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A Weighted Tauberian Theorem

‘Ka-Sing Lau

ABSTRACT.  We prove a Tauberian theorem of the form ¢ g.x) ~ p.x)w.x) asx — 0o, where
p.x) is a bounded periodic function and w.x) is a weighted function of power growth. It can be

used to study the weighted average of the form .T%.In Ty~ _/;)T h.t)dt.

1. Introduction

Tauberian theorems concern the asymptotic behavior of functions (or sequences) deduced from
the behavior of their averages. The most celebrated Tauberian theorem is due to Wiener [W2] and

is as follows.

Theorem 1.1.
For ¢ € L*.R), the relation lim, . ¢ * g.x) = 0 holds true for all g € L'.R) whenever it
holds true for some f € L'.R) such that the Fourier transformation f.£) # 0 for all & € R.

This theorem is an important consequence of the more general treatment of the translation
invariant subspaces of L' R) (see, e. g., [B], [R], or [T]). It can be reformulated on the multiplicative
group R* by using the expression limy_, oo f0°° ¢.Tx)g.x)dx. In particular, if g.x) = xjo,17, then
the limit becomes

1 T
1
i . = lim — .
Tlgrgo/() ¢.Tx)dx Jm T /0 ¢.x)dx,
which is the most elementary average. This average was actually Wiener’s original motivation to
develop his Tauberian theorem [W1, W2], by which he proved the Wiener-Plancherel theorem on
the class of functions F with bounded quadratic averages (lim supy_, o, % fOT |F.x)|?dx < 0o) and

their Fourier transformations [W1].
There are interesting cases where a function ¢.x) (or its average) behaves like a periodic
function at large x. For example, the solution ¢ of the renewal equation

qb.x):/ ox —yydu.y)+Sx), x>0
0

is asymptotically a periodic function and the period depends on the support of the probability mea-
sure w4 [F, Chapter 11]. Another important class of examples appears in the recent study of “self-
similarity”. It is known that the Fourier transformation { of the Cantor measure behaves chaotically
as |&| — oo. On the other hand, Strichartz [S1] proved that the weighted quadratic average

T
[ o, 11)
T

(pT) - Tl-a |
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where o = In2/1n 3 is the dimension of , is asymptotically a multiplicative periodic function. This
phenomenon holds for more general self-similar measures, and the proof is via an extension of the
above Tauberian theorem [L, LW, S2]. Further investigation of such averages can be found in [JRS],
where numerical solutions and open problems are presented. The self-similarity and the Tauberian
theorem also play a role in the study of compactly supported L?-solutions ¢ of the two-scale dilation
equation [D]

N
d.x) = Zc,,d).Zx —n).
n=1
In [LWM] it is proved that (using Corollary 4.5 here)

1 ro
0.1 = m/T 6.6 de 12)

is asymptotically multiplicatively periodic, where the o is the Sobolev exponent of ¢ and the 8 is
related to the multiplicity of the eigenvalue of a matrix associated with the coefficients {c,} of this
equation.

In this note our main purpose is to provide a general Tauberian theorem that covers all the
above cases, namely, a Tauberian theorem of the form

lim (———¢ *8x) _ p.x)) =0, 1.3)
x—00 w.x)
where p.x) is a bounded periodic function and w.x) is certain weighted function; this will include the
cases of x* or x®.log 0w, B = 0. To prove such a theorem (Theorem 3.3), we adapt the traditional
approach [R] by first obtaining a Tauberian theorem on the translation invariant subspaces of the
weighted space L'.w) (Theorem 3.2). Once (1.3) is established we can easily derive corollaries that
include convolutions with measures and on the multiplicative group R*.

An example at the end of §3 shows that some restrictions on the growth of w are necessary.

We remark that in [BBE], Wiener’s Tauberian Theorem was extended to R and used to prove
the Wiener-Plancherel theorem on R?. Tt is likely that the present weighted consideration can be
carried to such a setting. We also remark that there is another kind of weighted Tauberian theorem
that was investigated in [Bi] and [F] (Beurling’s Tauberian theorem) and has important applications
to the central limit theorem.

2. The Weighted Functions
Let € be the class of continuous functions w : R — R* such that for any x, yeR,

i w0 >1,wx)=w—x),
i wx+y <wxw.y), wxy) <wx)w.y);

. w.x . . .
ili. lim ——)— = 1 and there exist X > 0 and an integer » > 0 such that x™"w.x) is

x—o00 w.x + 1)
decreasing for x > K.

