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ON ONE-DIMENSIONAL SELF-SIMILAR TILINGS
AND pq-TILES

KA-SING LAU AND HUI RAO

Abstract. Let b ≥ 2 be an integer base, D = {0, d1, · · · , db−1} ⊂ Z a digit
set and T = T (b,D) the set of radix expansions. It is well known that if T has

nonvoid interior, then T can tile R with some translation set J (T is called a
tile and D a tile digit set). There are two fundamental questions studied in
the literature: (i) describe the structure of J ; (ii) for a given b, characterize
D so that T is a tile.

We show that for a given pair (b,D), there is a unique self-replicating
translation set J ⊂ Z, and it has period bm for some m ∈ N. This completes
some earlier work of Kenyon. Our main result for (ii) is to characterize the
tile digit sets for b = pq when p, q are distinct primes. The only other known
characterization is for b = pl, due to Lagarias and Wang. The proof for the pq
case depends on the techniques of Kenyon and De Bruijn on the cyclotomic
polynomials, and also on an extension of the product-form digit set of Odlyzko.

1. Introduction

Let T be a compact subset of R with T = T ◦. If there is a discrete set J ⊂ R
such that T +J =

⋃
t∈J (T + t) = R and {T + t}t∈J is an essentially disjoint family

(i.e., (T + t1)◦ ∩ (T + t2)◦ = ∅ for any distinct t1, t2 in J ), then we call T a tile (or
a prototile), J a translation set and (T,J ) a (translation) tiling of R. If, further,
there is a λ 6= 0 such that J + λ = J , then we say that (T,J ) is a periodic tiling
with period λ.

Let b ≥ 2 be an integer, and let D = {d0, d1, · · · , db−1} be a subset of R which
we call a digit set. The pair (b,D) defines an iterated function system {φi}b−1

i=0 :

φi(x) = b−1(x+ di), 0 ≤ i ≤ b− 1.

These maps are contractions, and there is a unique nonempty compact set T =
T (b,D) that satisfies the set equation T =

⋃b−1
i=0 φi(T ) [H]. An equivalent form of

the set equation is

bT =
b−1⋃
i=0

(T + di) = T +D.(1.1)

Received by the editors February 13, 2002 and, in revised form, September 11, 2002.
2000 Mathematics Subject Classification. Primary 52C20, 52C22; Secondary 42B99.
The authors are partially supported by an HKRGC grant and also a direct grant from CUHK.

The second author is supported by CNSF 19901025.

c©2002 American Mathematical Society

1401



1402 KA-SING LAU AND HUI RAO

More explicitly, we can express elements of T as radix expansions with base b and
digits d ∈ D, i.e.,

T = T (b,D) = {
∞∑
k=1

b−kxk : xk ∈ D}.

We call T = T (b,D) a self-similar tile and D a tile digit set if T o 6= ∅. The
condition is equivalent to T o = T ; it also equivalent to the Lebesgue measure of T
being positive [LW1]. The justification for calling T a tile is due to the following
fundamental theorem (see, e.g., [LW1, Theorem 1.2]).

Theorem 1.1 (Tiling Theorem). If T = T (b,D) is a self-similar tile, then there is
a discrete set J ⊆ R such that (T,J ) is a tiling of R.

The theorem is also true for Rd, and an investigation of high-dimensional self-
similar tilings can be found in [LW1] and the references there. In the case that the
digit set D is a subset of Z and T o 6= ∅, then we call T an integral self-similar tile.
The investigations in [K2] and [LW3] showed that every 1-dimensional self-similar
tile is an integral self-similar tile in essence: there is a real number c such that

D = {d0, · · · , db−1} = c{d′0, · · · , d′b−1},
where the d′j are all integers. If D = cD′, then T (b,D) = cT (b,D′). Therefore
the study of self-similar tilings on R can be reduced to integral self-similar tilings.
From now on, we always assume, unless otherwise specified, that

D ⊂ Z and g.c.d.(D) = 1.

If D = D′ + x , then T (b,D) = T (b,D′) +
∑∞
i=1 xb

−i. Hence, without loss of
generality, we assume that 0 ∈ D, and in §5 we assume in addition that D ⊂ Z+,
the set of nonnegative integers.

In the theory of self-similar tiles, there are two fundamental questions that have
been studied extensively:

Q1. If T (b,D) is a tile, what is the structure of the translation set J ?
Q2. For which pair (b,D) is the set T (b,D) a tile?

For the first question, a basic result is due to Kenyon [K2] (see also Lagarias and
Wang [LW3]):

For a tile T (b,D), there is a self-replicating translation set J ,
i.e., J = bJ +D; any such tiling set is periodic.

