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ABSTRACT. Motivated by the study of convolutions of the
Cantor measure, we set up a framework for computing the mul-
tifractal Lq-spectrum τ(q), q > 0, for certain overlapping self-
similar measures which satisfy a family of second-order identities
introduced by Strichartz et al. We apply our results to the family
of iterated function systems Sjx = (1/m)x + [(m − 1)m]/j,
j = 0, 1, . . . , m, where m is an odd integer, and obtain closed
formulas defining τ(q), q > 0, for the associated self-similar
measures. As a result, we can show that τ(q) is differentiable on
(0,∞) and justify the multifractal formalism in the region q > 0.
Furthermore, expressions for the Hausdorff and entropy dimen-
sions of these measures can also be derived. By lettingm = 3, we
obtain all these results for the 3-fold convolution of the standard
Cantor measure.

.1 INTRODUCTION

Let µ be a bounded positive Borel measure on Rd with compact support. For each
q ∈ R, define

τ(q) := lim
h→0+

ln sup
∑
i µ(Bh(xi))q

lnh
,(1.1)

where {Bh(xi)} is a family of disjoint closed h-balls with centers xi ∈ supp (µ),
the support of µ, and the supremum is taken over all such families. We call τ(q)
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the Lq-spectrum (or the moment scaling exponent) of µ. It arises as an important
function in the theory of multifractal measures. A heuristic principle says that the
Legendre transform of τ(q), defined by τ∗(η) := inf{qη−τ(q) : q ∈ R}, is equal
to the Hausdorff dimension of the set of points whose local dimension is equal to
η, i.e.,

τ∗(η) = dimH

{
x ∈ supp (µ)

∣∣∣ lim
h→0+

lnµ(Bh(x))
lnh

= η
}
.(1.2)

This is known as the multifractal formalism. The right-hand side of (1.2) as a
function of η is called the dimension spectrum of µ. (Here we use the letter η
instead of the more commonly used letter α because α will appear in a different
context.)

Since the eighties, there have been a lot of interests and researches related to
justifying the multifractal formalism and computing τ(q). We summarize some
known results concerning self-similar measures, a basic class of fractal measures.
Let {Sj}mj=0 be an iterated function system (IFS) of contractive similitudes of the
form

Sjx = ρjRjx + bj, j = 0,1, . . . ,m,(1.3)

where 0 < ρj < 1, Rj is an orthogonal transformation and bj ∈ Rd. For each set
of probability weights {wj}mj=0, i.e., wj ≥ 0 and

∑m
j=0wj = 1, there corresponds

a unique probability measure, called a self-similar measure, satisfying the identity

µ =
m∑
j=0

wjµ ◦ S−1
j .(1.4)

(See [Hut]). The multifractal formalism has been proved rigorously for self-similar
or graph-directed self-similar measures satisfying the disconnected open set condi-
tion or its variants (see [CM], [EM], [O1], [R], [AP] and the references therein).
{Sj}mj=0 is said to satisfy the open set condition (OSC) if there exists a non-empty
bounded open set U such that Sj(U) ⊆ U for all j and Si(U)∩Sj(U) = ∅ for all
i 6= j; and it is said to satisfy the disconnected open set condition if the last condition
can be strengthened to Si(Ū) ∩ Sj(Ū) = ∅ for all i 6= j. If the OSC is satisfied
then τ(q) is defined by the simple equation

m∑
j=0

wqj ρ
−τ(q)
j = 1, q ∈ R.(1.5)
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The OSC guarantees that {Sj(supp (µ))}mj=0 is a nonoverlapping family, in
this case we also say, loosely, that the IFS {Sj}mj=0 (and the corresponding measure
µ) is nonoverlapping. If the OSC fails, we say that the IFS (and µ) is overlapping.

In order to study some interesting overlapping cases including the well-known
Bernoulli convolutions associated with the PV numbers, the authors introduced
a weaker separation condition, known as the weak separation property (WSP), and
justified the multifractal formalism under the assumption that τ∗(η) is strictly
concave at η ∈ ∂τ(q) where q > 0 [LN1]. Here ∂τ(q) is the subdifferential of τ
at q, defined as ∂τ(q) = {η | τ(p) ≤ τ(q)+ η(p − q) for all p ∈ R}.

For such measures, one of the main unsettled problems is the calculation of
τ(q). Some partial results have been obtained when q is a nonnegative integer
([La1], [La2], [LN3], [FLN]). For noninteger values of q, much less is known. In
[LN2], a closed formula defining τ(q), 0 < q <∞, for the Bernoulli convolution
associated with the golden ratio is derived. Recently, by using a different tech-
nique, Feng ([Fen1], [Fen2]) has obtained a formula defining τ(q) for q < 0 for
this measure. He also obtained formulas defining τ(q) for a class of PV numbers.

The derivation of τ(q) in [LN2] is based on a set of second-order identities
introduced by Strichartz et al. [STZ]. Let {Sj}mj=0 and µ be given by (1.3) and
(1.4) respectively. Define

Tix = ρnix + di, i = 0,1, . . . , `,(1.6)

where ni ∈ N and di ∈ Rd. We say that µ satisfies a family of second-order
self-similar identities (or simply second-order identities) with respect to {Ti}`i=0 if

(i) supp (µ) ⊆ ⋃`i=0 Ti(supp (µ)) and
(ii) for each A ⊆ supp (µ) and 0 ≤ i, j ≤ `, µ(TiTjA) can be expressed as a

linear combination of {µ(TkA) | k = 0, 1, . . . , m} as

µ(TiTjA) =
m∑
k=0

ckµ(TkA),

where ck = ck(i, j) are independent of A. (Here TiTj denotes the compo-
sition Ti ◦ Tj .)

For our purposes, {Ti}`i=0 needs to satisfy the OSC.
Second-order identities were introduced in [STZ] to compute numerical ap-

proximations to the measure. If {Sj}mj=0 satisfies the OSC with an open set U ,
then using a theorem of Schief [S, Theorem 2.2] we can assume that µ(U) = 1.
Hence for all A ⊆ supp (µ), µ(SiSj(A)) = wiµ(Sj(A)) and therefore µ satisfies a
family of second-order identities with respect to {Sj}mj=0 itself.
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The formula for τ(q) derived in [LN2] yields important and new informa-
tion for the infinite Bernoulli convolution associated with the golden ratio, which
has been studied extensively (see [AY], [AZ], [Hu], [L], [LP], [P]). These include
the differentiability of τ(q) and the dimension spectrum of the measure for q > 0,
a formula for its Hausdorff and entropy dimensions, and formulas for its Lq-
dimensions and its L∞-dimension. Unfortunately, the method in [LN2] cannot
be applied to measures associated with other well-known PV numbers because
they do not satisfy similar second-order identities. It is the purpose of this paper
to carry out a systematic study of this method and show that it does generalize
to some other classes of overlapping measures, including the interesting 3-fold
convolution of the Cantor measure.

We consider equicontractive similitudes of the form

Sjx = ρx + bj, j = 0,1, . . . ,m,(1.7)

where 0 < ρ < 1 and 0 = b0 < b1 < · · · < bm. We are interested in the case
{Sj}mj=0 does not satisfy the OSC. Let µ be the corresponding self-similar measure.
We will prove that if ρ = 1/k, where k ≥ 2 is an integer, bj = [(k − 1)/k]j for
j = 0, 1, . . . ,m, and m = kN for some N ∈ N, then we can define

Tix =
1
kN
x + i, i = 0,1, . . . ,m− 1,(1.8)

so that with respect to {Ti}m−1
i=0 , µ satisfies a family of second-order identities.

Our main objective is to make use of the second-order identities to formulate
a set of conditions under which a closed formula defining τ(q) can be derived.
Note that supp (µ) ⊆ [0, a], where a = bm/(1− ρ). Define

Tix = ρnix + di, di = 0,1, . . . , `,(1.9)

where ni is a positive integer, and suppose {Ti}m−1
i=0 is a nonoverlapping family

with respect to which µ satisfies a family of second-order identities. For the pur-
poses of this paper we only consider the case in which {Ti}`i=0 can be partitioned
into two subfamilies {Ti}i∈I0 and {Ti}i∈I1 , each is equicontractive with contrac-
tion ratios ρn and ρñ respectively.

The derivation of τ(q) is based on the following well-known equivalent def-
inition, which holds for q > 0:

τ(q) = inf
{
α
∣∣ lim
h→0+

1
h1+α

∫∞
−∞
µ(Bh(x))q dx > 0

}
.
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Let

Φ(α)(h) := 1
h1+α

∑
i∈I1

∫ a
0
µ(Bh(Tix))q dx.(1.10)

Under certain additional conditions on the similitudes and the second-order iden-
tities (see (C1), (C2) and (C3) in Section 3), Φ(α)(h) behaves like
1/h1+α ∫ a

0 µ(Bh(t))q dt as h → 0+ and the following functional equation forΦ(α)(h) can be derived:

Φ(α)(h) = t−1∑
k=1

ρ−((k−1)n+ñ)αc0
k(q)Φ(α)

(
h

ρ(k−1)n+ñ

)
(1.11)

+
t−1∑
k=1

ρ−knαc1
k(q)Φ(α)

(
h
ρkn

)

+
N∑
k=0

ρ−(tn+kñ)αc̃k(q)Φ(α)
(

h
ρtn+kñ

)
+ E(h),

where t is some fixed positive integer, c0
k(q), c

1
k(q), c̃k(q) are functions of q, N

is the largest integer satisfying 0 < h ≤ ρ(t+1)n+Nñ, and E(h) is some error term.
Once (1.11) is established, the formula for τ(q) follows from the renewal

theorem. More precisely, define

F(q,α) :=
t−1∑
k=1

(ρ−((k−1)n+ñ)αc0
k(q)+ ρ−knαc1

k(q))+
∞∑
k=0

ρ−(tn+kñ)αc̃k(q)(1.12)

D := {(q,α) | q > 0, F(q,α) <∞}.

For q > 0, let α̃ = α̃(q) be the unique α such that (q,α) ∈ ∂D, the boundary of
D. We have the following main result:

Theorem 1.1. Suppose that for each q > 0, F(q,α) tends to ∞ as α increases
to α̃, and suppose that for α satisfying F(q,α) = 1, there exists ε > 0 such that
E(h) = o(hε) as h → 0+. Then τ(q) = α, where α is the unique solution of
F(q,α) = 1. Moreover, τ is differentiable on (0,∞).

The differentiability of τ on (0,∞) is important because it implies that τ∗(η)
is strictly concave for all η ∈ ∂τ(q), q > 0, and hence for such η the multifractal
formalism (i.e., equality (1.2)) holds [LN1].
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τ(q) is intimately related to several other notions of dimension of the mea-
sure µ. For q > 1, the (lower) Lq-dimension (or generalized Rényi dimension) ([St],
[HP]) of µ, denoted by dimq(µ), can be defined as

dimq(µ) =
τ(q)
q − 1

, q > 1.

For q = ∞ we define the lower L∞-dimension of µ as

dim∞(µ) = lim
h→0+

ln supµ(Bh(x))
lnh

,

where x ∈ supp (µ) and the supremum is taken over all such x (see [LN1], [St]).
dim∞(µ) corresponds to the left end-point of the dimension spectrum.

τ(q) is also related to the Hausdorff and entropy dimensions of µ. Assume
now that ν is a Borel probability measure on Rd with bounded support (not
necessarily a self-similar measure). For a finite Borel partition P of supp (ν), let
|P| be the maximum of the diameters of elements of P. Define

H(ν,P) = −
∑
A∈P

ν(A) lnν(A),

and for h > 0, let

H(ν,h) = inf{H(ν,P) | P is a finite Borel partition of supp (ν), |P| ≤ h}.

