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SOME EXCEPTIONAL PHENOMENA IN MULTIFRACTAL

FORMALISM: PART I∗

KA-SING LAU† AND XIANG-YANG WANG†‡

Abstract. Recently it was discovered that the 3-fold convolution of the Cantor measure µ has
intricate fractal structure [HL]: the set of local dimensions µ has an isolated point and therefore the
standard multifractal formalism does not hold. Our purpose here is to give a detail study of such
class of examples and to understand the dilemma. This will shed some light on the multifractal
structure of measures arising from iterated functions systems with overlaps, which to a large extend,
is still unknown. In this Part I, we concentrate on the Lq-spectrum τ(q); we give a formula for
τ(q) and show that it is real analytic on R except for one non-differentiable point in R

−. The basic
techniques are the product of matrices and the renewal theorem. In Part II, we will prove that such
µ satisfies a modified multifractal formalism.
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1. Introduction. There are two basic parameters in the study of the multi-
fractal structure of a probability measure µ on R

d: the dimension spectrum and the
Lq-spectrum. The dimension spectrum (also called singular spectrum) f(α) of µ is
defined as

f(α) = dimH{x ∈ R
d : α(x) = α},

where

α(x) = lim
δ→0+

log µ
(

B(x, δ)
)

log δ
, x ∈ suppµ,

and is called the local dimension of µ at x, where B(x, δ) is the closed ball centered
at x with radius δ. The Lq-spectrum (also called moment scaling exponent) is defined
by

τ(q) = lim inf
δ→0+

log Sδ(q)

log δ
, (1.1)

with

Sδ(q) = sup
∑

i

µ
(

B(xi, δ)
)q

,

where {B(xi, δ)}i is a countable family of disjoint closed balls centered at xi ∈ suppµ
and the supermum is taken over all such families.

The study of the dimension spectrum was first proposed by physicists to investi-
gate various chaotic models arising from natural phenomena ([FP], [H], [M]). Anal-
ogous to the thermodynamic formalism in statistical mechanics, they formulated a
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relation for f(α) and τ(q) by the heuristic principle of multifractal formalism through
the Legendre transform: if the measure µ is constructed from a cascade algorithm and
if τ and f are smooth and concave, then

τ∗(α) = f(α) and f∗(q) = τ(q). (1.2)

(Recall that for a concave function g on R, the Legendre transform g∗ is defined as
g∗(α) = inf{qα − g(q) : q ∈ R} = q̃α − g(q̃) where α = g′(q̃)).

For an iterated function system (IFS) {Sj}N
j=1 of contractive similitudes on R

d,

if we associate with a set of probability weights {pj}N
j=1, then there exists a unique

probability measure µ such that

µ =

N
∑

j=1

pjµ ◦ S−1
j , (1.3)

[Hut]. We call µ a self-similar measure. We say the IFS satisfies the open set condition
(OSC) if there exists a bounded non-empty open set O such that Si(O)

⋂

Sj(O) = ∅
for all i 6= j, and

⋃N
j=1 Sj(O) ⊂ O. It is well known that if the IFS satisfies the OSC,

then the Lq-spectrum τ(q) is given explicitly by

N
∑

j=1

pq
jr

−τ(q)
j = 1,

where rj is the contraction ratio of Sj ([CM], [LN2]). Furthermore the multifractal
formalism (1.2) holds.

If the IFS does not satisfy the OSC (loosely we say the IFS has overlaps), the
problem becomes very complicated, both the calculation of τ(q) and the proof of the
multifractal formalism are formidable. To deal with this case, Lau and Ngai [LN2]
introduced the notion of weak separation condition (WSC) (for simplicity we assume
here the similitudes {Sj}N

j=1 have the same contraction ratio ρ):

There exists c > 0 such that for any n ∈ N and J, J ′ ∈ {1, 2, · · · , N}n, then
either SJ(0) = SJ′(0) or |SJ (0)−SJ′(0)| ≥ cρn, where SJ = Sj1 ◦· · ·Sjn

, J = j1 · · · jn.

The reader can refer to Zerner [Z] for various equivalent statements. The condition
allows the IFS to have overlaps, but on the other hand it maintains certain separation
in the iteration. This class includes many important examples, some typical cases are
the Sj(x) = β−1(x + ǫj), ǫj ∈ Z where β is an integer or a Pisot number (e.g., golden
number); more generally in R

d, Sj(x) = A−1(x + ǫj) where A is a d × d expanding
orthogonal matrix with integer entries and ǫj ∈ Z

d. The singularity and the absolute
continuity of the self-similar measures arisen from the IFS with the WSC has been
characterized in [LNR] and [LW]. For the multifractal structure, a local version is
proved in [LN2]:

Theorem 1.1. Suppose {Sj}N
j=1 satisfies the WSC and let µ be a self-similar

measure as in (1.3). If τ(q) is differentiable at q0 > 0, then µ satisfies the multifractal
formalism (1.2) at α = τ ′(q0).

The theorem does not guarantee the differentiability of the τ(q) (note that τ(q)
is concave and hence differentiable with possibly countably many exceptional points),
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and it offers no information for q < 0. In an attempt to understand the situation, Lau
and Ngai [LN1] gave a detailed analysis of the τ(q), q > 0 for the Bernoulli convolution
with a golden ratio contraction (call it Erdös measure). It was shown that τ(q) is
analytic for q > 0. Feng [F] extended this to q < 0 and found a non-differentiable
point, which is surprising. Nevertheless the multifractal formalism τ∗(α) = f(α) still
holds.

Another surprising result is obtained by Hu and Lau [HL] by inspecting the
convolution of the standard Cantor measure ν. The m-fold convolution µ = ν ∗ · · · ∗ ν
satisfies the self-similar identity (1.3) with

Sj(x) =
1

3
(x + 2j) and pj = 2−m

(

m

j

)

, j = 0, 1, · · · , m. (1.4)

It is clear that {Sj}m
j=0 satisfies the OSC when m = 1, 2, but instead the WSC

when m ≥ 3. By using a rather complicated combinatoric argument on the multiple
representation of the series

∑∞
n=1 ǫn3−n, ǫn ∈ {1, · · · , m}, it was proved that [HL]

for m = 3 the local dimension α has range E = [α, α̃] ∪ {α} with

α = log3(8/3) ≈ 0.89278, α = log3 8 ≈ 1.89278, α̃ = log3(8/
√

b) ≈ 1.1335. (1.5)

where b = 7+
√

13
2 . The result is in contrary to the expectation that the set of local

dimensions α (as the domain of the dimension spectrum f(α)) is an interval. In this
paper we will make a detailed study of this case and clarify the unusual behavior.
This together with the Erdös measure will serve as two illuminating examples to
study the more general IFS with the WSC.

