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ON THE BOUNDARY OF ATTRACTORS
WITH NON-VOID INTERIOR

KA-SING LAU AND YOU XU

(Communicated by David R. Larson)

ABSTRACT. Let { fi}fil be a family of N contractive mappings on R? such
that the attractor K has nonvoid interior. We show that if the f;’s are injective,
have non-vanishing Jacobian on K, and f; (K) N f; (K) have zero Lebesgue
measure for ¢ # j, then the boundary 0K of K has measure zero. In addi-
tion if the f;’s are affine maps, then the conclusion can be strengthened to
dimpy (0K) < d. These improve a result of Lagarias and Wang on self-affine
tiles.

1. INTRODUCTION

A function f : R — R? is called a contraction if || f (x) — f (y)|| < r||x — y]| for
all x,y €R?, where r < 11is a constant. If equality holds, then f is called a similarity
and r is called the contractive ratio of f. Let { fz}f\il be a family of contractions
on R% and let K be the corresponding attractor. The Hausdorff dimension and
the a-dimensional Hausdorff measure of K are denoted by dimy (K) and H® (K)
respectively. We say that { fz}f\il satisfies the open set condition (OSC) if there

N
exists an open set O such that {J f; (O) C O and f; (0)N f; (0) = () fori # j. Tt is

i=1
well-known that if the contractions f; are all similarities, then OSC implies that the
Hausdorff dimension of K equals the similarity dimension « which is the unique

N

number determined by > r{ = 1. The work of Bandt and Graf [2] and Schief [I2]
i=1

showed that OSC is equivalent to H* (K) > 0. If a = d, the condition is further

equivalent to the interior K° # (.

Let M, (R) denote the class of real d x d matrices and let p denote the Lebesgue
measure on R%. A matrix B is called expanding if all of its eigenvalues satisfy
IA\i| > 1. Let {aj,a2,---,ay} C R? and let f;(x) = B~ 'x + a;, x €R?, be
the affine transformations. Then under an appropriate metric on R?, the f;’s are
all contractions [I0]. It follows that the attractor K exists [8]. If in addition
|det B| = N, then u (K) > 0 is equivalent to K° # (). In this case K is called a
self-affine tile. Lagarias and Wang [10] proved that the boundary 0K of such K
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1762 KA-SING LAU AND YOU XU

has Lebesgue measure zero. In this note we will consider a few extensions of this
result. We show that for a very general class of self-affine attractors in R?, the
Hausdorff dimension of the boundary is strictly less than d.

For a function f : R? — R? and a compact set E C R?, we say that f € C! (E) if
f has continuous first order partial derivatives on a neighborhood of E. The Jacobi
determinant of f at x is denoted by Jf (x).

Theorem 1.1. Let {f’b}'f\il be a family of contractions on R? and K the corre-
sponding attractor with non-void interior. Suppose f; € C*(K), 1 <i < N, are
injective on K with Jy, (x) # 0, and p(f; (K)N f; (K)) = 0 when i # j. Then
w(0K) =0.

It is easy to verify that the condition p (f; (K) N f; (K)) = 0 is equivalent to

N N
S i) = (), or 37175 00 dx =y ().

K i=1

N

One sufficient condition for the above equalities to hold is > |J (x)] = 1 on
i=1

all points of K. In particular when f; (x) = A;x + a;, A; € My (R), are affine

N

contractions, then the condition reduces to Y |det A;| = 1. In this case, we prove
i=1

the following stronger result.

Theorem 1.2. Let f; (x) = A;x+a;, 1 <i < N, be a family of affine contractions
N

on R? and let K be the corresponding attractor. If K° # () and Y |det A;| = 1,
i=1

then dimpy (0K) < d.

Note that in the theorem we allow some A;’s to be singular. Using this theorem,
we prove the following corollaries.

Corollary 1.3. Let {fi}ivzl be a family of contractive similarities on R? and K

the corresponding attractor. If K° # () and the similarity dimension of { fi}ilil is
d, then dimpg (0K) < d.

Corollary 1.4. Let {aj,as, - ,any} C R? and let B € My (R) be expanding with
|det B| = N. If the attractor K of {f;: fi (x) = B~'x + ai}f\il has mnon-void inte-
rior, then dimy (0K) < d.

The second corollary improves Lagarias and Wang’s result on the boundary of
self-affine tiles. As mentioned before, the condition in the above two corollaries that
K has non-void interior is equivalent to the condition that K has positive Lebesgue
measure. We point out that it was proved recently [9] that the Hausdorff dimension
of the boundary of a self-affine tile in R¢ can be arbitrarily close to d.

