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Multifractal and correlation analyses of protein sequences from complete genomes
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A measure representation of protein sequences similar to the measure representation of DNA sequences
proposed in our previous papfu et al, Phys. Rev. 64, 031903(2001)] and another induced measure are
introduced. Multifractal analysis is then performed on these two kinds of measures of a large number of protein
sequences derived from corresponding complete genomes. From the valueB g gemeralized dimensions
spectra and relate@, (analogous specific hgaturves, it is concluded that these protein sequences are not
completely random sequences. For substrings with leKgttb, theD spectra of all organisms studied are
multifractal-like and sufficiently smooth for th€, curves to be meaningful. Th€, curves of all bacteria
resemble a classical phase transition at a critical point. But the “analogous” phase transitions of higher
organisms studied exhibit the shape of double-peaked specific heat function. But for the classification problem,
the multifractal property is not sufficient. When the measure representations of protein sequences from com-
plete genomes are considered as time series, a method based on correlation analysis after removing some
memory from the time series is proposed to construct a phylogenetic tree. This construction is shown to be
reasonably satisfactory.
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I. INTRODUCTION walk model. Pengt al.[4] discovered that there exists long-
range correlation in noncoding DNA sequences while the
Since the sequencing of the first complete genome of theoding sequences correspond to a regular random walk. By
free-living bacteriumMycoplasma genitaliumin 1995 [1], undertaking a more detailed analysis, Chatzidimitriou-
more and more complete genomes have been deposited [iteismann and Larharmm#b] concluded that both coding
public databases such as Genb@B4]. Complete genomes and noncoding sequences exhibit long-range correlation. A
provide essential information for understanding genesubsequent work by Prabhu and Clavei6é also corrobo-
functions and evolution. To be able to determine the patterngated these results. From a different angle, fractal analysis is
of DNA and protein sequences is very useful for studyinga relatively new analytical technique that has proved useful
many important biological problems such as identifying newin revealing complex patterns in natural phenomena. Ber-
genes and establishing the phylogenetic relationship amongelsenet al. [7] considered the global fractal dimension of
organisms. human DNA sequences treated as pseudorandom walks.
A DNA sequence is formed by four different nucleotides, vieira [8] carried out a low-frequency analysis of the com-
namely, adenined), cytosine €), guanine(g), and thymine  plete DNA of 13 microbial genomes and showed that their
(t). A protein sequence is formed by 20 different kinds offractal behavior does not always prevail through the entire
amino acids, namely, alaniné\), arginine R), asparagine chain and the autocorrelation functions have a rich variety of
(N), aspartic acid D), cysteine C), glutamic acid E),  behaviors including the presence of antipersistence.
glutamine @), glycine (G), histidine H), isoleucine (), Although statistical analyses performed directly on DNA
leucine (), lysine (K), methionine M), phenylalanine sequences have yielded some success, there has been some
(F), proline (P), serine §), threonine T), tryptophan indication that this method is not powerful enough to amplify
(W), tyrosine (Y), and valine(V) (Ref. [2], p. 109. The the difference between a DNA sequence and a random se-
protein sequences from complete genomes are translategience as well as to distinguish DNA sequences themselves
from their coding sequencé®NA) through the genetic code in more details[9]. One needs more powerful global and
(Ref.[2], p. 122. visual methods. For this purpose, Habal. [9] proposed a
A useful result is the establishment of long memory invisualization method based on counting and coarse graining
DNA sequenceg3—-6]. Li and Kanero[3] found that the the frequency of appearance of substrings with a given
spectral density of a DNA sequence containing mostly indength. They called it theportrait of an organism. They
trons shows ¥F behavior, which indicates the presence offound that there exist some fractal patterns in the portraits
long-range correlation when<0B8<<1. The correlation prop- which are induced by avoiding and underrepresented
erties of coding and noncoding DNA sequences were alsetrings. The fractal dimension of the limit set of portraits
studied by Pengt al. [4] in their fractal landscape or DNA was also discussgd0,11]. There are other graphical meth-
ods of sequence patterns, such as the chaos game
representationl2,13.
*Corresponding author. Email address: yuzg@hotmail.com or Multifractal analysis is a useful way to characterize the
z.yu@qut.edu.au spatial heterogeneity of both theoretical and experimental
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fractal patterng14]. Yu et al. [15] introduced a representa- givenK, there are in total 20differentK strings. In order to
tion of a DNA sequence by a probability measure KOf count the number of each kind Kfstrings in a given protein
strings derived from the sequence. This probability measursequence, 20 counters are needed. We divide the interval
is in fact the histogram of the events formed by all e [0,1] into 20¢ disjoint subintervals, and use each subinterval
strings in a dictionary ordering. It was fouhdl5] that these to represent a counter. Lettisg=s; - - - S, Sie {A, C,D, E,
probability measures display a distinct multifractal behaviorF, G, H, I, K, L, M, N, P, Q, R, S T, V, W, Y}, i
characterized by their generalizedredimensionginstead =1,... K, be a substring with lengtK, we define