(1.2)

For higher dimensions, the periodicity of tilings is still unsettled [LW2]. For self-
similar tiles with standard digit sets D ⊂ Z (to be defined in the following),
Gröchenig and Haas [GH] proved that the translation set in the statement can
actually be taken to be Z, and a higher-dimensional analog of this is also true
[LW4].

The second question is still largely unsettled. The most basic result is due to
Bandt [B]:

If D is a complete residue set modulo b, then T (b,D) is a tile.
We call such a digit set D a standard digit set. In particular, when b is a prime,

then such standard digit sets characterize the tile digit sets [K1, p. 262]. For
non-primes the most important class is the product-form digit sets (see §4), first
introduced by Odlyzko [O] and later on extended by Lagarias and Wang [LW2].

If D is a product-form digit set, then T (b,D) is a self-similar tile.
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The above two assertions are also valid for higher dimensions. In [LW2], a
modification of the product-form digit set is used to characterize the tile digit sets
in R for b = pl, a prime power.

In this paper we will investigate these two fundamental questions further. First
we give a complete answer to Q1 on the existence, uniqueness and periodicity of
the self-replicating tiling.

Theorem 1.2. Assume 0 ∈ D ⊂ Z and g.c.d.(D) = 1. If T = T (b,D) is a self-
similar tile, then

(i) there exists a self-replicating translation set J ⊆ Z, and it is the unique
such set contained in Z;

(ii) J is periodic with a period bm for some m;
(iii) if S ⊆ Z is periodic and S = bS +D, then (T,S) is a tiling and S = J .

One might say here concerning (i) that there may exist other self-replicating
translation sets J not contained in Z, see Remark 3.2. Theorem 1.2 is proved
in §3 as Theorem 3.1. For the tile digit sets, we give two sufficient conditions: a
condition which covers the cases not included in the product-form digit sets, and
another condition which relaxes the product-form digit sets.

Theorem 1.3. Assume D = {0, d1, · · · , db−1} ⊂ Z and g.c.d.(D) = 1. If di 6≡
0 (mod b) for all 1 ≤ i ≤ b − 1, then T (b,D) is a self-similar tile if and only if D
is a standard digit set.

Theorem 1.3 is proved in §4 as Theorem 4.1. The condition di 6≡ 0 (mod b) in
the theorem includes those D that are typically non-product-form digit sets (§4). It
provides a very simple way to check that a digit set is not a tile digit set (we guess
the generic cases of tiling sets come from some sort of product-form digit sets). The
proof makes use of the period bm of J in Theorem 1.2.

We define the weak product-form digit set in §4 as an extension of the product-
form digit set.

Theorem 1.4. If D is a weak product-form digit set, then T (b,D) is a tile.

Theorem 1.4 is proved as Theorem 4.7. For b = pl, Lagarias and Wang [LW2]
gave a characterization of the tile digit sets D. However the expression of the D is
quite complicated. We remark that their characterization is actually related to the
weak product-form digit set considered here. As was pointed out in [LW2], it will
be more difficult when the base b is not a prime power. Our next result is a major
step in this direction:

Theorem 1.5. Let b = pq, where p, q are distinct primes, let D = {0, d1, . . . , db−1}
⊂ Z+ and g.c.d.(D) = 1. Then D is a tile digit set if and only if D is of weak
product-form. Explicitly, D ≡ E0 + bk−1E1 (mod bk) for some k > 0, where E0 =
{0, . . . , q − 1}, E1 = {0, q, . . . , q(p− 1)} (or the other way around).

Theorem 1.5 is proved as Theorem 5.1. The proof is based on Kenyon’s chararac-
terization of tile digit sets using the roots of unity, and also De Bruijn’s factorization
theorem concerning the cyclotomic polynomials of order pαqβ. We are still not able
to prove the theorem for a more general base b.

For the organization of the paper, in §2 we give a simple proof of the existence
of a self-replicating, periodic tiling, improving the original proof in the literature
([K2]). In §3 we show that there is a unique tiling contained in Z which necessarily
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has period bm for some m (Theorem 1.2). This is used in §4 to give a new char-
acterization of D being a tile digit set. Also in §4, we introduce and discuss the
notion of weak product-form digit set. In §5, we use the weak product-form digit
set to give a characterization of the tile digit sets with respect to the base b = pq.
Finally, we make some remarks and raise some open problems in §6.

2. Existence of self-replicating tiling

We first give a useful lemma on the uniqueness of a tiling set. Let T ⊂ R be a
bounded prototile. We say an open interval (α, β) is a gap of T if α, β ∈ T and
(α, β) ∩ T = ∅.

