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ON THE BOUNDARY OF ATTRACTORS
WITH NON-VOID INTERIOR

KA-SING LAU AND YOU XU

(Communicated by David R. Larson)

Abstract. Let {fi}Ni=1 be a family of N contractive mappings on Rd such
that the attractor K has nonvoid interior. We show that if the fi’s are injective,
have non-vanishing Jacobian on K, and fi (K) ∩ fj (K) have zero Lebesgue
measure for i 6= j, then the boundary ∂K of K has measure zero. In addi-
tion if the fi’s are affine maps, then the conclusion can be strengthened to
dimH (∂K) < d. These improve a result of Lagarias and Wang on self-affine
tiles.

1. Introduction

A function f : Rd → Rd is called a contraction if ‖f (x) − f (y)‖ ≤ r ‖x− y‖ for
all x,y ∈Rd, where r < 1 is a constant. If equality holds, then f is called a similarity
and r is called the contractive ratio of f . Let {fi}Ni=1 be a family of contractions
on Rd and let K be the corresponding attractor. The Hausdorff dimension and
the α-dimensional Hausdorff measure of K are denoted by dimH (K) and Hα (K)
respectively. We say that {fi}Ni=1 satisfies the open set condition (OSC) if there

exists an open set O such that
N⋃
i=1

fi (O) ⊂ O and fi (O)∩ fj (O) = ∅ for i 6= j. It is

well-known that if the contractions fi are all similarities, then OSC implies that the
Hausdorff dimension of K equals the similarity dimension α which is the unique

number determined by
N∑
i=1

rαi = 1. The work of Bandt and Graf [2] and Schief [12]

showed that OSC is equivalent to Hα (K) > 0. If α = d, the condition is further
equivalent to the interior K◦ 6= ∅.

Let Md (R) denote the class of real d× d matrices and let µ denote the Lebesgue
measure on Rd. A matrix B is called expanding if all of its eigenvalues satisfy
|λi| > 1. Let {a1,a2, · · · ,aN} ⊂ Rd and let fi (x) = B−1x + ai, x ∈Rd, be
the affine transformations. Then under an appropriate metric on Rd, the fi’s are
all contractions [10]. It follows that the attractor K exists [8]. If in addition
|detB| = N , then µ (K) > 0 is equivalent to K◦ 6= ∅. In this case K is called a
self-affine tile. Lagarias and Wang [10] proved that the boundary ∂K of such K
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has Lebesgue measure zero. In this note we will consider a few extensions of this
result. We show that for a very general class of self-affine attractors in Rd, the
Hausdorff dimension of the boundary is strictly less than d.

For a function f : Rd → Rd and a compact set E ⊂ Rd, we say that f ∈ C1 (E) if
f has continuous first order partial derivatives on a neighborhood of E. The Jacobi
determinant of f at x is denoted by Jf (x).

Theorem 1.1. Let {fi}Ni=1 be a family of contractions on Rd and K the corre-
sponding attractor with non-void interior. Suppose fi ∈ C1 (K), 1 ≤ i ≤ N , are
injective on K with Jfi (x) 6= 0, and µ (fi (K) ∩ fj (K)) = 0 when i 6= j. Then
µ (∂K) = 0.

It is easy to verify that the condition µ (fi (K) ∩ fj (K)) = 0 is equivalent to

N∑
i=1

µ (fi (K)) = µ (K) , or
∫
K

N∑
i=1

|Jfi (x)| dx =µ (K) .

One sufficient condition for the above equalities to hold is
N∑
i=1

|Jfi (x)| = 1 on

all points of K. In particular when fi (x) = Aix + ai, Ai ∈ Md (R), are affine

contractions, then the condition reduces to
N∑
i=1

|detAi| = 1. In this case, we prove

the following stronger result.

Theorem 1.2. Let fi (x) = Aix+ai, 1 ≤ i ≤ N , be a family of affine contractions

on Rd and let K be the corresponding attractor. If K◦ 6= ∅ and
N∑
i=1

|detAi| = 1,

then dimH (∂K) < d.

Note that in the theorem we allow some Ai’s to be singular. Using this theorem,
we prove the following corollaries.

Corollary 1.3. Let {fi}Ni=1 be a family of contractive similarities on Rd and K

the corresponding attractor. If K◦ 6= ∅ and the similarity dimension of {fi}Ni=1 is
d, then dimH (∂K) < d.