Note that in [1] Bandt also considered the rotations and reflections of a tile.
We call a finite group W of matrices with determinant +1 a symmetry group of an
expanding matrix B if BW = WB. Let w; € W, a; € R? and f; (x) = w; B~ 'x + a;,
i=1,---,N. Then {fi}il\il can generate more exotic tiles such as Levy’s curve,
Heighway dragon, etc. [I]. Theorem 1.2 also applies to these tiles.
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Corollary 1.5. Let B € My (R) be expanding with |det Bl = N and W be a sym-
metry group of B. Let fi (x) = w;B 'x+a;, w; € W, a; €R¢, i=1,--- N. If
the attractor K of {f’b}'f\il has non-void interior, then dimg (0K) < d.

We remark that if K is the attractor generated by affine transformations con-
sisting of one single matrix, then there are simple criteria to determine that K
has non-void interior [10]. However very little is known if there is more than one
matrix (see [1] for the case in Corollary 1.5). The estimation of the dimension of
the boundary is far from being understood. It seems that only for a few particular
classes of self-similar tiles ([7], [4] and [13]) has the exact dimension been calculated.

For an attractor K of similarities { fi}il\il in R? with similarity dimension «, it
is well-known that if {fi}ﬁvzl satisfies OSC, then H® (f; (K) N f; (K)) =0 for i # j
[5, Corollary 8.7]. Our theorem sharpens this result.

Theorem 1.6. Let {fi}ivzl be a family of contractive similarities on R% with sim-
ilarity dimension o, 0 < a < d, and let K be the corresponding self-similar set. If

{fi}il\il satisfies the OSC, then dimpy (f; (K) N f; (K)) < « for i # j.

2. DEFINITIONS AND PRELIMINARIES

Let N be the set of natural numbers. For S ={1,2,--- N}, let S" =S x --- xS
—_——

and S* = [JS™. The length of s =(s1---s,) € S™ is denoted by |s| (=n). If
neN
i=(irig - iny), J = (J1J2.--Jn,), then we define

ij = (12 iny 172 Jns )-

For a subset E C R?, its diameter is defined as |E| =sup{|x -y |: x,y € E}.
For f; : R? - RY i €S, we define Eg = fs (E) = fs, 0 fs, 0+ 0 fs, (E). It is easy
to see that if all f;’s are contractive, then fg is also contractive and its contractive
ratio is rg = T4, Tgy ** " Ts,, -

We use B, (x) to denote the closed ball with center x and radius a. Let |||
denote the Euclidean norm on R? and the norm of a matrix A € My (R) is

41 = maox { T2l s emet ) 2 0.
The spectral radius of A is Apax = 1121;L<xd |Ai|, where A; are the eigenvalues of A.

If @ is the closed unit ball in R? and f (x) = Ax + a is an affine mapping with A
non-singular, then A (Q) is an ellipsoid. The lengths of the principle semi-axes of
A(Q) are singular values o1 > g9 > -+ > g4 > 0 of A. These singular values are
also the positive roots of the eigenvalues of AT A, where A7 is the transpose of A.
The norm and the singular values of A have the following relationships:

X
mﬂm@H”M—§ﬂw,

- min{% % ||¢o} mm{% IyI#O}—l/HA e

Also we have
|det A] = 1/det (AT A) = o102 -+ - 04.
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Using the spectral radius formula Apax = lim ||A”H1/n [I1} Theorem 10.13], it is

easy to see the following:

Lemma 2.1. Let A € My (R) with spectral radius Amax and p > Amax. Then there
exists a constant ¢ > 0 depending on A such that for any n € N, ||[A"|| < ¢ - p™.

3. PROOFS OF THE RESULTS

Proof of Theorem 1.1. We know that for any n € N,

K =Us@) = J s = UK

sesn sesn

Since f; are contractive, mzéLX|KS| — 0 when n — oco. We can find € > 0, xg € K
segn

and k €S™ for some large m such that
Ky C B: (x¢) C K° # 0.

Since Jy, (x) # 0 and f; are injective for all ¢ = 1,---, N, it is easy to see
that for any s €S™, fs is a homeomorphism between K and fs (K). It follows that
fs € CH(K), f71 € C1(Ks), K = fs(K°) and 0Ks = fs(0K). We claim that
if i,j €S™ and i# j, then p(K;NKj) = 0. Indeed, suppose i= (i1---im) and
J=01-jm)- Let | be the smallest integer such that i; # j;. Then

1% (Kl N KJ) = p (fil'“il,—l (Kil,"'im) N fil“'il,—l (Kjl”'jTIL))
1% (fi1~~~i171 (Kiz"'im N Kjl"'jm)) <p (fir"iza (Kiz N Kjl))

/

i NG,

fi iy, (x)‘ dx = 0,
K

where the second equality holds because f;,...;,_, is injective, and the last equality
holds because p (K;, N Kj) = 0. This proves the claim.

