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Measure representation and multifractal analysis of complete genomes
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This paper introduces the notion of measure representation of DNA sequences. Spectral analysis and mul-
tifractal analysis are then performed on the measure representations of a large number of complete genomes.
The main aim of this paper is to discuss the multifractal property of the measure representation and the
classification of bacteria. From the measure representations and the valuesDof spectra and relate@,
curves, it is concluded that these complete genomes are not random sequences. In fact, spectral analyses
performed indicate that these measure representations, considered as time series, exhibit strong long-range
correlation. Here the long-range correlation is for kastrings with dictionary ordering, and it is different from
the base pair correlations introduced by other people. For substrings with lérgdh the D, spectra of all
organisms studied are multifractal-like and sufficiently smooth forGhecurves to be meaningful. With the
decreasing value of, the multifractality lessens. Th€, curves of all bacteria resemble a classical phase
transition at a critical point. But the “analogous” phase transitions of chromosomes of nonbacteria organisms
are different. Apart from chromosome 1 ©f elegansthey exhibit the shape of double-peaked specific heat
function. A classification of genomes of bacteria by assigning to each sequence a point in two-dimensional
space D_,,D;) and in three-dimensional spacP (,,D,,D_,) was given. Bacteria that are close phyloge-
netically are almost close in the spac&s (;,D;) and ©®_,,D;,D_5).
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[. INTRODUCTION detailed analysis, Chatzidimitriou-Dreismann and Larham-
mer[5] concluded that both coding and noncoding sequences
DNA sequences are of fundamental importance in underexhibit long-range correlation. A subsequent work by Prabhu
standing living organisms, since all information of the he-and Claverid 6] also substantially corroborates these results.
reditary and species evolution is contained in these macrdf one considers more details by distinguishiadgrom t in
molecules. The DNA sequence is formed by four differentpyrimidine, anda from g in purine (such as two- or three-
nucleotides, namely adenina)( cytosine €¢), guanine ¢),  dimensional DNA walk model§15] and maps given by Yu
and thymine {). A large number of these DNA sequences areand Chen[16]), then the presence of base correlation has
widely available in recent times. One of the challenges ofoeen found even in coding sequences. On the other hand,
DNA sequence analysis is to determine the patterns in thedguldyrev et al. [12] showed that long-range correlation ap-
sequences. It is useful to distinguish coding from noncoding?ears mainly in noncoding DNA using all the DNA se-
sequences. Problems related to the classification and evolguences available. Based on equal-symbol correlation, Voss
tion of organisms are also important. A significant contribu-[8] showed a power law behavior for the sequences studied
tion in these studies is to investigate the long-range correlaegardless of the proportion of intron contents. These studies
tion in DNA sequencefl—16]. Li and co-workerg1] found  add to the controversy about the possible presence of corre-
that the spectral density of a DNA sequence containingation in the entire DNA or only in the noncoding DNA.
mostly introns shows 1f behavior, which indicates the From a different angle, fractal analysis is a relatively new
presence of |Qng-range correlation whex ’G<1 The cor- analytical technique that has proven useful in revealing com-
relation properties of coding and noncoding DNA sequence®leX patterns in natural objects. Berthelsgral.[17] consid-
were first studied by Penet al.[2] in their fractal landscape ered the global fractal dimensions of human DNA sequences
or DNA walk model. The DNA walf2] was defined as that treated as pseudorandom walks.
the walker steps “up” if a pyrimidine ¢ or t) occurs at In the above studies, the authors only considered short or
position i along the DNA chain, while the walker steps long DNA segments. Since the first complete genome of the
“down” if a purine (a or g) occurs at position. Penget al.  free-living bacteriumMycoplasma genitaliurwas sequenced
[2] discovered that there exists long-range correlation in noni 1995[18], an ever-growing number of complete genomes
Coding DNA Sequences while the Coding Sequences Corrélas been deposited in pub|IC databases. The aVa.||a.b|I|ty of

spond to a regular random walk. By undertaking a morecoOmplete genomes induces the possibility to establish some
global properties of these sequences. Viglg carried out a