Lemma 2.1 (Uniqueness Lemma). Let T be a bounded prototile of R, and let
(T,J ), (T,J ′) be two tilings. Suppose P ⊆ (J ∩ J ′) and P + T contains an
interval whose length is strictly greater than the length of the largest gap in T .
Then J = J ′.

Proof. The main idea of the proof comes from [K2, Lemma 4]. We show that P
has a unique extension as a translation set and it must equal J . This will imply
J = J ′.

First we observe that P is contained in a translation set (say J ). Let I ⊂ P +T
be the interval as in the hypothesis; furthermore we assume that I = [α, β] is a
connected component of P + T . Let v denote the rightmost end point of T and let
t1 = α− v. Then t1 + T has α as the rightmost endpoint.

We claim that t1 ∈ J \ P . Since T is a tile, it has nonempty interior. Let J be
a maximal interval contained in T . Because α is in the boundary of P + T , we can
find a point c such that α − |J | < c < α and c 6∈ P + T . Since P is contained in
a translation set, we can find a t2 ∈ J such that c ∈ t2 + T . Note that t2 + T ◦

and P + T ◦ are disjoint by the tiling property of (T,J ), and thus t2 6∈ P . In the
following we prove that t1 = t2.

If t2 < t1, then t2 + |J | ≤ t1 (otherwise t1 + T and t2 + T will overlap, following
from the maximal property of J). Since t1 + T is on the left side of α, this implies
the rightmost point of t2 +T is on the left side of α− |J |, and thus c is not covered
by t2 + T .

Therefore we must have t2 > t1. This means the rightmost point of t2 + T , say
α′, is on the right side of α. Moreover, α′ 6∈ I, because t2 +T and P+T are disjoint.
Thus α′ must be on the right side of β. Now by the gap condition of P + T , the
leftmost point of t2 + T must also be on the right side of β, which again implies
t2 + T cannot cover c.

Hence t1 = t2, and the claim is proved. We can use the same argument on β, the
right endpoint of I, and show that there exists a unique s1 ∈ J \P such that s1 +T
has β as leftmost endpoint. We let P1 = P ∪ {s1, t1}. Then P1 ⊂ J , and P1 + T
tiles an interval I1 properly containing I. By repeating the process inductively,
we can extend P to a translation set of T , and it must be J . This completes the
proof. �

Suppose T (b,D) is a self-similar tile and (T,J ) is a tiling. We say that (T,J )
is a self-replicating tiling (and J a self-replicating translation set) if J = bJ +D.
For a self-similar tile of R, the translation set J can be chosen to be self-replicating
and periodic. This fact has been used in the literature ([K2], [LW1]); however, the
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proof is not explicit. In Proposition 2.2 we give a proof of this for completeness.
We will then give a stronger version of this result in Theorem 3.1.

We will use the following notation: D0 = {0} and Dn = bDn−1 + D. Then
Dn−1 ⊆ Dn because 0 ∈ D; also

Dn = bn−1D + · · ·+ bD +D and bnT = T +Dn.(2.1)

Notice that if T is a self-similar tile, then T +Dn is an essentially disjoint union of
copies of T .

Proposition 2.2. Assume 0 ∈ D ⊂ R. If T (b,D) is a self-similar tile, then there
is a self-replicating, periodic tiling set J with 0 ∈ J .

Proof. We first construct a special translation set J̃ . Let J0 = {0}. Since T
has nonvoid interior, we can choose m1 large enough so that bm1T contains a ball
B(v1; 2) with center v1 ∈ Dm1 and radius 2. Let J1 = Dm1 − v1; then J0 ⊆ J1,
and T + J1 covers the ball B(0; 2).

Observe that for m > m1, bmT = bm1T + bm1Dm−m1 . By the same argument as
above we can choose m = m2 large enough so that bm2T contains a ball B(v2; 4+v1)
with center v2 ∈ bm1Dm2−m1 . Let J2 = Dm2 − v2 − v1; then

B(0; 4) ⊂ bm2T − v1 − v2 = T + (Dm2 − v1 − v2) = T + J2.

It follows from Dm2 = bm1Dm2−m1 +Dm1 (by (2.1)) and the choice of v2 that

J1 = Dm1 − v1 ⊂ Dm2 − v2 − v1 = J2.

By repeating this process, we obtain a sequence of discrete sets Jk with Jk ⊂ Jk+1

such that each T + Jk tiles the ball B(0; 2k). Therefore if we let J̃ =
⋃∞
k=0 Jk,

then (T, J̃ ) will tile the real line.
Now to construct the self-replicating translation set, we choose n large enough

so that Dn = P satisfies the “gap condition” in Lemma 2.1. Note that from the
above construction, we have Dn−v ⊂ J̃ for some v. Let J = J̃ +v; then Dn ⊂ J .
That (bT, bJ ) is a tiling implies that (T, bJ +D) is a tiling. Since 0 ∈ D, we have
Dn ⊂ Dn+1 = bDn +D ⊂ bJ +D; hence

Dn ⊂ (J ∩ (bJ +D)).