Now since 0Ky C Ky C K°, for x €0Ky, we can find a sequence {yi}fil such
that y; — x and y; € K°\Kg. It follows that y; € K¢, \Kx for some t; € S™.
Since there are only finitely many elements in S™, we can assume, by passing
to subsequence, that y; € Ky for a fixed t €S™. Since x is the limit point of the
sequence and K is compact, we have x € K. This is true for any x €90 K. Therefore

0Ky C Kx N U K| and hence
tes™ t#£k

1 (0Ky) < p | KiN U K| > p@ENK)=0
teS™ t#£k teS™ t#£k

by the claim. Note that 0K = fk_1 (0Kx); we have

1 (OK) = / [ ()| ax = 0.

0Ky
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Proof of Theorem 1.2. For any n € N, we have

N
K=Jfi) = 6HE =K,
i=1

scS” scSn

where
fs(x) = Asy - A, X+ Asy -+ As, 8, + -+ Ag as, A,

We use As to denote A, --- Ag, . Since f;’s are all contractions, ||A;|| < 1 for ¢ =
1,2,---,N. Let p = lr<n;2>§v{HAi |}, k =|K|. Then p < 1 and |Ks| < ||As|| k < p"k.

Since K° # 0, there is an open ball B, (x9) C K°. Pick an integer m big enough so

that p™r < 5. We have B, /5 (x0) C |J K. If Ag is singular, then Kg has volume
Sesm
zero. So there exists a k €S™ such that Ay is non-singular and Ky N B,/ (x0) # 0.

It follows that K C B. (xq) C K°.
Now without loss of generality, we suppose A1, --- , Ay, 0 < M < N, are singular
matrices and Aps41,- -+, Ay are non-singular. Set

S*={s:seS* s; ¢{1,2,--- , M}, i=1,---,|s|}.

Then for any s Egv*, Ag is non-singular, and for any s GS*\gv*, Ag is singular. Let
j €S*. Then

Kix = fix (K) = f; (Kx) C f; (K°) = (f; (K))° C K°.

Let £ = Ky U (JU Kjk> and F = K\E. Then E C K° and
jes*

0K = K\K° C K\E = F.
For I € N and s €S™ we write s = (s1,--- ,8;) € S™ x -+ x S™ =S Let
J = {s:se (Smlﬂ§) ,8; =k for somej} and L = S™\ J.
Then K = (UKS>U<UKS) and

seJ seL

F=K\EcC K\ (UK) c |JF.

s€J seL
If we let U be a ball of radius a > 0 and contain K, then

0K c Fc | JKs c |JU.

seL sel
X 1
From ) |det A;| = 1, it is easy to show that ) |det Ag| = (1 — |det Ax|)". We
=1 seL

will use the identity later.

For each non-singular A, we use an idea from Falconer [6] p132] to get an esti-
mate. We know that Us is an ellipsoid with principal semi-axes aoy (s) > aoz (s) >
-+ > aoq (s) > 0, where o; (s) (1 < i < d) are the singular values of As. The ellip-
soid is contained in a rectangular parallelepiped P of side lengths 2ac (s), 2a02 (s),
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, 2a04 (s) We may cover P by at most vy cubes of side 2a0q (s), where

d
- H ;LZZ; =217 (i[[lai (S)> (0a(s))” % =297 |det Ag| (04 (s))*

i=1

The diameter of each cube is 2a04 (s) v/d. Note that o4 (s) < o1 (s) = || As|| < p™.
Let 6 = 2apml\/3. Then

Hy (Us) < 7(2aad(s)\/&)ﬁ=c6|detAs|(ad(s))ﬁ*d,

B
where c5 = 2471 (2@\/_) is a constant depending on .