of a single fractal dimension as in the case of self-similar

processes Furthermore, the correspondirfgy, curves(de- < Xi
fined in Ref.[16]) of these generalized dimensions of all XI(S):El 20’ @
bacteria resemble classical phase transition at a critical point,

while the “analogous” phase transitionglefined in Ref. \yhere

[16]) of chromosomes of nonbacteria exhibit the shape of

double-peaked specific heat function. These patterns led to a 0, if s=A,
meaningful grouping of archaebacteria, eubacteria, and eu- 1. if s=C
karyote. Anhet al. [17] took a further step in providing a ' b
theory to characterize the multifractality of the probability 2, if =D,
measures of complete genomes. In particular, the resulting 3, if s=E,
parametric models fit extremely well tHe, curves of the 4 if s—F
generalized dimensions and the correspondiggeurves of ' i
the above probability measures of the complete genomes. 5 if =G,
Based on the measure representation of DNA sequence and 6 if s=H
the technique of multifractal analysis in RE15], Anh et al. ’ b
[18] discussed the problem of recognition of an organism 7, it s=1,
from fragments of its complete genome. 8, if s=K,

Works have been done to study the phylogenetic relation- 9 if s—L
ship based on correlation analyses of Ketrings of com- X = ’ e 2)
plete genomegl9] and protein sequences from complete ge- ! 10, if s=M,
nomes[20,21]. Qi et al.[20] pointed out that a phylogenetic 11 if s=N
tree based on the protein sequences from complete genomes o ' '
is more precise than a tree based on the complete genomes 12, if s=P,
(DNA) themselves, and removing the random background 13, if s=0Q,
from the probabilities oK strings of protein sequences can 14 if s=R
improve a phylogenetic tree from the biological point ' ! '
of view. 15, if s=S,

In this direction, we introduce in this paper the notion of 16, if s=T,
measure representation of protein sequences similar to that of )
DNA sequences introduced in Rgfl5]. We then perform 17, it 5=V,
multifractal analyses on this kind of measure representation 18, if s=W,
of protein sequences. We also construct a different measure 19 if s=Y
by subtracting some memory from the original measure. ' e
Then multifractal analyses are performed on these new megy,q
sures, and a phylogenetic tree is constructed based on their
correlation analyses. 1

X (8)=x(s)+ >0 ()

II. MEASURE REPRESENTATION

We then use the subintervix(s),x,(S)[ to represent sub-

Each coding sequence in the complete genome of an Okyjng s Let Ny(s) be the number of times that substriag
ganism can be translated into a protein sequence using theh length K appears in the linked protein sequence and
genetic codgRef. [2], p. 122. Then we can link all rans- \ (tstal) the total times of all substrings with lengt

lated protein sequences from a complete genome to form Qppear in the linked protein sequerjzee use an open read-
long protein sequence according to the order of the codingng frame and slide one position each time to count the
sequences in the complete genome. In this way, we obtain t"f"meS'NK(s) may be zerh We define
linked protein sequence for each organism. In this paper we '
only consider this kind of linked protein sequences and view Fr(s)=Ng(s)/Ng(total) (4)
them as symbolic sequences.

