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ASYMPTOTIC REGULARITY
OF DAUBECHIES’ SCALING FUNCTIONS

KA-SING LAU AND QIYU SUN

(Communicated by David R. Larson)

Abstract. Let φN , N ≥ 1, be Daubechies’ scaling function with symbol(
1+e−iξ

2

)N
QN (ξ), and let sp(φN ), 0 < p ≤ ∞, be the corresponding Lp

Sobolev exponent. In this paper, we make a sharp estimation of sp(φN ),
and we prove that there exists a constant C independent of N such that

N − ln |QN (2π/3)|
ln 2

− C

N
≤ sp(φN ) ≤ N − ln |QN (2π/3)|

ln 2
.

This answers a question of Cohen and Daubeschies (Rev. Mat. Iberoameri-
cana, 12(1996), 527-591) positively.

1. Introduction

For N ≥ 1, let

PN (t) =
N−1∑
k=0

(
N − 1 + k

k

)
tk.

Then
(1− t)NPN (t) + tNPN (1− t) = 1

and PN is the unique polynomial solution of the equation with degree not greater
than N − 1.

Let QN (ξ) be a trigonometric polynomial with real coefficients satisfying

|QN (ξ)|2 = PN (sin2 ξ

2
).(1)

It is known that such QN exists by the Riesz Lemma, but QN is not unique. Set

HN (ξ) =
(1 + e−iξ

2
)N
QN(ξ) =

1
2

∑
k∈Z

cke
−ikξ.

We are interested in the QN such that the solution φN of the refinement equation

φN (x) =
∑
k∈Z

ckφN (2x− k)(2)
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with
∫
R φN (x)dx = 1 that generates an orthonormal basis of L2(R). The functions

φN are the well known Daubechies’ scaling functions [6]. For an integrable function
f , we let f̂(ξ) =

∫
R f(x)e−ixξdx be the Fourier transform of f . Then

φ̂N (ξ) = HN (
ξ

2
)φ̂N (

ξ

2
)(3)

and

φ̂N (ξ) =
∞∏
j=1

HN (2−jξ).(4)

The regularity of the scaling functions has central importance in the theory of
wavelets. In [14] Volkmer proved that the Hölder index of φN is (1− ln 3

2 ln 2 )N+o(N)
as N tends to infinity. Recently Bi, Dai and Sun ([1]) improved the estimation as

(1− ln 3
2 ln 2

)N +
lnN
4 ln 2

+O(1).

Another popular approach to the regularity is to use the Sobolev exponent. Recall
that the Sobolev exponent sp(f), 0 < p <∞, is defined by

sp(f) = sup {s :
∫
R
|f̂(ξ)|p(1 + |ξ|)psdξ <∞},

and for p =∞,

s∞(f) = sup {s : f̂(ξ)(1 + |ξ|)s is a bounded function}.

There is considerable literature devoted to estimating the Sobolev exponent for
scaling functions in general, for example, [8] and [13] for s2(f), [2] for s1(f), [10]
and [9] for sp(f) with 1 ≤ p <∞, [12] for Triebel-Lizorkin space and Besov space,
and [11] for Lp Lipschitz space. For Daubechies’ scaling functions, Volkmer [15]
proved that

N − ln |QN(2π/3)|
ln 2

− 1
2
≤ s2(φN ) ≤ N − ln |QN (2π/3)|

ln 2
.

Recently, Cohen and Daubechies ([3], [7]) computed sp(φN ) for p = 1, 2, 4, 8
and N = 1, 2, · · · , 19, and found that the difference of sp(φN ) between different p
becomes very small for N large. Based on this observation, they asked

Problem. Let φN be defined by (2). For 0 < p, q <∞, is it true that

lim
N→∞

(sp(φN )− sq(φN )) = 0?

In this paper, we answer this question affirmatively and generalize the estimation
in [15] in part.

