LEMMA 5.7. F ′ is a subset of D(α, β).

Proof. Let x ′i ∈ F ′. It cannot be a point with period less than m + 1, owing to the insertion
of u∗ and v∗|r̂ , v∗|ŝ . Thus there exists 0< ε′ < ε such that

τB(x ′i ,ε
′)(x
′

i)=min{ j > 0 : f j (x ′i) ∈ B(x ′i , ε
′)}> m.

Consider τB(x ′i ,ε
′)(x
′

i). By the definition of 8, the orbit of x ′i is within ε + ε0 (< 5ε/4)
distance of the pieces (excluding the ` and FGk) of G(h(i)) in the corresponding places.
Hence we have by Lemma 5.6 that

τBp′′k
(x ′i ,ε

′)(x
′

i)≥ q ′′k for all k ∈ N.

Similarly, we obtain from Lemma 5.6 that

τBp′′k
(x ′i ,4ε)

(x ′i)≤ q ′′k + m for all k ∈ N.

Combining the two estimates, we conclude by Lemma 5.5 and Proposition 2.6 that

τ(x ′i)= α and τ(x ′i)= β,

which proves the lemma. 2

Our last step is to estimate the topological entropy of F ′.

LEMMA 5.8. F ′ is a dynamically defined Moran fractal and

ht ( f, F ′)≥
n

n + 2m + 1
ht ( f, F).
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Proof. For the sth element of {zi j }i j in h(i) (counting lexically) in (31), we let ls , l ′s and l ′′s
be its positions in h(i), G1(h(i)) and G1(h(i)), respectively. Then

l ′s =


k∑

i=0

(n′i + mi )− mk if s = tk for some k,

k∑
i=0

(n′i + mi )+ c
(nk+1(s − tk)

n
− 1

)
if tk < s < tk+1,

where

tk =
k∑

i=0

Ni − 1, n′i = c

(
ni Ni

n
− 1

)
and c = n + 2m + 1;

l ′′s = l ′s +
∑

qk<l ′s

p′′k for all s ∈ N.

It is clear that ls < l ′s ≤ (n + 2m + 1/n)ls . Moreover, since limk→∞
∑k

i=1 p′′i /qk = 0, we
have lims→∞ l ′s/ l ′′s = 1. It follows that lims→∞ ls/ l ′′s ≥ n/(n + 2m + 1).

Next, take i= i0i1 . . . ∈ Q with |ii | = Ni , and write

G(h(i)) := η̃0 FG0 η̃1 FG1 . . . FGk−1 η̃k . . . ,

where each η̃i is a tuple of elements of X connected by `. For k ∈ N, we let yik =8ε (̃ηk)

and
x ′i0...ik =8{εi }(yi0 , . . . , yik ).

For any i0 . . . is ∈ Qs , we let

1i0...is =


Bl ′′tk

(x ′i0...itk
, 2εk) if s = tk,⋃

is+1,...,itk

1i0...itk
if tk−1 < s < tk .

Then it is easy to check that F ′ is a dynamically defined Moran fractal modeled by Q with
the level sets 1i0...is defined above. Moreover, the set F ′ has entropy

ht ( f, F ′)= lim
s→∞

1
l ′′s

log #Qs .

Consequently, we have

ht ( f, F ′)≥ lim
s→∞

ls
l ′′s

ht ( f, F)≥
n

n + 2m + 1
ht ( f, F).

2

Proof of Theorem 1.1. Let 0≤ α ≤ β ≤∞. Let F be a Moran fractal as in Proposition 4.6.
Choose {pk}k , {qk}k as in Lemma 5.5, and let F ′ be the reconstruction of F in the above.
We have by Lemma 5.7 that

ht ( f, D(α, β))≥ ht ( f, F ′).
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For any ϑ > 0, by taking n to be large compared with m, Lemma 5.8 implies

ht ( f, F ′)≥ ht ( f, F)− ϑ = ht ( f )− ϑ.

It follows that ht ( f, D(α, β))≥ ht ( f )− ϑ . This proves ht ( f, D(α, β))= ht ( f ), since
ϑ > 0 is arbitrary.

For any non-empty open set U ⊆ X , we choose z∗ with Bt (z∗, 5ε)⊆U for some t ∈ N.
If we replace w0 in the construction of F ′ by

z∗|t ` u∗ ` v∗|r̂ ` u∗ ` for some large r̂ ,

then the new Moran fractal denoted by F ′′ will be a subset of U ∩ D(α, β). The conclusion
that ht ( f,U ∩ D(α, β))= ht ( f ) follows from the same argument as for D(α, β) in the
previous paragraph. 2
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A. Appendix
We begin with the following lemma.