low-frequency analysis of the complete DNA of 13 microbial
*Corresponding author. Email address: yuzg@hotmail.com ogenomes and showed that their fractal behavior does not al-
z.yu@qut.edu.au ways prevail through the entire chain and the autocorrelation
"Permanent corresponding address for Zu-Guo Yu. functions have a rich variety of behaviors including the pres-
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ence of antipersistence. Yu and Wa2§)| proposed a time recent years it has been applied successfully in many differ-
series model of coding sequences in complete genomes. Fent fields, including time series analy§&l,32 and financial
fuller details on the number, size, and ordering of genegnodeling(see Anhet al. [33]). For DNA sequences, appli-
along the chromosome, one can refer to Part 5 of Lg@dn. cation of the multifractal technique seems rdme have
One may ignore the composition of the four kinds of bases ifound only Berthelseet al.[34]). In this paper, we pay more
coding and noncoding segments and only consider the globattention to this application. The quantities pertained to spec-
structure of the complete genomes or long DNA sequence%f‘?“ and multifraqtal analyses of measures are describe(_j in
Provata and Almirantif22] proposed a fractal Cantor pattern S€c- |l. Application of the methodology is undertaken in
of DNA. They mapped coding segments to filled regions an ec. IVona number .of representative chromosome; A dis-
noncoding segments to empty regions of a random Cantor s&HSSION of the empirical results and some conclusions are
and then calculated the fractal dimension of this set. Thefifawn in Sec. V, where we also address the use of the mul-
found that the coding and/or noncoding partition in DNA ifractal technology in the classification problem of bacteria.
sequences of lower organisms is homogeneouslike, while in

the higher eucariotes the partition is fractal. This result does Il. MEASURE REPRESENTATION

not seem refined enough to distinguish bacteria because the We call any string made oK letters from the set

fractal dimensions of bacteria given by th¢a®?] are all the {g,c,a,t} a K-string. For a giverK there are in total

same. The classification and evolution relationship of bacte': . :
ria is one of the most important problems in DNA research.d:cﬁirent.K'St.”ngS' ".1 ordelgtl\(l):ount the nuKrzber of each kind
: : of K-string in a given sequence “4counters are

Yu and Anh[23] pr tim ries model n th L . .
u and [23] proposed a time series model based on the eeded. We divide the interv@iD,1 into 4¥ disjoint sub-

global structure of the complete genome and considere : | d h subint |t i i
three kinds of length sequences. After calculating the correlNtervais, and use each subintérval o represent a counter.

lation dimensions and Hurst exponents, it was found that onkeling S=s;---S¢.5; E{a'(.:’g’t}" =1,...K, be a sub-
can get more information from this model than that of fractalSNY with lengthK, we define
Cantor pattern. Some results on the classification and evolu- K
tion relationship of bacteria were fouf@3]. The correlation x/(s) = E Xi 1)
property of these length sequences has been disc{24kd : =L
Although a statistical analysis performed directly on DNA
sequences has yielded some success, there has been sathere
indication that this method is not powerful enough to amplify

the difference between a DNA sequence and a random se- 0 if s;=a
guence as well as to distinguish DNA sequences themselves 1 if s=c
in more detailg25]. One needs more powerful global and X = o )
visual methods. For this purpose, Hebal.[25] proposed a ' 2 if s;=g
visualization method based on counting and coarse-graining 3 if 5=t

the frequency of appearance of substrings with a given

length. They called it theportrait of an organism. They gnqd

found that there exist some fractal patterns in the portraits

which are induced by avoiding and under-represented 1

strings. The fractal dimension of the limit set of portraits was X (S)=Xx(s)+ — 3
also discussefl6,27). There are other graphical methods of

sequence patterns, such as chaos game representation

[28,29. We then use the subintervik(s),X,(s)[ to represent sub-

In the portrait representation, Hab al.[25] used squares Strings. Let Ng(s) be the number of times that substriag
to represent substrings and discrete color grades to represeith lengthK appears in the complete genome. If the number
the frequencies of the substrings in the complete genome. @f bases in the complete genomeliswe define
is difficult to know the accurate value of the frequencies of
the substrings from the portrait representation. In order to Fr(s)=Nk(s)/(L—K+1) 4
improve it, in this paper we use subintervals in one-
dimensional space to represent substrings and then we c&h be the frequency of substring. It follows that
directly obtain an accurate histogram of the substrings in th&sjFk(S)=1. Now we can define a measyig on[0,1 by
complete genome. We then view the histogram as a measur@x(X) =Y (x)dx, where
which we call themeasure representatioof the complete
genome. When the measure representation is viewed as a  Yk(X)=4“F(s), when xe[x(s).x(s)[. (5
time series, a spectral analysis can be carried out.

