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Self-affine measures and vector-valued representations
by

Q1-RoNG DENG (Fuzhou and Hong Kong),
XiNGg-Gang HE (Wuhan) and Ka-Sine Lau (Hong Kong)

Abstract. Let A be a d X d integral expanding matrix and let S;(z) = A~ (z + d;)
for some d; € Z%, j = 1,...,m. The iterated function system (IFS) {S;}7%, generates
self-affine measures and scale functions. In general this IF'S has overlaps, and it is well
known that in many special cases the analysis of such measures or functions is facilitated
by expressing them in vector-valued forms with respect to another IFS that satisfies the
open set condition. In this paper we prove a general theorem on such representation. The
proof is constructive; it depends on using a tiling IFS {'(/)j}_l7'=1 to obtain a graph directed
system, together with the associated probability on the vertices to form some transition
matrices. As applications, we study the dimension and Lebesgue measure of a self-affine
set, the L?-spectrum of a self-similar measure, and the existence of a scaling function (i.e.,
an L*-solution of the refinement equation).

1. Introduction. Throughout this paper we assume that Aisa d x d
integral expanding matrix (i.e., all its eigenvalues have moduli > 1) and
D = {dy,...,dm} C Z% We call (4,D) an integral affine pair. This pair
defines an iterated function system (IFS) {S;}7L; on R? by

Si(z) = A Yz +d;), zeR%L

Tt is known that under a suitable norm on R¢, the expanding property of A
implies that the S;’s are contractive, hence there exists a unique nonempty
compact set K satisfying

Alternatively, K can be written in the form of radix expressions
oo
{3474, : 45, eD}.
n=1
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We call the attractor K a self-affine set, and a self-affine region if K° # (.
In the case where |det 4] = m, a self-affine region K will tile R? by certain
translations of K (cf., e.g., [19]); we call such a K a self-affine tile. If we

associate to the family {S;}7L, a set of positive probability weights {pi}its,.

then there exists a unique probability measure u supported on K satisfying
m m

(1L.1) WE) =Y pju(S;H(B)) =D piu(A(E) — dj)
=1 =1

for any Borel subset E of R%. This measure is called a self-affine measure.
If, in addition, the matrix A is a constant multiple of an orthonormal ma-
trix, (i.e., A is a similarity and {S;}JL, are similitudes), then in the above
terminology we replace self-affine by self-similar.

. The above IFS also plays a special role in the refinement equation in
wavelet theory:

m
(1.2) f(@) =) ajf(Az—d;), zeR?,

j=1
where a; € R and 3777, a; = |det A|. An L'-solution of this equation is
called a scaling function. It can be seen that the Radon—Nikodym derivative
of the p in (1.1) satisfies the refinement equation.

One of the most basic assumptions in the study of iterated function
systems is the open set condition (OSC): there exists a bounded open set U
such that

S;(U)cU foreachj and S;(U)NS;(U)=40 ifi#3

Under this condition the attractor K can be identified with a symbolic space
and the invariant measure u can be identified with a product measure on the
symbolic space; their geometric and analytic properties are well understood
(see, for example, {8], [2], [29], [37]). However, there are many important
cases where the OSC is not satisfied (we loosely say that the IFS has over-
lap), for example when m (= #D) > |det A| in the above {S;}7L,. The
overlapping IFS’s have very complicated and rich structure; there are many
attempts to study them by imposing various conditions such as the transver-
sality condition [35), the weak separation condition ([17], [23], [26], [33]) and
the finite type condition [30].

In this paper we consider a vector-valued representation of the self-affine
measure p through a new IFS that satisfies the OSC. This approach was
first used by Daubechies and Lagarias [3, 4] for the refinement equation
(1.2) with A = [2], D ={0,...,m — 1}. The vector form of the equation is

F(z) = ToF(2z) + TyF 2z — 1)
where F : [0,1] — R™! is defined by F(z) = [f(z), ..., f(x +m ~ 2)]' and
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To, T1 are (m—1) x (m— 1) matrices determined by the coefficients a;, they
are called transfer matrices. This representation initiated the investigation
of the joint spectral radius to prove the existence and regularity of scaling
functions (e.g., [18], [16], [27]). Another attempt of vector-valued represen-
tation was due to Strichartz [36] and Lau and Ngai [23] for the Bernoulli
convolution associated with the golden ratio; it was used to give an explicit
formula for the L9-spectrum and verify the multifractal formalism for g > 0
in such case. Feng has made a further investigation for ¢ < 0 and extended
this to the Pisot numbers [9, 10].

Note that all the established cases are on R. Here we will concentrate
on integral self-affine measures on R%, We will use a tiling IFS (i.e., the
attractor is a self-affine tile) to be the new IFS with OSC for the vector-
valued representation. Our main result is

THEOREM 1.1. For each self-affine measure u generated by an integral
affine pair (A, D), there exists a self-affine Z%-tile T such that, for the set
E={e,...,en} ={e € Z¢: KN (T° +¢€) # 0}, the vector-valued measure

p(E) = [w((ENT) +e1),..., u((ENT) +en)]'

satisfies
(1.3) n() =>_ Win@ (),

where | = |det(A™)| for some no > 1, {ti(z) = A™™(z + ¢;)}i, is the
associated integral IFS generating T, and W; = [W;(uw,v)], 1 <4 < I, are
nonnegative N x N matrices satisfying: (1) W = Zé:l W; is irreducible;
(if) W is Markov, i.e., the column sums of W are all 1.

The Z%-tile T in the theorem means T admits Z¢ as a tiling set. The IFS
{'l/’iH:l corresponding to T satisfies the OSC. One of the most important
consequences of this representation is that

(1.4) w(e(T)) = Worl(T),

where 0 = (i1,...,%) € X7, X = {1,...,1}, ¥y = 2y 0 --- 01, and
Wy =W, -+ - W;,. The family of {¢,(T")} generates the Borel sets and the
product of the matrices determines the local property (see Corollary 3.5)
of p.

In the theorem the tile 7" is generated by A (or A™ for some ng) and a
suitable choice of the digit set C € Z¢ (it has to meet the technical require-
ment that 4(6T + ) = 0 for all e € Z2, see §2). The set £ = {ey,...,en}
is considered as a set of vertices, and an edge from e, to e, exists if there
exist ¢; € C and d; € D such that

(1.5) ci —d;j + Aey, = ey
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(see (3.4), Lemma 3.1(iil) and Lemma 3.3). The associated weights of this
graph-directed system are the W; = [w;(u, v)] with w;(u,v) = p; where the
j is determined by (1.5).

The theorem also holds for the refinement equation (1.2) with some
obvious adjustments. With the vector form, all the known theory for the
joint spectral radius will go through. ‘

For a given pair (4, D), it is in general difficult to determine whether the
self-affine set K is a self-affine region, which is a necessary condition for (1.2)
to have an L!-solution; in the case #D = |det A, the K is a self-affine tile
[19]. This question has been studied in some detail in [14] and an algorithm
was given there (see also [30], [37] for self-affine tiles). We make use of the
main theorem to give a unified and more satisfactory criterion as follows:

THEOREM 1.2. Let {W;}_, be the transition matrices in Theorem 1.1
corresponding to p; = 1/m. Then the following conditions are equivalent:
(i) K is a self-affine region, i.e., K° # 0;
(i) K has positive Lebesgue measure;
(iti) (W,1)~ # 0 for any o = (i1,...,in), 1L < 45 < I, n > 0, where T
denotes the vector with 1 in the nonzero entries of v and O elsewhere;
1 is the column vector with 1 in all entries.