LEMMA A.1. Let 0≤ α ≤ β ≤∞ and let C > 1. For any strictly increasing sequence
{pk}

∞

k=0 with limk→∞ pk/pk−1 = 1. there exists {qk}
∞

k=0 such that

C · pk < qk − qk−1, (A.1)

e
√

pk < qk < ep2
k for large k, (A.2)

and lim
k→∞

(log qk)/pk = α, lim
k→∞

(log qk)/pk = β. (A.3)

The proof is the same as in [15, p. 84] for the case pk = k. Basically, the condition
0≤ α ≤ β ≤∞ is divided into eight cases according to whether each relation is < or
=. For example, when 0< α = β <∞, one can take qk = [eαk

] (where [a] denotes the
integrer part of a); if 0< α < β <∞, one can take qk =

∑k
i=1 ui , where

uk =

{
[eαk
] if k ∈K,

[eβk
] otherwise

and K = {k ∈ N :
∑2i−1

j=1 24 j
≤ k <

∑2i
j=1 24 j

for some integer i > 0}.

Proof of Lemma 5.1. Let {pk}
∞

k=0 and {qk}
∞

k=0 be as in Lemma A.1. To prove the lemma,
it suffices to show that limk→∞ p′k/pk = 1 and limk→∞ q ′k/qk = 1. Take p0 > 3. We
first claim that p′k ≤ 3pk . This will be proved by induction on the qi . It is clear that the
statement is true for pk ≤ q1, since p′k ≤ pk + p0 + 5 for such k. Now assume that the
statement holds for pk ≤ qi .
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FIGURE A.1. The position of pk , qk in Lemma 5.3.

For any k such that qi < pk ≤ qi+1 (1≤ i), we let j be such that p j ≤ qi−1 < p j+1.
Then

p′k = p′j + pk − p j + p′i−1 + 1+ p′i + 1

≤ 2p j + pk + 3pi−1 + 3pi + 2 by (A.1)

≤ 2p j + pk + 2(qi − qi−1)

≤ 2p j + pk + 2(pk − p j )= 3pk .

This proves the claim. We may assume (A.2) holds for all k ≥ 0 by taking p0 large. Then,
by using p′j ≤ 3p j and e

√
p j ≤ q j , we have

k∑
i=−1

p′i ≤
k∑

i=−1

3pi ≤ 9p2
k ≤ 9 log qk

and hence limk→∞
∑k

i=−1 p′i/qk = 0. Since e
√

p j ≤ q j , q j < pk implies p j ≤ (log pk)
2.

Therefore, by using p′j ≤ 3p j , we have

pk ≤ p′k = pk +
∑

q j<pk

(p′j + 1)

≤ pk +
∑

p j≤(log pk )
2

(3p j + 1)

≤ pk + 9(log pk)
4,

and so limk→∞ p′k/pk = 1. Similarly, we have

qk ≤ q ′k = qk +

k−1∑
i=−1

(p′j + 1)≤ qk + 9p2
k ,

which implies limk→∞ q ′k/qk = 1. Thus (20) follows. 2

Proof of Lemma 5.3. Let {pk}
∞

k=0 be a strictly increasing sequence such that

limk→∞ pk/pk−1 = 1 and pk ≤ e
√

pk−1 . Take n′k = O([ek4
]) and mk = k, so that n′k � mk .

We may assume (29) for the sequence, since limk→∞ mk/`k+1 = 0. Next, let {qk}
∞

k=0 be
as in Lemma A.1 with C = 15. (See Figure A.1 for the position of pk , qk .) By taking p0

to be large, we assume e
√

pk < qk < ep2
k . Increase qk if necessary so that (30) holds; then

we find {qk}
∞

k=0 which satisfies (A.3), (30) and is such that

6pk < qk − qk−1, (A.4)

e
√

pk < qk < cep2
k for some c > 0.
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Let {p′k}
∞

k=0, {q ′k}
∞

k=0 be defined by (24), (25). Recall that r j is defined to be infinity or at
the beginning position in each η j . Let sk =max{i : `i < pk} and tk =max{i : `i < qk}.
We have p′0 < p0 + ms0−1 (where ms0−1 is the length of w0 = bb . . . b if σ0 contains bb)
and

p′k ≤ pk +
∑

q j<pk

(p′j + 1)+ sk − s0,

q ′k ≤ qk +
∑

q j<qk

(p′j + 1)+ tk .

Hence, as in Lemma 5.1, we can show p′k ≤ 3pk by using (A.4) and by observing that
s j − si ≤ p j − pi for i < j . The arguments for showing limk→∞

∑k
i=−1 p′i/qk = 0,

limk→∞ p′k/pk = 1 and limk→∞ q ′k/qk = 1 are also the same as for Lemma 5.1. Then
(18)–(20) follow. 2

LEMMA A.2. For any i with `i ≤ qk+1, we have mi−1 <
√

pk+1. The expression (28)
holds for some j .