Global calculations neglect the fact that DNA sequencedt is easy to seefgdux(x)=1 and ux([x(s),x (S)[)
are highly inhomogeneous. Multifractal analysis is a useful=F(s). We call ux the measure representatiaof the or-
way to characterize the spatial inhomogeneity of both theoganism corresponding to the givéh As an example, the
retical and experimental fractal patterf0]. Multifractal  histogram of substrings in the genomeMf genitaliumfor
analysis was initially proposed to treat turbulence data. IlK=3, ... ,8 arggiven in Fig. 1. Self-similarity is apparent in
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FIG. 1. Histograms of substrings with different lengths.

the measure. For simplicity of notation, the indé& is  dimensional space. A different ordering Kfstrings would

dropped inF(s), etc., from now on, where its meaning is change the nature of the correlations. But in our case, a dif-

clear. ferent ordering ofa,c,g,t in Eq. (2) gives almost the same
Remark.The ordering ofa,c,g,t in Eq. (2) will give D curve(therefore, the same with i@, curve) which will

the natural dictionary ordering oK-strings in the one- be defined in the next section when the absolute valupi®f
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18- 1 Then
- S(f)=[F(f)|? (7)
8'1-4‘- 1 is thepower spectrum of &). In recent studies, it has been
: hbtad found [36] that many natural phenomena lead to the power
12 spectrum of the form ff. This kind of dependence was
named 1f noise, in contrast to white nois¥ f)=const, i.e.,
! B=0. Let the frequencyf take k values f,=k/N,k
o8 =1,... N/8. From the IpS(f)] vs In(f) graph we can infer
' the value of B using the above low-frequency range. For
06 . . s s s . . . . example, we give the logarithmic power spectrum of the
o e s a s ® % ® % measure oE. coliwith K=8 in Fig. 3.

The most common operative numerical implementations
FIG. 2. The dimension spectra of measure representations givedf multifractal analysis are the so-calleiiked-size box-
by different ordering ofa,c,g,t in Eq. (2). counting algorithmg37]. In the one-dimensional case, for a

given measurg: with supportECR, we consider thearti-

relatively small. We give Fig. 2 to support this point of view. 0N sum

Hence a different ordering od,c,g,t in Eq. (2) will not

change our result. When we want to compare different bac- Z(q)= > [w(B)]Y, (8)
teria using the measure representation, once the ordering of w(B)#0

a,c,g,tin Bq. (2) is given, itis fixed for all bacteria. g e R, where the sum runs over all different nonempty boxes

B of a given sidee in a grid covering of the suppoHE, that
I1l. SPECTRAL AND MULTIFRACTAL ANALYSES is,

We can order all thé=(s) according to the increasing B=[ke,(k+1)¢. (9)
order ofx,(s). We then obtain a sequence of real numbers ) .
consisting of & elements that we denote aB(t),t 1he exponent(q) is defined by

=1,... 4. Viewing the sequenc{eF(t)}f:Kl as a time se- InZ.(q)
ries, the spectral analysis can then be undertaken on the se- 7(q) = lim ne (10
quence. €0

We first consider the discrete Fourier transfdB8] of the

time series=(1) t=1, . .. &, defined by and the generalized fractal dimensions of the measure are

defined as
N-1 Dg=7(q)/(q—1) for g#1 (11
F(f)=N"(2 F(t+1)e~2mft, (6)
=0 and
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Dgy=Ilim Iﬁ for q=1, (12
coIne

where Z, =3 ,g)-on(B)In w(B). The generalized fractal
dimensions are numerically estimated through a linear re
gression of

1
——InZ

g1 4D

against Ire for g# 1, and similarly through a linear regres-

sion of Z, . against log for g=1. For example, we show ¢

how to obtain theD, spectrum using the slope of the linear
regression in Fig. 4D, is calledinformation dimensiomand
D, is calledcorrelation dimensionThe D of the positive

PHYSICAL REVIEW E 64 031903
analogy to the phenomenon of phase transitions in
condensed-matter physi¢88]. The existence and type of
phase transitions might turn out to be a worthwhile charac-
terization of universality classes for the structuf@8]. The
concept of phase transition in multifractal spectra was intro-
duced in the study of logistic maps, Julia sets, and other
simple systems. Evidence of a phase transition was found in
the multifractal spectrum of diffusion-limited aggregation
[40]. By following the thermodynamic formulation of multi-
fractal measures, Caned&2] derived an expression for the
“analogous” specific heat as

7*7(q)
aq?