Let F = {1 = vy,..., v} be the set of all distinct (W;1)™. It is easy
to see that r < 2V, Hence we can determine whether K° # ( in at most
2N steps. It is known that the Lebesgue measure of such a K is a rational
number [14], and is an integer if K is a tile [19]. We prove

THEOREM 1.3. Let K be a self-affine region genmerated by an integral
affine pair. Then the Lebesgue measure of K is given by

L:(K) == Zaia(vi),
i=1

where o (v;) 4s the number of nonzero entries of v; € F and {a;}]_, is defined
through the matriz G = [G(8,t)]rxr with
G(s,t) =714 {i: Wiws)~ =}, 1<s,t<m
The detailed definition of {a;};_; is given in Theorem 5.3. For the case

K° = 0, we want to determine its dimension. As a consequence of Theo-
rem 1.2, we have v, = 0 in F (after rearrangement), and the matrix G in
Theorem 1.3 can be expressed as

G

G= { ! g}.
0 1

THEOREM 1.4. Let K be the self-similar set coming from a pair (A, D),
where A is a similarity, and suppose that K° = 0. Then dimp K = dimpg K
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=d —log \1/log ¢ < d, where A\; is the mazimal eigenvalue of G1 and g is
the contraction ratio of the IFS.

As another application of Theorem 1.1, we consider the multifractal
structure of the self-similar measure in (1.1). Let
r—0 logr
be the local dimension of u at z. Let Ky = {z € K : o = a(z)}. A classical
heuristic principle called the multifractal formalism says that
dimpg Ko = 7*(a),
where 7*(c) is the Legendre transform of 7(g), the L%-spectrum of 4 (see §6).
The validity of the formalism has to be considered in individual cases and
depends on the differentiability of 7(g). For example, if the IFS consists
of similitudes and satisfies the OSC, then there is an explicit expression of
7(g) and the formalism holds ([8], [2], [7]). For overlapping IFS, there were
extensive investigations of the Bernoulli convolution associated with the
golden ratio {23] and the Pisot numbers [10], the convolution of the Cantor
measure ([28], [12]) and some other related self-similar measures ([34], [38]).
In these cases some extraordinary phenomena were revealed when ¢ < 0.
There was also a study of the scaling functions where the coefficients are
allowed to be negative (e.g., [5]).
By using the vector representation in Theorem 1.1, the product of ma-
trices in (1.4) and the results in [11] and [24], we have

THEOREM 1.5. Let u be the self-similar measure associated with the in-
tegral similar pair (A, D). Then
log ¥ p1=n IWall
7(¢) = lim ———————
n—00 nlog e

where |a| is the length of o and ||Wy||1 is the sum of all entries of W,. More-
over, T7(q) is differentiable and the multifractal formalism holds for ¢ > 0.

,  q>0,

We organize the paper as follows. In §2, we set up some notation and
introduce an auxiliary tiling system. We prove Theorem 1.1 in §3; the analog
for the scaling function is also described. The vector-valued measure in The-
orem 1.1 is constructive; we illustrate the construction by some examples
in §4. In §5, we use a special case of Theorem 1.1 to consider self-affine sets;
Theorems 1.2—4 are proved there. Finally, in §6, we consider the multifractal
structure of integral self-similar measures, and prove Theorem 1.5.

2. The auxiliary tiling system. Let (A,D) be an integral affine
pair as in the last section with D = {d1,...,dn} and let {S;}7L; be the
associated self-affine IFS. We will use the following symbols throughout:
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Zm ={1,...,m} (or just X if there is no confusion) and I* = J,., 2"
Forany J=3ji...5n € Z™ let Sy =85 0-+-05j, and -

dy=d;, + Adj_, +-+ A", Dp=D+AD+ -+ A™'D.

We call a compact set 7' C R? a tile if there exists a discrete set 7" (tiling
set) such that RY = ), (T + 2) and (T° + 2) N (T° + 2') = § for any two
distinct 2,2/ € T. If the tiling set can be chosen to be Z¢, then we call T
a Z%tile. Tt is known that if T is a self-affine tile (i.e., the attractor of an
integral affine pair (4,C)), then T admits a Z%tiling if and only if £(T)
(the Lebesgue measure of T°) is 1; in this case #C = |det A| =l and Cis a
complete residue set, i.e., the set of cosets {[d] : d € C} equals Z¢/AZ? [21].

Using Corollary 5 and Theorem 1 of [39] (or Theorem 1.3 of [19]), we
have the following lemma which guarantees the existence of a Z%-tile for a
given A.

LEMMA 2.1. For any integral expanding matriz A, there exists an integer
k> 0 and o digit set C C 7% with #C = |det(A*)| such that T := T(A*,C)
is a Z%-tile.

Indeed, according to [39], the & can be chosen such that all eigenvalues
of A¥ are greater than 3v/d in modulus. For such k, let Q = {4*z : & =
[£1,..., 24", z; € (=1/2,1/2]}. Then C = Q N 2% satisfies the condition of
Lemma 2.1. In the one- or two-dimensional cases, the bound 3+v/d can be
improved to 2. We also remark that the A%, k > 1, in the above lemma
cannot be taken to be A as there exist expanding integral matrices A (with
size d > 3) such that 7'(4,C) is not a Z%tile for any integral digit set C
with #C = |det(A4)| ([25, corrigendum/addendum] and [32}). So far, for an
integral similarity matrix A, no example has been found for which we must
choose k > 1.

In the following we will introduce an auxiliary IFS {; £=1 such that
the attractor 7' is a Z%tile; this system satisfies the open set condition
automatically and we will reduce the self-affine measure p to be a vector-
valued self-affine measure g of {4;}}_; in the next section. First we state

LEMMA 2.2. Let {Sj}g-nzl be the IF'S generated by the integral affine pair
(A, D), let u be a self-affine measure, and let K be the attractor of the IFS
{S;}7ey. Let T = T(A,C) be a Z%-tile and let V = U{T° + 2 : (T +2) > 0,
z € 2%}, Then

(i) V is a nonempty open set and is invariant with respect to {S;}7Ly;
(1) f VK #0, then u(8T +2) = 0 for all z € Z¢ (9T is the boundary
of T).

Consequently, p is concentrated on either | J,cga(T° +2) or |J,cp4(0T + 2).
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Proof. Set Sj(z) = A™Y(z+d;), d; € D.If u(T+2) > 0, then pu(S;(T+2))
> pju(T +2) > 0. Since T = T(A4,C) is a Z%-tile, C is a complete residue set
of A. Hence there exist ¢; € C and e € Z¢ such that z + dj = ¢; + Ae and

ST +2)=AHT +z+dj) = A7 (T + ¢ + Ae)
=A_1(T+ci)+e§T+e. :
Hence p(T+e) > p(S;(T+2)) > p;u(T+z) > 0and §;(T°+2) CT°+e C V.
It follows that S;(V) C V for all 5. This proves (i).