It follows from Lemma 2.1 that J = bJ +D, and hence (T,J ) is self-replicating.
Now we are going to show that J is periodic. Pick any 0 6= d ∈ D. By using the

self-replicating property of J we have

bnd+Dn ⊆ Dn+1 = bDn +D ⊆ bJ +D = J .
Let J ′ = J − bnd. Then Dn ⊂ (J ∩ J ′) and, by Lemma 2.1, J = J ′ = J − bnd.
Thus bnd is a period of J . �

3. Uniqueness and periodicity

We will strengthen the result of Kenyon [K2] in Proposition 2.2 as follows.

Theorem 3.1. Let 0 ∈ D ⊂ Z and g.c.d.(D) = 1. If T = T (b,D) is a self-similar
tile, then:

(i) There exists a unique self-replicating translation set J with the property that
J ⊆ Z. The set J contains 0 and is periodic with period bm for some m.

(ii) If S ⊆ Z is periodic and S = bS +D, then (T,S) is a tiling and S = J .
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Proof. (i) The existence of a self-replicating, periodic tiling set J follows from
Proposition 2.2. Let m be the smallest integer such that Dm + T satisfies the gap
condition of the uniqueness lemma (Lemma 2.1). We will first prove that J has
period bm. Indeed, let d ∈ D and d 6= 0. By the proof in Proposition 2.2, we see
that bmd is a period of J . Since d ∈ D is arbitrary and g.c.d.(D) = 1, we see that
bm is also a period of J .

To prove the uniqueness we let J1 ⊆ Z be any self-replicating translation set.
Pick any z ∈ J1; by the self-replicating property, bkz + Dk ⊆ J1 for any k > 0.
Note that Dk ⊂ J . Since J has period bm, we can choose k = m and then
bkz +Dk ⊆ J ∩J1, by using z ∈ Z. The gap condition in Lemma 2.1 is satisfied if
we take P = Dm. The uniqueness lemma implies J1 = J + bmz = J (the second
equality is by periodicity of J ).

(ii) Suppose S ⊆ Z is periodic and S = bS + D. We first claim that (T,S) is a
covering of R. Otherwise there is an interval I which is not covered by T + S, i.e.,
(T + S) ∩ I = ∅. Since

b(T + S) = bT + bS = T +D + bS = T + S,

it follows that bI ∩ (T + S) = b(I ∩ (T + S)) = ∅. Repeating this argument, we
can show that there is an arbitrarily large interval which has no intersection with
T + S. This contradicts the periodicity of S, and the claim follows.

Now let J be the self-replicating translation set with period bm as in (i). From
the self-replicating property, we have

S = bmS +Dm ⊆ bmZ+ Dm.

Likewise, J ⊆ bmZ + Dm. Since Dm ⊂ J and J has period bm, it follows that
J = Dm + bmZ. This implies that S is a subset of J . But T + S is a covering of
R; hence S = J . �

Remark 3.2. Let 0 ∈ D ⊂ Z, g.c.d.(D) = 1, and let T = T (b,D) be a self-similar
tile. If we assume J is a self-replicating translation set and 0 ∈ J , then J is unique
by Lemma 2.1, and J is a subset of Z by Proposition 2.2. On the other hand, if
we assume that J is a self-replicating translation set and J ⊂ Z, by Theorem 3.1,
J is unique and thus 0 ∈ J . If we do not assume 0 ∈ J or J ⊂ Z, then there may
exist some other self-replicating translation sets. For exmaple, b = 3, D = {0, 1, 2}.
Then both Z and Z+ 1/2 are self-replicating translation sets. The above argument
and example were given by the referee.

The theorem gives a satisfactory answer to the fundamental question Q1 about
the construction and periodicity of translation sets. Part (ii) of the theorem is also
convenient to use, since for a given pair (b,D) it is not difficult to find an S ⊆ Z
that is periodic and satisfies S = bS +D. For example, if D is a standard digit set,
it is trivial that Z satisfies the conditions in (ii), and hence T (b,D) tiles R by Z.
This case is actually a result of Gröchenig and Haas [GH].

4. Tile digit sets

We will consider two cases for D to be tile digit sets. The first case deals with
a large class of digit sets that are left out by the product-form digit set criterion,
and the second case is a relaxation of the product-form digit set.
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Theorem 4.1. Let 0 ∈ D = {0, d1, · · · , db−1} ⊂ Z, g.c.d.(D) = 1, and suppose that
dj 6≡ 0 (mod b) for 1 ≤ j ≤ b − 1. Then T (b,D) is a self-similar tile if and only if
D is a standard digit set.