The entropy dimension of ν is defined as

dime(ν) = lim
h→0+

H(ν,h)
− lnh

.

The Hausdorff dimension of ν is defined as

dimH(ν) = inf{dimH(E) | ν(Rd \ E) = 0}.

It is proved by one of the authors in [N2, Theorem 1.1] that, if τ(q) is differ-
entiable at q = 1, then dimH(ν) = dime(ν) = τ′(1) (see also generalizations by
Heurteaux [H] and Olsen [O2]). In this case we will call the common value the
dimension of ν and denote it by dim(ν).

Under the hypotheses of Theorem 1.1, we immediately obtain formulas for
dimq(µ) and dim∞(µ). Moreover, since the differentiability of τ for q > 0 is
guaranteed, we can hence derive a closed formula for dim(µ) (see Corollary 3.3).
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We apply Theorem 1.1 to the measures defined by

Sjx =
1
m
x + m− 1

m
j, j = 0,1, . . . ,m,(1.13)

wherem is an “odd” integer. A corresponding collection of Ti is

Tix =
1
m
x + i, i = 0,1, . . . ,m− 1.(1.14)

In this case I0 = {0, m−1}, I1 = {1, . . . , m−2}, and F(q,α) is simplified to

F(q,α) =mα
m−1∑
i=1

wqi +
∞∑
k=0

m(k+2)α
(m−2∑
i=1

∑
|J|=k

cqi,J
)
,(1.15)

where J = (j1, . . . , jk), ji = 0 orm− 1, and |J| = k denotes the length of J. ci,J
is defined as

ci,J =
[
wi+1, wi

]
PJ

[
w0

wm

]
,(1.16)

where PJ is the matrix product Pj1 · · ·Pjk and

P0 =
[
w0 0
wm wm−1

]
, Pm−1 =

[
w1 w0

0 wm

]
.(1.17)

We have the following main result concerning this family of measures.

Theorem 1.2. Let m ≥ 3 be an odd integer and let Sj(x) = (1/m)x +
[(m−1)/m]j, j = 0, 1, . . . ,m. Let µ be the self-similar measure defined by {Sj}mj=0
together with a set of nonnegative weights {wj}mj=0. Suppose that w0, wm > 0 and
that there exists 1 ≤ j0 ≤ m − 1 such that wj0 > 0. Then τ(q) = α, where α is
defined by

mα
m−1∑
i=1

wqi +
∞∑
k=0

m(k+2)α
(m−2∑
i=1

∑
|J|=k

cqi,J
)
= 1.

Moreover, τ is differentiable on (0,∞).
Corollary 1.3. For the measure µ in Theorem 1.2, the multifractal formalism

holds for q > 0, i.e.,

τ∗(η) = dimH

{
x ∈ supp (µ)

∣∣∣ lim
h→0+

lnµ(Bh(x))
lnh

= η
}
,

where η = τ′(q) and q > 0.
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We are not able to get similar results ifm is even, although analogous second-
order identities exist. It is not clear how a suitable collection of Ti can be defined
so that an analogue of the functional equation (1.11) can be derived.

Our present work is motivated by the study of the 3-fold convolution of
the standard Cantor measure. Unlike the standard Cantor measure or its 2-fold
convolution, the 3-fold convolution is defined by the following set of similitudes
that fails to satisfy the OSC:

Sjx = 1
3
x + 2

3
j, j = 0,1,2,3.(1.18)

The corresponding measure µ is defined by

µ = 1
8
µ ◦ S−1

0 + 3
8
µ ◦ S−1

1 + 3
8
µ ◦ S−1

2 + 1
8
µ ◦ S−1

3 .

In [FLN], it is shown that the Sj in (1.18) satisfy the WSP and a matrix
method is used to compute τ(q) when q is equal to a nonnegative integer. By
using the results in this paper, we can obtain the following formula defining τ(q)
for q > 0 and show that τ(q) is differentiable on (0,∞). The matrices P0 and P2

in (1.17) become

P0 = 1
8

[
1 0
1 3

]
and P2 = 1

8

[
3 1
0 1

]
.

Let cJ = 3
64[1, 1]PJ

[1
1

]
. Then we have the following result:

Theorem 1.4. Let µ be the 3-fold convolution of the standard Cantor measure.
Then

(a) τ(q) = α, with α defined by

(1.19) 2 · 3α
(

3
8

)q
+

∞∑
k=0

3(k+2)α
( ∑
|J|=k

cqJ
)
= 1,

where J = (j1, . . . , jk), ji = 0 or 2. Moreover, τ(q) is differentiable on
(0,∞).

(b)

(1.20) dim(µ) = τ′(1) =
9 ln(3/8)+ 12

∞∑
k=0

∑
|J|=k

cJ ln cJ

−20 ln 3
≈ 0.9884....
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(c) dim∞(µ) = ln 8
3/ ln 3 (≈ 0.89278926 . . . ).

We have not investigated the calculation of τ(q) for q < 0; the reader is
referred to some related results by Hu and Lau [HL].

This paper is organized this as follows. In Section 2, we study some basic
properties and examples of second-order identities. In Section 3 we derive the key
functional equation (1.11) and prove Theorem 1.1. In Section 4, we apply our
results to the IFS in (1.13) and derive Theorem 1.2 and Corollary 1.3. In Section
5, we simplify the formula for τ(q) in the case q is a positive integer. In Section
6, we study the 3-fold convolution of the Cantor measure and prove Theorem
1.4. The proof of Theorem 1.2 involves a technical estimation of the error term
E(h) stated in Theorem 1.1. Some techniques have already been used in [LN2];
we include the estimations in the Appendix for completeness.

.2 SECOND-ORDER IDENTITIES

In this section we study some properties and examples concerning second-order
identities. Let k ≥ 2 be an integer, let

Sjx = 1
k
x + k− 1

k
j, j = 0,1, . . . ,m,(2.1)

and let µ be the self-similar measure defined by the Sj as in (1.4). We remark
that for any r ∈ R, the self-similar measure defined by the similitudes S̃jx =
(1/k)x+rj, j = 0, 1, . . . ,m, together with the same set of weights {wj}mj=0, can
be identified with µ. It can also be checked that supp (µ) ⊆ [0,m] and {Sj}mj=0
satisfies the OSC if and only if m ≤ k− 1.

Now assume that m = kN for some N ∈ N. Note that in this case the OSC
fails. We define

Tix = 1
kN
x + i, i = 0,1, . . . ,m− 1.(2.2)

Since Ti[0,m] = [i, i+1], {Ti}m−1
i=0 satisfies the OSC with (0,m) as an open set.

For any multi-index I = (i1, . . . , ik), we denote the composition Ti1 ◦ · · · ◦Tik by
Ti1 · · ·Tik or TI , and the composition S−1

i1 ◦ · · · ◦ S−1
ik by S−1

i1 · · ·S−1
ik .

Proposition 2.1. Let µ be a self-similar measure defined by the similitudes in
(2.1) and let m = kN for some integer N. Then µ satisfies a set of second-order
identities with respect to the maps Ti in (2.2).
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Proof. Let A ⊆ [0,m]. By applying (1.4) repeatedly, we have for 0 ≤ i,
j ≤m− 1,

µ(TiTjA) =
m∑

`1,...,`N=0

w`1 · · ·w`Nµ
(
S−1
`N · · ·S

−1
`1

(
1
k2N A+

1
kN
j + i

))

=
m∑

`1,...,`N=0

w`1 · · ·w`Nµ
(

1
kN
A+ s

)
,

where s = s(i, j, `1, . . . , `N) := j+kNi−(k−1)
∑N
r=1 kN−r `r . Since supp (µ) ⊆

[0,m] and s can take only integer values, µ[(1/kN)A + s] ≠ 0 if and only if
s = 0, 1, . . . , m− 1. Hence µ(TiTjA) is a linear combination of {µ(TkA) | k =
0, 1, . . . , m− 1}. ❐

Example. Putting N = 1, we get the following example

Sjx = 1
m
x + m− 1

m
j, j = 0,1, . . . ,m.

In this case we can define

Tix = 1
m
x + i, i = 0,1, . . . ,m− 1.

We will come back to this family in Section 4.

Remark. The {Ti}m−1
i=0 in (2.2) is not the unique family with respect to which

µ satisfies a set of second-order identities. In fact, ifm = kN then for each n ∈ N
we can define

T̃ix = 1
knkN

x + i
kn
, i = 0,1, . . . ,mkn − 1.

The proof of Proposition 2.1 shows that the same conclusion holds for the maps
{T̃i}mk

n−1
i=0 . The proof of Proposition 2.1 also yields the following important ma-

trix identities, which hold for all A ⊆ [0,m]:

µ(T0TiA)

µ(T1TiA)
...

µ(Tm−1TiA)

 = Mi


µ(T0A)

µ(T1A)
...

µ(Tm−1A)

 , i = 0,1, . . . ,m− 1,(2.3)



Second-order Self-similar Identities 935

where Mi is somem×m matrix. Let J = (j1, . . . , jk), ji = 1, . . . ,m− 1, and let
ei denote the unit vector in Rm whose (i + 1)-st coordinate is 1. Applying (2.3)
repeatedly yields

µ(TJ[0,m]) = eTj1
Mj2 · · ·Mjk



µ(T0[0,m])

µ(T1[0,m])
...

µ(Tm−1[0,m])

 := dJ.(2.4)

Using (2.4) we obtain the following uniqueness result for the µ satisfying (2.3).

Proposition 2.2. The system of second-order identities in (2.3) together with the
values µ(Ti[0,m]), i = 0, 1, . . . , m − 1 uniquely determines a Borel probability
measure on [0,m].

Proof. We see from (2.4) that for all J = (j1, . . . , jk) with ji = 0, 1, . . . ,
m − 1, the values µ(TJ[0,m)) are uniquely determined by the matrices Mi and
the values µ(Ti[0,m]), i = 0, 1, . . . , m − 1. Hence µ is uniquely determined
on each of the m-adic intervals {TJ[0,m) | |J| = k}. The assertion now follows
from Carathéodory’s extension theorem [Ro]. ❐

Write ρ = 1/kN . We have the following formula, which can be used to
approximate τ(q) for “all” q ∈ R. The approximations are better for smaller
absolute values of q.

Theorem 2.3. Assume the same hypotheses of Proposition 2.1 and assume that
the probability weights satisfy wj > 0 for all j. Then for all q ∈ R,

τ(q) = lim
n→∞

ln
∑
|J|=n

dqj

n lnρ
,

where ρ = 1/kN and dJ is defined by (2.4).

Proof. We first remark that, since all wj are positive, µ does not have point
masses and supp (µ) = [0,m]. The proof for q > 0 follows from an obvious
generalization of that in [N1, Theorem 2.4]. Now assume q < 0. Since µ does
not have point masses, the closed ball Bh(xi) in the definition of τ(q) can be
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replaced by the open ball B◦h(xi). By regarding {TJ(0,m)}|J|=n as a family of
disjoint open (mρn/2)-balls with centers in supp (µ), we have

lim
n→∞

ln
∑
|J|=n

dqj

n lnρ
= lim
n→∞

ln
∑
|J|=n

µ(TJ(0,m))q

ln(mρn)

≥ lim
h→0+

ln sup
∑
i
µ(Bh(xi))q

lnh
= τ(q).

To prove the reverse inequality, we observe that, for xi ∈ supp (µ) and h satisfying
mρn ≤ h < mρn−1, there exists some J = (j1, . . . , jn), ji = 0, 1, . . . , m − 1,
such that

Bh(xi) ⊇ TJ[0,m).
This implies that, for each such h,

sup
∑
i
µ(Bh(xi))q ≤

∑
|J|=n

µ(TJ(0,m))q.