To prove (ii), we assume VN K # {}; then we can find zg e VN K, £ > 0
and Jy € 5% such that Sy, (K) € B.(z¢) C V. We rearrange the distinct
Sps, J € £, as {¢;}j-; with ¢1 = Sy, and let w; =35 _, ps > 0. Then
we have

(8) b1(K) = S1o(K) €V and §5(V) CV, = 1,...,1;

(b) K = U1 ¢5(K);

(e) u() = Xfoy win(ey())-

For this new IFS {¢;}/_;, let 5, = {2,3,...,7} and let
Jesm\Bn
For any J = j1---jn € ZT\E‘T”, there is an 1 < s < n such that j; = 1.
Note that ¢;(K) C K for all 7, so it follows from (a) that
$(K) C bjrjacs (85, (K)) € Sy (V) EV
and hence E, C V. Using (b) and (c), we have
12 w(V) 2 w(Bn) = Y wop(¢7"(En))
Jexy
> D wdr(E)) 2 Y win(dr(65(K))
Jezp\Ep Jezp\Zp

DS wpK) =Y wi— Y wy

Jerm\In JeZp Jekn

“(3m)" - ()" =1- 0

Since w; > 0, we have (1 —w1)" — 0 as n — oo. Therefore (V) = 1 and
w(V) = u(K) = 1. Noting that 8V = ({87 4+ z : u(T' + 2) > 0, z € Z¢%},
we have u(0V) = u(8T +2) =0 for all z € Z%. u

In view of the above lemma, we need to find a Z%tile T' such that

p@T +2)=0 for all z € Z¢,
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or equivalently, (7° + 2) N K # @ for some z € Z%. This can be achieved by
a certain translation of the tile:

LEMMA 2.3. Let K be the attractor of the integral affine pair (A, D) and
let T = T{A,C) be a Z%-tile. Then there are k > 0 and e € Ci, such that
Ty := T(A*,Cp — e) is also a Z%-tile and K N (T +2) # O for some z € Z°.

Proof. Let Bs(zo) C T° and let a € N be such that 2o € K + a. Since
T is a tile, a + z € T for some z € Z%; hence there exist ¢;; € C such that
at+z=322, A~9c;; (recall that T = {3702, A"z, : @ € C}). Let I be
the identity matrix and let

k=—2+(I—AF 1ZA-JC1

Note that A~* converges to the zero matrix, hence limy_.o. ax, = a. Let &k be
such that ay € a+B;(0). Then (K +ax)NT° # 0. Let e = A* ;?:1 A, =
Z;?:l Ak-d ci;- We see that e € Cy and

=T (A%, Cp —e) = T(4A", 1) — ZA kig

=T(AF,C) — (I — A7)~ 1A“’°e =T — (ax + 2).
This implies X N (T¢ +2) # 0. »
We can now give the main result in this section.
THEOREM 2.4. Let (A, D) be an integral affine pair. Then there isng > 0
and o digit set C C Z¢ with #C = |det(A™)| such that

(i) T =T(A™,C) is a Z4-tile;
(ii) for any self-affine measure pu associated with (4, D),

u( U (6T+z)) =0.
2€Z4

Proof. Lemma 2.1 implies that there exists an integer £ > 0 and a digit
set C such that T(A*,C) is a Z%-tile. Lemma 2.3 shows that there exists
an integer 7 > 0 and an integral vector e € C, such that K N (T (A%,
Cr — €))° + 2) # 0 for some z € Z%. Let ng = kr and C = C, — e. Then
T(A™,C) is a Z%tile and (T'(A™,C)° + 2) N K # { for some z € Z¢. The
remaining assertion follows from Lemma 2.2. »

3. Vector-valued self-affine measures. We will prove Theorem 1.1
via several lemmas. For the ng and C defined in Theorem 2.4, if ng > 1, let
{¢;}7-1 be the distinct Sy’s, J € ™, and w; = SApr: T e Zpe, 85 = ¢4}
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Then p satisfies
) = (o5 )

We can therefore replace {S; } 1, and the corresponding probability weights
{pj}j, by the IFS {65} and {w;}}_1, respectively. Hence, in order to
prove Theorem 1.1, we can assume without loss of generality that ng =1 in
Theorem 2.4, i.e., we assume

(H) T =T(AC) is a Z%tile such that u(J,ez4(6T + 2)) =0.

This assumption ensures that, for any z € Z¢%, u(T + 2) > 0 if and only if
KEn(T°+z) #0.

Let 4:(z) = A7z + ¢;) for some ¢; € C. Since we have two IFS’s
and so two index sets, to avoid confusion we will use I, J to denote the
multi-indices in Y%, and o, 7 to denote those in I} (I = |det A]). Note that
S57(0) = A™"d; and Si(z) = A™"(z + dr). Since S; and 1; are defined by
the same matrix A, one can show directly that
(3.1) Sf_lv,b,,(z) =z+c,—dy VIelX}, oell,
and

BT +e) = > prp(Sy (e (T +¢)))
Iezn,
= > pruT+e+c,—df) VeeZd o€y
Iexy,
The above reveals the basic relationship of {S;}72; and {#:}_, and we
make use of this to form a weighted directed graph system. Let

(3.2) E={ey,...,eny={ecZ?: KN (T°+e) # 0}
and
(3.3) B,={Y,(T)te,:e, €& 0€ X}, n=0.

Since T is a Z3-tile by our assumption (H), it is easy to prove
LEMMA 3.1. With the above notations, we have
(i) for any BE,F € By, E°NF° # () if and only if E = F,

(ii) By is a partition (with overlaps at the boundary) of the union
UEEBn E (2 K);

(iii) if z € Z% and E = A™(T + 2), then E € By, if and only if there are
unique ¢ € X' and e, € € such that c, + A"e, = z;

(iv) (IT°+ e )NK #Q foralle, € €.

LEMMA 3.2. ForanyI € Z%, Je 5k, o€ 50, 7€ 5F and 2 € Z¢,

or —drs + APz € £ implies ¢, —dj+ A"z € E.
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Proof. Observe that ¢,(T) + 2z = A™(T + ¢, + A™2), so (3.1) implies
T o (T) + 2) = T + ¢y — dp + A™z.
Since u(S7(E)) = 2 resk, pou(Spy(E)), we have
T + g — dr + A%2) = w(S7 (4o (T) + 2)) = (S ($or (T) + 2)
> p(S;j (or (T) + 2))
= psT + cor — d1g + A™F2) > 0,
and the lemma follows. =
As a crucial step to reformulate the self-affine measure of {S;}72; in
terms of the auxiliary IFS {i;}\_,, we have

LEMMA 3.3. The family {A™(T +2) : z € Z%, n > 0} generates the
Borel subsets of RY, and for any z € 72,

(A (T-I-Z)—-Z(Z{pj Iex z—d;:eu})u(T—i-ev)

for some e, € €.