Theorem. Let φN be defined by (2). For 0 < p < ∞, there exists a constant C
independent of N such that

N − ln |QN (2π/3)|
ln 2

− C

N
≤ sp(φN ) ≤ N − ln |QN (2π/3)|

ln 2
,

and for p =∞,

s∞(φN ) = N − ln |QN (2π/3)|
ln 2

.
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N p = 1 p = 2 p = 8 N − ln |QN (2π/3)|
ln 2

2 0.521293 0.999820 1.310014 1.339036
3 0.979675 1.414947 1.631688 1.636040
4 1.391644 1.775305 1.912144 1.912537
5 1.767934 2.096541 2.174682 2.176608
6 2.116733 2.388060 2.431755 2.432246
7 2.441544 2.658569 2.680307 2.681743
8 2.746639 2.914556 2.925926 2.926549
9 3.035292 3.161380 3.165533 3.167644
10 3.309107 3.402546 3.405141 3.405724
11 3.572141 3.639569 3.638529 3.641301
12 3.825525 3.873991 3.871917 3.874766
13 4.071021 4.105802 4.105305 4.106422
14 4.311641 4.336042 4.335502 4.336511
15 4.547368 4.564708 4.562449 4.565229
16 4.780028 4.792323 4.792645 4.792735
17 5.010231 5.018884 5.016283 5.019164
18 5.238588 5.244390 5.243230 5.244627
19 5.464480 5.468841 5.466868 5.469221

In the table, we list the approximate value of the Lp Sobolev exponent sp(φN ).
The first three columns sp(φN ), p = 1, 2, 8, are obtained by Cohen and Daubechies
in [3]. The last column N− ln |QN (2π/3)|

ln 2 is the approximate value from the theorem.
Note that the numerical data matches with the theorem.

2. Upper bound estimation

In this section, we will prove the upper bound estimate of sp(φN ).

Proposition 1. Let φN be defined by (2). Then for 0 < p ≤ ∞,

sp(φN ) ≤ N − ln |QN (2π/3)|
ln 2

.(5)

Proof. It follows from (3) that

|φ̂N (
2kπ
3

)| = 2−(k−1)N |QN(
2π
3

)|k−1|φ̂N (
2π
3

)|.

Hence (5) holds for p =∞.
To prove the case for 0 < p < ∞, we let φ̃N be the compactly supported

distribution defined by ̂̃φN (ξ) =
∞∏
j=1

QN (ξ/2j).

Let nk = (4k − 1)/3; then by a similar method as used in Proposition 3 in [4], we
obtain for any ε > 0 there exists a constant C such that for ξ ∈ [−π, π] and for
sufficiently large k,

| ̂̃φN (ξ + 2nkπ)| ≥ C|QN (
2π
3

)|2k4−kε.
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Since

φ̂N (ξ) =
∞∏
j=1

(1 + e−i2
−jξ

2
)N ̂̃φN (ξ) =

(1− e−iξ
iξ

)N ̂̃φN (ξ),

there exists an integer k0 such that for ξ ∈ [5π
9 ,

7π
9 ] and k ≥ k0,

|φ̂N (ξ + 2nkπ)| ≥ C4−Nk−εk|QN (
2π
3

)|2k.

Obviously ∫
R
|φ̂N (ξ)|p(1 + |ξ|)psdξ <∞

implies that ∫
[ 5π

9 ,
7π
9 ]+2nkπ

|φ̂N (ξ)|p(1 + |ξ|)psdξ

is bounded on k. Hence there exists a constant C such that 4(s−N−ε)kp|QN (2π
3 )|2kp

≤ C for all k. This implies that

s−N − ln |QN(2π/3)|
ln 2

− ε ≤ 0

and (5) follows from the definition of sp(φN ), 0 < p <∞.

3. Lower bound estimation

In this section, we prove the lower bound estimate for sp(φN ).

Proposition 2. Let φN be defined by (2). Then for 0 < p <∞ and for any integer
M ≥ 2 there exist a constant 1/2 < r < 1 and an integer N0 independent of p and
M such that for N ≥ N0,

sp(φN ) ≥ N − pM ln |QN (2π/3)|+ ln(2 + 2MrNp)
pM ln 2

.

Also

s∞(φN ) ≥ N − ln |QN (2π/3)|
ln 2

.