We call any string made df letters from the alphabga, to be the frequency of substring. It follows that
C,D,EFGHILKLMNPQRSTV,W,Y}which ZFg(s)=1. We can now define a measyg on[0,1 by
corresponds to 20 kinds of amino acidsKastring. For a  dux(X) =Yk(x)dx, where
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FIG. 1. Histograms of substrings with lengtis=1 and 4 of protein sequence from complete genomBuathnera sp. APS

Y (x)=20F(s), when xe[x(s),x,(s)[. (5  Wwould change the correlation structure of the measure. How-
ever, by its construction, different orderings of 20 letters in

It is easy to see thaj(l)d,uK(x)=1 and u([%(8),%:(S)[) Eqg. (2) give almost the same multifractal spectrum and the
=F¢(s). We call ux the measure representationf the Dq curve, which will be defined in the following section,
linked protein sequence of the organism corresponding to thehen the absolute value dfis relatively small(In Ref. [15]
given K. As an example, the histogram of substrings in thewe have the same property for the measure representation of
linked protein sequence &uchnera sp. AP®rK=1and4 DNA sequence We shown in Fig. 2 th®, curves for four
are given in Fig. 1. different orderings to support this statement. Hence, our re-

For simplicity of notation, the indeX is dropped in sults based on multifractal analysis are considered indepen-
Fk(s), etc., from now on, where its meaning is clear. We candent of the ordering. In a comparison of different organisms

order all theF(s) according to the increasing orderxfs). using this measure representation, once the ordering is given,
We then obtain a sequence of real numbers consisting*of 2Git is fixed for all organisms.
elements which we denote &§t),t=1, ... ,2C. If s' is one of the 20 letters, we denote B(s’) the

Remark 1As in Ref.[15], the ordering of 20 letters in Eq. frequency of letters’ in the linked protein sequence. Then
(2) follows the natural dictionary ordering &f strings in the  for anyK substrings=s;---sx, s;e {A, C,D, E, F, G, H,
one-dimensional space. A different ordering of 20 letters, K,L,M,N,P,Q,R S T,V,W, Y}, i=1,... K, we define

2 2
—*— Order0
——
sk Orderd - 181 -6~ Order1 1
-6~ Orderl
& Order2 —~ Order2
<+ Order3 —< Order3

o4 Buchnera sp. APS, K=5 1 o4r  Mycoplasma genitalium, K=5

02r - 0.2F 4

FIG. 2. TheD, curves based on four different orders of the 20 kinds of amino acids ii2Eépr measure representation of the linked
protein sequences &uchnera sp. AP8eft) andMycoplasma genitaliurfright). Order0 is the dictionary order; Orderl{is,A,M,C,N,D,
P.E,Q,F,R,G,SH,T,I,V,K,Y,W}; Order2 is{C,L,D,M,E,N,F,P,G,Q,H,R,I,S,K,T,V,W,Y,A}; and Order3 i{Y,C,W,A,L,D,M,E,
N,F,P,G,Q,H,R,I,SK,V,T}.
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F'(s)=P(sp)P(s,)- - - P(sk).
We next define
Fd(s)=F(s)—F'(s) (6)

and denote byr29(s) the absolute value ofd(s). For all
20¢ differentK strings, we can also order thé(s) sequence
andF29(s) sequence according to the dictionary ordes.of
From the point of view of Ref[20], we need to subtract
the random background from the sequefieés)} in order to
get a more satisfactory evolutionary tree. €ial. used a
Markov model to do this. Here we use the frequencies of the
20 kinds of amino acids appearing in the linked protein se-
guence. By the nature of its generation, this probability mea-
sure behaves as a multiplicative cascade and displays lon
memory. Hence, subtracting out the fractal background
F’(s) as described above has the effect of reducing long
memory in the measure representation.
Based on the sequend&?2Y(s)!, we obtain a different
measure via a similar way described abdgee also Ref.
[22]) after normalization. We denote this measureidy

IIl. MULTIFRACTAL ANALYSIS AND CORRELATION
ANALYSIS

In(Z (@))/(a-1)
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! |
a-1 nZ.(q)

against Ire for g# 1, and similarly through a linear regres-

o ) ] sion of Z, . against Ine for g=1. For example, we show
Common numerical implementation of multifractal analy- how to obtain theD,, spectrum using the slope of the linear

sis is based on thiexed-size box-counting algorithri23]. In
the one-dimensional case, for a given measur@ith sup-
port ECR, we consider thgartition sum

regression in Fig. 3, is theinformation dimensiomndD,
is the correlation dimensiorof the measure. Th®, of the
positive values ofy give relevance to the regions where the

measure is large, i.e., to thé strings with high probability.