Proof. The first part is clear as T is a tile with Z% as a tiling set. For
the identity we note that

WA™T+2) = > pru(S;HAT™(T + 2)))
Iexn,
= Z pru(T —dr + z).
Iezn,
By the definition of &, u(T — dy + 2) > 0 if and only if z — d; = e, for
some e, € €. The lemma follows by replacing z — dy with e, in the above
expression. m

It follows from Lemma 3.1(iii) that we only need to consider those sets
A™™(T + z) such that z = ¢, + A", € &. In view of the above lemma, we
define W; = [wi(u, v)]nxn, 1 <4 <1, by

(3.4 i) = { 77

0, otherwise.

¢; — d; + Aey, = ey for some j,

Then we have

LEMMA 3.4. For any ¢ = o1---0n € I, let W, = [we(u,v)] be the
corresponding product matriz. Then

(3.5) wo(u,v) =Y {pr:I € I, co—dr + Ay = ey}
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Proof. We will use induction. The identity is obviously true for n = 1
by the definition of W;. Assume it is true when n = k — 1. For n = k, let
o=1Tr, 'reZ"C 1, Jj e Xk By Lemma 3.2, ¢, + A* ey — dj; € € implies
cr —|~A’c Yo, — d 7 E E. Let W = [ay]nxn. By the induction hypothesis we
have

Qup = Z{pj I e Z,’;'l, ey —dp + AF e, = ep}.

This implies that

(u,v) = Zautwr (t,v)

N
= Z(Z{PI Tesp ™t e —dr+ A ey = ei})
t=1
: (Z{pi tep—di+ Aey = e,,})
N
= ZZ{pIi TeXkl oo —di+ A% ey = e, ¢ — di + Aey = €}
=1

= Z{pJ cJe Xk e, —dy+ AFey, = e},
(the last equality follows from Lemma 3.2). m

Proof of Theorem 1.1. We have assumed in (H) that ng = 1 in the
statement of Theorem 2.4. Also we assume all d; in D are distinct, otherwise

we can combine the corresponding S; and p; together. Let V = Ujvzl (T+ey).
Lemma 2.2 implies that V' is open and invariant with respect to {S;}7%,,

and p(8T + z) = 0 for all z € Z<. For
w(E) = (ENT) +e1),..., u((ENT) +en)*

we have, by the self-affine identity,

(W(E))y = p((TNE) +e,) = Zm (T NE)+ Ae, — d;)

- ip”‘((o (T +¢;) N A( E))-l—Aeu—d)

i=1 F=1
m 1

= ZPz#(U —CJ)+CJ)+Aev_d)
i=1 j=1




270 Q. R. Deng et al.

Use p(8T + z) = 0, (3.4) and the fact that T is a Z%tile to obtain

m !
((EY)o = 3 S pan(T 1 (A(B) — ) + 65 + Ae, — )
i=1 j=1

! N
= > wi(v,r)u(T N (A(E) — ¢;) +ey).

j=1lr=1

This implies p(E) = Y 4y W;p($; ().

To prove statement (i), we note that for any 1 < u,v < N, our assump-
tion (H) on T' implies that K N (T° + e,) # @, so there exists an integer n
and I € X7 such that S;(T"+ ey) € T + e,. Since

Si(T+e,)=A"™T+e,+dr)

with e, + dr € Z%, Lemma 3.1(iii) implies that there exists ¢ € I such
that ¢, —dr + A™ey, = ey; by Lemma 3.4, we see that for W =37, W;, the
(u,v) entry of W™ is > py and hence is positive. Thus we have proved that
W is irreducible. V

For (ii), we first consider the expression ¢; — ds + Ae, = €, in (3.4). We
claim that the pair (ey,¢;) is uniquely determined by e, and d,. Indeed, if
¢j —ds + Aey = ey, then A7 e, —¢j) = ey —eu € 74, Since T is a Z%-tile,
{c1,...,a} is a complete set of residues (mod A) [21], and we conclude that
u' = v and 4 = §, which yields the claim.

It follows from the claim that distinct pairs (ey,c;) and (ey,c;) with
wi(u,v) > 0 and w;(v',v) > 0 correspond to distinct d;. Hence

N ! N m
(3.6) > w(u,v) =Y > wi(u,v) < ps=1, v=1,...,N,
u=1 i=1 u=1 s=1

i.e., the column sums of W are < 1. On the other hand, by the vector
self-affine identity just proved, [u(T +ey),...,u(T + en)} is a positive 1-
eigenvector of W. This implies that all column sums of W must be 1. The
proof is complete. =

The above proof yields

COROLLARY 3.5. With the same assumptions and notations of Theorem

1.1, we have
B (1)) = Wop(T), Vo € Z*.

We remark that in the above proof, each p; appears exactly once in each
column of W. Also the matrices {V[/}}Ll are not unique, not even the same
size. They depend on the choice of C for the tile T; an example is given in
Section 4 for the case A = [3] on R.
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For the actual construction of g and W;, we have to find the set £ in
the theorem as both the tile 7' and the attractor K may not be expressed
explicitly. We provide an algorithm to construct £ by using the expression
in (3.4).

PROPOSITION 3.6. Let K be the attractor of (A, D), and let T = T(A,C)
be a Z4-tile such that K N (T°+2) # O for some z € Z% as above. Let & = §
and let ) # & C E. Define

(3.7) Ent1 =EU(ZAN AT (En\ En1) +D = C)), n>0.
Then there is an n > 0 such that &, = Ept1, and for this n we have &, = .

Proof. Since £ is a finite set, we need only prove &, C &€ for all n > 0,
and £ C |J,50én-

‘We prove the first inclusion by induction. Assume that &€, C £ and let
2z € Eny1 \ &, Then there exist e € &, d; € D and ¢; € C such that
z= A" e+d; — c;). Hence

(T + 2) 2 pip(AT + 2) — di) = pip(AT + e — ¢;).

Note that AT D2 T +cjand e € &, € &, so u(T + z) > p;u(T + €) > 0. This
implies £,4+1 € £ and induction follows.

For the second inclusion, let ¢, € £. Choose e, € £1. Since W = Zézl W;
is irreducible, there exist e,,,...,6€y, € € with v; = u and v, = v such
that w(vji1,v;) > 0. From the definition of {W;}.;, we see that e,,,, €
A"l(euj + D — (). Therefore e, € &, from the definition of &; and since
€y € &1 Hence £ C J,u06n. n

In the next section, we illustrate this algorithm by some examples. To
conclude this section, we consider the refinement equation

(3.8) f@) =Y ajf(Ar—d;), weR%
j=1

where A and d; € D are as before, and the coefficients {a;}7.; are real and
satisfy 3 7" a; = |det A|. The L'-solution of the equation is called a scaling
function. In this case, f is supported by K and is unique up to a constant
multiple. It is well known that for the scaling function in R with scaling
2, the analysis depends very much on a vector-valued setup (]3], [4], [16],
[27]). For the higher dimensional case, the same technique in the proof of
Theorem 1.1 can be used for the vector-valued reduction. Below we state
such a theorem without proof.