~27(q)-7(q+1)—7(q-1). (13

He showed that the form df, resembles a classical phase
transition at a critical point for financial time series. In the
next section we discuss the property@f for our measure
representations of organisms.

IV. DATA AND RESULTS

More than 33 bacterial complete genomes are now avail-
able in public databases. There are six Archaebactéra:
chaeoglobus fulgidysPyrococcus abyssiMethanococcus
jannaschij Pyrococcus horikoshiiAeropyrum pernix and
Methanobacterium thermoautotrophicufive Gram-positive
EubacteriaMycobacterium tuberculosidlycoplasma pneu-
moniae Mycoplasma genitaliumUreaplasma urealyticum
andBacillus subtilis The others are Gram-negative Eubacte-
ria, which consist of two Hyperthermophilic bacteria:
Aquifex aeolicugnd Thermotoga maritimafour Chlamydia:
Chlamydia trachomatisserovar Chlamydia muridarum
Chlamydia pneumoniaeand Chlamydia pneumoniae AR39
two SpirochaeteBorrelia burgdorferiand Treponema palli-
dum one Cyanobacteriun8ynechocystis sp. PCC68GHhd
13 Proteobacteria. The 13 Proteobacteria are divided into
four subdivisions, which are as follows. The alpha subdivi-
sion: Rhizobium sp. NGR234nd Rickettsia prowazekii
gamma subdivisionEscherichia coli Haemophilus influen-
zag Xylella fastidiosa Vibrio cholerae Pseudomonas
aeruginosa and Buchnera sp. APRSeta subdivisionNeis-
Seria meningitidis MC5&nd Neisseria meningitidis 22491
epsilon subdivisionHelicobacter pylori J99 Helicobacter
pylori 26695 and Campylobacter jejuni

The complete sequences of some chromosomes of non-
bacteria organisms are also currently available. In order to
discuss the classification problem of bacteria, we also se-
lected the sequences of chromosome 155atcharomyces
erevisiag chromosome 3 oPlasmodium falciparumchro-
mosome 1 ofZaenorhabditis eleganshromosome 2 ofra-
bidopsis thalianaand chromosome 22 ¢domo sapiens

We obtained the dimension spectra and “analogous” spe-

values ofq give relevance to the regions where the measureific heat of the measure representations of the above organ-

is large, i.e., to th&-strings with high probability. Th® ; of

isms and used them to discuss the classification problem. We

the negative values af deal with the structure and the prop- calculated the dimension spectra and analogous specific heat

erties of the most rarefied regions of the measure.

of chromosome 22 oHomo sapiendor K=1,...,8, and

Some sets of physical interest have a nonanalytic deperfieund that theD, andC, curves ofK=6,7,8 are very close
dence ofD4 on g. Moreover, this phenomenon has a directto one anothe(see Figs. 5 and)6Hence it seems appropri-
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FIG. 5. Dimension spectra of measures of substrings with dif- FIG. 7. Dimension spectra of chromosome 22Hoimo sapiens
ferent lengthK in chromosome 22 offomo sapiens chromosome 2 ofA. thaliang chromosome 3 of. falciparum
chromosome 1 o€. elegansand chromosome 15 @&. cerevisiae
andM. genitalium

ate to use the measure correspondini to8. ForK =8, we

calculated the dimension spectra, analogous specific heat afflear fits ofq=—2,—1,1,2 are perfect and better than that
the exponent3 of the measure representations of all theof other values of g, Hence we suggest to use
above .org.anisms. As an illustration, we plotm@curveg qf D_,,D_,,D;,D, in the comparison of different bacteria.
M. genitalium chromosome 15 dbaccharomyces cerevisiae \yg give the numerical results f@ ,,D_,,D;,D, in Table

chromosome 3 oPlasmodium falciparumchromosome 2 0f | (from top to bottom, in the increasing order of the value of
Arabidopsis thalianaand chromosome 22 ¢fomo sapiens )
in Fig. 7; and theC, curves of these organisms in Fig. 8. e