Consequently,

lim
h→0+

ln sup
∑
i
µ(Bh(xi))q

lnh
≥ lim
n→∞

ln
∑
|J|=n

µ(TJ[0,m))q

ln(mρn−1)
= lim
n→∞

ln
∑
|J|=n

dqJ

n lnρ

and the reverse inequality follows. ❐

.3 DERIVATION OF THE FUNCTIONAL EQUATION

Let

Sjx = ρx + bj, j = 0,1, . . . ,m,(3.1)

where 0 < ρ < 1 and 0 = b0 < b1 < · · · < bm. For any set of nonnegative
probability weights {wj}mj=0, we let µ be the corresponding self-similar measure
defined as in (1.4). It is easy to see that supp (µ) ⊆ [0, a], where a = bm/(1−ρ).
Define

Tix = ρnix + di, i = 0,1, . . . , `,(3.2)
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where ni is a positive integer and 0 = d0 < d1 < · · · < d`. We assume that
{Ti}`i=0 is a non-overlapping family,

⋃`
i=0 Ti[0, a] ⊇ supp (µ), and µ satisfies the

following family of second-order identities: For A ⊆ [0, a],
µ(T0TiA)

...

µ(T`TiA)

 =Mi

µ(T0A)

...

µ(T`A)

 , i = 0,1, . . . , `,(3.3)

where Mi is an (` + 1)× (` + 1) constant matrix.
To calculate τ(q), we will use the following equivalent definition. For q > 0,

τ(q) = inf
{
α
∣∣∣ lim
h→0+

1
h1+α

∫∞
−∞
µ(Bh(x))q dx > 0

}
.

This can be derived by using [LN1, Proposition 3.1] (see also [La1], [LN2], [St]).
Our approach is to partition the collection {Ti}`i=0 into two subcollections,

indexed by I0 and I1, so that if we let

Φ(α)(h) = 1
h1+α

∑
i∈I1

∫ a
0
µ(Bh(Tix))q dx,(3.4)

then Φ(α)(h) behaves like 1/h1+α ∫ a
0 µ(Bh(x))q dx as h → 0+ and moreover, it

satisfies a functional equation of the form

Φ(α)(h) = ∞∑
k=0

ck(q,α)Φ(α)
(
h
ρsk

)
+ o(hε),(3.5)

where sk ∈ N and ε > 0 (or more precisely (1.11)). The second-order identities
(3.3) alone are not sufficient to fulfill these requirements; further restrictions need
to be imposed.

We will assume that each of the subcollections {Ti}i∈I0 and {Ti}i∈I1 is equicon-
tractive with

ni =


ñ if i ∈ I0
n if i ∈ I1.

Moreover, we assume they satisfy the following basic conditions (C1), (C2), and
(C3). (C1) governs the asymptotic behavior of Φ(α)(h). (C2) and (C3) are used
in deriving (3.5). These conditions are satisfied by the interesting examples we
consider, but not all of them are necessary. For simplicity we do not consider
the more general framework, which will require a vector version of the renewal
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theorem. For k ≥ 1, we denote by Ik0 the k-time Cartesian product I0 × · · · × I0;
Ik1 is similarly defined.

(C1) For some i ∈ I1, Ti[0, a] contains an interval of the form Sj1 · · ·Sjk[0, a]
withwj1 · · ·wjk > 0. Furthermore, there exists a positive integer t (chosen
to be the smallest) and a subset I ⊆ {(i1, . . . , it) | ij ∈ I1} such that, for
A ⊆ [0, a], conditions (C2) and (C3) below are satisfied:

(C2) Suppose for each k = 2, . . . , t, I0
k denotes the collection of multi-indices

I = (i1, . . . , ik) such that i1 ∈ I1 and k is the smallest integer such that I is
not an initial segment of any member of I. Then for each I ∈ I0

k there exists
an index i = i(I) ∈ I1, and a constant c(I, i) depending only on I and i
such that

(3.6) µ(TIA) = c(I, i)µ(TiA).

Moreover, for each i ∈ I1, the following sums are independent of i:

c0
k−1(q) :=

∑
{c(I, i)q | I ∈ I0

k, ik ∈ I0},(3.7)

c1
k−1(q) :=

∑
{c(I, i)q | I ∈ I0

k, ik ∈ I1
}
.

(C3) Suppose I = (i1, . . . , it) ∈ I. Then for each J = (j1, . . . , jk) ∈ Ik0 , k ≥ 0,
and for each j ∈ I1, there exists an index i = i(I, J, j) ∈ I1 and a constant
c(I, J, i, j) depending only on I, J, i, and j such that

(3.8) µ(TITJTjA) = c(I, J, i, j)µ(TiA).

Moreover, for each i ∈ I1, the sum

(3.9) c̃k(q) :=
∑
{c(I, J, i, j)q | I ∈ I, j ∈ I1, J ∈ Ik0 }

is independent of i.

Remark 1. The second-order identities imply that µ(TIA) and µ(TITJTjA)
are linear combinations of µ(TiA). (3.6) and (3.8) require in addition that they
are multiples of some µ(TiA).
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Remark 2. The assumptions corresponding to (3.7) and (3.9) can be dropped
in a more general framework. Without these assumptions, a vector analogue of
the functional equation (3.5) can still be set up and the vector renewal theorem
of Lau et al. [LWC] can be used to obtain the desired results. However, for sim-
plicity of exposition and for the purposes of this paper, we choose to include these
assumptions and consider only the scalar case.

Remark 3. We can also consider the more general case which allows the Ti
to be non-equicontractive. Again, a vector version as mentioned in Remark 2 is
required.

Example 1. The IFS defining the Bernoulli convolution associated with the
golden ratio serves as a basic example for conditions (C1), (C2), and (C3): S0(x) =
ρx, S1(x) = ρx + (1− ρ), ρ = (

√
5− 1)/2. It is shown in [STZ] that the asso-

ciated self-similar measure satisfies a family of second-order identities with respect
to the following nonoverlapping maps

T0x = ρ2x, T1x = ρ3x + ρ2, T2x = ρ2x + ρ.

(C1) holds if w0 and w1 are both positive. By taking I0 = {0,2}, I1 = {1}, and
I = {(1)}, it can be shown that (C2) and (C3) also hold. We refer the reader to
[LN2] for details. Here we illustrate these conditions by another example.

Example 2. Let

Sjx =
1
3
x + 2

3
j, j = 0,1,2,3,

and let µ be the self-similar measure defined by {Sj}3
j=0 and positive weights

{wj}3
j=0. Then supp (µ) = [0,3]. Define

Tix = 1
3
x + i, i = 0,1,2.

Then for any A ⊆ [0,3],

µ(T0TiA)

µ(T1TiA)

µ(T2TiA)

 = Mi

µ(T0A)

µ(T1A)

µ(T2A)

 , i = 0,1,2,
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whereM0,M1, andM2 are given by (4.4) (see Proposition 4.2). Partition the index
set {0,1,2} for Ti as I0 = {0,2} and I1 = {1}. Then, since

T1[0,3] = [1,2] ⊇ Sj1Sj2[0,3]

for, say, (j1, j2) = (1,2) (or (1,3), (2,0), (2,1)), (C1) is satisfied.
To verify (C2) and (C3) we let t = 2 and I = {(1,1)}. For (C2) we need

only consider I = (1,0) or (1,2). Let A ⊆ [0,3]. Then from the second-order
identities, we have

µ(T1T0A) = w1µ(T1A) and µ(T1T2A) = w2µ(T1A).

(See Proposition 4.3(a).) Hence (3.6) is satisfied with k = 2, i(I) = 1, and

c(I,1) =


w1 if I = (1,0)

w2 if I = (1,2).

(3.7) is also satisfied with c0
1(q) = c1

1(q) = wq1 +wq2 .
For (C3) we let I = (1,1), J = (j1, . . . , jk) with ji = 0 or 2, and j = 1. Then

for any A ⊆ [0,3], we will show that

µ(TITJT1A) = cJµ(T1A),

where

cJ =
[
w2, w1

]
M̃J

[
w0

w3

]
,

and

M̃0 =

w0 0 0
0 0 0
w3 0 w2

 , M̃2 =

w1 0 w0

0 0 0
0 0 w3

 .
(See Proposition 4.4.) Hence (3.8) holds with c(I, J, i, j) = cJ and (3.9) is satis-
fied with c̃k(q) =

∑
|J|=k c

q
J .

Throughout the rest of this section we assume that (C1), (C2), and (C3) are
satisfied. For α > 0, h > 0, and q > 0, define

ϕ(h) :=
∑
i∈I1

∫ a
0
µ(Bh(Tix))q dx.(3.10)

Then Φ(α)(h) = 1
h1+αϕ(h).
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Condition (C1) enables us to establish the asymptotic behavior of Φ(α)(h),
so that if 0 < lim h→0+Φ(α)(h) <∞, then α = τ(q).

Proposition 3.1. Assume that condition (C1) holds and let q > 0. Then there
exist some k ∈ N and constants C1, C2 > 0, independent of h, such that

C1

(h/ρk)1+α

∫ a
0
µ(Bh/ρk(x))q dx à Φ(α)(h) à C2

h1+α

∫ a
0
µ(Bh(x))q dx.(3.11)

Consequently, if 0 < lim h→0+Φ(α)(h) < ∞, then α = τ(q).

Proof. First, it is easy to see that∫ a
0
µ(Bh(x))q dx ≥ ρn

∑
i∈I1

∫ a
0
µ(Bh(Tix))q dx = ρnϕ(h).(3.12)

For the first inequality in (3.11), condition (C1) implies that there exists some
i ∈ I1 such that Ti[0, a] ⊇ Si1 · · ·Sik[0, a]. Hence,

ϕ(h) ≥
∫ a

0
µ(Bh(Tix))q dx = 1

ρn

∫
Ti[0,a]

µ(Bh(x))q dx

≥ 1
ρn

∫
Si1 ···Sik [0,a]

µ(Bh(x))q dx.

Iterating (1.4) yields

µ(Bh(x)) =
m∑

j1,...,jk=0

wj1 · · ·wjkµ(Bh/ρk(S−1
jk · · ·S

−1
j1
x)).

Hence,

ϕ(h) ≥ ρ−n(wi1 · · ·wik)q
∫
Si1 ···Sik[0,a]

µ(Bh/ρk(S−1
ik · · ·S

−1
i1 x))

q dx

= ρk−n(wi1 · · ·wik)q
∫ a

0
µ(Bh/ρk(x))q dx.

Combining this with (3.12) gives

ρ−(kα+n)(wi1 · · ·wik)q
(h/ρk)1+α

∫ a
0
µ(Bh/ρk(x))q dx

≤ Φ(α)(h) ≤ ρ−n

h1+α

∫ a
0
µ(Bh(x))q dx.
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This establishes (3.11). As a consequence,

0 < lim
h→0+

Φ(α)(h) <∞ ⇐⇒ 0 < lim
h→0+

1
h1+α

∫ a
0
µ(Bh(x))q dx <∞,

and the last statement follows. ❐

We now derive the functional equation (1.11). Let I and I0
k (2 ≤ k ≤ t) be

the index sets in conditions (C2) and (C3), and define I1
1 = I1. For 2 ≤ k ≤ t we

let I1
k be the complement of I0

k in Ik−1
1 × (I0 ∪ I1). Then for h > 0,

ϕ(h) =
∑
i1∈I1

∫ a
0
µ(Bh(Ti1x))

q dx(3.13)

=
( ∑
(i1,i2)∈I0

2

+
∑

(i1,i2)∈I1
2

)
ρni2

∫ a
0
µ(Bh(Ti1Ti2x))

q dx

= · · ·

=
∑

(i1,i2)∈I0
2

ρni2
∫ a

0
µ(Bh(Ti1Ti2x))

q dx + · · ·

+
∑

(i1,...,it)∈I0
t

ρ(t−2)n+nit
∫ a

0
µ(Bh(Ti1 · · ·Titx))q dx

+
∑

(i1,...,it)∈I

ρ(t−1)n
∫ a

0
µ(Bh(Ti1 · · ·Titx))q dx.