Proof. Note that qk < ep2
k . If p0 is large, then for any i with `i ≤ qk+1 we have mi−1 <

√
pk+1, and for any t with `t < pk+1 we have mt < (pk+1)

1/4. The total length of FGt ’s
contained in z is less than 6`t<pk+1mt . Hence

pk+1 − 2mi−1 −
∑

`t<pk+1

(mt + mi−1)≥ pk+1 − 3
√

pk+1 ≥ 1.

Then there exists some j with mi−1 < j < pk+1 − mi−1 such that z( j + l) does not belong
to any FGt of z. Since the segment Smi−1(z) (not counting FGt ’s in z) does not contain the
letter b, we must have that j satisfies (28). 2

Proof of Proposition 5.4. Take sequences {pk}
∞

k=0 and {qk}
∞

k=0 as in Lemma 5.3. We can
express y ∈3′(F) as

y= w0σ
′
0w1 · · · w j

σ ′j︷ ︸︸ ︷
ηT

t j−1
FGt j−1 η

′
t j−1+1 · · · FGi−1 η

′
i · · · FGt j−1 η

′T
t j
w j+1 · · · σ

′
k

|←−−−−−−−−−−−−−−−−−−−−−q ′k−−−−−−−−−−−−−−−−−−−−−−−−→|

wk+1 · · · .

(Here t j is such that q j belongs to the piece ηt j .) We will show that Rk(y)= q ′k . First note
that |wk+1| = p′k + 1. It is clear that if n = q ′k , then

Sn(y)|p′k = wk+1|p′k
= y|p′k .

On the other hand, for n < q ′k we have Sn(y)|p′k 6= y|p′k by the following observations.
(i) y(n)= σ ′j (r) for j ≤ k and r < |σ ′j | implies that Sn(y)(0)= σ j (r) ∈A 6= y(0) ∈Ac

if t j−1 = t j , or (in the case where t j−1 < t j ) that y|p′j = Sm(FGi−1 η
′
i )|p′j

(or Sm(FGt j−1

η′
T
t j
)|p′j

) for some t j−1 < i < t j and m < mi−1. This is because the first two letters of

y|p′j are bb, but this does not appear in η′i , η
T
t j−1

or η′Tt j
(note that η′Tt j

does not end with

b). However, by construction of η′i , we have either that η′i = ηi ∈A∗ and Smi−1(y|p′j )
contains the letter b ∈Ac, or that

η′i (t)= b ∈Ac
6= y(t + mi−1 − m) ∈A where t = ri − `i ,

by (27) and (28). Thus the desired contradiction is obtained.
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(ii) y(n)= w j (0) for j ≤ k implies that Sn+n′(y)|l = Sn′(y)|l 6= Sn′(w jσ
′

j )|l for
n′ = p′j−1 and l = p′j − p′j−1. This is because if l = p j − p j−1, then x j (p′j−1) ∈A 6=
w j (p′j−1)= b ∈Ac; otherwise, x j (p′j−1) . . . x j (p′j − 1) 6∈A∗ 6= (aσ ′j )|l ∈A∗.

(iii) y(n)= w j (p′j−1) for j ≤ k implies that Sn(y)|2 = bb 6= w j (p′j−1)σ j (0), since
σ j (0) ∈A.

(iv) y(n)= w j (i) for i = 1 or p′j−1 − 1 and j ≤ k implies that Sn(y)(1)= w j (2) ∈A 6=
y(1)= b ∈Ac, or Sn(y)(0)= w j (i) ∈A 6= y(0) ∈Ac.

(v) y(n)= w j (i) for p j−1 ≤ q0, 1< i < p′j−1 − 1 implies that Sn(y)(0)= w j (i) ∈
A 6= y(0) ∈Ac.

(vi) y(n)= w j (i) for qr−1 < p j−1 ≤ qr , 1< i < p′j−1 − 1 and r < j ≤ k implies that

y|p′j−1
= Sn(y)|p′j−1

= Si (w jσ j )|p′j−1
. (A.5)

If i < q ′0, then y(0) ∈Ac
6= w j (i) ∈A; and if i > p′j−1 − q ′r−1, then y(q ′r−1) ∈A

c
6=

σ j (s) ∈A for s = i + q ′r−1 − p′j−1 + 1. Consequently, (A.5) holds for q ′0 ≤ i ≤ p′j−1 −

q ′r−1. Note that y|p′j−1
= w j |p′j−1

. It follows that

y|l = Si (y)|l for l = p′j−1 − i.

This implies y|p′r = Sm(y)|p′r for some m < q ′r . Repeat the above argument for y|p′r . By
virtue of (v), we must arrive at a contradiction in a finite number of steps.

Since limk→∞ p′k/p′k−1 = 1 by (19), the proof is complete upon using Rk(y)= q ′k and
Proposition 2.6. 2
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