Some typical examples of this class of functions are
wx)=a+ [x[* and a+ Jog"|x|)?,
where o, B > 0 and a > 1 is sufficiently large. It is easy to check that w.x) > 1 for x € R, and if

wi, wy € 2, then ww, € Q.

Proposition 2.1.
Suppose u is a continuous function on R that satisfies i and iii and there exists an M > 0 such

that i holds for all |x|, |y| > M. Then there exists w € Q such that lim,_, oo u.x)/w.x) = 1.
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Proof. Leta > 1 be large enough so that u.x + y), u.xy) < a* —a for all |x|, |y] < M.
Let w.x) = a 4+ u.x). Then it is straightforward to show that w € < and both » and w have the

same property. O
We use L'.w) to denote the class of £ such that || f]l; := [ | f.x)|w.x)dx < ooand L®.w™")
the class of real-valued f such that || fls := ess sup, | f.x)/w.x)| < oco.

Proposition 2.2.
Letw € . Then L'.w) is a Banach algebra and its dual is L®.w™ Y. Moreoverif f € L'.w)

and ¢ € L*.w™"), then ||¢ * flloo < ll¢llooll f11-

Proof. The first statement depends upon the fact that w.x + y) < w.x)w.y). The last
inequality follows from

w.X)W.y)

|+ f.x)] S/I¢-x—y)f-y)l———dy§w.X)H¢IlooIIfII1- O

w.x —y)

The following is the key lemma of our Tauberian theorems. It is a modification of [R,
Lemma 9.2].

Lemma 2.3.
Letw € Q and f € L'.w). Then for any € > 0 and any fixed &, there exists an h € L'.w)

such that ||h|| < € and

n+1

~ A 1\ -
hg) = f.£0) — Z—l)"“(" : )f.k.s — &) + £0) 2.1)

k=1
for all £ in some neighborhood of & € R. Here n is the integer associated with w in iii.

Proof. Without loss of generality we assume that § = 0, f .0) = 1. We can choose a rapid
decreasing C*-function g such that £.£) = 1 for all £ in some neighborhood of 0. For A > 0, let

1 /x & a1
2.x) = xg(—}:) and  hyx) = g.x) — gy * k;‘.—l) ( ) >fk.x).
Then

. n+1 1\
hy£) = é.m(l - Z-—D"“(" : >f-k§)>,

k=1

which satisfies (2.1) in some neighborhood of 0.
We claim that |4y ]li — 0 as A — oo. Once this is established, the lemma then follows by

taking i = h, for A large enough. To prove the claim, we observe that

n+l N1
sl = [ | = [ 2—1)"“("‘,{F )ng.x— y)f(%) dylw.x)dx
k=1
n+1
=/‘/f.y)(g)\.x)—Z.—l)kH(n:l)g,\.x—ky)) dy'w.x)dx

§/|f-y)l</ .

n+l
1 k
Z.—l)k<n + )g(x - —y>‘w.)»x) dx) dy
= k A
=1+,
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where 1 is the integral over {y : [y| < A} and I, is the integral over {y : |y| > SA}. f 0 < 8§ < 1
and |y| < 8, then the mean value theorem implies

o)

k=0

n+1

Y
S 7.X),

where t.x) = max{|g"*.u)| : x — 1 < u < x + 1}. Note that 7 is still rapidly decreasing and
belongs to L!.w). The decreasing property of x"w.x) in iii implies that for |y] > K, A™"w.A) <
y"w.y); hence,
n+1

w.A)dy

L =/ If.y)[(/r.x)w.x)dx) i}
Iyl<8

— P4

_ Hrlh< / o+ / o+ /K SMm)lf.y)[‘ !

Iyl A<k Iyi<K A=K

n+1
w.A)dy

. w.A) .
§8Hr||1<8 . K) lf-y)ldy+max{ ’ }/ £ dy
A>K A Iyl<K

[¥I<K

+/ | f- 9wy dy)
Iyl<ér

< C3.
To establish I, we note that for |y| > 8A and any x
n+1 n+1
n+1 n+1 1
Z ( )w.klxl + klyl) < Z ( )(w (—) w.y)w.x) + w.k)w.y)) < Cw.x)w.y),
=\ k pard k 3

where C = Y30 (7 (w(}) + w.k)). Thus
o m+1
h< / W)l(/ g0l > ( ’ )w-MXI + klyl)dX> dy
[y1=8A k=0

<Cliglh S rwydy,
tyl=8A

which converges to 0 as A — oo. The claim now follows from the two estimates on the integrals /;
and I2. D

3. The Tauberian Theorems

We first formulated the Tauberian theorem in terms of the spectra of ¢ and f.