Z(q)= [u(B)]%, @)

w(B)#0

The D, of the negative values of are associated with the
structure and properties of the most rarefied regions of the
measure.

ge R, where the sum runs over all different nonempty boxes Figure 3 shows that the linear fitting becomes relatively

B of a given sidee in a grid covering of the suppoH, that

worse when the absolute value gfincreases. In order to

is, overcome the finite-size effectslue to the small size of a

B=[ke,(k+1)¢[.
The exponent(q) is defined by

InZ.(q)
Ine

7(q) = lim

e—0

and the generalized fractal dimensions of the measure a

defined as
Dg=7(a)/(q—1), for qg#1

and

Do limZke =1
q= Imm, or g=1,

e—0

single protein and to attain statistical convergence, all the
protein sequences, translated from coding sequences in the
complete genome, are linked together into a long sequence
of proteins which we called a linked protein sequence. For
such an extended sequence, the size is sufficiently long for
the asymptotic results of multifractal analysis to hold or be
approximately correct. Second, the valuedgfused in this
study are those correspondinggavith smaller absolute val-
ues, and as a result the estimation is fairly accurate.

Some sets of physical interest have a nonanalytic depen-
dence ofD on g. Moreover, this phenomenon has a direct
analogy to the phenomenon of phase transitions in
condensed-matter physi¢g24]. The existence and type of
phase transitions might turn out to be a worthwhile charac-
terization of universality classes for the structuf2s]. The
concept of phase transition in multifractal spectra was intro-
duced in the study of logistic maps, Julia sets, and other
simple systems. Evidence of phase transition was found in
the multifractal spectrum of diffusion-limited aggregation

where Z; =3 ,g)-om(B)In u(B). The generalized fractal [26]. By following the thermodynamic formulation of multi-
dimensions are numerically estimated through a linear refractal measures, Canedd#®] derived an expression for the

gression of

analogous specific heat as
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FIG. 4. Dimension spectra of measure representgiiaf protein sequences of some organisms.

_#7(a)

po 12

~27(q)—7(q+1)—7(q—1).

He showed that the form df, resembles a classical phase
transition at a critical point for financial time series. In the

following section, we discuss the property Gf, for mea-
suresu and u’ defined in Sec. Il.

For two random variablesX and Y with samples
X(1),X(2),...,X(N) and Y(1),Y(2),...,Y(N), respec-
tively, let

(X)= % 2, X(i), (Y)= % 2, Y(i),

1 N
3(X) = \/NEl [X() = (X)1%,

1 N
3(Y)= \/N 2, [Y()—=(V)I.

Then, the sample covariance ¥fandY is

1 _
CovX,Y)= 2 [X[H)=()IY(H (V)] (13

The sample correlation coefficient betweerandY is there-
fore given by

Cov(X,Y)

PXY)= 50 8(v)

(14)

We have—1=p(X,Y)=<1. If itis equal to zero, the random
variablesX andY are considered uncorrelated. We next de-
fine thecorrelation distanceby

1-p(X,Y)

5 (15

Dist(X,Y)=

Remark 2 We arrange the order of thed(s) sequence
according to the dictionary order of the "2kinds of K
strings, then calculate the distance matrix and construct the
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FIG. 5. “Analogous” specific heat of measure representajionf protein sequences of some organisms.