In this Part I, we will consider the explicit expression of the Lq-spectrum of the
3-fold convolution of the Cantor measure (actually a more general case with the IFS
{Sj}3

j=0 in (1.4) and {pj}3
j=0 a set of probability weights). Our technique is to express

µ in (1.3) as a vector measure

µ(·) =

2
∑

j=0

Tjµ(3 · −j) (1.6)

on [0, 1] with matrix coefficients Tj defined in (2.2). Note that the new IFS is S̃j(x) =
1
3 (x + j), j = 0, 1, 2 on [0, 1] which clearly satisfies the OSC. By using the iteration
algorithm, we can represent µ into a product of matrices (Proposition 2.2). This
technique has been used extensively in the study of scaling functions in wavelet theory
(see [DL1,2], [LWa]). By some simple manipulations of the matrices, we can reduce
the above T0 and T2 as

M0 =

[

1 0
1 3

]

, M2 =

[

3 1
1 0

]

.

These two matrices actually determine the Lq-spectrum: define

s̃n(q) =
∑

J∈{0,2}n−1

‖MJ‖q, n ≥ 1

where ‖MJ‖ = 1tMJ1 with 1t = [1, 1], J = j1, · · · , jn and MJ = Mj1 · · ·Mjn
. By

using the renewal theorem, we prove (Theorem 2.5, 3.6)
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Theorem 1.2. Let µ be the 3-fold convolution of the Cantor measure. Then the
Lq-spectrum is given by

τ(q) =

{

q log3 8 + log3 r̃(q) if q ≥ q0,
q log3 8 if q < q0,

where r̃(q) satisfies 3q
∑∞

k=0 s̃k(q)r̃(q)k+1 = 1, q0 satisfies r̃(q0) = 1 (q0 ≈ −1.149).
Furthermore τ(q) is differentiable except at q0.

Actually τ(q) is real analytic for q > q0, following from that of r̃(q); τ(q) is linear
for q < q0; Also the definition of Legendre transform implies

α := sup{α(x) : x ∈ suppµ} = log3 8 and τ∗(α) = 0.

This is consistent with the conclusion in (1.5) for α, which is the local dimension of
the two end points of suppµ = [0, 3] [HL]. In fact the conclusion for the set E in (1.5)
can be obtained by the matrix product developed here. We will deal with this in Part
II [FLW]. For q > 0, the expression of τ(q) has been obtained in [LN3] by a different
method; when q is a positive integer, the above series formula for r̃(q) in Theorem 1.2
can be reduced to finding the root of a polynomial.

It follows from Theorem 1.1 that the multifractal formalism holds for q > 0. In
Part II, we will consider q < 0 and prove a modified multifractal formalism, by taking
into consideration of the non-differentiable point q0 .

The above technique can also be applied to other cases with the WSC. For ex-
ample, Keane et al [KSS] and Pollicot and Simon [PoS] considered the λ-expansion of
deleted integers; for λ = 1

3 , it corresponds to Sj(x) = 1
3 (x+ j), j = 0, 1, 3 with weights

p0 = p1 = p3 = 1
3 . It satisfies the WSC. By using the above approach it is not hard to

find the Lq-spectrum for the corresponding measure. In this case, it is real analytic
and the multifractal structure is simple.

The Erdös measure and the 3-fold convolution of the Cantor measure have also
been considered by Olivier et al [OST] from the point of view of Gibbs property. They
showed that the first one is a weak Gibbs measure (which implies the validity of the
multifractal formalism for q ∈ R) but the latter is not. For the general case, Feng and
Lau [FL] proved that

Theorem 1.3. Let {M1, · · · , Mm} be non-negative d × d non-negative matrices
and let

P (q) = lim
n→∞

1

n

∑

|J|=n

‖MJ‖q, q > 0.

Suppose
∑m

i=1 Mi is irreducible, then P (q) is differentiable for q > 0. Moreover for
α = P ′(q), q > 0,

dimH

{

J : lim
n→∞

1

n
log ‖MJ‖ = α

}

=
−P ∗(α)

log m
.

By using Theorems 1.1 and 1.3, we see that if a measure can be put into a
self-similar vector-measure (as in (1.6)), then the multifractal formalism holds for
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q > 0. There is restriction to extend this to q < 0 in view of the 3-fold convolution
of the Cantor measure. Nevertheless if the matrices have positive entries, then the
theorem can be extended to q < 0 [FL].

We remark that Shmerkin [Sh] has independently considered the multifractal
structure of the 3-fold convolution of the Cantor measure and the extension. His
approach is different from ours.

The paper is organized as the follows. In Section 1, we introduce the associated
matrices for the measures slightly more general than the 3-fold convolution of the
Cantor measure µ. We use the renewal theorem to relate the product of matrices
with the τ(q) and obtain the basic results. In Section 3, we evaluate the special
matrices for µ, the 3-fold convolution of the Cantor measure, and prove Theorem
1.2. A similar approach is used to consider the other cases in Section 4 where we
make a brief study about the 1

3 -expansion of deleted integers and the other case with
contraction ratio N−1 for N ≥ 3.

2. The Lq-spectrum. In this section we will consider the Lq-spectrum of mea-
sures slightly more general than the 3-fold convolution of the Cantor measure. Let
Sj(x) = 1

3 (x + 2j), j = 0, 1, 2, 3. It is clear that K = [0, 3] is the invariant set of the
IFS. We associate the system with probability weights {pj}3

j=0, then there exists a
unique probability measure µ satisfying

µ(·) =

3
∑

j=0

pjµ(3 · −2j). (2.1)

By using a technique of Daubechies and Lagarias [DL1,2], we can split the measure
µ into a vector-valued measure µ defined on R:

µ(A) =





µ
(

A ∩ [0, 1]
)

µ
(

(A ∩ [0, 1]) + 1
)

µ
(

(A ∩ [0, 1]) + 2
)





for any Borel subset A ⊂ R. It is clear supp µ ⊂ [0, 1].