Corollary 1.4. Let {a1,a2, · · · ,aN} ⊂ Rd and let B ∈ Md (R) be expanding with
|detB| = N . If the attractor K of

{
fi : fi (x) = B−1x + ai

}N
i=1

has non-void inte-
rior, then dimH (∂K) < d.

The second corollary improves Lagarias and Wang’s result on the boundary of
self-affine tiles. As mentioned before, the condition in the above two corollaries that
K has non-void interior is equivalent to the condition that K has positive Lebesgue
measure. We point out that it was proved recently [9] that the Hausdorff dimension
of the boundary of a self-affine tile in Rd can be arbitrarily close to d.

Note that in [1] Bandt also considered the rotations and reflections of a tile.
We call a finite group W of matrices with determinant ±1 a symmetry group of an
expanding matrix B if BW = WB. Let wi ∈W, ai ∈ Rd and fi (x) = wiB

−1x + ai,
i = 1, · · · , N . Then {fi}Ni=1 can generate more exotic tiles such as Levy’s curve,
Heighway dragon, etc. [1]. Theorem 1.2 also applies to these tiles.
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Corollary 1.5. Let B ∈ Md (R) be expanding with |detB| = N and W be a sym-
metry group of B. Let fi (x) = wiB

−1x + ai, wi ∈ W, ai ∈ Rd, i = 1, · · · , N . If
the attractor K of {fi}Ni=1 has non-void interior, then dimH (∂K) < d.

We remark that if K is the attractor generated by affine transformations con-
sisting of one single matrix, then there are simple criteria to determine that K
has non-void interior [10]. However very little is known if there is more than one
matrix (see [1] for the case in Corollary 1.5). The estimation of the dimension of
the boundary is far from being understood. It seems that only for a few particular
classes of self-similar tiles ([7], [4] and [13]) has the exact dimension been calculated.

For an attractor K of similarities {fi}Ni=1 in Rd with similarity dimension α, it
is well-known that if {fi}Ni=1 satisfies OSC, then Hα (fi (K) ∩ fj (K)) = 0 for i 6= j
[5, Corollary 8.7]. Our theorem sharpens this result.

Theorem 1.6. Let {fi}Ni=1 be a family of contractive similarities on Rd with sim-
ilarity dimension α, 0 < α ≤ d, and let K be the corresponding self-similar set. If
{fi}Ni=1 satisfies the OSC, then dimH (fi (K) ∩ fj (K)) < α for i 6= j.

2. Definitions and preliminaries

Let N be the set of natural numbers. For S = {1, 2, · · · , N}, let Sn = S× · · · × S︸ ︷︷ ︸
n

and S∗ =
⋃
n∈N
Sn. The length of s = (s1 · · · sn) ∈ Sn is denoted by |s| (= n). If

i = (i1i2 · · · in1), j = (j1j2···jn2), then we define

ij = (i1i2 · · · in1j1j2···jn2).

For a subset E ⊂ Rd, its diameter is defined as |E| = sup {| x− y |: x,y ∈ E}.
For fi : Rd → Rd, i ∈ S, we define Es = fs (E) = fs1 ◦ fs2 ◦ · · · ◦ fsn (E). It is easy
to see that if all fi’s are contractive, then fs is also contractive and its contractive
ratio is rs = rs1rs2 · · · rsn .

We use Ba (x) to denote the closed ball with center x and radius a. Let ‖·‖
denote the Euclidean norm on Rd and the norm of a matrix A ∈ Md (R) is

‖A‖ = max
{
‖Ax‖
‖x‖ : x ∈Rd, ‖x‖ 6= 0

}
.

The spectral radius of A is λmax = max
1≤i≤d

|λi| , where λi are the eigenvalues of A.

If Q is the closed unit ball in Rd and f (x) = Ax + a is an affine mapping with A
non-singular, then A (Q) is an ellipsoid. The lengths of the principle semi-axes of
A (Q) are singular values σ1 ≥ σ2 ≥ · · · ≥ σd > 0 of A. These singular values are
also the positive roots of the eigenvalues of ATA, where AT is the transpose of A.
The norm and the singular values of A have the following relationships:

σ1 = max
{
‖Ax‖
‖x‖ : ‖x‖ = 1

}
= ‖A‖ ,

σd = min
{
‖Ax‖
‖x‖ : ‖x‖ 6= 0

}
= min

{
‖y‖
‖A−1y‖ : ‖y‖ 6= 0

}
= 1/

∥∥A−1
∥∥ .