Similarly to the definition of W;, we define the N x N matrices C;,1 <
1<, by
aj, ¢ —dj+ Ae, = e, for some j,

Ci(u,v) = {

0, otherwise.
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Then [ = |det A] is an eigenvalue of C = Zj.:l C;. For any function f, we

define an N-dimensional vector function F' = (Fi,..., Fy) by
i b E T7
(3.9) Fi(s) = { flz+e), zeT, .
0, otherwise.

THEOREM 3.7. Let f be a function supported by K, the attractor of
(A, D), and let F be defined as above. Then f is an L'-solution of the re-
finement equation (3.8) if and only if F is an L*-solution of

l
(3.10) FP(z)=> CjFoy;'(z), ae zcR%
j=1

REMARK. Since 8T has Lebesgue measure zero and f is defined a.e.
with respect to Lebesgue measure, the technicality on u(87 + 2z) = 0 in
the proof of Theorem 1.1 is not needed {as p is absolutely continuous and
#(U,ez4 (8T + 2)) = 0 automatically). Hence we do not need Lemmas 2.2
and 2.3 in the proof.

There is vast literature on scaling functions on R using the joint spectral
radius associated with the above {C;}'_;. Most of the theorems can be
generalized directly once the vector-valued form is established. We list one
of these as an example ([27], [17]). For any vector v € RY, let H(v) be the
linear subspace spanned by {Co(I —Ci)v:i=1,...,l, 0 € Z}}, where I is
the N x N identity matrix.

ProposiTiON 3.8. With the above notations, let v be a nonzero l-eigen-
vector of Eé‘:l C;. Then the following three statements are equivalent:

(i) the equation (3.8) has a nontrivial L'-solution;
(if) limp oo l™ Zan‘lﬂ Zé’:l ”Ca(I - Cj)”” =0;
(iii) there exists an integer k > 0 such that
Y Gl <1 Ywe HE), |lw]| < 1.

UEZ‘[‘

4. Examples. In this section, we will illustrate the construction of the
vector form in Theorem 1.1. First we consider the well known cases associ-
ated with A = 2 on R under our present setting.

EXAMPLE 4.1. Let A =2,D = {0,...,m—1} and let p be the self-similar
measure generated by (A, D) with associated weights {p;}7L;.

The attractor is K = [0,m — 1]. According to Theorem 1.1, we choose
C = {0,1}; then T = [0, 1]. It follows that

E={i:p(KNnf,i+1])>0}={0,1,...,m—2}.
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Let s =i—1,d;=j—1and e, =u—1¢&&. Then the definition of W; in
(3.4) implies that w;{u,v) = p; if and only if j = 2u — v + ¢ — 1. Hence

pp 0 0 - 0
ps p2 pp -+ O
Wi = [p2u—'u] = |P5 P4 PpP3 - 0 y
00 0 - ppo
p2 ;p 0 .- O
ps p3 p2 -+ 0
Wy = [p2u_v+1] = |P6 DP5 P4 - 0
0 0 0 - pm]

The W7, and W, are uniquely determined regardless of the choice of C, since,
for any other digit set C’ such that T'(2,C’) is a Z-tile of R, there is an integer
k such that T(2,C) = T(2,C’) + k and the sets {T' + ¢;} are unchanged.

ExAMPLE 4.2. Let A =3, D = {0,2,4,6} and let 4 be the self-similar
measure generated by (A, D) with associated weights {pj};@:l.

The attractor is K = [0, 3]. If we choose C = {0,1,2}, then T' = [0,1]
and hence £ = {0,1,2}. Let

G=i—1, dj=2j—-2, e, =u—L.

Then the definition of W; implies that w;(u,v) = p; if and only if 2j =
3u — v +i— 1. Hence we have

pp 0 0 0 ;m O p2 0 p
Wi=10 ppo 0|, Wa=|ps 0 pa|, Wz=|0 pg O
pe 0 ps3 0 pa O 0 0 ps

These coincide with the Tp, T3 and Th defined in [28].
If we choose C = {—1,0,1}, then T = [—1/2,1/2] and so £ = {0, 1,2, 3}.
For this choice,

000O0 pr 0 0 O 0p 00

0 0 0 0 0 0
W, = D2 n , W, = D2 D , W = D3 D2 ‘
0 ps 0 p2 ps 0 p3 O 0 ps 0 p3

0 0pgs O 0 0 0 pg 0000

We see that, unlike the case in Example 4.1, if we choose a different C (and
hence T'), we may have different £ and Wj.
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Also, note that D C 2Z; if we consider v(E) = p(2F) and-choose C =
{0,1,2}, let u(E) = (u(E N (27)), w(E N (2T) + 2))t. Then

3

u(E) =Y Win(3E — 2j)
7=1

le[;zl 0], sz[Pz Pl}’ ‘W3=[p3 P2}
4 D3 0 ps 0 0

with

This is simpler than the previous two representations.

ExaMpLE 4.3. Let A= [1 1], D= {[0,0%, [1,0]%, [0,1]} and let p be
the self-similar measure generated by (4, D) with associated weights {p;}5_,
and K be the attractor.

Choose C = {[0,0%,[1,0]*}. Then T = T(A,C) is a Z>-tile (the twin
dragon). For this example, both K and T are more complicated. Note that
T C K and D—C = {[0, =1)%, [1, —~1]%, [0, O], [1, OI¢, [0, 1]*}. Let & = {[0, 0]*}.
By Proposition 3.6 we find &; inductively and the process stops at the 11th
step with

&n = {[_1) "2]t» [—Qa _1]t: [_27 O]t’ [0’ _2]tv ["'1’ _I]ta [_17 O]ta [07 _l]tf

[0, O]t: [“'11 ]-]t’ []-: _]-]ta [er]t) [01 1]t7 [17 1]t}'
Therefore £ = £11 and there are 13 franslates of T° intersecting K. By the
definition of Wj in (3.4), we have

0 6 000 0 0 0 O0O0O0O0 O
0 060 00 0 O0O0O0CO0 0 0
0 00 0O OO0 0 0 00 0 00
00000 OO0 0 O0C O0 0 00
0 p3s » 0 0 0 0 0 0 0O O 0 O
0 0 0 0 0 p3 0 0 p 0 O 0 O
Wi=|ps p» 0 0 » 0 0 0 O O 0O 0 0],
0 0 0 0 0 P2 P3 D1 0 0 0 0 0
0 00 000 0 0 0 0 0 p3 O
pp 0 0 pp 0 0 0 0 0 0O O O O
0 0 0 0 0 0 p 0 0 p 0 0 0
0 6 0 0 0 0 0 0 0 0 p3 P2 m
l0 0 0 0 0 O 0 0 0 pp 0 O]
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[0 pr O 0 0 0 0 0 0 0 O 0 O]
0 0 ps 0O 0 0 0 O O O O O O
0 0 0 0 00 0 0 ps 0 0O 0 O
pp O 0O 0O O OO O OC OO0 O O
0 0 p 0 »p3 p» O 0O O O O O O
0 0 0 0 0 0 0 P3 D2 0 0 pP1 0
W2= 0 0 0 pP3 P2 0 P1 0 0 0 0 0 0
0 0 0 0 0 0 0 D2 0 P33 D 0 0
0 0 0 0O 0 0 0 0 0 0 0 0 p3
0 0 0 p, 0 0 0O 0 0 0 0 0 O
0 0 0 0O 0 00 0 0 p 0 0 O
0 0 060 0 0 0 0O 0 0 0 0 0 p
0 0 000 00 0 OO0 0 0 0]

5. Application to self-affine sets. This section is devoted to the cal-
culation of the Lebesgue measure and Hausdorff dimension of integral self-
affine sets. These problems have been investigated in [37] and [14]. We will
make use of the matrix representation of Section 3 to give an alternative
approach, which unifies the considerations with the measures and functions
and seems to be simpler.