Theorem 3.1.
Letw € Q. Letp € L®°.w™') and Y be a subspace of L'.w). Ifpx f=0forall f €Y, then

supp § C ({6 : /.6) =0 forall f € Y,

where supp ng is the support of the tempered distribution qg

The proof is the same as in [R, Theorem 9.3], using Lemma 2.3 (replacing [R, Lemma 9.2])
to localize f on a given neighborhood and that f has only small perturbation. By using the same
argument as in [R, Theorem 9.4], we have the following Tauberian theorem expressed in translation
invariant subspaces.
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Theorem 3.2.
Let w € 2. Suppose Y is a closed translation invariant subspace in L'.w) generated by the

translates of f. Then Y = L'.w) if and only iff.é) # Oforall € in R.
Let P, denote the class of bounded periodic functions with period a.

Theorem 3.3. .
Letw € Q. Let ¢ € L®.w™Y), and assume f in L'.w) is such that f.£) # 0 forall € € R.

Suppose

=00

1
lim { ——¢* fx)—px)) =0
(w_x) ¢pxfx)—p ))
for some p € P,. Then for any g € L'.w), there exists q € P, such that

lim (——l—qb * g.X) — q.x)) = 0. 3.1)
w.x)

X—=>00
Moreover, the Fourier coefficients {a;} and {by} of p, q, respectively, are related by

g2nk/a)
" Fonkja)’

3.2)

Proof. For convenience we assume that a = 2. Let

1
Y=|{geLl'w): lim <—-)—q§*g.x) —q.x)) =0 forsome g¢e€ P}
w.x

X—=>00

Clearly Y is translation invariant. To show that Y is closed, let {g,} C ¥ with g, — g € L'.w),
and let {g,} be the corresponding periodic functions in P,. Then for any € > 0 and any m, n there
exists kg such that for £ > kg and for any x in [0, 27]

]q,,,.x) - qn.x)l = |qm.x +27k) — gy x + 27rk)|

= ml‘p*gm-x +27T1€) ——d)*gn_x +27Tk)| +e

[#lllgn =&l +e

This implies that {g, } is a Cauchy sequence in L*°[0, 27 ] and converges to a bounded period function
q. Itis straightforward to show that lim,_, o0 .—w-%c7¢ xg.x) —q.x)) = O0sothat g € Y. Then Theorem

3.2 implies that ¥ = L'.w) and the first part of the theorem holds.
To determine the Fourier coefficients of the periodic function ¢, we first observe that

27 ) 1 2r . 27l )
= — g.x)e ¥ dx = lim —/ iqbﬁ)—c—:’:—n—)e_”"" dx.
27 Jo I»00 27 Jy w.x + 2xwl)

by

Since L'.w) equals the closed subspace spanned by the translates of f, we can find a sequence
{h,} € L'.w) such that {4, % f} converges to g in L'.w). Hence for x € [0, 27r] and n, [ positive
integers,

ok hy % [ — g).x +2ml)
0 w.x + 2ml)

e x| < 28] I £ - g,
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We apply this to interchange the limit in the following calculation and thus complete the
proof as '

1 [% pxh,* [)x+2nl)

. . —ikx
- — *d
b ll—lglo nlggo 2 Jo w.x + 27l) ¢ *
1 [ $pxh x 42D
= lim lim — Pxhnx X 427D gy

n—co I—oo 27 Jg w.x + 2ml)

1 [ )
lim —/ hy % px)e” ™ dx
n—00 27T 0

A

. K
— lim b, oa =50 0. O

Remark. The referee suggested the following proof. Assume a = 2w and let 4,.f) =
¢.2mn +t)/w.2mx). Since

hy.t) ¢.2nn +1t)
w.t) w.2wn)w.t)

¢2nn + 1)

< < co uniformly on # and £,
w.2mn +t)

{h,}n is a bounded family in LZ%.w™!) and has a weak* limit v in L®.w™!) as n — oo. It follows
from the limit assumption that

/00 Y. —t) f.r)dt = p.s).