phylogenetic tree. It is easy to see that different orders of th@low G+ C)—Mycoplasma pneumoniad129 (Mpne), My-
Fd(s) sequence do not change the value of the correlatiogoplasma genitaliumG37 (Mgen), Mycoplasma pulmonis
distance between two organisms using the above definitionypul), Ureaplasma urealyticungserovar 3(Uure), Bacillus
A consequence is the_lt different orders of Kestrings yield g ptilis 168 (Bsub), Bacillus haloduransC-125 (Bhal), Lac-
the same phylogenetic tree. tococcus lactisL 1403 (Llac), Streptococcus pyogendal
(Spyo, Streptococcus pneumonid&pneg, Staphylococcus
IV. DATA AND RESULTS aureus N315 (Sau.rl\.), Staphyloco_ccus aureusMu50
(SaurM, and Clostridium acetobutylicunATCC824 (Ca-
Currently there are more than 50 complete genomes ofeA). The others are Gram-negative Eubacteria, which con-
Archaea and Eubacteria available in public databases, faist of two hyperthermophilic bacteriaAgquifex aeolicus
example Genbank af34]. These include eight Archae (Aqua VF5 and Thermotoga maritimaviSB8 (Tmar); four
Euryarchaeota-Archaeoglobus fulgidud SM4304 (Aful), Chlamydia—Chlamydia trachomatis(serovar D (Ctra),
Pyrococcus abyssi(Paby, Pyrococcus horikoshiiOT3  Chlamydia pneumonia€WL029 (Cpne, Chlamydia pneu-
(Phop, Methanococcus jannaschdSM2661 (Mjan), Halo- moniae AR39 (CpneA), and Chlamydia pneumoniad138
bacteriumsp. NRC-1(Hbsp, Thermoplasma acidophilum (CpneJ; two Cyanobacterium-Synechocystisp. PCC6803
(Taci), Thermoplasma volcaniur@SS1(Tvol), andMetha-  (Syne, andNostoc sp. PCC680@NosY; two Spirochaete—
nobacterium thermoautotrophicuufeltaH (Mthe); two Ar- Borrelia burgdorferi B31 (Bbur) and Treponema pallidum
chae Crenarchaeoté&eropyrum pernixXAero) and Sulfolo-  Nichols (Tpal); and sixteen Proteobacteria. The sixteen Pro-
bus solfataricugSso); three Gram-positive Eubacteriaigh  teobacteria are divided into four subdivisions, which are
G+ C)—Mycobacterium tuberculosisl37Rv (MtubH), My-  subdivision—Mesorhizobium lotiMAFF303099 (Mlot), Si-
cobacterium tuberculosi€DC1551(MtubC), andMycobac-  norhizobium melilotisme), Caulobacter crescentusCcre),
terium lepraeTN (Mlep); twelve Gram-positive Eubacteria and Rickettsia prowazekiMadrid (Rpro); 8 subdivision—
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FIG. 6. Dimension spectra of measyié (after subtracting some memorgf protein sequences of some organisms.

Neisseria meningitidi#C58 (NmenM) and Neisseria men- specific heat ofu and u’, and the correlation distances
ingitidis Z2491 (Nmen2); y subdivision—Escherichia coli  based on{F(s)}, {FY(s)}, and {F29(s)} of all the above
K-12 MG1655(EcolK), Escherichia coliO157:H7 EDL933  organisms. As an illustration, we plot tii, curves of the
(EcolO), Haemophilus influenzaRd (Hinf), Xylella fastid-  measureu in Fig. 4; and theC,, curves of measurg in Fig.

iosa 9a5c (Xfas), Pseudomonas aeruginosA0l (Paej, 5 Because all th®, are equal to 1 for completely random
Pasteurella multocid®M70 (Pmul, andBuchnerasp. APS  sequences, it is apparent from these plots thabthandC,
(Buch); ande subdivision—Helicobacter pyloriJ99(Hpyl),  cyrves are nonlinear and significantly different from those of
Helicobacter pylori26695(Hpyl), andCampylobacter jejuni o5y jetely random sequences. Hence, all protein sequences
(Cje). Besides these prokaryotic genomes, th_e_genomes (Plfom the complete genomes studied are not completely ran-
three eukaryotes: the yeg&hccharomyces cerevisiggeasy, dom sequences. We plot tl, curves of the measue’ in

the nematod@:aenorha_bdites elequshrqmosqme -V, X Fig. 6 and thqu- curves of the measure’ in Fig. 7

(Worm), and the flowering planArabidopsis thaliangAtha) From the plot ofD,, the dimension spectra of the mea-

were also included in our analysis. , o . .
We downloaded the protein sequences from the complet&Urésx andu’ are seen to exhibit a multifractal-like form.