Also we have

|detA| =
√

det (ATA) = σ1σ2 · · ·σd.
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Using the spectral radius formula λmax = lim
n→∞

‖An‖1/n [11, Theorem 10.13], it is
easy to see the following:

Lemma 2.1. Let A ∈Md (R) with spectral radius λmax and ρ > λmax. Then there
exists a constant c > 0 depending on A such that for any n ∈ N, ‖An‖ ≤ c · ρn.

3. Proofs of the results

Proof of Theorem 1.1. We know that for any n ∈ N,

K =
N⋃
i=1

fi (K) =
⋃

s∈Sn
fs (K) =

⋃
s∈Sn

Ks.

Since fi are contractive, max
s∈Sn
|Ks| → 0 when n → ∞. We can find ε > 0, x0 ∈ K

and k ∈Sm for some large m such that

Kk ⊂ Bε (x0) ⊂ K◦ 6= ∅.

Since Jfi (x) 6= 0 and fi are injective for all i = 1, · · · , N, it is easy to see
that for any s ∈Sn, fs is a homeomorphism between K and fs (K) . It follows that
fs ∈ C1 (K), f−1

s ∈ C1 (Ks), K◦s = fs (K◦) and ∂Ks = fs (∂K). We claim that
if i, j ∈Sm and i 6= j, then µ (Ki ∩Kj) = 0. Indeed, suppose i = (i1 · · · im) and
j = (j1 · · · jm). Let l be the smallest integer such that il 6= jl. Then

µ (Ki ∩Kj) = µ
(
fi1···il−1 (Kil···im) ∩ fi1···il−1 (Kjl···jm)

)
= µ

(
fi1···il−1 (Kil···im ∩Kjl···jm)

)
≤ µ

(
fi1···il−1 (Kil ∩Kjl)

)
=

∫
Kil∩Kjl

∣∣∣Jfi1···il−1
(x)
∣∣∣ dx = 0,

where the second equality holds because fi1···il−1 is injective, and the last equality
holds because µ (Kil ∩Kjl) = 0. This proves the claim.

Now since ∂Kk ⊂ Kk ⊂ K◦, for x ∈∂Kk, we can find a sequence {yi}∞i=1 such
that yi → x and yi ∈ K◦\Kk. It follows that yi ∈ Kti\Kk for some ti ∈ Sm.
Since there are only finitely many elements in Sm, we can assume, by passing
to subsequence, that yi ∈ Kt for a fixed t ∈Sm. Since x is the limit point of the
sequence andKt is compact, we have x ∈Kt. This is true for any x ∈∂Kk. Therefore

∂Kk ⊂ Kk ∩
( ⋃

t∈Sm,t6=k

Kt

)
and hence

µ (∂Kk) ≤ µ

Kk ∩

 ⋃
t∈Sm,t6=k

Kt

 ≤ ∑
t∈Sm,t6=k

µ (Kk ∩Kt) = 0

by the claim. Note that ∂K = f−1
k (∂Kk); we have

µ (∂K) =
∫
∂Kk

∣∣∣Jf−1
k

(x)
∣∣∣ dx = 0.
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Proof of Theorem 1.2. For any n ∈ N, we have

K =
N⋃
i=1

fi (K) =
⋃

s∈Sn
fs (K) =

⋃
s∈Sn

Ks,

where

fs (x) = As1 · · ·Asnx + As1 · · ·Asn−1asn + · · ·+As1as2 + as1 .

We use As to denote As1 · · ·Asn . Since fi’s are all contractions, ‖Ai‖ < 1 for i =
1, 2, · · · , N. Let ρ = max

1≤i≤N
{‖Ai‖}, κ = |K|. Then ρ < 1 and |Ks| ≤ ‖As‖κ ≤ ρnκ.

Since K◦ 6= ∅, there is an open ball Bε (x0) ⊂ K◦. Pick an integer m big enough so
that ρmκ < ε

2 . We have Bε/2 (x0) ⊂
⋃

s∈Sm
Ks. If As is singular, then Ks has volume

zero. So there exists a k ∈Sm such that Ak is non-singular and Kk∩Bε/2 (x0) 6= ∅.
It follows that Kk ⊂ Bε (x0) ⊂ K◦.

Now without loss of generality, we suppose A1, · · · , AM , 0 ≤M < N , are singular
matrices and AM+1, · · · , AN are non-singular. Set

S̃∗ = {s : s ∈S∗, si /∈ {1, 2, · · · ,M} , i = 1, · · · , |s|} .