Proof. The sufficiency is well known (without the special hypothesis). We need only
prove the necessity by assuming that T is a tile. Let J ⊆ Z be the self-replicating
translation set with a period bm (Theorem 3.1). We first claim that x ∈ J if
and only if bx ∈ J ∩ bZ: Indeed, the necessity follows from the self-replicating
property of J and 0 ∈ D. Conversely, if bx ∈ J ∩ bZ, then by the self-replicating
property again, bx ∈ bJ + dj for some j; hence bx = bt+ dj . The assumption that
dj 6≡ 0 (mod b) for j 6= 0 forces that dj = 0, and hence bx ∈ bJ . Therefore x ∈ J ,
and the claim is proved.

Next we assert that x ∈ J implies x + 1 ∈ J . Indeed, the claim above implies
that bmx ∈ J ; the periodicity implies that bm(x + 1) = bmx + bm ∈ J . By using
the claim again, we have x+ 1 ∈ J . Thus J = Z. The self-replicating property of
J yields Z = bZ+D; so D must be a complete residue set modulo b, i.e., a standard
digit set. �

By a translation of the digit set we have the following corollary.

Corollary 4.2. Let 0 ∈ D = {0, d1, · · · , db−1} ⊂ Z and g.c.d.(D) = 1. If there is a
j such that di 6≡ dj (mod b) for all i 6= j, then T (b,D) is a self-similar tile if and
only if D is a standard digit set.

The above theorem and corollary are useful to determine digit sets that do not
give tiles. For example, we see that for b = 4, D = {0, 1, 7, 15} is not a tile-digit set
by Theorem 4.1, and D = {0, 4, 7, 17} is not a tile digit set by the corollary with
dj = 7.

Let #E denote the cardinality of E . We say that D ⊆ Z+ is a product-form digit
set with respect to b if

D = E0 + bl1E1 + · · ·+ blkEk,(4.1)

where 1 ≤ l1 ≤ · · · ≤ lk are integers, 0 ∈ Ei ⊆ Z+,

E0 + · · ·+ Ek = E , #E =
k∏
i=0

#Ei,

and E is a complete set modulo b such that g.c.d.(E) = 1. D is called a strict
product-form digit set if in addition E = {0, 1, · · · , b− 1}.

It is easy to see from the definition that if b is a prime, then a product-form digit
set is merely a complete residue set modulo b. Non-trivial cases occur whenever b is
not a prime. For example, if b = 6, then D1 = {0, 1, 2, 18, 19, 20}= {0, 1, 2}+6{0, 3}
is a strict product-form digit set, while D2 = {0, 1, 5, 18, 19, 23}= {0, 1, 5}+6{0, 3}
is a product-form digit set but not a strict product-form digit set.

The concept of (strict) product-form digit set was first used by Odlyzko in [O]
to study the radix expansions of real numbers with respect to the base b, and was
formally named by Lagarias and Wang in [LW2] (in higher dimensions also). They
proved
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Theorem 4.3. Suppose D ⊆ Z+ is a product-form digit set with respect to b. Then
T (b,D) is a self-similar tile and

µ(T (b,D)) = µ(T (b, E))
k∏
i=1

(#Ei)li ,

where µ(·) is the Lebesgue measure of R.

Also, it was pointed out in [LW2] that D is a strictly product-form digit set if and
only if T (b,D) is a finite union of intervals. For the two examples above, we see that
T (6,D1) = [0, 1]∪ [3, 4], but T (6,D2) has infinitely many connected components; in
fact for T (6,D2), its structure is quite complicated and the boundary has positive
Hausdorff dimension (see e.g., [HLR]).

In the proof of Theorem 4.3 in [LW2], it is shown that for the above D and E
there exists W ⊆ Z such that

blkT (b, E) = T (b,D) +W.

Since (T (b, E),Z) is a tiling of R, it follows that (blkT (b, E), blkZ) is also a tiling of
R. Therefore (T (b,D),W + blkZ) is a tiling of R. We will call

J = W + blkZ(4.2)

a natural translation set of T (b,D). The following proposition shows that such a
translation set has the self-replicating property.

Proposition 4.4. Let D ⊂ Z+ be a product-form digit set with respect to b, and
let J = W + blkZ be a natural translation set. Then J = bJ +D.