Lemma 2.1. For the measure µ as above, we have

µ(A) =

2
∑

j=0

Tjµ(3A − j), (2.2)

where

T0 =





p0 0 0
0 p1 0
p3 0 p2



 , T1 =





0 p0 0
p2 0 p1

0 p3 0



 , T2 =





p1 0 p0

0 p2 0
0 0 p3



 .

Proof. Denote by I = [0, 1] for short. For the measure µ in (2.1), note that
suppµ = [0, 3], hence for any Borel set A ⊂ R, we have

µ(A ∩ I) =

3
∑

j=0

pjµ(3A ∩ [0, 3] − 2j) = p0µ(3A ∩ [0, 3]) + p1µ(3A ∩ [0, 3]− 2).
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Observe that µ(3A ∩ [0, 3]) =
∑2

i=0 µ
(

(3A − i) ∩ I + i
)

, and µ(3A ∩ [0, 3] − 2) =

µ
(

(3A − 2) ∩ I
)

, it follows that

µ(A∩I) = p0µ(3A∩I)+p0µ
(

(3A−1)∩I+1
)

+p1µ
(

(3A−2)∩I
)

+p0µ
(

(3A−2)∩I+2
)

.

Similarly

µ(A ∩ I + 1) = p1µ(3A ∩ I + 1) + p2µ
(

(3A − 1) ∩ I
)

+p1µ
(

(3A − 1) ∩ I + 2
)

+ p2µ
(

(3A − 2) ∩ I + 1
)

;

µ(A∩I+2) = p3µ(3A∩I)+p2µ
(

3A∩I+2
)

+p3µ
(

(3A−1)∩I+1
)

+p3µ
(

(3A−2)∩I+2
)

.

Writing these to matrix form, we obtain (2.2).
We use J = j1 · · · jn ∈ {0, 1, 2}n to denote the multi-index and |J | = n to denote

the length of J ; write TJ = Tj1 · · ·Tjn
. Define map φJ : R → R as following:

φJ (x) = 3−nx +

n
∑

k=1

3−kjk.

Let [[J ]] be the interval [φJ (0), φJ (1)] = [
∑n

k=1 3−kjk, 3−n +
∑n

k=1 3−kjk], then
[[J ]] ⊂ [0, 1]. With the notation defined above, we can write down the µ-measure
of a neighborhood of a point in [0, 3].

Proposition 2.2. For J ∈ {0, 1, 2}n and A ⊂ [[J ]], we have µ(A) =
TJµ

(

φ−1
J (A)

)

. In particular

µ([[J ]]) = TJa and µ([[J ]] + i) = et
iTJa, i = 0, 1, 2 (2.3)

where a = µ([0, 1]), and ei is the unit vector in R
3 whose (i + 1)-st coordinate is 1.

Proof. Note that suppµ ⊂ [0, 1], hence µ(3A − j) = 0 if j 6= j1. It follows from
(2.2) that

µ(A) = Tj1µ(3A − j1).

Iterating the above identity yields that

µ(A) = TJµ(3nA − 3n−1j1 − · · · − jn) = TJµ
(

φ−1
J (A)

)

,

This is the first part of the proposition, and (2.3) follows by letting A = [[J ]].

In order to calculate τ(q) in (1.1), we use the formula

τ(q) = − lim sup
n→∞

1

n
log3

(

2
∑

i=0

∑

|J|=n

(et
iTJ1)q

)

. (2.4)

To see this, we use, for positive sequences {xn}∞n=1, {yn}∞n=1, xn ≈ yn to denote
the existence of c > 0 such that xn/c ≤ yn ≤ cxn for all n ∈ N. It follows from
Proposition 2.2 that

µ([[J ]] + i) ≈ et
iTJ1 where 1t = [1, 1, 1]. (2.5)
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By the result in [LN2], (2.4) is true for q ≥ 0.

For q < 0, let n ∈ N be such that 3−n ≤ δ < 3−n+1 and {B(xi, δ)}i be a family
of disjoint δ-ball centered at xi ∈ suppµ. For each xi, there exists |Ji| = n and
j∗i ∈ {0, 1, 2} such that xi ∈ [[Ji]] + j∗i ⊂ B(xi, δ). Hence

∑

i

µ
(

B(xi, δ)
)q ≤

∑

i

µ([[Ji]] + j∗i )q ≤
2
∑

i=0

∑

|J|=n

µ([[J ]] + i)q.

This and (2.5) imply that

τ(q) = lim inf
δ→0+

log Sδ(q)

log δ
≥ − lim sup

n→∞

1

n
log3

(

2
∑

i=0

∑

|J|=n

(et
iTJ1)q

)

,

where Sδ(q) is as (1.1). For the reverse inequality, we observe that for each |J | =
n− 1, i = 0, 1, 2, there exists δ-ball BJ,i ⊂ [[J ]] + i, and the assertion follows from the
same argument as above.

Peres and Solomyak [PS] proved that if µ is a self-similar measure, then the limit
in the definition of τ(q) in (1.1) exists for all q > 0. Our proof in the sequel shows
that for the present case the limit for q < 0 exists also.

Let

T̄0 =

[

p0 0
p3 p2

]

, T̄2 =

[

p1 p0

0 p3

]

.

In the following, we will reduce the limit (2.4) into a more tractable form.

Lemma 2.3. For any J ∈ {0, 2}n, u, v ∈ R, we have

[u, 0, v]TJT1 =
(

[u, v]T̄J

[

p0

p3

]

)

et
1.

Proof. We observe that for J ∈ {0, 2}n, TJ is of the form
24 α1 0 α2

0 α3 0

α4 0 α5

35 and

T̄J =
[

α1 α2
α4 α5

]

. A direct calculation shows the assertion.

In order to calculate τ(q) in (2.4), we define u0 = 1 and

un := un(q) =
∑

|J|=n

(et
1TJ1)q, n ∈ N. (2.6)

Also we let s0 := s0(q) = pq
1 + pq

2 and for n ≥ 1, we define

sn := sn(q) =
∑

J∈{0,2}n−1

(

[p2, p1]T̄J

[

p0

p3

]

)q

;

bn := bn(q) =
∑

J∈{0,2}n−1

(

[p2, p1]T̄J1
)q

.

The following lemma gives the relation between un, sn and bn through the Renewal
Theorem [Fe, p.330, Theorem 1].
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Lemma 2.4. With the notation as above, we have
(i) un =

∑n−1
k=0 sku(n−1)−k + bn, n ≥ 1.