Write J = (j1, . . . , jk) for J ∈ Ik0 , k ≥ 0, and let N be any nonnegative
integer. Then by iterating the last term of (3.13), we get

ϕ(h) =
t∑
k=2

∑
I∈I0

k

ρ(k−2)n+nik
∫ a

0
µ(Bh(TIx))q dx

+
N∑
k=0

∑
I∈I

∑
|J|=k

∑
j∈I1

ρtn+kñ
∫ a

0
µ(Bh(TITJTjx))q dx + e1(h)

= (I)+ (II)+ e1(h),

where the sum over |J| = k runs over all J ∈ Ik0 and

e1(h) =
∑
I∈I

∑
|J|=N+1

ρ(t−1)n+(N+1)ñ
∫ a

0
µ(Bh(TITJx))q dx.(3.14)
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Note that for 2 ≤ k ≤ t, if B
h/ρ

(k−1)n+nik (x) ⊆ [0, a], then condition (C2) ensures

that for each I = (i1, . . . , ik) ∈ I0
k, there exists an index i = i(I) ∈ I1 and a

constant c(I, i) such that

µ(Bh(TIx)) = c(I, i)µ(Bh/ρ(k−2)n+nik (Tix)).

For I ∈ I0
k, let sk = sk(I) := (k− 1)n+nik . Then for 2 ≤ k ≤ t,

∑
I∈I0

k

ρsk−n
∫ a

0
µ(Bh(TIx))q dx(3.15)

=
∑
I∈I0

k

ρsk−n
(∫ h/ρsk

0
+
∫ a−h/ρsk
h/ρsk

+
∫ a
a−h/ρsk

)
µ(TIBh/ρsk (x))q dx

=
∑
I∈I0

k

ρsk−nc(I, i)q
∫ a

0
µ(Bh/ρsk−n(Ti(I)x))q dx + e2

k(h)− ẽ2
k(h),

where

e2
k(h) =

∑
I∈I0

k

ρsk−n
(∫ h/ρsk

0
+
∫ a
a−h/ρsk

)
µ(Bh(TIx))q dx

ẽ2
k(h) =

∑
I∈I0

k

ρsk−nc(I, i)q
(∫ h/ρsk

0
+
∫ a
a−h/ρsk

)
µ(Bh/ρsk−n(Ti(I)x))q dx.

By using the last statement in (C2), we can write the last expression in (3.15) as

ρ(k−2)n+ñc0
k−1(q)ϕ

(
h

ρ(k−2)n+ñ

)
+ ρ(k−1)nc1

k−1(q)ϕ
(

h
ρ(k−1)n

)
(3.16)

+ e2
k(h)− ẽ2

k(h).

Similarly, for k ≥ 0 we let s̃k := (t + 1)n + kñ. If Bh/ρs̃k (x) ⊆ [0, a], then for

I ∈ I, J = (j1, . . . , jk) ∈ Ik0 , and j ∈ I1, we can apply (C3) to get
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∫ a
0
µ(Bh(TITJTjx))q dx

=
∫ h/ρs̃k

0
+
∫ a−h/ρs̃k
h/ρs̃k

+
∫ a
a−h/ρs̃k

µ(TITJTjBh/ρs̃k (x))q dx
= c(I, J, i, j)q

∫ a
0
µ(Bh/ρs̃k−n(Ti(I,J,j)x))

q dx

+
∫ h/ρs̃k

0
+
∫ a
a−h/ρs̃k

µ(Bh(TITJTjx))q dx
− c(I, J, i, j)q

∫ h/ρs̃k
0

+
∫ a
a−h/ρs̃k

µ(Bh/ρs̃k−n(Ti(I,J,j)x))q dx.

Now supposeN is the largest integer satisfying 0 ≤ h ≤ ρs̃N (= ρ(t+1)n+Nñ). Then
by the above derivation and the second statement in condition (C3), we have

(II) =
N∑
k=0

ρs̃k−nc̃k(q)ϕ
(

h
ρs̃k−n

)

+
N∑
k=0

∑
I∈I

∑
|J|=k

∑
j∈I1

ρs̃k−n
∫ h/ρs̃k

0
+
∫ a
a−h/ρs̃k

µ(Bh(TITJTjx))q dx
−

N∑
k=0

ρs̃k−nc̃k(q)
∑
j∈I1

∫ h/ρs̃k
0

+
∫ a
a−h/ρs̃k

µ(Bh/ρs̃k−n(Tjx))q dx.

Substituting this expression and (3.16) into (3.13) yields

ϕ(h) =
t∑
k=2

ρ(k−2)n+ñc0
k−1(q)ϕ

(
h

ρ(k−2)n+ñ

)
(3.17)

+
t∑
k=2

ρ(k−1)nc1
k−1(q)ϕ

(
h

ρ(k−1)n

)

+
N∑
k=0

ρtn+kñc̃k(q)ϕ
(

h
ρtn+kñ

)
+ e1(h)+ e2(h),



Second-order Self-similar Identities 945

where e1(h) is given in (3.14) and

e2(h) =
t∑
k=2

(e2
k(h)− ẽ2

k(h))

+
N∑
k=0

∑
I∈I

∑
|J|=k

∑
j∈I1

ρs̃k−n
∫ h/ρs̃k

0
+
∫ a
a−h/ρs̃k

µ(Bh(TITJTjx))q dx
−

N∑
k=0

ρs̃k−nc̃k(q)
∑
j∈I1

∫ h/ρs̃k
0

+
∫ a
a−h/ρs̃k

µ(Bh/ρs̃k−n(Tjx))q dx.
Recall that for α > 0, Φ(α)(h) = (1/h1+α)ϕ(h). Hence (3.17) has the

equivalent form (1.11) with E(h) = (1/h1+α)(e1(h) + e2(h)). This completes
the derivation of (1.11).

Let F(q,α) and D be defined as in (1.12). For q > 0, let α̃ = α̃(q) be the
unique α such that (q,α) ∈ ∂D, the boundary of D.

Proposition 3.2. D is convex. Consequently α̃(q) is an increasing concave func-
tion of q.

Proof. For each k, the definition of c̃k(q) allows us to write

c̃k(q) =
mk∑
j=1

a(j, k)q

for some 0 ≤ a(j, k) ≤ 1. The convexity of D follows by applying Hölder’s
inequality. As q increases, c̃k(q) decreases and hence the corresponding α̃(q) will
increase. ❐

Proof of Theorem 1.1.
The proof is similar to that of [LN2, Theorem 3.2]; we include it for com-

pleteness. We will apply the renewal theorem ([Fe], [F]). Let N be the largest
integer satisfying 0 < h ≤ ρ(t+1)n+Nñ. Then for any α ≥ 0 and any k ≥ N + 1,

Φ(α)( h
ρtn+kñ

)
≤
(

h
ρtn+kñ

)−(1+α) ∫ a
0
µ(Bh/ρtn+kñ (x))

q dx ≤ aρ−n(1+α).

Also, the hypotheses imply that D is open, and hence for (q,α) ∈ D and ε > 0
sufficiently small,

∞∑
k=N+1

ρ−(tn+kñ)αc̃k(q) = o(hε).
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These imply that

E∞(h) :=
∞∑

k=N+1

ρ−(tn+kñ)αc̃k(q)Φ(α)( h
ρtn+kñ

)
= o(hε) as h→ 0+.

For 0 < h ≤ 1, let x = − lnh ≥ 0, and define f(x) := Φ(α)(e−x) if x ≥ 0 and
f(x) := 0 if x < 0. Then the formula for Φ(α)(h) becomes

f(x) =
t−1∑
k=1

ρ−((k−1)n+ñ)αc0
k(q)f (x + ((k− 1)n+ ñ) lnρ)(3.18)

+
t−1∑
k=1

ρ−knαc1
k(q)f (x + kn lnρ)

+
∞∑
k=0

ρ−(tn+kñ)αc̃k(q)f (x + (tn+ kñ) lnρ)

+ E(e−x)− E∞(e−x).

Now assume that α satisfies F(q,α) = 1 and let ν be the measure with weight
ρ−((k−1)n+ñ)αc0

k(q) at − ((k− 1)n+ ñ) lnρ, k = 1, . . . , t − 1

ρ−knαc1
k(q) at − kn lnρ, k = 1, . . . , t − 1

ρ−(tn+kñ)αc̃k(q) at − (tn+ kñ) lnρ, k = 0,1,2, . . . .

Then F(q,α) = 1 implies that ν is a probability measure with support contained
in [0,∞). Moreover, for x > 0, (3.18) can be written as

f(x) =
∫∞

0
f(x −y)dν(y)+ E(e−x)− E∞(e−x) =

∫ x
0
f(x −y)dν(y)+ S(x),

where
S(x) = E(e−x)− E∞(e−x) = o(eεx) as x →∞.

Since D is open and (q,α) ∈ D, the moment
∫∞
0 y dν(y) is finite. The renewal

theorem now implies that 0 < lim h→0+Φ(α)(h) < ∞ (see [LN2, Theorem 3.2]).
Proposition 3.1 implies that τ(q) = α. Lastly, note that c0

k(q), c
1
k(q), k = 1, . . . ,

t−1 and c̃k(q), k = 0, 1, 2, . . . are linear combinations of exponential functions.
Using again the fact that (q,α) ∈ D and D is open, we conclude that F is a C1

function with ∂F/∂q < 0. The differentiability of τ now follows from the implicit
function theorem. ❐
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To simplify notation, for k = 0, . . . , t − 1, we let

ck(q) :=


c0
k(q)+ c1

k(q) if n 6= ñ,

c0
k(q) (= c1

k(q)) if n = ñ.

We can apply [N2, Theorem 1.1] to conclude that the dimension of µ is equal to
τ′(1). By implicitly differentiating τ(q) and using the fact that τ(1) = 0 we have

Corollary 3.3. Assume the same hypotheses of Theorem 1.1. Then

dim(µ) = τ′(1) =

t−1∑
k=1

c′k(1)+
∞∑
k=0

c̃′k(1)

lnρ
( t−1∑
k=1

(knck(1)+ (ñ−n)c0
k(1))+

∞∑
k=0

(tn+ kñ)c̃k(1)
) .

.4 A SPECIAL FAMILY OF IFS

In this section we consider the family of IFS

Sj(x) = 1
m
x + m− 1

m
j, j = 0,1, . . . ,m,

where m ≥ 3 is an “odd” integer. Let {wj}mj=0 be a set of probability weights and
let µ be the corresponding self-similar measure. We allow some wj to be zero so
that we can consider the measure defined by a subfamily of {Sj}mj=0.