Proof. It is easy to see that J has a period blk ; that is, J = blk + J . From

blk+1T (b, E) = blk(E + T (b, E)) = blkE + (W + T (b,D))

and
blk+1T (b, E) = b(W + T (b,D)) = bW + (D + T (b,D)),

we see that blkE +W = D + bW . Hence

bJ +D = bW + blk+1Z+D = blkE +W + blk+1Z = W + blkZ = J
(the third equality is because E is a complete residue set modulo b). This completes
the proof. �

There are tile digit sets that are not product-form digit sets. For example, for
b = 4, D = {0, 1, 8, 25} is a tile digit set but it is not the product-form nor does it
satisfy the criterion of Corollary 4.2. To consider sets of this type we introduce a
slight extension of the product-form digit set.

Definition 4.5. A digit set D ⊆ Z+ is called a weak product-form digit set if there
is a product-form digit set D′ with

D′ = E0 + bl1E1 + · · ·+ blkEk
(see (4.1)) such that

D ≡ D′ (mod blk+1).

The above example, b = 4, D = {0, 1, 8, 25} is a weak product-form digit set,
because D′ ≡ {0, 1, 8, 9} (mod 16) and {0, 1, 8, 9} = {0, 1}+ 4{0, 2} is a product-
form digit set.
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Lemma 4.6. Let D = {0, d1, · · · , db−1} ⊆ Z be a digit set. Suppose there is a set
J ⊆ Z such that (i) J ⊆ bJ + D; (ii) J has positive upper density in Z (i.e.,
limn→∞

1
2n#{t ∈ J : |t| ≤ n} > 0 ). Then D is a tile digit set.

Proof. It is known that D is a tile digit set if and only if #Dk = bk for each k
[LW2]. Hence if D is not a tile digit set, there exists a k such that #Dk < bk. From

Dkn = (Dk)n = b(n−1)kDk + · · ·+ bkDk +Dk,
we deduce that #Dkn ≤ (#Dk)n. Therefore,

lim
n→∞

#Dkn
bkn

≤ lim
n→∞

(#Dk
bk

)n ≤ lim
n→∞

(bk − 1
bk

)n = 0.

Notice that
#Dn+1

bn+1
=

#(bDn +D)
bn+1

≤ #Dn
bn
· #D
b

=
#Dn
bn

,

which means #Dn/bn is non-increasing on n. This yields that limn→∞#Dn/bn = 0.
Now if we iterate the inclusion in (i) k times, we have

J ⊆ bkJ + Dk ⊆ bkZ+Dk.
So the density of J is no more than the density of bkZ + Dk, which is at most
#Dk/bk. We see from this that the density of J is 0. This is a contradiction; so D
must be a tile digit set. �

Theorem 4.7. If D is a weak product-form digit set, then D is a tile digit set.

Proof. Let D′ be the associated product-form digit set as in the definition, and let
J = W + blkZ be the natural translation set of T (b,D′) as in (4.2). Clearly J has
positive density in Z. On the other hand, blk+1 is a period of bJ . So

bJ + d = bJ + d+ tblk+1

for any d ∈ D and t ∈ Z. Hence we conclude that bJ +D = bJ +D′, which equals
J by Proposition 4.4. We see that J satisfies the two conditions of Lemma 4.6.
Therefore D is a tile digit set. �

We remark that from the above proof, it is easy to see that the translation set
J = W + blkZ for T (b,D′) is also a translation set for T (b,D).

5. Tile digit sets for b = pq

Our main theorem is to characterize the tile digit sets for b = pq in terms of the
weak product-form digit set.

Theorem 5.1. Let b = pq, where p, q are distinct primes, let D = {0, d1, · · · , db−1}
⊂ Z+, and let g.c.d.(D) = 1. Then D is a tile digit set if and only if D is a weak
product-form digit set, i.e., there is an integer k ≥ 1 such that

D ≡ E0 + bk−1E1 (mod bk),

where E0 = {0, . . . , q − 1}, E1 = {0, q, . . . , (p− 1)q} (or the other way around).

The proof depends on two major ingredients. First we let

PD(x) =
∑
d∈D

xd = 1 + xd1 + · · ·+ xdb−1 .(5.1)

A criterion due to Kenyon [K1, Theorem 15] says that
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Theorem 5.2. Let D = {0, d1, · · · , db−1} ⊂ Z+. Then D is a tile digit set if and
only if for each integer m 6= 0, there exists k ≥ 1 (depending on m) such that

PD(e2πim/bk) = 0.

In order to make use of this criterion, we will need some special properties of the
cyclotomic polynomials Fn(x), i.e., the minimal polynomial of the algebraic integer
e2πi/n. It is clear that if n = p is a prime, then Fp(x) = 1 + x + · · · + xp−1. If
n = bk, then Fbk(x) = Fb(xb

k−1
). For d|n, we let

Gn,d(x) =
xn − 1
xn/d − 1

= 1 + xn/d + · · ·+ x(d−1)n/d.