genomes of the above organisms and calculated the dimen- !f only & few organisms are considered at a time, we can
sion spectra and analogous specific heat of the measure rej$s€ theDq curve to distinguish them. This strategy is clearly
resentationw and u’ after subtracting some memory. The not efficient when a large number of organisms are to be
numerical results showed that it is appropriate to use théistinguished. For this purpose, we find that it is more pre-
measures oK =5 (see Ref[20]). The caseK =6 is worth ~ cise to useCg,C;,C,, in conjunction with the two-
trying but beyond our computing power for the time being.dimensional vectorsG,,C;) and (C,,C;). The distribu-
For K=5, we calculated the dimension spectra, analogougions of the two-dimensional vector€g,C;) and (C4,C,)
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based on the measuge’ give more useful patterns for the of higher organisms are different. They exhibit the shape of
classification than those based on the measure representatidouble-peaked specific heat function which is known to ap-
w. We show the result based on the measwtan Fig. 8. pear in the Hubbard model within th@eak-to-strongcou-

But the above results based on multifractal analysis stilbling regime[29].
do not yield a satisfactory phylogenetic relationship for the  Although the existence of the archaebacterial urkingdom
organisms selected. For a further improvement, we use thgas been accepted by many biologists, the classification of
distance matrices from the correlation analysis to construgyacteria is still a matter of controver§$0]. The evolution-
the phylogenetic tree with the help of neighbor-joining pro-ary relationship of the three primary kingdoms, namely,
gram in the PHYLIP package of Felsenst¢#v]. We find  archeabacteria, eubacteria, and eukaryote, is another crucial
that the phylogenetic tree based on the correlation distangsroblem that remains unresolvégo].

using {F%(s)} is more precise than the trees usiffe(s)} Figure 8 shows some patterns which are useful for the
and{F2%(s)}. We show the phylogenetic tree usifi§’(s)}  classification problem, namely, the points corresponding to
with K=5 in Fig. 9. organisms from the same category are located more closely
to each other. But multifractal analysis is still not sufficient
V. DISCUSSION AND CONCLUSIONS to give a satisfactory phylogenetic relationship for the organ-

isms selected. The correlation distance base¢Fdis)} af-

Deviation of protein sequences from pure randomness aer subtracting some memory from the original information
correlation between monomers along the sequences might legves a more satisfactory phylogenetic tree. Figure 9 shows
of importance[28]. The measure representation of proteinthat all Archaebacteria exceptalobacteriumsp. NRC-1
sequences provides a simple yet useful vizsualization methogHbsp stay in a separate branch with the Eubacteria and
to amplify the difference between a protein sequence and Bukaryotes. The three Eukaryotes also group in one branch.
completely random sequence as well as to distinguish proteinimost all other bacteria in different traditional categories
sequences themselves in more details. stay in the right branch. At a general global level of complete

From the measure representation and the valueg@nd  genomes, our result supports the genetic annealing model for
Cq, it is seen that there is a clear difference between thehe universal ancest¢81]. The two hyperthermophilic bac-
protein sequences of all organisms considered here and congria: Aquifex aeolicusAqua) VF5 and Thermotoga mar-
pletely random sequences. itima MSB8 (Tmar stay in the Archaebacteria branch. We

We calculated th® , andC, values of two kinds of mea- noticed that these two bacteria, like most Archaebacteria, are
suresu and u' for protein sequences from all organisms hyperthermophilic. It has previously been shown that
selected in this paper fég¢=5. We found that th®, spectra  Aquifex has close relationship with Archaebacteria from the
of all organisms are multifractal-like and sufficiently smooth gene comparison of an enzyme needed for the synthesis of
so that theC, curves can be meaningfully estimated. the amino acid trytophalB2].

With K=5, we found that theC, curves of all bacteria It has been pointed o{i20] that the subtraction of random
resemble a classical phase transition at a critical point abackground is an essential step. Our results show that the
shown in Figs. 5 and 7. But the analogous phase transitionsubtraction of some memory is also an essential step in our
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correlation method. The correlation analysis is more preciséhe correlation method does not depend on the selection of a
than the multifractal analysis for the phylogenetic problem.specific gene.

Although the result from the correlation method of R&0]
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