Obviously our main theorem follows from Propositions 1 and 2 by choosing the
above M as the integral part of −pN ln r/ ln 2. We need some lemmas to prove
the proposition. The main estimate is Lemma 6, based on the accurate estimates
of QN(ξ) on [0, 2π

3 ) and QN(ξ)QN (2ξ) on [2π
3 , π]. First we introduce an auxiliary

function

g(ξ) =

 (cos ξ2 )−2, |ξ| ≤ π
2 ,

4(sin ξ
2 )2, π

2 ≤ |ξ| ≤ π,
g(ξ − 2mπ), ξ ∈ 2mπ + [−π, π].

(6)

Lemma 3. There exists a constant C independent of N and ξ such that

C−1N−Cg(ξ)N ≤ |QN (ξ)|2 ≤ g(ξ)N .(7)

Proof. The right inequality was proved by Cohen and Séré [5, Lemma 2.3]. It
remains to prove the left inequality. Write

ak(ξ) =
(
N − 1 + k

k

)
(sin

ξ

2
)2k, 0 ≤ k ≤ N − 1.
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Then
ak(ξ)
ak−1(ξ)

=
N + k − 1

k
sin2 ξ

2
.

Let k0 be the integral part of (N − 1) tan2 ξ
2 . Then by observing that

ak(ξ)
ak−1(ξ)

≥ 1 if and only if k ≤ (N − 1) tan2 ξ

2

and that | tan ξ
2 | ≤ 1 for |ξ| ≤ π

2 , we have

max
1≤k≤N−1

ak(ξ) = ak0(ξ), |ξ| ≤ π/2.

By using the Stirling formula

k! = kke−k
√

2πk(1 + o(1)),

we have for |ξ| ≤ π/2,

ak0(ξ) =
(N + k0 − 1)!
k0!(N − 1)!

(
sin

ξ

2
)2k0 =

(N + k0 − 1)N+k0−1

kk0
0 (N − 1)N−1

(
sin

ξ

2
)2k0

BN

where C−1N−C ≤ BN ≤ CNC . By substituting −1 < k0− (N − 1) tan2 ξ
2 ≤ 0 into

the above expression and simplifying, we have

ak0(ξ) = B̃N
(

cos
ξ

2
)−2N = B̃N g(ξ)N , |ξ| ≤ π/2,

where (C′)−1N−C
′ ≤ B̃N ≤ C′NC′ . This yields the left inequality of (7) for

|ξ| ≤ π/2.
For π

2 ≤ |ξ| ≤ π, tan2 ξ
2 ≥ 1 implies that

a0(ξ) ≤ a1(ξ) ≤ · · · ≤ aN−1(ξ).

By using the Stirling formula again and making a similar estimation, we have

C−1N−Cg(ξ)N = C−1N−C(2 sin
ξ

2
)2N ≤ aN−1(ξ) ≤ |QN(ξ)|2, π

2
≤ |ξ| ≤ π,

which completes the proof.

Lemma 4. Let g(ξ) be defined by (6). Then

0 ≤ g(ξ)g(2ξ) ≤ |g(
2π
3

)|2, |ξ| ∈ [
2π
3
, π],(8)

and for 0 < δ < π
6 there exists 0 < r1 < 1 such that

0 ≤ g(ξ)g(2ξ) ≤ r2
1 |g(

2π
3

)|2, |ξ| ∈ [
2π
3

+ δ, π].(9)

Proof. Recall that g(ξ) is an even periodic function, hence it suffices to prove (8)
for ξ ∈ [0, π]. Note that

g(ξ)g(2ξ) =
{

16 sin2 ξ
2 sin2 ξ, ξ ∈ [2π

3 ,
3π
4 ],

4 sin2 ξ
2 cos−2 ξ, ξ ∈ [3π

4 , π].

It is easy to check that the product is strictly decreasing on [ 2π
3 , π]. Hence

0 ≤ g(ξ)g(2ξ) ≤ g(
2π
3

)g(
4π
3

) = |g(
2π
3

)|2.