It is known that for n = pαqβ , α, β ≥ 1,

Fn(x) = P (x)Gn,p(x) +Q(x)Gn,q(x)(5.2)

and P (x), Q(x) are in Z[x], the set of all polynomials with integer coefficients [DB].
In fact, P (x) and Q(x) are determined from

xn/pq − 1 = P (x)(xn/p − 1) +Q(x)(xn/q − 1).

For example, for n = 6, p, q = 2, 3, we see from x − 1 = (x3 − 1)− x(x2 − 1) that
P (x) = 1, Q(x) = −x and

F6(x) = 1− x+ x2 = (1 + x2 + x4)− x(1 + x3).

To prove Theorem 5.1, we need the following theorem of De Bruijn [DB, p. 374].
Let Z+[x] denote the set of polynomials with nonnegative integer coefficients.

Theorem 5.3. Let b = pαqβ, where α, β ≥ 0 and p, q are distinct primes.
If f(x) ∈ Z+[x] with degree ≤ b and Fb(x)|f(x), then there exist polynomials
P (x), Q(x) ∈ Z+[x] such that

f(x) = P (x)Gb,p(x) +Q(x)Gb,q(x).(5.3)

For a polynomial f(x) = a0 + a1x+ · · ·+ anx
n, we let

N (f) := f(1) = a0 + · · ·+ an.

Clearly N (f + g) = N (f) + N (g) and N (fg) = N (f)N (g). Then N (Fpk ) =
N (Fp) = p.

Corollary 5.4. Under the assumptions of Theorem 5.3, if N (f) = pq, then P (x)
and Q(x) in identity (5.3) satisfy either P (x) ≡ 0 or Q(x) ≡ 0.

Proof. By (5.3),
pq = N (P )p+N (Q)q.

Since N (P ) ≥ 0, N (Q) ≥ 0, it follows that either N (P ) = 0 or N (Q) = 0. We can
hence conclude that P (x) ≡ 0 or Q(x) ≡ 0 by noting that P, Q have nonnegative
coefficients. �

Lemma 5.5. Under the assumptions of Theorem 5.1, if D is a tile digit set, then
there are integers n and n′ > 1 such that Fqn(x)|PD(x) and Fpn′ |PD(x).
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Proof. Since deg(F`(x)) → ∞ as ` → ∞, we can choose a large integer t ≥ 1 such
that for any integer s ≥ 0,

deg(Fqtbs(x)) > deg(PD(x)).(5.4)

Set m = pt in Theorem 5.2. There is a k = k(m) such that

PD(e2πipt/bk) = 0.

We observe that k < t (for otherwise e2πi/(qtbk−t) = e2πipt/bk being a root of
PD(x) implies that Fqtbk−t , the minimal polynomial of e2πi/(qtbk−t), divides PD(x),
which contradicts (5.4)). Since e2πipt/bk = e2πipt−k/qk and e2πi/qk share the same
minimal polynomial, if we set n = k, then we have Fqn(x)|PD(x). The proof for
Fpn′ (x)|PD(x) is the same. �

We use P (x) (mod Q(x)) to denote the remainder of P (x) when divided by Q(x).

Lemma 5.6. Let m, ` be any positive integers and let P (x) ∈ Z[x] be a polynomial.
Then

xm`P (x)(mod (x` − 1)) = P (x)(mod (x` − 1)).

Proof. The lemma is an easy consequence of the following identity:

xm`P (x) = (x(m−1)` + · · ·+ 1)(x` − 1)P (x) + P (x)

and a comparison of the remainders after dividing by (x` − 1). �

Proof of Theorem 5.1. In view of Theorem 4.7, we need only prove the necessity.
Let D be a tile digit set. By applying the criterion in Theorem 5.2 for m = 1, we
can find a positive integer k such that Fbk(x)|PD(x), and we choose k to be the
smallest such number.