Define

Tix =
1
m
x + i, i = 0,1, . . . ,m− 1.(4.1)

Then by Proposition 2.1, µ satisfies a family of second-order identities with respect
to {Ti}m−1

i=0 . In fact for A ⊆ [0,m],

µ(TjTiA) =
m∑
`=0

w`µ
(

1
m
A+ i+mj − (m− 1)`

)
.(4.2)

For i = 0, 1, . . . , m − 1, let Mi be the matrix defined by (2.3) and let m(i)
j,k, j,

k = 0, 1, . . . ,m−1, denote the (j+1, k+1)-entry ofMi. Then, in view of (4.2),

m(i)
j,k =


w` if 0 ≤ ` ≤m and i+mj − (m− 1)` = k,

0 otherwise.
(4.3)
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For example, form = 3,

M0 =


w0 0 0

0 w1 0

w3 0 w2

 , M1 =


0 w0 0

w2 0 w1

0 w3 0

 , M2 =


w1 0 w0

0 w2 0

0 0 w3

 .(4.4)

Let I0 = {0,m− 1} and I1 = {1, . . . , m− 2}. Then

ϕ(h) =
m−2∑
i=1

∫m
0
µ(Bh(Tix))q dx.(4.5)

In order for (C1) to hold, we will assume thatw0,wm > 0 and that there exists j0

(1 ≤ j0 ≤m − 1) such that wj0 > 0. In fact, suppose either w0 or wm vanishes.
Then µ can be identified with the measure defined by {S0, . . . , Sm−1} (in the
case wm = 0). This family satisfies the OSC and the corresponding τ(q) can be
computed easily by using (1.5). Similarly, if wj = 0 for all 1 ≤ j ≤m − 1, then
the reduced family {S0, Sm} will also satisfy the OSC.

Proposition 4.1. Assume w0, wm > 0 and there exists j0 (1 ≤ j0 ≤ m − 1)
such that wj0 > 0. Then condition (C1) is satisfied. Consequently the conclusion of
Proposition 3.1 holds.

Proof. If 2 ≤ j0 ≤ m − 1, then Sj0S0[0,m] is contained in Tj0−1[0,m]. If
1 ≤ j0 ≤m− 2, then Sj0Sm[0,m] is contained in Tj0[0,m]. ❐

The verification of condition (C2) is contained in the following two Proposi-
tions. For simplicity, we shall use the notation i′ :=m−1− i throughout the rest
of this paper.

Proposition 4.2. Let A ⊆ [0,m]. Then

(a) for i = 1, . . . ,m− 2,

µ(TiTi′A) = wi+1µ(T0A)+wiµ(Tm−1A).

(b)

(i)


µ(T0T0A)

µ(T0Tm−1A)

µ(Tm−1T0A)

µ(Tm−1Tm−1A)

 =

w0 0

w1 w0

wm wm−1

0 wm


 µ(T0A)

µ(Tm−1A)

.
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(ii) For 1 ≤ k ≤m− 2,

µ(T0TkA) = w0µ(TkA) and µ(Tm−1TkA) = wmµ(TkA).

Proof. All identities follow by applying the definition of the Ti’s and identities
(1.4) and (4.2). We will prove (a) as an example:

µ(TiTi′A) = µ
(

1
m2A+

i′

m
+ i
)
=

m∑
`=0

w`µ
(

1
m
A+ (i+ 1− `)(m− 1)

)
.

Since (i+1− `)(m−1) is always an integral multiple ofm− 1, it belongs to the
set {0,1, . . . ,m− 1} if and only if ` = i+ 1 or ` = i. Hence the sum reduces to
wi+1µ(T0A)+wiµ(Tm−1A). ❐

Proposition 4.3. Let A ⊆ [0,m]. Then

(a) for i = 1, . . . ,m− 2,

µ(TiTjA) =


wiµ(Tj+iA) if 0 ≤ j < i′

wi+1µ(Tj−i′A) if i′ < j ≤m− 1.

(b)

(4.6)
m−2∑
i=1

m−1∑
j=0
j≠i′

µ(TiTjA)q =
(m−1∑
j=1

wqj
)m−2∑
i=1

µ(TiA)q.

Proof.

(a) By (4.2),

µ(TiTjA) =
m∑
`=0

w`µ
(

1
m
A+ j +mi− (m− 1)`

)
.

Let s = s(i, j, `) := j +mi− (m− 1)`. If 0 ≤ j < i′ (=m− 1− i), then
mi−(m−1)` ≤ s < (m−1)(1+i−`), and s belongs to {0, 1, . . . , m−1}
if and only if ` = i. Hence s = j + i and µ(TiTjA) = wiµ(Tj+iA). On
the other hand, if i′ < j ≤ m − 1, then (m − 1)(1 + i − `) < s ≤
mi + (m − 1)(1 − `); s belongs to {0, 1, . . . , m − 1} if and only if
` = i+ 1 and the result follows.
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(b) Applying part (a) to the left-hand side of (4.6), we see that it is equal to

m−2∑
i=1

(m−i−2∑
j=0

wqi µ(Tj+iA)
q +

m−1∑
j=m−i

wqi+1µ(Tj−i′A)
q
)

=
m−2∑
i=1

(m−2∑
j=i
wqi µ(TjA)

q +
i∑
j=1

wqi+1µ(TjA)
q
)

=
m−2∑
i=1

(m−2∑
j=1

w(i, j)qµ(TjA)q +wqi+1µ(TiA)
q
)
,

where

w(i, j) :=


wi+1 if j < i,

wi if j ≥ i.

After re-grouping, it equals

m−2∑
j=1

(m−2∑
i=1

w(i, j)q +wqj+1

)
µ(TjA)q =

m−2∑
j=1

(m−1∑
i=1

wqi
)
µ(TjA)q. ❐

Remark. IfA ⊆ [−1,m] then the conclusion of Proposition 4.3(a) still holds
except when (i, j) = (1,0) (in the case 0 ≤ j < i′) or when j+ i =m (in the case
i′ < j ≤m− 1). In these cases we have

µ(TiTjA) =


wi−1µ

(
1
m
A+m

)
+wiµ(Tj+iA) if (i, j) = (1,0),

wiµ
(

1
m
A+m

)
+wi+1µ(Tj−i′A) if j + i =m.

The analogous result for A ⊆ [0,m+ 1] can also be established.
Let t = 2, n = ñ = 1, I = {(i, i′) : i = 1, . . . ,m − 2}, and c1(q) = c0

1(q) =
c1

1(q) =
∑m−1
j=1 w

q
j . Proposition 4.3 shows that condition (C2) is satisfied.

In order to verify condition (C3), we will first introduce the following aux-
iliary matrices defined in terms of the Mi’s. For i = 0 or m − 1, let M̃i be the
matrix formed from Mi by keeping its first and last rows and assigning 0 to all
other entries. For 1 ≤ i ≤ m − 2, let M̃i denote the matrix formed from Mi by



Second-order Self-similar Identities 951

keeping its (m− i)-th row and assigning 0 to all other entries. For example, when
m = 3,

M̃0 =


w0 0 0

0 0 0

w3 0 w2

 , M̃1 =


0 0 0

w2 0 w1

0 0 0

 , M̃2 =


w1 0 w0

0 0 0

0 0 w3

 .

For J = (j1, . . . , jk), k ≥ 0, and ji = 0 orm− 1, we define

ci,J =
[
wi+1, 0, wi

]
M̃J

 w0

0
wm

 ( = eiMi′M̃J

 w0

0
wm

 ),(4.7)

for i = 1, . . . , m − 2, where 0 = (0, . . . ,0) denotes the zero vector in Rm−2, and
we recall that ei denotes the unit vector in Rm whose (i+ 1)-st coordinate is 1.

Proposition 4.4. For A ⊆ [0,m], the following higher-order relations hold:

(a) For i = 0 orm− 1,


µ(T0TiA)

0

µ(Tm−1TiA)

 = M̃i

µ(T0A)

0

µ(Tm−1A)

 .

(b) For i = 1, . . . ,m− 2,

µ(TiTi′A) = eiM̃i′


µ(T0A)

0

µ(Tm−1A)

 .

(c) For J = (j1, . . . , jk), k ≥ 0, and ji = 0 orm− 1,
(i) µ(TiTi′TJTjA) = ci,Jµ(TjA), for j = 1, . . . , m− 2;

(ii) µ(TiTi′TJA) ≤ C · ci,J , for the constant

C = max
{

1
1−w1

,
1

1−wm−1

}
.



952 KA-SING LAU & SZE-MAN NGAI

Proof.
(a) Proposition 4.2(b)(i) shows that, for i = 0 or m − 1, µ(T0TiA) and

µ(Tm−1TiA) can be expressed as linear combinations of µ(T0A) and µ(Tm−1A).
This together with the special form of M0 and Mm−1 implies that

µ(T0TiA)

0

µ(Tm−1TiA)

 = Mi

µ(T0A)

0

µ(Tm−1A)

 = M̃i

µ(T0A)

0

µ(Tm−1A)

 .

(b) For i = 1, . . . ,m− 2, Proposition 4.2(a) shows that µ(TiTi′A) is a linear
combination of µ(T0A) and µ(Tm−1A). Hence

µ(TiTi′A) = eiMi′


µ(T0A)

0

µ(Tm−1A)

 = eiM̃i′


µ(T0A)

0

µ(Tm−1A)

 ,
and the result follows.

(c)(i) Let J = (j1, . . . , jk), k ≥ 0, ji = 0 or m − 1. Then for j = 1, . . . ,
m− 2, by applying part (b) and repeatedly applying part (a), we have

µ(TiTi′TJTjA) = eiM̃i′M̃J


µ(T0TjA)

0

µ(Tm−1TjA)

 = eiM̃i′M̃J


w0

0

wm

µ(TjA)
= ci,Jµ(TjA).

(The second equality follows from Proposition 4.2(b)(ii).)

(c)(ii) By using the same argument as in the proof of (i), we get

µ(TiTi′TJA) = eiM̃i′M̃J


µ(T0A)

0

µ(Tm−1A)

 ≤ eiM̃i′M̃J


µ[0,1]

0

µ[m− 1,m]

 .(4.8)

Applying (1.4) yields µ[0,1] = w0µ[0,m]+w1µ[0,1], and hence

µ[0,1] = w0

1−w1
.(4.9)
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Similarly,

µ[m−1, m] = wm
1−wm−1

.(4.10)

The result follows by combining (4.8), (4.9) and (4.10). ❐

Proposition 4.4(c)(i) shows that (C3) holds with c̃k(q) =
∑m−2
i=1

∑
|J|=k c

q
i,J .

As a result, we can apply (1.11) to obtain the following functional equation:

Φ(α)(h) = mα
(m−1∑
i=1

wqi
)Φ(α)(mh)

+
N∑
k=0

m(k+2)α
m−2∑
i=1

( ∑
|J|=k

cqi,J
)Φ(α)(mk+2h)+ E(h),

where N is the largest integer satisfying h < 1/(2mN+3), and E(h) is some error
term (see Section 3 and the Appendix).

We will now use a change of basis to replace the m ×m matrices M̃0 and
M̃m−1 in the definition of ci,J by the following 2× 2 matrices:

P0 =
[
w0 0
wm wm−1

]
, Pm−1 =

[
w1 w0

0 wm

]
.

Proposition 4.5. Let k ≥ 0 and J = (j1, . . . , jk) where ji = 0 orm−1. Then
for i = 1, . . . , m− 2,

ci,J =
[
wi+1, wi

]
PJ

[
w0

wm

]
.(4.11)

Proof. Let S be the m ×m matrix obtained by interchanging the second
and the last rows of the m ×m identity matrix. Then S−1 = S. If we define
Q0 = S−1M̃0S and Qm−1 = S−1M̃m−1S, then and a direct calculation yields

Q0 =



w0 0 0 · · · 0

wm wm−1 0 · · · 0

0 0 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · 0


, Qm−1 =



w1 w0 0 · · · 0

0 wm 0 · · · 0

0 0 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · 0


.
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Hence

ci,J =
[
wi+1, 0, wi

]
(SQj1S

−1) · · · (SQjkS−1)

 w0

0
wm



=
[
wi+1, 0, wi

]
S
[
PJ 0
0 0

]
S−1

 w0

0
wm

 = [wi+1, wi
]
PJ

[
w0

wm

]
. ❐

Let

F(q,α) = mα
m−1∑
i=1

wqi +
∞∑
k=0

m(k+2)α
(m−2∑
i=1

∑
|J|=k

cqi,J
)
,

and
D = {

(q,α) | q > 0 and F(q,α) <∞}.
Then we have the following key lemma. Since it involves quite a lot of technical
estimations, we will postpone its proof to the Appendix.