The second part follows from the strictly decreasing property.
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Lemma 5. For any integer N ≥ 1,

|QN (ξ)| ≤ |QN (
2π
3

)|, |ξ| ∈ [0,
2π
3

),(10)

|QN(ξ)QN (2ξ)| ≤ |QN (
2π
3

)|2, |ξ| ∈ [
2π
3
, π).(11)

Furthermore for any 0 < δ < π/6, there exists 0 < r2 < 1 and an integer N1 such
that for N > N1,

|QN(ξ)| ≤ rN2 |QN (
2π
3

)|, |ξ| ∈ [0,
2π
3
− δ),(12)

|QN(ξ)QN (2ξ)| ≤ rN2 |QN (2π/3)|2, |ξ| ∈ [
2π
3

+ δ, π].(13)

Proof. The first two inequalities were proved in [6, p. 222]. We use Lemma 3 to
prove (12): for |ξ| ∈ [0, 2π

3 − δ], there exists 0 < r < 1 such that

|QN(ξ)|2 ≤ g(ξ)N ≤ rNg(
2π
3

)N ≤ CNCrN |QN (
2π
3

)|2.

We pick r2 so that 0 < r < r2 < 1. Hence (12) holds for N large enough. The
proof of (13) is similar by using Lemma 4.

In regard to the above lemma, we include the graphs ofQN (ξ) andQN (ξ)QN (2ξ),
N = 2, 3, 4, 5, for the convenience of the reader (see Figure 1).

For any 0 < δ < π/6 and ξ ∈ R, we define

Ik(ξ, δ) = {j : 1 ≤ j ≤ k, 2jξ ∈
⋃
m∈Z

[−2π
3

+ δ,
2π
3
− δ] + 2mπ }

and let ik(ξ, δ) be the number of elements of Ik(ξ, δ).

Lemma 6. Let N1 be as in Lemma 5. Then there exists a constant CN and a
constant 0 < r3 < 1 depending on 0 < δ < π/6 only, such that for k > 2 and
N ≥ N1,

k∏
j=1

|QN (2jξ)| ≤ CN r
Nik(ξ,δ)
3 |QN (

2π
3

)|k.(14)

Proof. We use r2(δ) to denote the r2 in Lemma 5, and choose r3(δ) so that r2(δ),
r2(δ/2) < r3(δ) < 1. It is easy to see that by letting CN be large enough, the
lemma holds for k = 1 and k = 2. We assume that (14) holds for k < l with l ≥ 3.
For k = l, we divide the proof into four cases:
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(i) If 2ξ ∈ [− 2π
3 + δ, 2π

3 − δ]+2mπ, then ik(ξ, δ) = ik−1(2ξ, δ)+1. We can write

k∏
j=1

|QN (2jξ)| = |QN (2ξ)|
k−1∏
j=1

|QN (2j(2ξ))|,

and (14) follows from (12) with r2(δ) < r3(δ) < 1 and the induction hypothesis.
(ii) If 2ξ ∈

(
[− 2π

3 ,−
2π
3 + δ) ∪ (2π

3 − δ,
2π
3 ]
)

+ 2mπ , then ik(ξ, δ) = ik−1(2ξ, δ)
and the same induction hypothesis together with (10) implies (14).

(iii) If 2ξ ∈
(
[− 2π

3 −
δ
2 ,−

2π
3 ) ∪ (2π

3 ,
2π
3 + δ

2 ]
)

+ 2mπ, then it follows that
2ξ, 4ξ /∈

⋃
m∈Z[− 2π

3 + δ, 2π
3 − δ] + 2mπ, hence ik(ξ, δ) = ik−2(4ξ, δ). Write

k∏
j=1

|QN (2jξ)| = |QN (2ξ)QN (4ξ)|
k−2∏
j=1

|QN (2j(4ξ))|

and (14) follows from (11).
(iv) If 2ξ ∈

(
[−π,− 2π

3 −
δ
2 )∪(2π

3 + δ
2 , π]

)
+2mπ, then ik(ξ, δ) ≤ ik−2(4ξ, δ)+1.