(ii) If for any q ∈ R, there exists a unique positive number r := r(q) such that

∞
∑

k=0

skrk+1 = 1 with
∞
∑

k=1

kskrk+1 < ∞ and
∞
∑

k=1

rkbk < ∞. (2.7)

Then limn→∞ (un)
1/n

= r−1.

Proof. Write un as

un := I(0)
n + I(1)

n + I(2)
n with I(j)

n =
∑

|J|=n−1

(et
1TjTJ1)q, j = 0, 1, 2.

Note that et
1T0 = p1e

t
1 and et

1T2 = p2e
t
1, we have I

(0)
n = pq

1un−1 and I
(2)
n = pq

2un−1.
By Lemma 2.3,

I(1)
n =

X
|J|=n−1

([p2, 0, p1]TJ1)q

=
X

|J|=n−2

([p2, 0, p1]T1TJ1)q +
X

|J|=n−2

X
i=0,2

([p2, 0, p1]TiTJ1)q

=
X

|J|=n−2

([p2, p1]

�
p0

p3

�
e

t
1TJ1)q +

X
|J|=n−3

X
i=0,2

2X
j=0

([p2, 0, p1]TijTJ1)q

= s1un−2 +
� X
|J|=n−3

X
i=0,2

([p2, p1]T̄i

�
p0

p3

�
e

t
1TJ1)q +

X
|J|=n−3

X
i,j=0,2

([p2, 0, p1]TijTJ1)q
�

= s1un−2 + s2un−3 +
X

|J|=n−3

X
i,j=0,2

([p2, 0, p1]TijTJ1)q.

By repeating the above argument, we have

I(1)
n =

n−1
∑

k=1

skun−1−k +
∑

J∈{0,2}n−1

([p2, 0, p1]TJ1)q.

From which statement (i) follows. To prove (ii), we let fk = rk+1sk and gk = rkuk.
Then we can rewrite (i) as

gn =

n−1
∑

k=0

fkgn−1−k + rnbn

with
∑∞

k=0 fk = 1. This is a renewal equation; if
∑∞

k=1 kfk < ∞ and
∑∞

k=1 rkbk < ∞,
then by the Renewal Theorem [Fe, p.330, Theorem 1], we have

lim
n→∞

gn = lim
n→∞

rnun = c

for some constant c > 0. This implies that limn→∞(un)1/n = r−1.

We remark that if pi > 0, i = 0, 1, 2, 3 and q > 0, then the sequence {sn}∞n=0 is
sub-multiplicative, i.e., there exists a constant c > 0 such that sn+1sm+1 ≥ csn+m+1.
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This is sufficient for the existence of r = r(q), q > 0, satisfying (2.7) (see the proof of
Lemma 3.3 and Proposition 3.4 for detail).

Theorem 2.5. Suppose pi > 0, i = 0, 1, 2, 3 and assume that r(q) satisfies (2.7).
Then the Lq-spectrum τ(q) of µ defined by (2.4) is given by

τ(q) = min {−q log3 p0, −q log3 p3, log3 r(q)} , q ∈ R

and τ(q) = log3 r(q) if q > 0.

Proof. In addition to the above un, we define

tn := tn(q) =
∑

|J|=n

(et
0TJ1)q, vn := vn(q) =

∑

|J|=n

(et
2TJ1)q,

then

tn =
∑

|J|=n−1

[

([p0, 0, 0]TJ1)q + ([0, p0, 0]TJ1)q + ([p1, 0, p0]TJ1)q
]

= pq
0tn−1 + pq

0un−1 +
∑

|J|=n−1

(

[p1, 0, p0]TJ1
)q

.

Note that pi > 0, i = 0, 1, 2, 3, hence there exists C > 0 such that
∑

|J|=n−1

(

[p1, 0, p0]TJ1
)q ≤ C

∑

|J|=n−1

(

[p2, 0, p1]TJ1
)q

= CI(1)
n < Cun,

Therefore

tn ≤ pq
0tn−1 + pq

0un−1 + Cun

...

≤ 2pnq
0 + (C + 1)

n−1
∑

k=1

pkq
0 un−k + Cun

< (C + 1)

n
∑

k=0

pkq
0 un−k.

Similarly we have vn < (1 + C)
∑n

k=0 pkq
3 un−k. Hence

2
∑

i=0

∑

|J|=n

(et
iTJ1)q = tn + un + vn < un + (1 + C)

n
∑

k=0

(pkq
0 + pkq

3 )un−k.

Recall the elementary identities: If xn > 0, yn > 0 and limn→∞(xn)1/n = x,
limn→∞(yn)1/n = y, then

lim
n→∞

(xn + yn)1/n = lim
n→∞

(

n
∑

k=1

xkyn−k

)1/n
= max{x, y}. (2.8)

By using this and limn→∞ u
−1/n
n = r(q)−1 ( Lemma 2.4 (ii)), we have

lim sup
n→∞

(

2
∑

i=0

∑

|J|=n

(et
iTJ1)q

)1/n ≤ max
{

pq
0, pq

3, r(q)−1
}

. (2.9)
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On the other hand, observe that

(et
0T

n
0 1)q + (et

2T
n
2 1)q + un = pnq

0 + pnq
3 + un <

2
∑

i=0

∑

|J|=n

(et
iTJ1)q.

Hence

max{pq
0, pq

3, r(q)−1} ≤ lim inf
n→∞

(

2
∑

i=0

∑

|J|=n

(et
iTJ1)q

)1/n
.

This together with (2.9) prove that

lim
n→∞

(

2
∑

i=0

∑

|J|=n

(et
iTJ1)q

)1/n
= max{pq

0, pq
3, r(q)−1},

hence yields the first part of the theorem.

To prove the second part, we let sn be as in the last lemma, then for q > 0,

sn =
∑

J∈{0,2}n−1

(

[p2, p1]T̄J

[

p0

p3

]

)q

>
(

[p2, p1]T̄
n−1
0

[

p0

p3

]

)q

>
(

p2p
n
0

)q
.

We claim that −q log3 p0 ≥ log3 r(q), equivalently, r(q) ≤ p−q
0 . For otherwise we have

r = r(q) > p−q
0 , it implies

snrn > (p2p
n
0 )qp−nq

0 = pq
2 > 0.

It follows that
∑∞

n=0 snrn+1 = ∞ which contradicts the assumption on r := r(q).
This proves the claim. Similarly we can prove −q log3 p3 ≥ log3 r(q) and the second
part of the theorem follows.