We will use the notations defined in the previous sections with the special
set of probabilities p; = -+ = pm = 1/m (actually any set of positive
probabilities {p;}}_; will do). We also suppose that the assumption (H)
holds for the auxiliary affine system. 5

For any r x s matrix (or vector if s = 1) B = (b;;), let B~ = (b;;) be such
that Eij equals 1 if b;; # 0, and equals 0 if b;; = 0. For any two nonnegative
matrices B and C such that BC is well defined, we have

(5.1) (BC)~ = (BC™)™ VB,C > 0.

This follows from the fact that >, biscs; % 0 if and only if Y bisCsj # 0.
We first provide a constructive way to check if K is a self-affine region,
i.e., K° # () (see the remark after the theorem). By Theorem 1.1, we have

THEOREM 5.1. Let K be the attractor generated by the integral affine
pair (A, D) and let T = T(A,C) be a Z%-tile satisfying (H). Then the follow-
ing statements are equivalent:

() K is a self-affine region, i.e., K° # 0
(i) L(X) > 0;
(iii) W, £ 0 (equivalently (Wo1)~ # 0) for any o € I, n > 0;
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(iv) T C Uévzl(K—ej), where E={e1,...,en}={e € Z¢: u(T+e) > 0}
as in (3.3).
Proof. The implications (i)=-(ii) and (iv)=-(i) are obviously true.
(i)=-(iii). If there exist n > 0 and o € ZP* such that W, = 0, then the
identity in Theorem 1.1 implies that

uO= Y Wonr' o).
TELM\{o}
It follows that g is supported by the attractor of the IFS {y, : 7 € ZP\ {c}}
Whlch is of Lebesgue measure zero. Since we have supp p= U —1 SUpp ;=
(Tﬂ (K —ej5)), it follows that L(T'N (K —e;)) = 0. Therefore £L(K) <
LT +e;) N K) = 0, a contradiction.

_7 1
(iii)=>(iv). Assume that T' ¢ U 1(K —e;). Then T°\ U (K —e;)is
a nonempty open set. Since u is supported by K, the deﬁmtlon of 1 implies
that p is supported by U 1(K — ¢;), hence pu(T° \ U (K —¢5)) = 0.

Since T is the attractor of {’(pj 1 =1, there exist n > 0 and ¢ € X" such that
Yo (T) C T°\ U 1 (K — ;). Corollary 3.5 implies that 0 = p(t,(T)) =
Won(T), hence Wa =0, a contradiction. =

REMARK. Let F := {(W;1)~ : ¢ € Z}}. Since each (W,1)™ is an
N-vector with values 0 and 1, F has cardinality < 2V. Let 7 = {1},

= {(W,l)N 17 € XU Fp and

Friya = Fnp1 U {(Wia)N (1€ XY, 0 € Fpga \.F,—,,}, n > 0.

Note that (5.1) implies (W,,1)~ = (W, (W, 1)™)~, so (W,1)~ € F, if 7| =
n. Hence there exists an n > 0 such that F,, = -7'-71.+1 and, for this n, F = F,.
Theorem 5.1(iii) can be used to check whether the attractor K has nonvoid
interior in at most 2V steps.

In the following we will use the above setup to consider the Lebesgue
measure of a self-affine region. According to the Remark we denote the set

of distinct elements of 7 = {(W,1)~ :0 € Zf} by {1L =v1,v,...,vr}. Let

a(vs) denote the number of nonzero entries of v, and let
Npg=#{oc 27 (W, 1) =w}, n>0.
Let B, be the tile partition defined in (3.3), and let
={Fe€B,: E°NK # {§}.

It is easy to see that (Vo2 Ugep: £ = K.

LEMMA 5.2. With the above notation, we have

() L(K) = limy oo I #8

(i) #B: =31 nta('ut) n=12,.
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Proof. Since T is a Z%-tile, L(T) = 1. Therefore L(E) = I""L(T) =1
for E € B}, and
o) = Jim £( U B) = lm 3 L) = lim 145
EeBy EeBy
This proves (i).

For each E € By, there exist unique o € X" and e; such that B =
Yo (T) + e; (Lemma 3.1) and p(1,(0T)) = 0 for all 0 € I} (Lemma 2.2).
Hence Corollary 3.5 implies 4, (T") +e: € B, if and only if the tth row of W,
is nonzero (i.e. the ¢th coordinate of (W,1)™ is 1). This means that, for any
given ¢ € X7, the number of nonzero rows of W, is given by #{1,(T)-+e: €
Bt :1<t< N}=1%W,1)". Hence
(52) #Br= > #{(T)+ecBy:1<t<N}= Y 1H(W,1)"

o€y oeXp
The identity in (ii) follows directly from this and the definition of Ny ;. m

Let G be the r x r matrix defined by
(5.3) G(s,t) = T i € By : (Wivg)™ = =}, 1<st<r,
where [ is the number of W; in Theorem 1.1 and F = {1 = v1,vq,...,u-}.
It is clear from the definition that each row sum of G is 1, hence G is a

Markov matrix.

Before going on, we will recall some basic facts on the Perron-Frobenius
theory on nonnegative matrices [1]. If a Markov matrix B is primitive then
it is easy to show that lim, .o B™ exists. For the Markov matrix G, there
is ¢ > 0 and a permutation matrix P such that

R, 0 - 0

0 Ry - 0
PGqP‘=ﬁ){ }Z’] with z=|. |,

0 0 --- Ry

where each R; is primitive with maximal eigenvalue p(R;) = 1, and X has

maximal eigenvalue o(X) < 1.
It follows that lim, ,co Z™ = Ry exists. Since g(X) < 1, limy_,0e X™ =0
(a)

and each R; is primitive. Therefore lim, .o, G = Gy" exists and
(54)  PGYWP!= lim PG™P!
n—0o0
[ XY A XY Z 4+ Y2
0

lim
=00 YAl
_ [0 (- X)‘lYRo]

0 Ro
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If in addition G has rational entries, we claim that the limiting matrix
G((JQ) also has rational entries. Indeed, in view of (5.4), we can assume G to be
primitive. In that case, 1 is a simple eigenvalue and all the other eigenvalues
have moduli < 1. Let u be the left 1-eigenvector with »_; u; = 1. Then

u

lim G" =
n—eo

u

Hence the claim will follow if we can show that u is rational. Note that if G
is of order k, then G — I has rank k£ — 1. We can assume
c *]

b %)’
where C is a (k— 1) x (k — 1) nonsingular matrix. It is checked directly that
[-bC~1,1] is a left 1-eigenvector of G by noticing that G —I has rank k—1
and has rational coordinates. By uniqueness it equals u after normalization.
This proves the claim.