By using the above product, r2(δ/2) < r3(δ) < 1 and (13), we have
k∏
j=1

|QN (2jξ)| ≤ r2(
δ

2
)NCNr

Nik−2(4ξ,δ)
3 |QN (

2π
3

)|k ≤ CN rNik(ξ,δ)
3 |QN (

2π
3

)|k.

The induction step follows from these four cases.

For any integer M ≥ 2, k ≥ 1 and ε = (ε1, ε2, · · · , εkM ) with εi = 0 or 1, let
αkM (ε) be the cardinality of the set

AkM (ε) = {l : 1 ≤ l ≤ k, (ε(l−1)M+1, · · · , εlM ) has two consecutive 0 or 1}.

Then αkM (ε) =
∑k−1
l=0 αM (εl) where εl = (εlM+1, · · · , ε(l+1)M ) and

∑
ε=(ε1,··· ,εkM)∈{0,1}kM

rαkM (ε) =
k−1∑
l=0

∑
εl=(εMl+1,··· ,εM(l+1))∈{0,1}M

k−1∏
j=0

rαM (εj)

=
( ∑
ε=(ε1,··· ,εM)∈{0,1}M

rαM (ε)
)k

= (2 + (2M − 2)r)k,

(15)

where r > 0 and the last equality follows from the fact that αM (ε) = 1 for any
ε ∈ {0, 1}M except ε = (0, 1, 0, 1, · · · ) ∈ {0, 1}M or (1, 0, 1, 0, · · · ) ∈ {0, 1}M .

Lemma 7. Let 0 < δ < π/6. For ξ ∈ [π, 2π), write ξ = 2π(
∑kM

j=1 εj2
−j + η) with

0 ≤ η < 2−kM . Then

αkM (ε)− 1 ≤ ikM (ξ, δ).(16)

Proof. Suppose l ∈ AkM (ε) and l ≥ 2. Then there exists an index j ≥ 2 such that
(l − 1)M + 1 ≤ j ≤ lM − 1 and εj = εj+1. Hence

2j−1ξ = 2mπ + 2π(
εj
2

+
εj+1

4
+ η′)

for some integer m and 0 ≤ η′ < 1/4. For εj = εj+1 = 0,

2π(
εj
2

+
εj+1

4
+ η′) ∈ [−π

2
,
π

2
],
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and for εj = εj+1 = 1,

2π(
εj
2

+
εj+1

4
+ η′ − 1) ∈ [−π

2
,
π

2
].

Hence 2j−1ξ ∈
⋃
m∈Z[−2π/3 + δ, 2π/3 − δ] + 2mπ, i.e., j − 1 ∈ IkM (ξ, δ). What

we have just shown is that each l ∈ AkM (ε) corresponds to at least one distinct
j ∈ IkM (ξ, δ) provided that l ≥ 2. The lemma follows from this assertion.

Proof of Proposition 2. Recall that

φ̂N (ξ) =
(1− e−iξ

iξ

)N ∞∏
j=1

QN (ξ/2j).

Let r = r3(π/6). Then for ξ ∈ [2kM−1π, 2kMπ] and N ≥ N1, Lemma 6 implies that

|φ̂N (ξ)| ≤ C2−kMN
kM−1∏
j=1

|QN(2j−kM ξ)|

≤ C′2−kMNrNikM (2−kMξ,π/6)|QN (
2π
3

)|kM ,

where C′ depends on N only. It now follows from (3), (16) and (15) that∫ 2(k+1)M−1π

2kM−1π

|φ̂N (ξ)|pdξ =
M−1∑
l=0

∫ 2kM+lπ

2kM−1+lπ

|φ̂N (ξ)|pdξ ≤ 2M
∫ 2kMπ

2kM−1π

|φ̂N (ξ)|pdξ

≤ C′2−NkMp|QN (
2π
3

)|kMp

∫ 2kMπ

2kM−1π

rNpikM (2−kMξ,π/6)dξ

≤ C′′2−NkMp|QN(
2π
3

)|kMp
∑

εj∈{0,1},1≤j≤kM
rNpαkM (ε)

≤ C′′2−NkMp|QN(
2π
3

)|kMp(2 + 2MrNp)k.

This completes the proof.
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