Lemma 4.6. Fixing q > 0, if (q, α̃) ∈ ∂D, then F(q,α) tends to ∞ as α
increases to α̃. Moreover, for the unique α satisfying F(q,α) = 1, there exists ε > 0
such that E(h) = o(hε) as h→ 0+.

Theorem 1.2 now follows by combining Theorem 3.3, Lemma 4.6, and the
derivations in this section. Furthermore, applying Theorem 1.2 and Corollary 3.3
with t = 2, n = ñ = 1, c1(q) =

∑m−1
j=1 w

q
j and c̃k(q) =

∑m−2
i=1

∑
|J|=k c

q
i,J , we ob-

tain the following result concerning the dimension of µ. (We use the convention
x lnx := 0 in the case x = 0.)

Corollary 4.7. Under the same hypotheses of Theorem 1.2,

dim(µ) = τ′(1) =
−
m−1∑
i=1

wi lnwi −
∞∑
k=0

m−2∑
i=1

∑
|J|=k

ci,J lnci,J

lnm
(m−1∑
i=1

wi +
∞∑
k=0

(k+ 2)
m−2∑
i=1

∑
|J|=k

ci,J
) .
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.5 RESULTS FOR INTEGER q

For q equal to a positive integer, we can reduce the expression for F(q,α) in
Section 4 to a polynomial. This greatly simplifies the computations of τ(q) for
small positive integers q. Let

aij =


(
i
j

)
wq−i0 wjm−1w

i−j
m if 0 ≤ j ≤ i ≤ q,

0 if 0 ≤ i < j ≤ q,

bij =


(
q − i
j − i

)
wj−i0 wq−j1 wim if 0 ≤ i ≤ j ≤ q,

0 if 0 ≤ j < i ≤ q,

and define Aq = (aij)0≤i,j≤q + (bij)0≤i,j≤q. For example,

A1 =
 w0 0

wm wm−1

+
w1 w0

0 wm



A2 =


w2

0 0 0

w0wm w0wm−1 0

w2
m 2wm−1wm w2

m−1

+

w2

1 2w0w1 w2
0

0 w1wm w0wm

0 0 w2
m

 .

Theorem 5.1. For q ∈ N, the equation F(q,α) = 1 in Theorem 1.2 can be
reduced to

z
m−1∑
i=1

wqi + z2
m−2∑
i=1

[(
q
0

)
wqi+1

(
q
1

)
wq−1
i+1 wi · · ·

(
q
q

)
wqi

]
(5.1)

× (I − zAq)−1



wq0

wq−1
0 wm

...

wqm

 = 1,

with z = mα. Furthermore, τ(q) = lnz/ lnm, where z is the smallest real root of
equation (5.1).
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Proof. Rewrite F(q,α) as

F(q,α) =mα
m−1∑
i=1

wqi +
m−2∑
i=1

( ∞∑
k=0

m(k+2)α
∑
|J|=k

cqi,J
)
.(5.2)

Let e1 =
[

1, 0
]
, e2 =

[
0, 1

]
and for i = 1, . . . ,m− 2, let

si,k =
∑
|J|=k

cqi,J .

For q > 0 by applying Proposition 4.5 and the binomial theorem, we have

si,k =
∑
|J|=k

(
(wi+1e1 +wie2)PJ

[
w0

wm

])q

=
∑
|J|=k

q∑
j=0

(
q
j

)(
wi+1e1PJ

[
w0

wm

])q−j (
wie2PJ

[
w0

wm

])j

=
q∑
j=0

(
q
j

)
wq−ji+1 w

j
i γ
(k)
j ,

where

γ(k)j :=
∑
|J|=k

(
e1PJ

[
w0

wm

])q−j (
e2PJ

[
w0

wm

])j
, j = 0,1, . . . , q.

By using the identities

e1P0 = w0e1, e1Pm−1 = w1e1 +w0e2,
e2P0 = wme1 +wm−1e2, e2Pm−1 = wme2,

and the binomial theorem again, we get the following recursion formula for γ(k)j
(see also [LN2, Theorem 4.1]):

γ(k+1)
j =

j∑
`=0

aj`γ
(k)
` +

q∑
`=j
bj`γ

(k)
` , j = 0,1, . . . , q.
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In matrix form 

γ(k+1)
0

γ(k+1)
1

...

γ(k+1)
q


= Aq



γ(k)0

γ(k)1

...

γ(k)q


.

By repeatedly applying this recursion formula, we get

si,k =
[(
q
0

)
wqi+1

(
q
1

)
wq−1
i+1 wi · · ·

(
q
q

)
wqi

]
Akq



wq0

wq−1
0 wm

...

wqm

 .

The result follows by substituting this expression into (5.2). ❐

.6 CONVOLUTION OF THE CANTOR MEASURE

Let µ denote the 3-fold convolution of the usual Cantor measure, which is defined
by the similitudes

Sjx =
1
3
x + 2

3
j, j = 0,1,2,3,

with probability weights 1
8 , 3

8 , 3
8 , and 1

8 respectively. By Theorem 1.2, for q > 0,
τ(q) is defined by the equation

2 · 3α
(

3
8

)q
+

∞∑
k=0

3(k+2)α
( ∑
|J|=k

cqJ
)
= 1,(6.1)

where J = (j1, . . . , jk), ji = 0 or 2,

cJ = 3
64

[
1, 1

]
PJ

[
1
1

]
, P0 = 1

8

[
1 0
1 3

]
, and P2 = 1

8

[
3 1
0 1

]
.

Moreover, τ is differentiable on (0,∞). By Corollary 4.7, the dimension of µ is
equal to

τ′(1) = −

3
4 ln 3

8 +
∞∑
k=0

∑
|J|=k

cJ lncJ

ln 3
(

3
4 +

∞∑
k=0

(k+ 2)
∑
|J|=k

cJ
) .
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To simplify the sum in the denominator we define

g(α) :=
∞∑
k=0

3(k+2)α
( ∑
|J|=k

cJ
)
.

By a direct calculation,

g(α) = 32α+1

64

[
1, 1

] ∞∑
k=0

(3α(P0 + P1))k
[

1
1

]
= 8 · 32α+1 − 33α+2

4(64− 64 · 3α + 5 · 32α+1)
.

By calculating the derivative of g(α) at α = 0, we get
∑∞
k=0(k+2)

∑
|J|=k cJ = 11

12 .
Hence dim(µ) is simplified to

dim(µ) =
9 ln 3

8 + 12
∞∑
k=0

∑
|J|=k

cJ lncJ

−20 ln 3
.

The computation for k = 30 in the above formula yields dim(µ) ≈ 0.9884 . . . .
For q equal to a positive integer, we apply Theorem 5.1 to obtain the follow-

ing results for τ(q) and the Lq-dimension (where z = 3α). They coincide with
those obtained in [FLN] by using a different method.

q F(q,α) = 1 τ(q) Lq − dim

2 45z2 − 832z + 2048 = 0 0.976628125 0.976628125
3 387z2 − 18944z+ 131072 = 0 1.930649224 0.965324612
4 26973z3 − 16883712z2 + 1853882368z− 34359738368 = 0 2.865462001 0.955154000
5 818667z3 − 1185546240z2 + 347355480064z− 17592186044416 = 0 3.785773809 0.946443452

For the rest of this section, we calculate the lower L∞-dimension of µ. Let

P̃0 =
[

1 0
1 3

]
and P̃2 =

[
3 1
0 1

]
.

Proposition 6.1. Let k ≥ 1 and J = (j1, . . . , jk), ji = 0 or 2. Then:

(a) P̃ k0 =
 1 0

(3k − 1)/2 3k

 and P̃ k2 =
3k (3k − 1)/2

0 1

.

(b) J = (2, . . . ,2) and J = (0, . . . ,0) maximize, respectively, the first and the
second column sums over all P̃J .
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(c)
[

1, 1
]
P̃J

[
1
1

]
is maximum when J = (0, . . . ,0) or J = (2, . . . ,2). Conse-

quently,

(6.2) max{cJ : |J| = k} = 3k+2 + 3
2 · 8k+2 <

(
3
8

)k+2

.

(d)
∑∞
k=0

∑
|J|=k cJ = 1

4 .

Proof. Both (a) and (b) follow directly by induction on k. To prove the first
statement of (c) we again apply induction on k. The statement obviously holds
when k = 1. Assume that it holds for |J| = k. We want to maximize

[1, 1]P̃J P̃j

[
1
1

]
, j = 0,2(6.3)

for all possible J. In the case j = 0,

[1, 1]P̃J P̃0

[
1
1

]
= [1, 1]P̃J

[
1
1

]
+ 3[1, 1]P̃J

[
0
1

]
.

By induction hypothesis the first term is maximized when J = (0, . . . ,0) or J =
(2, . . . ,2). The second term is 3 times the second column sum of P̃J and by part
(b), it is maximized by J = (0, . . . ,0). Hence the quantity in (6.3) with j = 0 is
maximized by J = (0, . . . ,0). The case for j = 2 is similar. The second statement
of (c) follows from the first statement and part (a). (d) can be proved directly as
follows:

∞∑
k=0

∑
|J|=k

cJ =
3
64

∞∑
k=0

[1, 1](P0 + P2)k
[

1
1

]

= 3
64
[1, 1](I − (P0 + P2))−1

[
1
1

]

= 3
64
[1, 1]

(
8
15

[
4 1
1 4

])[
1
1

]
= 1

4
.

Alternatively it can be obtained by putting q = 1 and α = τ(1) = 0 into
(6.1). ❐
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Theorem 6.2. dim∞(µ) =
ln(8/3)

ln 3
(≈ 0.89278926 . . . ).

Proof. It suffices to show that

lim
q→∞

τ(q)
q

= ln(8/3)
ln 3

.

(See [LN1, Proposition 3.4].) We first observe that for all q > 0, (6.1) implies
that

2 · 3τ(q)
(

3
8

)q
< 1.

Taking logarithms on both sides and then letting q →∞, we have

lim
q→∞

τ(q)
q

≤ ln(8/3)
ln 3

.(6.4)

To prove the reverse inequality, we let ` = limq→∞[τ(q)]/q and suppose

` <
ln(8/3)

ln 3
.(6.5)

We claim that the first term in the series (6.1) with α = τ(q) would tend to 0 as
q →∞. In fact we notice that

3τ(q)
(

3
8

)q
=
(

3τ(q)/q · 3
8

)q
and by assumption (6.5),

lim
q→∞3τ(q)/q

(
3
8

)
= 3`

(
3
8

)
< 1.

Consequently, 2 · 3τ(q)( 3
8)
q → 0 as q → ∞.

The claim above implies that there exists qo > 0 such that, for all q ≥ qo,

1
2
≤

∞∑
k=0

3(k+2)τ(q)
( ∑
|J|=k

cqJ
)

≤
∞∑
k=0

3(k+2)τ(q)(max{cJ : |J| = k})q−1
( ∑
|J|=k

cJ
)

≤
∞∑
k=0

3(k+2)τ(q)
(

3
8

)(k+2)(q−1) ( ∑
|J|=k

cJ
)

(by 6.2)

≤
sup
k≥0

(
3τ(q)

(
3
8

)q−1
)k+2

 · 1
4
. (Prop. 6.1(d))
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This forces 3τ(q)( 3
8)
q−1 ≥ 1 for all q ≥ qo, which yields

lim
q→∞

τ(q)
q

≥ ln(8/3)
ln 3

.