THEOREM 5.3. Let K be the attractor generated by the integral affine
pair (4,D). Let G be defined as in (5.3). Then lim,_,oo G™ ezists for some
q and L(K) is rational. Furthermore,

LK) =) ajo(v),
j=1

.‘_ﬁ.

oo |

where [a1,...,a,] is the first row of G(()q) = limy 00 GI™ given by (5.4).
Proof. First we claim that G satisfies
(5.5) G(s,8) =1 #{o € I : Wous)~ =}, 1<s,8<T

The case n = 1 follows from the definition. Assume that (5.5) is true for
n > 0, and consider G™L. Since (W;W,1)~ = (W;(W,1)~)™ by (5.1), we
have

G™(s,t) = Y G(s,1)G"(i,t)
i=1
= n1 Z#{j € Xy (Wyvs)™ = v }dk{o € I .(WU’UZ')N = v}
i=1

T
=t Z#{Uj € E{“Ll : (Wjvs)™ = v, (Wous)™ =i}
i=1

=17 {r € P (Wows)™ = weh,

proving the claim.
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This implies that Np; = I"G™(1,t), t=1,...,r. By Lemma 5.2,
T -n * __ 1s n
L(K) = nh_)ngol #B;, = JLIIDLOelG a(v).
Now with the choice of g, it follows from the above digression on nonnegative

matrices that G’(()q) = limp 00 GI™ exists and L(K) has the expression as in
the theorem follows. That £{K) is rational also follows from the digression. =

We remark that the theorem and (5.4) allow us to obtain a simple algo-
rithm to calculate £(K'). That L(K) is rational was proved in [14] using a
different method.

Next we consider the case of K° = {. Theorem 5.1 implies that W, = 0
for some o. Without loss of generality, let v, = 0. Then G has the following

expression:
G1 g]
G= , 0.
[ o 1l ¢ #

We denote the maximal eigenvalue of G by A;.
LEMMA 5.4. With the above notations, if K° = 0, we have

(i) o< <]
1 . 1
(if) lim log# By _ d— ig-i\l, where g = |det A|7V/4.
n—oco — log g" log ¢

Proof. (i) For any 1 < s < r — 1, assume that the ¢th coordinate of v,
is positive. Since Zj W; is irreducible, there exists W; such that the ¢th
column of W; is nonzero, so Wjv, # 0. Hence the sth row of G contains at
least one nonzero entry, which is > [~1 by the definition of G;. This means
that each row sum of G is at least [~1, and therefore A\; > "1 > 0.

By Theorem 5.1, there is a o € X' such that W, = 0. (5.5) implies that
all entries in the last column of G™ are positive. This means that all row
sums of GT are less than 1. Hence A\; < 1.

(i) By the definition of Ny;, (5.5) implies Np, = ["G"(1,s) for any
1 < s <. Using Lemma 5.2(ii) and a(v,) = 0, we have

#B;, =1"[1,0,...,0]G}e,
where o = [a(v1),...,a(vr,—1)] is positive. Let A be a nonnegative right
Ar-eigenvector of Gy satisfying ||8]l1 = 1. Then 8 < o coordinatewise. For
any 1 < j <r—1,let 0 € Z* be such that (W,1)~ = v;. As (5.5) implies
that there exists & > 0 such that the (1,4) entry of G¥ is positive, we
have [1,0,...,0]G¥8 = M[1,0,...,0]8 = M¢f1 > 0. This implies that 4 =
[1,0,...,0]8 > 0. Hence #B; > I[1,0,...,0)G}B = o~ ™\B > 0. It

follows that ) - log A
lim inf o8 # L>d- o8 Y
n—oo — log g log o
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On the other hand, for A > A;, we have A™"GT — 0 as n — oco. There is a
constant ay > 0 such that #B} = I"[1,0,...,0|GTa < {"ayA" = oMy A"
(n > 0). Therefore

) log #8B;; log A
lim su L <d-
n—»oop —log o™ — log o
for any A > A1, and (ii) follows by combining the estimations of the limsup
and liminf. =
THEOREM 5.5. Let K be the attractor of an integral affine pair (A,D)
with A a similarity. Suppose K° = (. Then
dimg K = dimg K =d —log A1/log o < d.
Proof. The theorem follows by showing that
(5.6) d —log A\ /log ¢ > dimp K > dimg K > d — log A1 /log o.
For E C R% and § > 0, let B5; = {y € R¢: ||z — y|| < § for some z € E}
be the 6-neighborhood of E. Let 8, = o™ It is clear that
L(Es,) = o™L(Ty) VEe€B:, n>0.
(Here T is the 1-neighborhood of T'.) It follows from Ks, € Ugeps Es, that

L(Ks,) < > L(Es,) = (#B3) g™ L(T1).
EeB;,

By Lemma, 5.4(ii), we have

Hm inf log £(Ks,) > log /\1.

n—oo  logg logo
Hence the first inequality in (5.6) holds in view of [8, Proposition 3.3.2].

The second inequality is well known. For the third, since (T°+¢;)NK # (§

for any ¢; € £, we can find a constant € > 0 and points z; € K such that
Be(z;) CT° +¢;, 1 <1< N. Choose an invariant open set V of the IFS
{S;}7; such that K C V. Then there exists k > 0 such that [A~*(V)| < Je.

Hence there exists I; € Z‘fn such that

(5.7) S, (V) C Be(w) CT°+e;, 1<i<N.

For any E € B}, we can write E = 9,(T) + e, = Si(T + e;) for some
o€ X Ie Xt and ey, e; € € (by Lemma 3.1(iil) and the proof of Theorem
1.1). Hence Sir,(V) ¢ E°. Therefore, there exist Iz € X% such that
S1:(V) C E. Let @, be the set of all those Sy,; they are in one-to-one
correspondence with E € B}, so ¥, has cardinality #B8;;. We use this class
of maps as an IFS; each ¥, has contraction ratio g"**, and from (5.7), they
satisfy the open set condition. Let K, be the attractor. It follows from the
well known identity that

dimg K, = — log(#B85,)/((n + k) log o).
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Since K, C K, we have dimy K > —log(#B%)/((n+ k) log o) for all n > 0.