We observe that the remainder R(x) := PD(x) (mod(xb
k − 1)) has positive

coefficients. Now Fbk |R(x), and so by applying Corollary 5.4 to R(x), we can write

PD(x) (mod (xb
k

− 1)) = P (x)Gbk ,p(x)(5.5)

with P (x) having nonnegative coefficients (or the alternative form Q(x)Gbk ,q(x)).
Let

E0 = {s : xs is a nonzero term in P (x)}
and

E1 = {0, q, · · · , (p− 1)q}.
Then by comparing the powers of the polynomials in (5.5) we have

D ≡ E0 + bk−1E1 (mod bk).(5.6)

Next we observe that, by Lemma 5.5, there exists an integer n such that

Fqn(x)|PD(x).(5.7)

Since Fqn(x) = 1 + xq
n−1

+ · · ·x(q−1)qn−1
, it follows that

PD(x) = Q(x)(1 + xq
n−1

+ · · ·+ x(q−1)qn−1
),(5.8)

where Q(x) ∈ Z+[x]. We claim that n = 1 in (5.7) by eliminating the following two
cases for n > 1.
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(i) n > k. Observe that Gbk,p(x) = 1 + xb
k/p + · · ·+ x(p−1)bk/p. Using (5.5) and

applying Lemma 5.6 to each term of Gbk,p(x), we have (since xq
k − 1|xbk − 1)

PD(x) (mod (xq
k − 1)) = P (x)Gbk ,p(x) (mod (xq

k − 1)) = P1(x)p,

where P1(x) = P (x) (mod (xq
k − 1)). On the other hand, by (5.8) and Lemma 5.6

(we use n > k here), we have

PD(x) (mod (xq
k − 1)) = Q1(x)q,

where Q1(x) = Q(x) (mod (xq
k − 1)). It follows that

P1(x)p = Q1(x)q.

Now pq = N (PD) = N (P1)p implies N (P1) = q. Since P1(x), Q1(x) ∈ Z+[x], we
have P1(x) = qxl for some integer l ≥ 0. Now 0 ∈ D implies P1(x) = q. It follows
that

E0 ≡ {0} (mod qk),

and hence, by (5.6), q is a factor of g.c.d.(D), a contradiction.
(ii) 1 < n ≤ k. Then Gbk,p(e2πi/qn) = p, and so (5.5) and (5.7) imply that

Fqn(x)|P (x). Since P (x) ∈ Z+[x], by Theorem 5.3 we have

P (x) (mod (xq
n

− 1)) = P ′(x)(1 + xq
n−1

+ · · ·+ x(q−1)qn−1
)

with P ′(x) ∈ Z+[x]. Note thatN (P (x)) = q; henceN (P ′) = 1, and thus P ′(x) = xt

for some t ≥ 0. Finally, 0 ∈ D implies P ′(x) = 1. So we have

P (x) (mod (xq
n

− 1)) = 1 + xq
n−1

+ · · ·+ x(q−1)qn−1
,(5.9)

and thus
E0 ≡ {0} (mod qn−1).

This again implies that q is a factor of g.c.d.(D), a contradiction.
Therefore n = 1, and the claim Fq(x)|PD(x) is proved. By the same argument

as in (ii), we have Fq(x)|P (x). Setting n = 1 in (5.9), we obtain

P (x) (mod (xq − 1)) = 1 + x+ · · ·+ xq−1.

In other words,
E0 ≡ {0, 1, · · · , q − 1} (mod q).

Now it is easy to check that

E0 + E1 ≡ {0, 1, · · · , b− 1} (mod b).

This together with (5.6) implies that D is a weak product-form digit set. �

6. Remarks

We do not yet have a characterization for the more general base b. The difficulties
come from Theorem 5.3 and Corollary 5.4, for which we do not have replacements.
We conjecture that the weak product-form digit set can be used to characterize tile
digit sets with base b = pq · · · r, a product of distinct primes. However, if the b
involves a product of prime powers, we might need to extend the definition further
in view of thecase b = p` in [LW2].
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For the d-dimensional case, we let A be a d× d expanding integral matrix with
| detA| = b (expanding means all eigenvalues have modulus greater than 1), and
let D = {0, d1, · · · , db−1} ⊂ Zd be a digit set. We can ask the same question for
the attractor T (A,D) as in Q1 and Q2, but the questions are more difficult (see
[GH], [K1], [LW1]-[LW4]). For example, for Q1 we would like to know whether
Theorem 1.2 is true in Rd: Does there exist a self-replicating translation set J (i.e.,
J = AJ+D)? Is it unique? Will it be periodic? For Q2, unlike the one-dimensional
case, the following basic question is still unanswered [LW2]:

For an expanding integral matrix A with | detA| = b a prime, is it true that D is
a tile digit set if and only if D is a complete set of coset representations of Zd/AZd?

For digit sets in higher dimension, a direct analog to the one-dimensional case is
the collinear digit sets: D = {0, t1v, · · · , tb−1v}, where v ∈ Zd and ti ∈ Z. Even for
this simple setup it is not clear that all the one-dimensional results can be extended.
For instance, it is not known whether, for the case D = {0, v, · · · , (b − 1)v}, the
set T (A,D) will be connected or disk-like (it is trivial in one dimension). This has
been explored in [KL], [KLR], [BW], but the question is only partially settled.
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