By the theorem, we see that τ(q) may have non-differentiable points; this actually
happens in the case of 3-fold convolution of the Cantor measure, to be seen in Theorem
3.6. In the following we prove a result on the restriction of the measure µ to the interior
of the support [0, 3]. This will eliminate the non-differentiable point and will be used
in Part II to set up the modified multifractal formalism. For each integer m ≥ 0, let
µm := µ|[3−m,3−3−m], the restriction of µ on the interval [3−m, 3 − 3−m]. Let τm(q)
be the Lq-spectrum of µm, i.e.,

τm(q) = − lim
n→∞

1

n
log3

(

2
∑

i=0

∑

|J|=n

µm([[J ]] + i)q
)

.

Proposition 2.6. Suppose pi > 0 for i = 0, 1, 2, 3 and suppose r(q) satisfies
(2.7). Then for any m ≥ 0 and q ∈ R, τm(q) = log3 r(q) is independent of m.

Proof. For n > m, we let

A(i)
n =

∑

|J|=n

µm([[J ]] + i)q, i = 0, 1, 2.
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For i = 1, it is clear that µm([[J ]] + 1) = µ([[J ]] + 1) and by (2.5), we have

A(1)
n =

∑

|J|=n

µ([[J ]] + 1)q ≈
∑

|J|=n

(

et
1TJ1

)q
= un.

For i = 0,

A(0)
n =

m
∑

k=1

∑

|J|=n−k

(

µ([[0k−11J ]])q + µ([[0k−12J ]])q
)

≈
m
∑

k=1

∑

|J|=n−k

( (

et
0T

k−1
0 T1TJ1

)q
+
(

et
0T

k−1
0 T2TJ1

)q )

≈
m
∑

k=1

∑

|J|=n−k

(

(et
1TJ1)q + ([p1, 0, p0]TJ1)q

)

≈
m
∑

k=1

(

un−k + I
(1)
n−k+1

)

(the second ≈ is by (2.5) with the associated constant depends on m). From the proof
of Lemma 2.4, there exists a constant C > 0 such that

Cun−2 ≤ I(1)
n < un.

Hence limn→∞
(

I
(1)
n

)1/n
= limn→∞ (un)

1/n
= r−1. This together with (2.8) proves

that limn→∞
(

A
(0)
n

)1/n
= r(q)−1. Similarly, we have limn→∞

(

A
(2)
n

)1/n
= r(q)−1. By

making use of (2.8) once more, we have

lim
n→∞

(

2
∑

i=0

∑

|J|=n

µm([[J ]] + i)q
)1/n

= r(q)−1,

which concludes the proposition.

3. 3-fold convolution of the Cantor measure. The 3-fold convolution of
the Cantor measure µ is the self-similar measure defined by (2.1) with weight
[p0, p1, p2, p3] = 1

8 [1, 3, 3, 1]. This is the special case in the last section. Our task
is to simplify the previous expression of sn and to justify condition (2.7). Let

M0 =

[

1 0
1 3

]

, M2 =

[

3 1
0 1

]

.

Define s̃0 := s̃0(q) = 2 and

s̃n := s̃n(q) =
∑

J∈{0,2}n−1

(1tMJ1)q, n ≥ 1,

and r̃(q) > 0 satisfies 3q
∑∞

k=0 s̃k r̃(q)k+1 = 1.

Lemma 3.1. With the above notations, we have

sn = 3q8−(n+1)qs̃n, n ≥ 0 and r(q) = 8qr̃(q)
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where sn and r(q) are defined as in the last section.

Proof. A direct calculation shows that for any J ∈ {0, 2}n−1,

[p2, p1]T̄J

[

p0

p3

]

=
3

8n+1
1tMJ1.

Hence sn = 3q8−(n+1)qs̃n, and the last part of the lemma follows from
∑∞

k=0 skrk+1 =
1.

We need the product MJ for two special indices: J0
n = ε · · · 2020, J2

n =
(2 − ε) · · · 0202 of alternative sequences of 0 and 2 with length n, where ε = 0 if n is
odd and ε = 2 if n is even.

Lemma 3.2. For any J ∈ {0, 2}n, we write ‖MJ‖ = 1tMJ1 and [aJ , bJ ] := 1tMJ .
Then

(i) aJ0
n

= bJ2
n
, aJ2

n
= bJ0

n
, ‖MJ0

n
‖ = ‖MJ2

n
‖;

(ii) aJ0
n

< bJ0
n
;

(iii) 2
√

λn
1 < ‖MJ0

n
‖ < 5

√

λn
1 , where λ1 = 7+

√
13

2 ;
(iv) ‖MJ0

n
‖ = min{‖MJ‖ : |J | = n} and aJ0

n
= min{aJ , bJ : |J | = n}.

Proof. (i) Let Q =
[

0 1

1 0

]

, then Q−1 = Q and MJ0
n

= Q−1MJ2
n
Q. It follows

that ‖MJ0
n
‖ = ‖MJ2

n
‖, aJ0

n
= bJ2

n
and aJ2

n
= bJ0

n
.

(ii) For n = 1, the statement is trivial. In the following, we assume that n > 1. Let

λ1 = 7+
√

13
2 , λ2 = 7−

√
13

2 be the eigenvalues of M2M0. Let P =
[

1+
√

13
2

1−
√

13
2

1 1

]

,

then P−1 = 1√
13

[

1

√
13−1
2

−1

√
13+1
2

]

and P−1(M2M0)P =
[

λ1 0

0 λ2

]

. By a direct calcula-

tion, we have

[aJ0
2n

, bJ0
2n

] =
1

2
√

13
[(
√

13 + 3)λn
1 + (

√
13 − 3)λn

2 , (
√

13 + 5)λn
1 + (

√
13 − 5)λn

2 ],

and by (i),

[aJ0
2n+1

, bJ0
2n+1

] = [aJ2
2n

, bJ2
2n

]M0 = [aJ0
2n

+ bJ0
2n

, 3aJ0
2n

].

Hence (ii) follows from

bJ0
2n

− aJ0
2n

=
1√
13

(λn
1 − λn

2 ) > 0

and

bJ0
2n+1

− aJ0
2n+1

=
1

2
√

13
[(
√

13 + 1)λn
1 + (

√
13 − 1)λn

2 ] > 0.