This contradicts (6.5) and thus the reverse inequality is also established. ❐

.APPENDIX. PROOF OF LEMMA 4.6

Some techniques in this section have been used in [LN2]. For the sake of com-
pleteness, we include the proofs and indicate the main differences. We first show
that D is open and that for each q > 0, F(q,α) can take arbitrarily large values.

Proposition A.1. For each fixed q > 0, if (q, α̃) ∈ ∂D, then F(q,α) tends to
∞ as α increases to α̃. In particular, D is open.

Proof. For each i = 1, . . . ,m− 2, we define

Fi(q,α) =
∞∑
k=0

m(k+2)α
( ∑
|J|=k

cqi,J
)

and Di = {(q,α) | q > 0, Fi(q,α) <∞}.

Then

F(q,α) =mα
m−1∑
i=1

wqi +
m−2∑
i=1

Fi(q,α).

We first prove that, if wi, wi+1 > 0, then the analogous conclusions of the
proposition hold for the pair (Fi,Di). For such an i, let di = min{wi,wi+1} and
d0 = min{w0,wm}. Then

Fi(q,α) = dq0dqi
∞∑
k=0

m(k+2)α
∑
|J|=k

([
w̃i+1, w̃i

]
PJ

[
w̃0

w̃m

])q
,

where w̃i = wi/di and w̃i+1, w̃0, w̃m are similarly defined. Note that w̃i, w̃i+1,
w̃0, w̃m ≥ 1. For k ≥ 0, let

sk :=
∑
|J|=k

([
w̃i+1, w̃i

]
PJ

[
w̃0

w̃m

])q
.

It can be checked directly that s`+k ≤ s`sk for any integers `, k ≥ 0. We can now
apply the same proof as in [LN2, Proposition 2.5] to conclude that Di is open and
that Fi(q,α) tends to ∞ as α tends to ∂Di.
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Next, we claim that if wj , wj+1 > 0 and Di is as above, then Dj = Di. In
fact, ∂Dj is determined uniquely by the number

Rj := lim
k→∞

( ∑
|J|=k

cqj,J
)1/k

.

Let dj = min{wj,wj+1}. Then dj > 0 and the inequality

lim
k→∞

dqj ∑
|J|=k

([
w̃j+1, w̃j

]
PJ

[
w0

wm

])q1/k

≥ lim
k→∞

 ∑
|J|=k

([
wi+1, wi

]
PJ

[
w0

wm

])q1/k

yields Rj ≥ Ri. By symmetry we have Rj = Ri and hence ∂Dj = ∂Di.
Lastly we show that, even if one of wj orwj+1 is zero (but not both), we still

have Dj = Di. It suffices to show that

lim
k→∞

 ∑
|J|=k

([
1, 1

]
PJ

[
w0

wm

])q1/k

= lim
k→∞

 ∑
|J|=k

([
1, 0

]
PJ

[
w0

wm

])q1/k

= lim
k→∞

 ∑
|J|=k

([
0, 1

]
PJ

[
w0

wm

])q1/k

.

The second equality can be easily established. To see the first equality we notice
that

∑
|J|=k

([
1, 1

]
PJ

[
w0

wm

])q

≤ γq
∑
|J|=k

(([
1, 0

]
PJ

[
w̃0

w̃m

])q
+
([

0, 1
]
PJ

[
w̃0

w̃m

])q)
,

where γq = max{1,2q−1}. We now recall the fact that if {ak}, {bk} are two
sequences of nonnegative numbers, then

lim
k→∞

(ak + bk)1/k = max
{

lim
k→∞

(ak)1/k , lim
k→∞

(bk)1/k
}
.
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Thus by taking the k-th root on both sides and then letting k tend to ∞, we get

lim
k→∞

 ∑
|J|=k

([
1, 1

]
PJ

[
w0

wm

])q1/k

≤ lim
k→∞

 ∑
|J|=k

([
1, 0

]
PJ

[
w0

wm

])q1/k

.

The reverse inequality is obvious. Consequently, Fi(q,α) still tends to ∞ as α
tends to ∂Di. We conclude that if wi+1 6= 0 or wi 6= 0, then Di = D and the
proof is complete. ❐

Recall that for i = 1, . . . , m− 2, we let i′ =m− 1− i.

Proposition A.2. Let J = (j1, . . . , jk) where k ≥ 0, j` = 0, or m− 1, and let
1 ≤ i, j ≤m− 2. Then

(a) There exists a constant C > 0 such that, for B ⊆ [−1, 0] or B ⊆ [m, m+1],

ci,Jµ(TjB) ≤ µ(TiTi′TJTjB) ≤ C · ci,Jµ(TjB).

(C can be taken to be max{1+wm−1/w0 , 1+w1/wm}.)
(b) For B ⊆ [−1,0], the following hold:

(i) µ(TiTi′TJTm−1B) ≤ C · ci,J , where we can take C = max{1/(1 −w1) ,
1/(1−wm−1)};

(ii) if J = (J′,m−1,0, . . . ,0), |J′| = `, then µ(TiTi′TJT0B) ≤ wk−`+1
m−1 ci,J′ ;

(iii) if J = (0, . . . ,0), then µ(TiTi′TJT0B) ≤ w1wk+2
m−1.

For B ⊆ [m, m+1], similar statements hold by interchanging the roles of T0

and Tm−1.

Proof.
(a) For any B ⊆ [−1, m+1] and any j = 1, . . . ,m−2, we have TjB ⊆ [0,m].

Hence, as in the proof of Proposition 4.4(c)(ii),

µ(TiTi′TJTjB) =
[
wi+1, 0, wi

]
M̃J


µ(T0TjB)

0

µ(Tm−1TjB)

 .(A.1)

For B ⊆ [−1, 0], a direct calculation yields

µ(T0TjB) = w0µ(TjB),(A.2)

µ(Tm−1TjB) = wmµ(TjB)+wm−1µ(TjB +m− 1).
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The first inequality in the proposition follows immediately. For the second in-
equality we observe that

µ(TjB +m− 1) =


wmµ(B +m) if j = 1

0 if j > 1,

while µ(TjB) = w0µ(B +m)+w1µ(B + 1) if j = 1. Hence µ(TjB +m− 1) ≤
(wm/w0)µ(TjB) and consequently

µ(Tm−1TjB) ≤ wm
(

1+ wm−1

w0

)
µ(TjB).

Substituting this and the first equality in (A.2) into (A.1), we get the desired result
with C = 1 + wm−1/w0. The proof for B ⊆ [m,m + 1] is similar and yields
C = 1+w1/wm.

(b)(i) Since Tm−1B ⊆ [0,m], the inequality follows from Proposition 4.4(c)
(ii).

(b)(ii) Let J = (J′,m − 1,0, . . . ,0) with |J′| = `. Then Tm−1Tk−`0 B ⊆
[0,m] and hence

µ(TiTi′TJT0B) =
[
wi+1, 0, wi

]
M̃J′


µ(T0Tm−1Tk−`0 B)

0

µ(Tm−1Tm−1Tk−`0 B)

 .(A.3)

The desired inequality follows by putting the following identities into (A.3).

µ(T0Tm−1Tk−`0 B) = w0wk−`+1
m−1 µ(B +m− 1),

µ(Tm−1Tm−1Tk−`0 B) = wmwk−`+1
m−1 µ(B +m− 1).

(c) For J = (0, . . . ,0), by a similar calculation as above, we have

µ(TiTi′TJT0B) = wiwk+2
m−1µ(B +m− 1) ≤ wiwk+2

m−1. ❐

Define

a1 =


∣∣∣∣ lnw1

lnm

∣∣∣∣ if w1 ≥ wm∣∣∣∣ lnwm
lnm

∣∣∣∣ if w1 < wm
, am−1 =


∣∣∣∣ lnwm−1

lnm

∣∣∣∣ if wm−1 ≥ w0∣∣∣∣ lnw0

lnm

∣∣∣∣ if wm−1 < w0

,
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and for i = 0,m, or 2 ≤ i ≤m− 2, define

ai =
∣∣∣∣ lnwi

lnm

∣∣∣∣ , if wi > 0.

If wi = 0, we use the convention ai = ∞.

Proposition A.3. There exist constants C1, C2 > 0 so that, for all 0 < h < 1,
the following statements hold:

(a) For i = 0, m, or 2 ≤ i ≤m− 2,

C1hai ≤ µ(Bh(i)) ≤ C2hai ;

(b) For i = 1 orm− 1, let i0 =m if i = 1 and let i0 = 0 if i =m− 1. Then
(i) C1hai ≤ µ(Bh(i)) ≤ C2hai if wi ≠ wi0 , and

(ii) C1| lnh|hai ≤ µ(Bh(i)) ≤ C2| lnh|hai , if wi = wi0 .

Proof.
(a) Let k be the integer satisfying 1/mk+1 < h ≤ 1/mk. For the given values

of i, a direct calculation using (1.4) yields

µ(Bh(i)) = wki µ(Bmkh(i)) ≥ wk+2
i µ(Bmk+2h(i)).

Bmk+2h(i) contains the interval [0,m] and therefore wk+2
i ≤ µ(Bh(i)) ≤ wki =

m−kai . The result follows.

(b) We need only consider the case i = 1; the case i =m− 1 is similar. Let k
be the integer such that 1/mk+1 < h ≤ 1/mk. Then by using µ(Bm`+1h(m)) =
wk−`−1
m µ(Bmkh(m)) for 0 ≤ ` ≤ k− 1, we have

µ(Bh(1)) = wk1µ(Bmkh(1))+w0

k−1∑
`=0

w`1µ(Bm`+1h(m))

= wk1µ(Bmkh(1))+w0

(k−1∑
`=0

wk−`−1
m w`1

)
µ(Bmkh(m))

≥ wk+2
1 µ(Bmk+2h(1))+w0w2

m

(k−1∑
`=0

wk−`−1
m w`1

)
µ(Bmk+2h(m)).
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Since both Bmk+2h(1) and Bmk+2h(m) contain the interval [0,m], the last in-
equality gives the following lower bound estimations:

µ(Bh(1)) ≥



wk+2
1 +w0w2

mw
k−1
1

k−1∑
`=0

(
wm
w1

)`
if w1 > wm,

wk+2
1 +w0kwk+1

1 if w1 = wm,

wk+2
1 +w0wk+1

m

k−1∑
`=0

(
w1

wm

)`
if w1 < wm.

By using µ(Bh(1)) ≤ wk1 +w0
∑k−1
`=0wk−`−1

m w`1 , similar upper bound estimations
can be obtained. This proves part (b). ❐

Proposition A.4. Let q > 0. If wi > 0 and α ≥ qai for some i = 0, 1, . . . ,
m, then F(q,α) > 1.

Proof. For i = 2, . . . , m − 2, α ≥ qai if and only if mα ≥ w−qi . Hence
F(q,α) > wqi m

α ≥ 1. For i = 1 and w1 ≥ wm, the same result holds. Hence we
assume that w1 < wm. Note that if J = (m − 1, . . . ,m − 1) with |J| = k, then
c1,J ≥ w1wk+1

m . In fact, for such J,

c1,J =
[
w2, w1

][w1 w0

0 wm

]k [
w0

wm

]

=
[
w2, w1

]w
k
1 w0

k−1∑
i=0

wk−1−i
1 wim

0 wkm


[
w0

wm

]

≥ w1wk+1
m .

Now let q > 0 and α ≥ qa1. Thenmαwqm ≥ 1 and

F(q,α) ≥
∞∑
k=0

m(k+2)α
( ∑
|J|=k

cq1,J
)
≥

∞∑
k=0

m(k+2)αwq1w
(k+1)q
m = ∞.