For each singular matrix AS, Us is contained in a hyperplane. Soif >d—1,
then HP (U, ) = 0 and hence Ha (Us) = 0 for any 6 > 0. Let L = L NS*. Then for
every s EL\L, Ay is singular, and hence for > d — 1,

HY (F) < HY <UUS> =Hy | JUs | £ coldet Aq| (0a(s)” 7.
seLl sez sez

Since o4 (s) is the smallest singular value of As,
1 1

>
o T

ni NMN-—-M
p— ’7— . ..’7—
A1 MA+1 N )

od (S) =

where n; +ng + - +ny_y = ml and 7, = 1/ HA:lu is the smallest singular
value of A;, M +1 < 4 < N. It is clear that 0 < 7, < ||4;]] < 1. Let 7 =
min{r;:i=M+1,--- ,N}; then 04 (s) > ™. So ford — 1 < g < d,

H? (F) < Zc;; |det Ag| 7= D) — Cgrml(ﬁ_d)z |det As|

SEZ sez
1
= c/grml(ﬁ*d)z |det As| = cg (Tm(ﬁfd) (1 — |det Ak|)) .
scL
Let 78=4) (1 — |det Ay|) = 1, i.e.,
det A
g ml—ldet)
mlnT

Then ’H? (F) < cg. Let I — oo; then § — 0 and H? (F) < cg. It follows that
dimy (F) < 8 < d. Since 0K C F, we conclude that dimy (0K) < d. O
Proof of Corollary 1.3. Let f; (x) = A;x + a; be the similarities and let r; be
the contractive ratios. Then |det A;| = r¢. Tt follows from the assumption that
N N
3 |det A;| = S°r¢ =1 and Theorem 1.2 applies. O
i=1 i=1

Proof of Corollary 1.4. Let A = B~'. Then f; (x) = Ax+a;,i=1,---,N. For
anyn €N, K = (J fs(K) and
sesn
fs(x) = A"x + A" ta, + .-+ Aa,, +a,,.

Suppose the eigenvalues of B are A;, 1 < i < d, with [A| > -+ > |\g| > r > L
Then the eigenvalues of A™ are A;", 1 < i < d. Using Lemma 2.1 we can find n
large enough so that [|[A"] < ¢-r~™ < 1 for some constant ¢ > 0 independent of
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n. It follows that for each s €S™, fs is an affine contraction with corresponding

matrix Al = A”. Note that |det A|S|| = N". N™" =1 and hence Theorem
seSn
1.2 implies the corollary immediately (|

Proof of Corollary 1.5. Let A = B~!. Then f;(x) = w;Ax + a;, x €R?, i =

,N. For any n € N, we have K = |J fs (K), where
sesn

fs (X) =ws; A wsy A ws, AX +ws, A+ wy,_ Aag, -+ + ws, Aag, + ay,.

By BW =WB, it is easy to see that for any w; € W, Aw; = w;A for some
w;j € W. Hence wy, A - we, A---ws, A = wA™ for some w € W. It follows that

[|ws, A - wg, A+ ws, Al < (max ||w
weW

[|[A™]]. Now the rest is the same as in the

proof of Corollary 1.4. O

Proof of Theorem 1.6. To prove this theorem, we need to use a result in [12] and a
similar proof as in Theorem 1.2. For E C R? and € > 0, let

U, E)={x:|x—y|<eforsomey € E}.
For s €S*, define Gs = U (ers, Ks) . Then from [12] we know that there exists a

jes
for {fl}i\il . Suppose |k| =m. Let E=KNO and FF= K\E. Forl € N, let
J={s=(s1, -+ ,sj,--,8)€S™ :s; =k for some j} and L =S""\J
as in the proof of Theorem 1.2. Then

F=K\0cEK\| JG; c K\| JK; c | JK;.
jeJ jeJ jeL

k €S* such that for some small € > 0, the set O = Gk U < U ij> is an OSC set

N
Since } r® = 1, it is easy to see that } rg = (1 —rk) Let 7 = max {ri},
i=1 seL 1<i<

r= 1I<mn {r;} and k = |K|. Then we have, for s €L, r'™k < |Ks| = rsk < 7™k

Let 6; = 7™k. Then for 0 < 3 < «,

H <Hﬁ UK <Z|K |ﬁ Z ) <I€ (rm(ﬁ—a)(l_rﬁ))l.

jeL seL seL

Hence by the similar arguments as in the proof of Theorem 1.2, we have dimpy (F') <
0 < aif
B=a_ 1n(1—7“ﬁ).
mlnr
Now suppose i # j. Since K = E U F, it is clear that
fi (K)N f (K) C (fi (B)N f; (E) U fi (F)U f; (F).

But O is an OSC set and E C O, so f; (E)N f; (E) C f; (O) N f; (O) = (. Hence
fi(K)N f; (K) C fi (F)U f; (F). Since f; and f; are similarities, dimy (f; (F)) =
dimg (f; (F)) = dimg (F) < a. Therefore dimy (f; (K) N f; (K)) < dimy (F) <
Q. O
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