Then for any s ∈S̃∗, As is non-singular, and for any s ∈S∗\S̃∗, As is singular. Let
j ∈S̃∗. Then

Kjk = fjk (K) = fj (Kk) ⊂ fj (K◦) = (fj (K))◦ ⊂ K◦.

Let E = Kk ∪
( ⋃

j∈S̃∗
Kjk

)
and F = K\E. Then E ⊂ K◦ and

∂K = K\K◦ ⊂ K\E = F.

For l ∈ N and s ∈Sml, we write s = (s1, · · · , sl) ∈ Sm × · · · × Sm = Sml. Let

J =
{

s : s ∈
(
Sml ∩ S̃∗

)
, sj = k for some j

}
and L = Sml\J.

Then K =
( ⋃

s∈J
Ks

)
∪
( ⋃

s∈L
Ks

)
and

F = K\E ⊂ K\
(⋃

s∈J
Ks

)
⊂
⋃
s∈L

Ks.

If we let U be a ball of radius a > 0 and contain K, then

∂K ⊂ F ⊂
⋃
s∈L

Ks ⊂
⋃
s∈L

Us.

From
N∑
i=1

|detAi| = 1, it is easy to show that
∑
s∈L
|detAs| = (1− |detAk|)l. We

will use the identity later.
For each non-singular As, we use an idea from Falconer [6, p132] to get an esti-

mate. We know that Us is an ellipsoid with principal semi-axes aσ1 (s) ≥ aσ2 (s) ≥
· · · ≥ aσd (s) > 0, where σi (s) (1 ≤ i ≤ d) are the singular values of As. The ellip-
soid is contained in a rectangular parallelepiped P of side lengths 2aσ1 (s), 2aσ2 (s),
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· · · , 2aσd (s). We may cover P by at most γ cubes of side 2aσd (s), where

γ =
d−1∏
i=1

4aσi (s)
2aσd (s)

= 2d−1

(
d∏
i=1

σi (s)

)
(σd (s))−d = 2d−1 |detAs| (σd (s))−d .

The diameter of each cube is 2aσd (s)
√
d. Note that σd (s) ≤ σ1 (s) = ‖As‖ ≤ ρml.

Let δ = 2aρml
√
d. Then

Hβδ (Us) ≤ γ
(

2aσd (s)
√
d
)β

= cβ |detAs| (σd (s))β−d ,

where cβ = 2d−1
(

2a
√
d
)β

is a constant depending on β.
For each singular matrix As, Us is contained in a hyperplane. So if β > d − 1,

then Hβ (Us) = 0 and hence Hβδ (Us) = 0 for any δ > 0. Let L̃ = L ∩ S̃∗. Then for
every s ∈L\L̃, As is singular, and hence for β > d− 1,

Hβδ (F ) ≤ Hβδ

(⋃
s∈L

Us

)
= Hβδ

⋃
s∈L̃

Us

 ≤∑
s∈L̃

cβ |detAs| (σd (s))β−d .

Since σd (s) is the smallest singular value of As,

σd (s) =
1∥∥∥(As)
−1
∥∥∥ ≥ 1∥∥A−1

sml

∥∥ · · ·∥∥A−1
s1

∥∥ = τn1
M+1 · · · τ

nN−M
N ,

where n1 + n2 + · · · + nN−M = ml and τi = 1/
∥∥A−1

i

∥∥ is the smallest singular
value of Ai, M + 1 ≤ i ≤ N. It is clear that 0 < τi ≤ ‖Ai‖ < 1. Let τ =
min {τi : i = M + 1, · · · , N}; then σd (s) ≥ τml. So for d− 1 < β < d,

Hβδ (F ) ≤
∑
s∈L̃

cβ |detAs| τml(β−d) = cβτ
ml(β−d)

∑
s∈L̃

|detAs|

= cβτ
ml(β−d)

∑
s∈L
|detAs| = cβ

(
τm(β−d) (1− |detAk|)

)l
.

Let τm(β−d) (1− |detAk|) = 1, i.e.,

β = d− ln (1− |detAk|)
m ln τ

< d.

Then Hβδ (F ) < cβ. Let l → ∞; then δ → 0 and Hβ (F ) ≤ cβ . It follows that
dimH (F ) ≤ β < d. Since ∂K ⊂ F , we conclude that dimH (∂K) < d.