Since p has spectrum in Z, we can apply the same argument as in Theorem 3.1 (i.e., [R, Theorem
9.3]), again using Lemma 2.3 and f .£) # 0 to show that the spectrum of i is contained in Z.
Thus v is a bounded periodic function. Let F.s) = Y o f.s + 27k) be the periodization of f.
Then
2r
W.s — ) F.t)dt = p.s)
0

and p.k) = F Iy k), k € Z. This implies that v is the unique limit point of {#,}, as n — oo.
Now for any g € L'.w) we have

/00 s —Hgt)dt =q.5),

which implies (3.1). That F .k) (Fourier coefficient) = f k) (Fourier transformation) yields the
relationship of the Fourier coefficients in (3.2). O

Corollary 3.4. A
Let w € Q. Suppose p € L®.w™")yand f € L'.w) is such that f.£) # 0forallE e R. If

lim Lm fx)y= f.0)c

X—>00 W.X)

for some ¢ € R, then

1
lim —)¢ xgx) = 5.0)c forallge L'.w).

xX—=>00 W.X

In the following we show that some growth restrictions on the weighted function w in Theorems
3.1, 2, 3 are necessary.
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Let w.x) = ¢*. Then L'.w) is a Banach algebra, but w ¢ Q. Consider

e~ forx >0,

$.x) = fx) = { 0 forx < 0.

Then
x)e Y dx = 0 forallé eR
_/_Oo /) 2+1i8) 7 5
and
o 1
¢ * f.x) =/ EF Ve Wy = §ev“. 3.3)
0

Let / be a bounded function on R with the property that 4 vanishes for x < 0 and
/ h.y)e ™ dy # 0, /h.y)e_3y dy=0.
If g.x) = h.x)e ®, then g € L'.w), £.0) = [ g.»)dy #0, and
¢ *gx)= /g.y)ex_ydy =¢" / h.yye 3dy =0. 3.4)

Since (3.3) and (3.4) are inconsistent with Corollary 3.4, it follows that the theorems in this section
do not hold for L'.w) where w has the exponential growth.

4. Some Extensions

We can extend Theorem 3.3 to include convolutions of measures as in Wiener’s second Taube-
rian Theorem [W2; T, Theorem 7.6]. Let # be the class of continuous functions f on R such
that

x0

M (SI}P|~fX[k,k+1/)-x)|>wA-k) < 00,

k=—o0

where w4.k) = kk+1 w.€) dt. Itis easy to show that W*, the dual of 7, is the class of regular Borel

measures y satisfying

el = sup ik, k +1)/w4.k) < oo.

Note that by assumption iii for w € Q, we can actually use w.k) instead of w 4.k).

Theorem 4.1.
If we replace L'.w) and L®.w™') in Theorem 3.3 by W and W*, then the same conclusion

holds.

The proof is essentially the same as Theorem 3.3, starting from a straight forward modification

of Lemma 2.3 (see [T, Theorem 7.6]).
Next we give a very useful criterion (see Corollaries 4.4 and 4.5) when the measure 4 is not

known to be in W* a priori.

Corollary 4.2. o
Letw € Q and let 1 be a positive regular Borel measure on R such that limy_, _ oo ulk, k+1) <

00. Suppose there exists [ € W, f > 0, such that f.é}) #0forall & € R and
lim <“—"<f—xZ - p.x)) —0 4.1)

X—00 w.Xx)
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Jor some p € P,. Then for any g € W, there exists q € P, such that
* g.
i (M52 ) <o
X—>00 w.x)
and the Fourier coefficients of p and q are related as in Theorem 4.1.
Proof. We need only show that mk%oou[k, k 4+ 1)/w.k) < oo; this combined with the
given condition limy_, ooulk, k + 1) < oo implies that 4 € W* and then we can apply Theorem

3.5. To prove this we let h.x) = ¢™ and f; = f«h. Then f; € W and f1.&) = f.£)hE) £0
for all £ € R. By the dominated convergence theorem we obtain

lim (M—x—) —p*h.x)) —0.

X=>00 w.X)
It follows that v % f1.x)/w.x), x > 0, is bounded, say by C. Hence for k > 0,
1 0 1 k+1
CE—/ Sik=yduy) > —— fik— ) du.y)
U)k) —00 'I.Uk) k

wlk, k+1)

>inf{f1.y): =1 < y < 0} w0

- ulk, k+1)

- w.k)
where C’ = inf{fi.y) : —1 < y < 0} > 0. This implies that lim_, oo[k, k + 1)/w.k) < 00 and
the proof is complete. J

’

For many applications it is useful to include discontinuous functions f and g. A way to handle
this case is to use the space /¥ of locally Riemann integrable functions f such that

o0
> esssup,|. fxqiet)-x)|w.k) < 00 4.2)

k=—00
(see [W2, T, Chapter 71).