Hence Lemma 5.4 implies that the third inequality in (5.6) holds. =
ExampLE 5.6. Let A= [ 2 1], D ={[0,0]% [L,00% [0, 1]%, [1, 1], [2, 1]}

and let K be the attractor generated by (A4, D). Then dimy K =~ 1.820.
For this we let

¢ ={[0,0", 1,0, [0, 1%, [~1,0]", [0, ~1]}.
Then, from the remark after Lemma 2.1, we see that T' = T'(4, C) is a Z*-tile,
and T° N K # 0, since C = Q N Z2. Let & = {[0,0]*}. By using Proposition
3.6, we find & = {[0, 0], [1,0]%, [0, 1]¢, [1, 1)%}.
Let p1 = p2 = p3 = ps = ps = 1/5. By the definition of W;, we have

[1 000 [1 1 0 0 1010
1(1 000 10100 10110
Wi=2 . Wa==- . Wa= - ,
"“5lo01 1 *“5000 0 1 51000 0
0 0 0 0] 0 0 0 0 0000
[0 0 0 0] [0 0 0 o0
110 0 00 10 000
Wy== . Ws==< .
*“5lo0 10 ®7Bl1 111
01 0 1] 0 0 0 1]
Therefore

A ={[1,1,1,1%1,1,1,00%[0,0,1,1)%, [1,1,0,0]%},
Fo=FU{0,0,1,0'}, Fz=FU{0,0,0,1]},
Fi=F3U{[0,0,0,0]} = Fs.

Hence F = F; and K9 = . It follows that

022100
011210
G L0021 20
51000311
000130
0010 2 1]

so that A\ =~ 0.882 and dimpg K = 2 — log A1 /(—log 2) = 1.820.

REMARK 5.7. When A is not a similarity matrix, but all its eigenvalues
have the same modulus, then by using a similar proof, we can show that the
above theorem still holds. The reader is referred to [6] for details.
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6. The Li-spectrum. Let {Bs(z;)}; denote a family of disjoint balls
with radius § and centers z; € K. The L%-spectrum (or moment scalmg
ezponent) of a self-similar measure y is defined by

_ iy, Jog(sup o, p(Bs(xi))
(61) m(9) = 61—%14— log &
if the above limit exists, where the supremum is taken over all such families
of balls [8]. (If the limit does not exist, one can replace the limit by lim inf.)

PROPOSITION 6.1. Let p be the self-similar measure generated by the
integral similar pair (A, D). Then
. log EEeBn wE)?
m(q) = nh_{go T hlbgs
where By, = {¢,(T) +e:e € &, 0 € X}} is a tile-partition of K defined in
(3.3).

Proof. Let a = 1 + |T| where |T] is the diameter of T. From [31], we
know that the limit in the definition of 7(g) exists for all ¢ > 0. Hence it
suffices to show that
(6.2) z w(E) ~ supz,u won(24))?,  q,m >0,

EeBy
where the supremum is taken over all families of disjoint balls {Bgon ()}
with z; € K. For such a family, let

Fn,zi = {E eB,:En Bagn(xi) 7é @}, gn’E = {’L BN Bag" (a:z) #* @}
It is easy to see that there exists a constant b > 0 such that
max #Fn z;, Max #Gn 5 < b
i EeB,

,  g>0,

Hence

S ulBapn (@) < S u(UHE € Fas))’
< YV (mse{u(E) : B € Fop})’

<> (B :Ee€B} Vg>0.
It follows that
(6.3) . supz,u on ()7 < bt Z EY Vg>0.
EeB,

On the other hand, for each E € B, satisfying u(E) > 0, choose a point
from K N E and denote this set by {y; : ¢ = 1,...,7}. Then we have
T

(6.4) > WE)? <Y pu(Bagn(vi))?! Vg =0,n>0.
EeB, =1
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For the family {Bggn(¥i)}, we can choose a disjoint subfamily {Bagn (¥i;)}
and a number s depending only on T" and d such that:
(1) #{i : Bagn(yi) N Bagn(yi;) # 0} < s for all i; (note that Bagn(yi) N
Bag“ (yzj) 7é 0 implies E; C B2ag” (yij));
(i) p(Bagn(¥ir)) = maxiz1 i Bagn (yz)) and for j > 2, pu(Bapn (¥i;)) =
max{p(Bagr (4i)) : Bagn(3i) N U?c;ll Boon(yiy,) = 0};

(iil) any Bggn(ys:) intersects at least one Bggn (¥i,)-
Therefore (6.4) implies
(6.5) Z u(E)! < SZN(BMJ” (¥i;))? < SSUPZ/J'(BGQ" (z:))! Vg0

EeBn J i

(the second inequality is by (i), and (6.2) follows from (6.3) and (6.5). =

We can now express 7(g) in terms of the transition matrices {I/Vi}gzl in
Theorem 1.1.

THEOREM 6.2. Let u be the self-similar measure generated by the integral
similar pair (A, D). Then

() = i log > sexp IWalli
T\4q _nibngo nlogg ? q=Y,

where W, is defined in Theorem 1.1, and |Wy |1 is the sum of all entries
of W,.

Proof. Let e; be the ith column of the N x N identity matrix. From
Lemmsa, 3.1(iii), Lemma 3.3 and Corollary 3.5, for all n > 0 we have

Z ‘1——22 T+cg)+erq—zz (LW, u(T))4.

EeB, r=10€X} r=1ceXp

Using (3, a;)9 =~ N al (N, g> 0 fixed) for any a; > 0, we have

iz (LW, u(T q""Z(ZeWaU )

r=1o0€X} oeX] r=1
Therefore
N
logYgern (m et Won(T))*

7(a) = oo nlo

- g0

IOg EUGZI" ”WU”g
= lim ————*———, ¢q2>0,
n—00 nlog e

by using the fact that 21_1 ¢ =[1,...,1] and u(T) is a fixed vector with
strictly positive coordinates. w
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Note that 7(q) is a concave function. For a concave function gon R, the
Legendre transform (or concave congugate) of g is defined as

g*(a) = inf{ga — g(q) : ¢ € R}.

If g is differentiable at ¢ and ¢'(g) = o, then g*(a) = ga ~ g(q).

For a Borel measure u with support K, we let

(o) — i ELE-2)
7—0 log r

be the local dimension of y at . Let Ko = {2 € K : o(z) = a} be the
a-level set of u. A heuristic principle called multifractal formalism suggests
that the dimension spectrum dimy K, should equal the Legendre transform
of 7(q), ie., .
(@) = dimyg K.
This is the case when the IFS satisfies the OSC ([2], [24]). In the present case,
by Theorem 1.1, Eé:l W; is irreducible, hence [11, Theorem 1.3] shows that
7(g) is differentiable for all ¢ > 0. Also the IFS satisfies the weak separation

condition under our assumption of integral entries in A and D. Hence [18,
Theorem B] implies that the multifractal formalism holds for all g >0

. THEOREM 6.3. Let A be an integral similarity matriz. Let u be the self-
simalar méasure generated by the integral pair (A, D). Then the L3-gpectrum
7(q) of u is differentiable for all ¢ > 0 and

() = dimg Ko,  Va=17(g), ¢> 0.

We do not have a complete understanding for ¢ < 0. In [25], it is shown
that for some special cases the equality of Theorem 6.3 also holds for g<0.
Note that there is a simple example where 7(g), ¢ < 0, is not differentiable
at one point: A = 3, D = {0,1,2,3} and weights {1/8,3/8,3/8,1/8} [28];
there is a modification of the multifractal formalism for that case [12]. Other
interesting cases were considered in [13), [38] and [34].
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