(iii) We need only observe that

‖MJ0
2n
‖ =

1√
13

[(
√

13 + 4)λn
1 + (

√
13 − 4)λn

2 ]

and

‖MJ0
2n+1

‖ =
1

2
√

13
[(5

√
13 + 17)λn

1 + (5
√

13 − 17)λn
2 ].
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(iv) We see that the minimal identity is trivial for n = 1. Suppose that the
statements are true for n, then for any |J | = n, we have

‖MJ0‖ = aJ + 4bJ = ‖MJ‖ + 3bJ ≥ ‖MJ2
n
‖ + 3bJ2

n
= ‖MJ2

n
0‖ = ‖MJ0

n+1
‖.

Similarly, we have ‖MJ2‖ ≥ ‖MJ2
n+1

‖. Hence the first identity follows. For the second

identity, we note that

[aJ0, bJ0] = [aJ + bJ , 3bJ ] = [‖MJ‖, 3bJ ] ≥ [‖MJ2
n
‖, 3bJ2

n
] = [aJ0

n+1
, bJ0

n+1
].

Similarly [aJ2, bJ2] ≥ [aJ2
n+1

, bJ2
n+1

]. The conclusion follows immediately from state-

ments (i) and (ii).

Lemma 3.3. Let m, n ≥ 0. Then
(i) If q ≥ 0, then s̃m+1s̃n+1 ≥ s̃m+n+1 and limn→∞(s̃n+1)

1/n = infn≥1(s̃n+1)
1/n.

(ii) If q < 0, then for all integer n ≥ 0, we have

2q
(

2
(5

2

)q)n ≤ s̃n+1 ≤ 2q
(

2
√

λq
1

)n
. (3.1)

Proof. For q ≥ 0, note that

s̃m+1s̃n+1 =
∑

|J|=m

‖MJ‖q
∑

|J′|=n

‖MJ′‖q =
∑

|J|=m

∑

|J′|=n

(

1tMJ11tMJ′1
)q

.

Observe that 11t =
[

1 1

1 1

]

, hence 1tMJ11tMJ′1 ≥ ‖MJJ′‖. This implies
s̃m+1s̃n+1 ≥ s̃m+n+1; the expression of the limit follows from this (see [Fa, Corol-
lary1.3] ).

For (ii), it is easy to check that for any J ∈ {0, 2}n, ‖M0J‖ + ‖M2J‖ = 5‖MJ‖.
Note that s̃1 = 2q and by making use of the convexity of xq (q < 0), we have

s̃n+1 =
∑

|J|=n−1

(

‖M0J‖q + ‖M2J‖q
)

≥ 2
(5

2

)q ∑

|J|=n−1

‖MJ‖q = 2
(5

2

)q
s̃n.

The first inequality of (3.1) follows from this. Lemma 3.2 (iii), (iv) imply the second
inequality.

Now we prove the existence of r(q) as in Lemma 2.4. In view of Lemma 3.1, it
suffices to consider r̃(q). Let

F (q, x) = 3q
∞
∑

n=0

s̃n(q)xn+1.

Proposition 3.4. For any q ≥ −2, there exists a unique r̃(q) > 0 such that
F (q, r̃(q)) = 1. Furthermore r̃(q) is real analytic for q ≥ −2.

Proof. For any fixed q ∈ R, let R(q) denote the radius of convergence of the
power series

∑∞
n=0 s̃n(q)xn+1. We first show that F (q, R(q)) > 1:

Case (i): If q ≥ 0, then by Lemma 3.3 (i),

R(q) = lim
n→∞

(s̃n+1)
−1/n = sup

n≥1
(s̃n+1)

−1/n ≥ (s̃k+1)
−1/k for all k > 0.
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Hence s̃k+1R
k(q) ≥ 1 and it follows that F (q, R(q)) = ∞.

Case (ii): For −2 ≤ q < 0, Lemma 3.3 (ii) implies that

R(q) = lim
n→∞

(s̃n+1)
−1/n ≥ 1

2

√

λ−q
1 =

1

2

( 2

1 +
√

13

)q

:=
Aq

2
.

Making use of Lemma 3.3 once more, we have

F (q, R(q)) = 3q
∞
∑

n=0

s̃nRn+1(q)

≥ 3q
(

Aq +

∞
∑

n=1

2q
(

2
(5

2

)q)n−1(Aq

2

)n+1
)

= (3A)q +
(6A2)q

4

(

1 − (
5A

2
)q
)−1

≥ (3A)−2 +
(6A2)−2

4

(

1 − (
5A

2
)−2
)−1

≈ 1.8 > 1

(the last ≥ follows from a direct check on the increasingness of the expression for
−2 ≤ q < 0). Note that F (q, 0) = 0 and for any fixed q, F (q, x) is an increasing
function of x, hence there exists a unique 0 < r̃(q) < R(q) such that F (q, r̃(q)) = 1
(q ≥ −2). The analyticity of r̃(q) follows from the power series expression.

We remark that the above r̃(q) actually exists for all q ∈ R, but it needs more
work and will be proved in [FLW].

Proposition 3.5. There exists a unique q0 ∈ (−1.14996, −1.14960) such that
r̃(q0) = 1.

Proof. If q < q1 := min
{

− log 2/ log 5
2 , − log 4/ logλ1

}

≈ −0.756, we let

fN (q) = 3q
� NX

k=0

s̃k + 2q

�
2
�

5
2

�q�N

1 − 2
�

5
2

�q

�
, gN(q) = 3q

� NX
k=0

s̃k + 2q

�
2
p

λq
1

�N

1 − 2
p

λq
1

�
.

Then by Lemma 3.3 (ii),

fN (q) ≤ F (q, 1) ≤ gN(q)

holds for all N ∈ N and q < q1. A direct calculation shows that f24(−1.14960) =
1.0000002 > 1 and g24(−1.14996) = 0.999981 < 1. The continuity of F (q, 1) implies
that there exists q0 ∈ (−1.14996, −1.14960) such that r̃(q0) = 1. The uniqueness
follows from the monotonicity of r̃(q).

Our main theorem is

Theorem 3.6. Let µ be the 3-fold convolution of the Cantor measure. Then the
Lq-spectrum τ(q) of µ is given by

τ(q) =

{

q log3 8 + log3 r̃(q) if q ≥ q0,
q log3 8 if q < q0,

(3.2)
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P

Fig. 3.1. The curve of τ(q) and τ̃(q). τ̃(q) is the solid curve. If q ≥ q0, then τ(q) = τ̃(q); if
q < q0, τ(q) is straight line, the dotted line.

where q0 is defined by Proposition 3.5 and τ(q) is differentiable except at q0.