Proof of Corollary 1.3. Let fi (x) = Aix + ai be the similarities and let ri be
the contractive ratios. Then |detAi| = rdi . It follows from the assumption that
N∑
i=1

|detAi| =
N∑
i=1

rdi = 1 and Theorem 1.2 applies.

Proof of Corollary 1.4. Let A = B−1. Then fi (x) = Ax + ai, i = 1, · · · , N . For
any n ∈ N, K =

⋃
s∈Sn

fs (K) and

fs (x) = Anx +An−1asn + · · ·+Aas2 + as1 .

Suppose the eigenvalues of B are λi, 1 ≤ i ≤ d, with |λ1| ≥ · · · ≥ |λd| > r > 1.
Then the eigenvalues of An are λ−ni , 1 ≤ i ≤ d. Using Lemma 2.1 we can find n
large enough so that ‖An‖ ≤ c · r−n < 1 for some constant c > 0 independent of
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n. It follows that for each s ∈Sn, fs is an affine contraction with corresponding
matrix A|s| = An. Note that

∑
s∈Sn

∣∣detA|s|
∣∣ = Nn · N−n = 1 and hence Theorem

1.2 implies the corollary immediately

Proof of Corollary 1.5. Let A = B−1. Then fi (x) = wiAx + ai, x ∈Rd, i =
1, · · · , N . For any n ∈ N, we have K =

⋃
s∈Sn

fs (K), where

fs (x) = ws1A · ws2A · · ·wsnAx + ws1A · · ·wsn−1Aasn · · ·+ ws1Aas2 + as1 .

By BW = WB, it is easy to see that for any wi ∈ W, Awi = wjA for some
wj ∈ W. Hence ws1A · ws2A · · ·wsnA = wAn for some w ∈ W. It follows that

‖ws1A · ws2A · · ·wsnA‖ ≤
(

max
w∈W

‖w‖
)
‖An‖. Now the rest is the same as in the

proof of Corollary 1.4.

Proof of Theorem 1.6. To prove this theorem, we need to use a result in [12] and a
similar proof as in Theorem 1.2. For E ⊂ Rd and ε > 0, let

U (ε, E) = {x : |x− y| < ε for some y ∈ E} .
For s ∈S∗, define Gs = U (εrs,Ks) . Then from [12] we know that there exists a

k ∈S∗ such that for some small ε > 0, the set O = Gk ∪
( ⋃

j∈S∗
Gjk

)
is an OSC set

for {fi}Ni=1 . Suppose |k| = m. Let E = K ∩O and F = K\E. For l ∈ N, let

J =
{
s = (s1, · · · , sj, · · · , sl)∈Sml : sj = k for some j

}
and L = Sml\J

as in the proof of Theorem 1.2. Then

F = K\O ⊂ K\
⋃
j∈J

Gj ⊂ K\
⋃
j∈J

Kj ⊂
⋃
j∈L

Kj.

Since
N∑
i=1

rα = 1, it is easy to see that
∑
s∈L

rαs = (1− rαk )l . Let r̃ = max
1≤i≤N

{ri},

r = min
1≤i≤N

{ri} and κ = |K|. Then we have, for s ∈L, rlmκ ≤ |Ks| = rsκ ≤ r̃lmκ.

Let δl = r̃lmκ. Then for 0 < β < α,

Hβδl (F ) ≤ Hβδl

⋃
j∈L

Kj

 ≤∑
s∈L
|Ks|β =

∑
s∈L

(rsκ)β ≤ κβ
(
rm(β−α) (1− rαk )

)l
.

Hence by the similar arguments as in the proof of Theorem 1.2, we have dimH (F ) ≤
β < α if

β = α− ln (1− rαk )
m ln r

.

Now suppose i 6= j. Since K = E ∪ F , it is clear that

fi (K) ∩ fj (K) ⊂ (fi (E) ∩ fj (E)) ∪ fi (F ) ∪ fj (F ) .

But O is an OSC set and E ⊂ O, so fi (E) ∩ fj (E) ⊂ fi (O) ∩ fj (O) = ∅. Hence
fi (K) ∩ fj (K) ⊂ fi (F ) ∪ fj (F ). Since fi and fj are similarities, dimH (fi (F )) =
dimH (fj (F )) = dimH (F ) < α. Therefore dimH (fi (K) ∩ fj (K)) ≤ dimH (F ) <
α.
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