Because alD, are equal t(.) 1 for the complete random > the D curve to distinguish them. This strategy is clearly not
quence, from these plots it is apparent that Ehgand C,

. N . fefficient when a large number of organisms are to be distin-
curves are nonlinear and significantly different from those o uished. For this purbose. we suagest using D.. and
the completely random sequence. From Fig. 7, we can clairﬁ ) purpose, 99 e

that the curves representative of the organisms are clearly ~2’ in conjunction with two-dimensional point®(,,D 1)

distinct from the curve representing a random sequenceg.r three-dimensional pointsiX-,,D,.D-,). We give the

From the plot ofDg, the dimension spectra of organisms

exhibit a multifractal-like form. From Fig. 4, we can see the °7 ' ' ' ' '
——  Random sequence
—+— M. genitalium

03 T T T T 08y —s=—  Yeast Chr15
—— C.elegans Chr1

If only a few bacteria are considered at a time, we can use

e —v—  P. falciparum Chr3
ossk | —— q o5 —*— A thaliana Chr2 1
e

—e—  Human Chr22
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0.2 0.4 b
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q FIG. 8. Analogous specific heat of chromosome 22Haimo

sapiens chromosome 2 of\. thaliang chromosome 3 oP. falci-

FIG. 6. Analogous specific heat of measures of substrings wittparum chromosome 1 o€. eleganschromosome 15 o8. cerevi-
different lengthsK in chromosome 22 offlomo sapiens siaeand M. genitalium and a complete random sequence.
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TABLE I. The values oD _,, D;, D_,, andD, of all bacteria selected.

Species Category D_, D, D_, D,

Xylella fastidiosa Proteobacteria 1.023935 0.9734505 1.046237 0.9434007
Treponema pallidum Spirochaete 1.024096 0.9744529 1.048537 0.9456879
Vibrio cholerae Proteobacteria 1.027849 0.9754193 1.060974 0.9529402
Bacillus subtilis Gram-positive Eubacteria 1.031173 0.9691831 1.062364 0.9392986
Chlamydia trachomatis Chlamydia 1.031900 0.9705723 1.067158 0.9421241

Chlamydia pneumoniae Chlamydia 1.034190 0.9691189 1.075935 0.9396138

Rhizobium sp. NGR234 Proteobacteria 1.034821 0.9689233 1.068532 0.9430141
Chlamydia muridarum Chlamydia 1.036 608 0.9646960 1.075166 0.9293640

Chlamydia pneumoniae AR39 Chlamydia 1.037127 0.9593074 1.078164 0.9106171

Pyrococcus abyssi Archaebacteria 1.038142 0.9683081 1.091387 0.9393384
Aeropyrum pernix Archaebacteria 1.040248 0.9535630 1.074807 0.9033159
Synechocystis sp. PCC6803 Cyanobacteria 1.045674 0.9657137 1.127265 0.9364141
Mycoplasma pneumoniae  Gram-positive Eubacteria 1.046 260 0.9584649 1.092869 0.9250106
Archaeoglobus fulgidus Archaebacteria 1.047071 0.9631252 1.130371 0.9279480
Escherichia coli Proteobacteria 1.047849 0.9711645 1.174754 0.9474317
M. thermoautotrophicum Archaebacteria 1.048569 0.9626480 1.116451 0.9306760
Thermotoga maritima Hyperthermophilic bacteria 1.053824 0.9545637 1.145209 0.9101596
Aquifex aeolicus Hyperthermophilic bacteria 1.055210 0.9540893 1.134702 0.9145361
Pyrococcus horikoshii Archaebacteria 1.056 144 0.9587924 1.139402 0.9237674
Neisseria meningitidis MC58 Proteobacteria 1.058779 0.9522681 1.132902 0.9132383
Neisseria meningitidis 22491 Proteobacteria 1.058805 0.9497503 1.133201 0.9065167
M. tuberculosis Gram-positive Eubacteria 1.061496 0.9410341 1.115466 0.8920540
Haemophilus influenzae Proteobacteria 1.062565 0.9511231 1.147970 0.9122260
Buchnera sp. APS Proteobacteria 1.085581 0.8955851 1.152650 0.7904221
Rickettsia prowazekii Proteobacteria 1.088237 0.9192655 1.173883 0.856 7044
Pseudomonas aeruginosa Proteobacteria 1.109776 0.9154980 1.187378 0.8622321
Borrelia burgdorferi Spirochaete 1.111380 0.9030539 1.261299 0.8298323