Proof. By Proposition 3.4, we see that r(q) = 8qr̃(q) satisfies the conditions in
Theorem 2.5. Hence τ(q) = min {q log3 8, log3 r(q)}. Since log3 r(q0) = q0 log3 8 +
log3 r̃(q0) = q0 log3 8 and r̃(q) is a decreasing function of q (by (3.2)), it follows that
τ(q) = log3 r(q) for q > q0 and identity (3.2) follows. Since r̃′(q0) < 0, we have
τ ′(q0+) < τ ′(q0−). This implies that τ(q) is not differentiable at q0.

Remark. For q > 0, Lau and Ngai [LN3] gave the same formula of τ(q) by
using a different method. If q is an integer they reduced F (q, x) = 1 to a polynomial
equation, hence τ(q) can be calculated easily for such q. Furthermore they gave an
explicit expression of τ ′(1) ( ≈ 0.9884). (Recall that τ ′(1) is the Hausdorff and
entropy dimensions of µ under certain condition [N]).

4. Other examples. Let S̃j(x) = λ(x + j), j = 0, 1, 3, with 0 < λ < 1, and
let K(λ) be the self-similar set of the IFS. Keane et al [KSS] asked the following
question: What is the Hausdorff dimension of K(λ)? They call this the (0,1,3)-
problem. Pollicott and Simon gave some partial results on the question [PoS]. If
λ = 1

3 , then this system is equivalent to the IFS Sj(x) = 1
3 (x + 2j), j = 0, 1, 3. Here

we give a brief consideration of the self-similar measure µ generated by

Sj(x) =
1

3
(x + 2j), j = 0, 1, 3 with weights p0 = p1 = p3 =

1

3
. (4.1)

For convenience, we denote p2 = 0 and S2(x) = 1
3 (x + 4). Then we can make use of

the results in Section 2. Let

M0 =

[

1 0
1 0

]

, M2 =

[

1 1
0 1

]

,

and let s̃0 = s̃0(q) = 1,

s̃n := s̃n(q) =
∑

J∈{0,2}n−1

([0, 1]MJ1)
q
, n ≥ 1.

Proposition 4.1. There exists a unique real analytic function r̃(q) > 0, q ∈ R

satisfies
∑∞

k=0 s̃k(q)r̃k+1(q) = 1.
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Proof. Observe that

s̃n =
∑

|J|=n−2

(

([0, 1]M0MJ1)q + ([0, 1]M2MJ1)q
)

= s̃n−1 +
∑

|J|=n−2

([1, 0]MJ1)q.

Let w0 = 1, wn := wn(q) =
∑

|J|=n−1([1, 0]MJ1)q, n ≥ 1. Then

wn+1 ≥
∑

|J|=n−1

([1, 0]M2MJ1)q =
∑

|J|=n−1

([1, 1]MJ1)q ≥ s̃n ≥ wn−1, (4.2)

for all q ≥ 0. Also a direct calculation yields

wn =

n
∑

k=1

kqwn−k.

Note that for each q > 0, there exists ρ (depends on q) such that
∑∞

k=1 kqρk = 1.
The renewal theorem hence implies

lim
n→∞

ρnwn = c > 0 (4.3)

and it follows that limn→∞(s̃n)1/n = limn→∞(wn)1/n = ρ−1. Let R(q) be the radius of
convergence of the series F (q, x) =

∑∞
k=0 s̃kxk+1, then R(q) = limn→∞(wn)−1/n = ρ.

(4.2) and (4.3) imply that F (q, R(q)) = +∞ for all q ≥ 0. Hence there exists r̃(q) > 0
such that F (q, r̃(q)) = 1.

For q < 0, we observe that

1[0, 1]M0 = M0 and 1[0, 1]M2 = 1[0, 1] ≤ M2,

(the notation [aij ]2×2 ≤ [bij ]2×2 means aij ≤ bij , i, j = 1, 2). Hence

s̃n+1s̃m+1 =
∑

|J|=n

∑

|J′|=m

(

[0, 1]MJ1[0, 1]MJ′1
)q ≥ s̃n+m+1.

A similar argument as in the first part of the proof of Proposition 3.4 yields the
existence of r̃(q). Since (q, r̃(q)) is an interior point of D = {(q, x) : F (q, x) < ∞},
the implicit function theorem implies the real analyticity of r̃(q).

Let µ be the self-similar measure defined by (4.1), then we have

Theorem 4.2. The Lq-spectrum of µ is given by the real analytic function

τ(q) = q + log3 r̃(q), q ∈ R. (4.4)

Proof. We adopt the notations in Section 2 for this special case p0 = p1 = p3 =
1
3 , p2 = 0. Hence

T0 =
1

3





1 0 0
0 1 0
1 0 0



 , T1 =
1

3





0 1 0
0 0 1
0 1 0



 , T2 =
1

3





1 0 1
0 0 0
0 0 1



 .
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A direct calculation yields:

un : =
∑

|J|=n

(et
1TJ1)q = 3−q(un−1 + vn−1),

vn : =
∑

|J|=n

(et
2TJ1)q = 3−q(tn−1 + un−1 + vn−1),

tn : =
∑

|J|=n

(et
0TJ1)q = 3−q

(

tn−1 + un−1 +
∑

|J|=n−1

(et
3TJ1)q

)

,

where et
3 = [1, 0, 1]. This implies that

un ≥ 3−qvn−1 ≥ 3−2qtn−2 ≥ 3−3qun−3.

By Lemma 2.4 (ii), we have

lim
n→∞

(un)1/n = lim
n→∞

(vn)1/n = lim
n→∞

(tn)1/n = r−1, (4.5)

where r = r(q) is as in Lemma 2.4. It follows from the definition of τ(q), (2.8) and
(4.5) that

τ(q) = − lim
n→∞

1

n
log3(tn + un + vn) = log3 r(q).

A similar argument as in Lemma 3.1 shows that sn = 3−(n+1)qs̃n and r(q) = 3q r̃(q).
Hence (4.4) follows.

Recall that the entropy dimension of µ is given by τ ′(1).