The case for i =m − 1 is similar. The cases for i = 0 or 2 can also be proved by
modifying the above argument slightly. ❐
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Now we can prove the required error estimations for e1(h) and e2(h). We
first rewrite e2(h) as

e2(h) = 1
m

m−2∑
i=1

m−1∑
j=0
j≠i′

(∫m2h

0
+
∫m
m−m2h

)
µ(Bh(TiTjx))q dx

+
N∑
k=0

∑
|J|=k

m−2∑
i,j=1

1
mk+2

(∫mk+3h

0
+
∫m
m−mk+3h

)
µ(Bh(TiTi′TJTjx))q dx

− 1
m

m−2∑
i=1

(m−1∑
j=1

wqj
)(∫m2h

0
+
∫m
m−m2h

)
µ(Bmh(Tix))q dx

−
N∑
k=0

∑
|J|=k

m−2∑
i,j=1

cqi,J
mk+2

(∫mk+3h

0
+
∫m
m−mk+3h

)
µ(Bmk+2h(Tjx))q dx

= (I)+ (II)− (III)− (IV).

Lemma A.5. Suppose q > 0 and (q,α) ∈ D such that α < qaj for all j = 0,
1, . . . , m. For 0 < h < 1 let N be the largest integer satisfying h < 1/(2mN+3).
Then there exists ε > 0 such that e2(h) = o(h1+α+ε) as h→ 0+.

Proof. Choose ε > 0 so that α + ε < qaj for all j = 0, 1, . . . , m and that
(q,α + ε) ∈ D. Let us first estimate (II). By symmetry, we need only estimate a
generic term

N∑
k=0

∑
|J|=k

1
mk+2

∫mk+3h

0
µ(Bh(TiTi′TJTjx))q dx.(A.4)

For 0 ≤ x ≤ mk+3h, Bmk+3h(x) ⊆ [−1, 1] and Tj(Bmk+3h(x)) ⊆ B2mk+2h(j).
Hence by Propositions A.2(a) and A.3, there exists a constant C > 0 such that

µ(Bh(TiTi′TJTjx)) ≤ C · ci,Jµ(TjBmk+3h(x))(A.5)

à C · ci,J| ln(2mk+2h)|(mk+2h)aj .

By using (A.5), we see that (A.4) is dominated by
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C
N∑
k=0

∑
|J|=k

hcqi,J | ln(2mk+2h)|q(mk+2h)qaj

≤ C| lnh|qh1+qaj
N∑
k=0

(mqaj−(α+ε))km(k+2)(α+ε)
( ∑
|J|=k

cqi,J
)

≤ C| lnh|qh1+qaj (mqaj−(α+ε))N
∞∑
k=0

m(k+2)(α+ε)
( ∑
|J|=k

cqi,J
)
= o(h1+α+ε/2).

Hence we have the desired estimation for (A.4) and thus for (II). For (I), by using
the remark following Proposition 4.3, we have, for i = 1, . . . , m − 2, j = 0, 1,
. . . ,m− 1, j 6= i′, and 0 ≤ x ≤m2h,

µ(Bh(TiTjx))q ≤ C


wqi−1µ(B2mh(m))q +wqi µ(B2mh(i+ j))q if j < i′

wqi µ(B2mh(m))q +wqi+1µ(B2mh(j − i′))q if j > i′,

where C is some constant depending only on q. Note that 1 ≤ i+ j ≤m− 2 and
1 ≤ j − i′ ≤ i ≤ m − 2. Hence Proposition A.3 implies that µ(Bh(TiTjx))q is
of order o(hα+ε/2) as h → 0. Therefore the integral

∫m2h
0 µ(Bh(TiTjx))q dx is

of order o(h1+α+ε/2). This yields the desired estimation for (I). Lastly, in view of
Proposition 4.3(b) (together with the remark that follows it) and the first inequal-
ity in Proposition A.2(a), we see that (III) and (IV) are dominated by (I) and (II)
respectively and this completes the proof. ❐

Recall that

e1(h) = 1
mN+2

m−2∑
i=1

∑
|J|=N+1

∫m
0
µ(Bh(TiTi′TJx))q dx.(A.6)

Lemma A.6. Under the same hypotheses of Lemma A.5, there exists ε > 0 such
that e1(h) = o(h1+α+ε) as h→ 0+.

Proof. Again we need only estimate

1
mN+2

∑
|J|=N+1

∫m
0
µ(Bh(TiTi′TJx))q dx(A.7)

= 1
mN+2

∑
|J|=N

∫m
0
(µ(Bh(TiTi′TJT0x))q + µ(Bh(TiTi′TJTm−1x))q)dx.
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By symmetry we need only estimate the first sum in (A.7). For 0 ≤ x ≤ m and
|J| = N, we have

µ(Bh(TiTi′TJT0x))q ≤ C
(
µ(TiTi′TJT0[−1, 0])q + µ(TiTi′TJT0[0,m])q(A.8)

+ µ(TiTi′TJT0[m,m+ 1])q
)
,

where C can be taken to be γ2
q with γq = max{1,2q−1}. Let J = (J′,m−1,

0, . . . ,0), |J| = N, and |J′| = k. Then by applying Propositions A.2(b)(ii) and
4.4(c)(ii) to (A.8), we have

µ(Bh(TiTi′TJT0x))q ≤ C((wN−k+1
m−1 ci,J′)q + cqi,J).(A.9)

Similarly, if J = J0 := (0, . . . ,0), then by using Proposition A.2(b)(iii) instead, we
have

µ(Bh(TiTi′TJT0x))q ≤ C(wq(N+2)
m−1 + cqi,J0

).(A.10)

Applying (A.9) and (A.10), we see that the first sum in (A.7) is dominated by

C1

mN+2

(N−1∑
k=0

∑
|J′|=k

(wN−k+1
m−1 ci,J′)q +

∑
|J|=N
J 6=J0

cqi,J
)
+ C2

mN+2 (w
q(N+2)
m−1 + cqi,J0

)

≤ C3

mN+2

N∑
k=0

∑
|J|=k

(wN−km−1ci,J)
q + C2

mN+2w
q(N+2)
m−1 ,

where C1, C2, C3 are constants. Choose ε > 0 sufficiently small so that (q,α+ε) ∈
D and α+ ε < qaj for all j. Then the sum in the expression above is dominated
by

C
mN+2

N∑
k=0

m−(k+2)(α+ε)wq(N−k)m−1 m(k+2)(α+ε)
( ∑
|J|=k

cqi,J
)

≤ C
m−Nqam−1

mN+2

N∑
k=0

(mqam−1−(α+ε))km(k+2)(α+ε)
( ∑
|J|=k

cqi,J
)

(since wm−1 ≤m−am−1 )

≤ C
m−Nqam−1

mN+2 (mqam−1−(α+ε))N

= o(h1+α+ε).
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Lastly, it can be checked directly that the term wq(N+2)
m−1 /mN+2 is also of order

o(h1+α+ε), and the proof is complete. ❐

Combining Proposition A.4 and Lemmas A.5 and A.6, we have

Lemma A.7. Suppose q > 0. Then the equality F(q,α) = 1 is attained in the
region {(q,α) ∈ D | α < qaj for all j = 0,1, . . . ,m}. Moreover, if (q,α) is in this
region, then there exists ε > 0 such that E(h) = o(hε) as h→ 0+.

Lemma 4.6 follows by combining this lemma and Proposition A.1.
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des mesures, Ann. Inst. H. Poincaré Probab. Statist. 34 (1998), 309-338.

[Hu] T.-Y. HU, The local dimension of the Bernoulli convolution associated with the golden
number, Trans. Amer. Math. Soc. 349, (1997), 2917-2940.

[HL] T.-Y. HU & K.-S. LAU, Multifractal structure of convolution of the Cantor measure,
Adv. in Appl. Math., to appear.

[Hut] J. E. HUTCHINSON, Fractals and self similarity, Indiana Univ. Math. J. 30 (1981),
713-747.

[L] S. P. LALLEY, Random series in powers of algebraic integers: Hausdorff dimension of
the limit distribution, J. London Math. Soc. 57 (1998), 629-654.

[La1] K.-S. LAU, Fractal measures and mean p-variations, J. Funct. Anal. 108 (1992),
427-457.

[La2] , Dimension of a family of singular Bernoulli convolutions, J. Funct. Anal. 116
(1993), 335-358.

[LWC] K.-S. LAU, J. WANG & C.-H. CHU, Vector-valued Choquet-Deny theorem, re-
newal equation and self-similar measures, Studia Math. 117 (1995), 1-28.

[LN1] K.-S. LAU & S.-M. NGAI, Multifractal measures and a weak separation condition,
Adv. Math. 141, (1999), 45-96.

[LN2] , Lq-spectrum of the Bernoulli convolution associated with the golden ratio,
Studia Math. 131 (1998), 225-251.

[LN3] , Lq-spectrum of Bernoulli convolutions associated with P.V. numbers, Osaka J.
Math. 36 (1999), 993-1010.

[LP] F. LEDRAPPIER & A. PORZIO, A dimension formula for Bernoulli convolutions, J.
Statist. Phys. 76 (1994), 1307-1327.

[N1] S.-M. NGAI, Multifractal decomposition for a family of overlapping self-similar mea-
sures, In: Fractal Frontiers, (M. M. Novak & T. G. Dewey eds.), World Sci. Pub-
lishing, River Edge, NJ, 1997, pp. 151-161.

[N2] , A dimension result arising from the Lq-spectrum of a measure, Proc. Amer.
Math. Soc. 125 (1997), 2943-2951.

[O1] L. OLSEN, A multifractal formalism, Adv. Math. 116 (1995), 82-196.
[O2] , Dimension inequalities of multifractal Hausdorff measures and multifractal

packing measures, Math. Scand. 86 (2000), 109–129.
[P] A. PORZIO, On the regularity of the multifractal spectrum of Bernoulli convolutions,

J. Statist. Phys. 91 (1998), 17-29.
[R] R. RIEDI, An improved multifractal formalism and self-similar measures, J. Math.

Anal. Appl. 189 (1995), 462-490.
[Ro] H. L. ROYDEN, Real Analysis (Third edition), Macmillan Publishing Company,

New York, 1988.
[S] A. SCHIEF, Separation properties for self-similar sets, Proc. Amer. Math. Soc. 122

(1994), 111-115.



972 KA-SING LAU & SZE-MAN NGAI

[St] R. S. STRICHARTZ, Self-similar measures and their Fourier transforms III , Indiana
Univ. Math. J. 42 (1993), 367-411.

[STZ] R. S. STRICHARTZ, A. TAYLOR & T. ZHANG, Densities of self-similar measures
on the line, Experiment. Math. 4 (1995), 101-128.

KA-SING LAU SZE-MAN NGAI

Department of Mathematics School of Mathematics
The Chinese University of Hong Kong Georgia Institute of Technology
Shatin, NT, HONG KONG Atlanta, Georgia 30332, U. S. A.
kslau@math.cuhk.edu.hk CURRENT ADDRESS:

Dept. of Mathematics and Computer Science
Georgia Southern University
Statesboro, Georgia 30460, U. S. A.

SUBJECT CLASSIFICATION: primary 28A80; secondary 28A78.
KEYWORDS: self-similar measure, second-order identity, multifractal formalism, Lq-spectrum, di-
mension spectrum.

Submitted: April 5th, 1999, revised: March 9th, 2000.


	1. Introduction
	2. Second-order identities
	3. Derivation of the functional equation
	4. A special family of IFS
	5. Results for integer q
	6. Convolution of the Cantor measure
	Appendix. Proof of Lemma 4.6
	References