Corollary 4.3. N
The f and g in Corollary 4.2 can be replaced by fand g € W.

Proof. Letf ¢ W beasin Corollary 4.2. By convolving with e, we can actually assume

that £ is continuous, hence in ¥ (see the proof in the last corollary) and so by Theorem 4.1,

lim (Lgx) — q.x)) =0

X— 00 w.x )
forall g € W. To extend this to all the g € W, we make use of an equivalent definition of (4.2) [T,
Chapter 7]. If g € W, then there exist {g;}, {h;} C W such that the sequences g; \y g, #; /' g and
lim; 00 f lgi.x) —h;.x)|w.x)dx = 0. If {g;} and {r;} denote the corresponding periodic functions,
then g; ~ ¢,7; /' 7 for some periodic functions ¢, r of period a. We observe that g > r. An
application of Corollary 4.2 yields that

1 2T ) 1 2 .
- A g.x) —rx))e¥dy = Ejliglo/o qjx) — rj.x))e’kx dx
— lim o éj.2ﬂk/ﬁ1) — h;2mwk/a)
J—> o0 f2nk/a)

=0
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This implies that ¢ = r. For such a ¢ it is easy to show directly that limx_,oo.“z%;;/ —q.x))
=0 0O

Finally we like to express the Tauberian theorem on the multiplicative group R*. For simplicity
we just write down a special case. Let

o0

WapRY) ={f: f continuous on R™, Z sup  t*|In¢)?| f.0)| < oo},

he—oo 2k <t <2kH
where o, § € R and VT/a, g.RT) is the class of locally Riemann integrable functions on R* satisfying

the same growth condition.

Corollary 4.4. N
Fora,B > 0, let f € Wop.RY) .or Wy 5.RY) be positive and fooo [t UHE g £ 0 for
all ¢ € R. Suppose w is a positive regular Borel measure on {x : x > 0} such that

, 1 [t B
TILH;O <W/(; f <?) d/;Ll‘) - PT)) =0 43)

for some bounded multiplicative periodic function of period a, that is P.aT) = P.T). Then

. 1 0 t
(e |, #(7) awo-0m) -

forall g € Wy g RY) Wy 5.RY), respectively), and Q.aT) = Q.T) forall T > 0.
B B

Proof. By using the transformation x = In7, y = Int, f.y) = ¢ * f.e™?), and dji.y) =
e*du.e”), (4.3) is transformed into

lim <iﬂ /00 fox— ndi.y) — P.x)) =0,
x—>00 \ X o

where f e W = {# : h continuouson R, Y72 sup, [ hxp 1) X)|klP < oo} and P is a
bounded periodic function of period Ina. Since f satisfies limy_, _o filk, k + 1) < 00, one applies
Corollary 4.2 and the proof is complete. O

Corollary 4.5. ~
Suppose ¢ > 0 on R" and is integrable on .0, h] for some h > 0. Let f € Wy 5. R") with
a >0, 8 > 0besuchthat [;° f.0)t*" 1% dt £ 0 for all &. Then

lim / ¢Tz‘)ft)dl‘—PT)>

T—o0 (T"‘ LinT)8
if and only if

A <T°‘1 T)ﬂ/ $-Ddi = QT)) =0

Jor some bounded multiplicative periodic functions P and Q.

Proof. By letting dpu.r) = ¢.r)dt and using a change of variables, the first expression

reduces to
lim ! /Oogb NHf ! dt PT)}) =
T \ T%.InT)F J, ' T ' -

and the second expression reduces to

Tll_)rrgo (m/ ¢1)X[01]< )df - QT)>
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Note that g.£) = xjo.1 is in Wy, 5. R*) for & > 0 and I g0 dt = 1.0 + i) # Oforall &.
Thus Corollary 4.4 can be applied. [
Note that Wiener’s third Tauberian theorem is the special case when o, § = O and P.T') and

0.T) are constants. Corollary 4.5 is used in [LMW] to estimate the Fourier transformation of the
compactly supported L2-solution of the two-scale dilation equation (as in (1.2)).
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