Campylobacter jejuni Proteobacteria 1.123096 0.9053437 1.279505 0.8349793
Ureaplasma urealyticum Gram-positive bacteria  1.124616 0.8843481 1.260287 0.8065916
Helicobacter pylori J99 Proteobacteria 1.128590 0.9299614 1.390791 0.8758443
Helicobacter pylori 26695 Proteobacteria 1.149943 0.9276062 1.460757 0.8719445
Mycoplasma genitalium Gram-positive Eubacteria 1.160435 0.9142718 1.365716 0.8631789
Methanococcus jannaschii Archaebacteria 1.165208 0.9113731 1.349664 0.8628226

distribution of two-dimensional pointdX_,,D,) and three- =0.311623 forA. pernix 8=0.240601 forX. fastidiosa

dimensional points@ _;,D,,D ) of bacteria in Fig. 9. 3=0.381293 forT. pallidum 8=0.334 057 forC. pneumo-
niae AR39 and B is larger than 0.4 for all other bacteria
V. DISCUSSION AND CONCLUSIONS selectedl These values are far from 0. Hence when we view

our measure representations of organisms as time series, they
The idea of our measure representation is similar to thare far from being random time series, and in fact exhibit
portrait method proposed by Haat al. [25]. It provides a strong long-range correlation. Here the long-range correla-
simple yet powerful visualization method to amplify the dif- tion is for theK-strings with the dictionary ordering, and it is
ference between a DNA sequence and a random sequencedifferent from the base pair correlations introduced by other
well as to distinguish DNA sequences themselves in mor@eople.
details. If a DNA sequence is random, then our measure rep- Although the existence of the archaebacterial urkingdom
resentation yields a uniform measui@ = 1,C,=0). has been accepted by many biologists, the classification of
From the measure representation and the valués @nd  bacteria is still a matter of controver$fl]. The evolution-
C,. itis seen that there exists a clear difference between thary relationship of the three primary kingdoms, namely
DNA sequences of all organisms considered here and tharcheabacteria, eubacteria, and eukaryote, is another crucial
completely random sequence. Hence we can conclude thptoblem that remains unresolvedil].
complete genomes are not random sequences. WhenK is large K=6), our measure representation con-
We obtained the values of the expongnof our measure tains rich information on the complete genomes. From Figs.
representations 4=0.393003 for V. cholerag S 5 and 6 we find the curves @, andC, are very close to
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With K=8, we found that th&, curves of all other bacteria
resemble a classical phase transition at a critical point similar
to that of M. genitaliumshown in Fig. 8. But the analogous
phase transitions of nonbacteria organisms are different.
Apart from chromosome 1 of. elegansthey exhibit the
shape of a double-peaked specific heat function which is
known to appear in the Hubbard model within the weak-to-
strong coupling regimg42].

It is seen that th® curve is not clear enough to distin-
guish many bacteria themselves. In order to solve this prob-
lem we use two-dimensional point®(,,D;) and three-
dimensional points®_;,D;,D_,). From Fig. 9 it is clear
that bacteria roughly gather into two clasdes shown in
Table ). Using the distance among the points, one can obtain
a classification of bacteria.

From Table | we can see all Archaebacteria belong to the
same class exceM. jannaschii And four Chlamydia almost
gather together. It is surprising that the closest pairs of bac-
teria, Helicobacter pylori J9%ndHelicobacter pylori 26695
andNeisseria meningitidis MC58nd Neisseria meningitidis
72491 group with each other. Two hyperthermophilic bacte-
ria group with each other and are linked with the Archaebac-
teria. It has previously been shown thequifexhas a close
relationship with Archaebacteria from the gene comparison
of an enzyme needed for the synthesis of the amino acid
trytophan[43] and using the length sequence of a complete
genomg 23]. In general, bacteria that are close phylogeneti-
cally are almost close in the space® (;,D;) and
(D—liDlvD—Z)'

A
o0&
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