Corollary 4.3. Let cJ = [0, 1]MJ1. Then

τ ′(1) = 1 − 1

54 log 3

∞
∑

k=0

3−k
∑

|J|=k

cJ log(cJ) (≈ 0.8517). (4.6)

Proof. By taking derivative on both side of
∑∞

k=0 s̃k(q)r̃(q)k+1 = 1. We have

r̃′(q) = −
∑∞

k=0 s̃′k(q)r̃(q)k+1

∑∞
k=0(k + 1)s̃k(q)r̃(q)k

. (4.7)

To evaluate each term in the expression, we first observe that s̃′k(1) =
∑

|J|=k−1 cJ log cJ . Since τ(1) = 0, we conclude from (4.4) that r̃(1) = 1
3 . Next

we note that

s̃k(1) =
∑

|J|=k−1

[0, 1]MJ1 = [0, 1](M0 + M2)
k−11 =

√
5 + 1

2
√

5
λk−1

1 +

√
5 − 1

2
√

5
λk−1

2 ,

where k ≥ 1 and λ1 = 3+
√

5
2 , λ2 = 3−

√
5

2 are the eigenvalues of M0 + M2. It follows
from a direct calculation that

∞
∑

k=0

(k + 1)s̃k(1)r̃(1)k = 1 +
∞
∑

k=1

(k + 1)

(√
5 + 1

2
√

5
λk−1

1 +

√
5 − 1

2
√

5
λk−1

2

)

3−k = 18.
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The corollary follows by (4.7).

We remark that in [HNW] it is proved that the range of the local dimensions
of µ (i.e., the domain of the dimension spectrum f(α)) is [ 23 , 1]. We can prove a
corresponding result for τ(q).

Proposition 4.4. Let µ be the self-similar measure defined by (4.1), then

(i) limq→−∞
τ(q)

q = 1; (ii) limq→+∞
τ(q)

q = 2
3 .

Proof. (i) If q < 0, then for any J , [0, 1]MJ1 ≥ 1, hence

s̃n =
∑

|J|=n−1

(

[0, 1]MJ1
)q ≤ 2n−1, n ≥ 1.

It follows that

1 =

∞
∑

n=0

s̃nr̃n+1 ≤ r̃ +

∞
∑

n=1

2n−1r̃n+1 = r̃ + r̃2
∞
∑

n=1

(2r̃)n−1 = r̃ +
r̃2

1 − 2r̃
.

Hence 1
3 < r̃ (≤ 1). By making use of (4.4), (i) follows.

(ii) If q ≥ 0, then from the proof of Proposition 4.1 we know that r̃ < ρ, where
ρ satisfies

∑∞
k=1 kqρk = 1. This implies that 3q r̃3 ≤∑∞

k=1 kqρk = 1, and by making
use of (4.4) again, we have

lim sup
q→+∞

τ(q)

q
≤ 2

3
.

Now we need to prove that lim infq→+∞
τ(q)

q ≥ 2
3 . For this, we estimate s̃m; we

try to find an index J = j1 · · · jm such that [0, 1]MJ1 attains its maximum. We
observe that the following procedures will not decrease the product:
(a) If the initial segment of J is 2k0, we replace it by 02k (since [0, 1]Mk

2 M0 ≤
[0, 1]M0M

k
2 );

(b) If the last index jm = 0, we replace it by jm = 2 (since M01 ≤ M21);
(c) We replace the segment 0k2 in J by 02k (since Mk

0 M2 ≤ M0M
k
2 ).

From the above, we need only consider the index

J = 02k1−102k2−1 · · · 02ks−1, kj > 1,
∑

j

kj = n.

Note that M0 = 1[1, 0], a direct calculation shows that

[0, 1]MJ1 = k1k2 · · · ks.

We claim that k1k2 · · · ks ≤ 3n/3 (to compare with the one in [HNW]: k1k2 · · · ks ≤
3[n/3]+1, where [x] is the integer part of x, we adopt their method slightly to prove
the claim). We observe that if kj ≥ 4 for some j, we can replace it by the larger value
2(kj −2) in the product k1k2 · · · ks, hence we may assume that kj = 2 or kj = 3 for all

j = 1, 2, · · · , s. Next, by replacing any three kj = 2 by 32, we have k1k2 · · · ks ≤ 3l ·2l′ ,
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where 0 ≤ l′ ≤ 2 and
∑

j kj = n = 3l + 2l′. It follows that 3l · 2l′ ≤ 3n/3 and the
claim is proved. Hence, we have

s̃n+1 =
∑

|J|=n

(

[0, 1]MJ1
)q ≤ 2n · 3nq/3, n ≥ 0.

It follows that

1 =

∞
∑

n=0

s̃nr̃n+1 ≤ r̃ +

∞
∑

n=0

(

2 · 3q/3
)n

r̃n+2 = r̃ +
r̃2

1 − 2 · 3q/3r̃
,

and hence r̃(q) > 3−q/3−1. By making use of (4.4) one more time, the assertion
follows.

To conclude this section we remark that the method in Section 2 can be applied
to the more general cases as considered in [LN3] using another approach. Let µ be
the self-similar measure defined by

Sj(x) =
x

N
+

N − 1

N
j, j = 0, 1, · · · , N, (N ≥ 3)

with probability weights {pj}N
j=0. Let

T̄0 =

[

p0 0
pN pN−1

]

, T̄N−1 =

[

pN−1 pN

0 p0

]

.

Let s0 = s0(q) =
∑N−1

i=1 pq
i and for k ≥ 1, let

sk = sk(q) =
∑

|J|=k−1

N−2
∑

i=1

(

[pi−1, pi]T̄J

[

p0

pN

]

)q

.

By a similar argument as in Section 2, we have

Theorem 4.5. Suppose that pi > 0, i = 0, 1, · · · , N . Assume that for any
q ∈ R there exists a unique positive r = r(q) such that

∑∞
k=0 skrk+1 = 1 and

∑∞
k=0 kskrk+1 < ∞. Then (i) The Lq-spectrum of µ is given by

τ(q) = min {−q logN p0, −q logN pN , logN r(q)}

and τ(q) = logN r(q) if q > 0; also
(ii) The Lq-spectrum of µm, the restriction of µ on the interval [N−m, N −N−m]

is given by

τm(q) = logN r(q), q ∈ R

(which is independent of m).

By using the sub-multiplicative argument for the sequence {sn}∞n=0, it is not hard
to show that r(q) in the above theorem exists for q ≥ 0 (see also [FL] for the more
general case), but for q < 0, there are difficulties as is seen in Section 3 and we do not
have an answer in general.
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