A Weighted Tauberian Theorem

Ka-Sing Lau

ABSTRACT. We prove a Tauberian theorem of the form $\phi * g.x) \sim p.x)w.x$) as $x \to \infty$, where p.x) is a bounded periodic function and w.x) is a weighted function of power growth. It can be used to study the weighted average of the form $(T^{\alpha}, \ln T)^{\beta})^{-1} \int_{0}^{T} h.t dt$.

1. Introduction

Tauberian theorems concern the asymptotic behavior of functions (or sequences) deduced from the behavior of their averages. The most celebrated Tauberian theorem is due to Wiener [W2] and is as follows.

Theorem 1.1.

For $\phi \in L^{\infty}.\mathbb{R}$), the relation $\lim_{x\to\infty} \phi * g.x$) = 0 holds true for all $g \in L^{1}.\mathbb{R}$) whenever it holds true for some $f \in L^{1}.\mathbb{R}$) such that the Fourier transformation $\hat{f}.\xi$) \neq 0 for all $\xi \in \mathbb{R}$.

This theorem is an important consequence of the more general treatment of the translation invariant subspaces of $L^1.\mathbb{R}$) (see, e.g., [B], [R], or [T]). It can be reformulated on the multiplicative group \mathbb{R}^+ by using the expression $\lim_{T\to\infty}\int_0^\infty \phi.Tx)g.x)\,dx$. In particular, if $g.x)=\chi_{[0,1]}$, then the limit becomes

$$\lim_{T \to \infty} \int_0^1 \phi.Tx) \, dx = \lim_{T \to \infty} \frac{1}{T} \int_0^T \phi.x) \, dx,$$

which is the most elementary average. This average was actually Wiener's original motivation to develop his Tauberian theorem [W1, W2], by which he proved the Wiener-Plancherel theorem on the class of functions F with bounded quadratic averages ($\limsup_{T\to\infty} \frac{1}{T} \int_0^T |F.x|^2 dx < \infty$) and their Fourier transformations [W1].

There are interesting cases where a function $\phi.x$) (or its average) behaves like a periodic function at large x. For example, the solution ϕ of the *renewal equation*

$$\phi.x) = \int_0^x \phi.x - y) \, d\mu.y + S.x, \quad x > 0$$

is asymptotically a periodic function and the period depends on the support of the probability measure μ [F, Chapter 11]. Another important class of examples appears in the recent study of "self-similarity". It is known that the Fourier transformation $\hat{\mu}$ of the Cantor measure behaves chaotically as $|\xi| \to \infty$. On the other hand, Strichartz [S1] proved that the weighted quadratic average

$$\varphi.T) = \frac{1}{T^{1-\alpha}} \int_{-T}^{T} |\hat{\mu}.\xi\rangle|^2 d\xi, \qquad .1.1$$

Math Subject Classifications. Primary 42A38; Secondary 42K85

Keywords and Phrases. Convolution, distribution, Fourier transformation, self-similar, Tauberian, weight. Acknowledgements and Notes. The author thanks the two referees for many valuable suggestions and corrections in preparing this paper.

where $\alpha = \ln 2/\ln 3$ is the dimension of μ , is asymptotically a multiplicative periodic function. This phenomenon holds for more general self-similar measures, and the proof is via an extension of the above Tauberian theorem [L, LW, S2]. Further investigation of such averages can be found in [JRS], where numerical solutions and open problems are presented. The self-similarity and the Tauberian theorem also play a role in the study of compactly supported L^2 -solutions ϕ of the two-scale dilation equation [D]

$$\phi.x) = \sum_{n=1}^{N} c_n \phi.2x - n$$
.

In [LWM] it is proved that (using Corollary 4.5 here)

$$\varphi.T) = \frac{1}{T^{1-\alpha}.\ln T)^{\beta}} \int_{-T}^{T} |\hat{\phi}.\xi\rangle|^{2} d\xi$$
 .1.2)

is asymptotically multiplicatively periodic, where the α is the Sobolev exponent of ϕ and the β is related to the multiplicity of the eigenvalue of a matrix associated with the coefficients $\{c_n\}$ of this equation.

In this note our main purpose is to provide a general Tauberian theorem that covers all the above cases, namely, a Tauberian theorem of the form

$$\lim_{x \to \infty} \left(\frac{\phi * g.x}{w.x} - p.x \right) = 0, \tag{1.3}$$

where p.x) is a bounded periodic function and w.x) is certain weighted function; this will include the cases of x^{α} or $x^{\alpha}.\log x)^{\beta}$, α , $\beta \geq 0$. To prove such a theorem (Theorem 3.3), we adapt the traditional approach [R] by first obtaining a Tauberian theorem on the translation invariant subspaces of the weighted space $L^1.w$) (Theorem 3.2). Once (1.3) is established we can easily derive corollaries that include convolutions with measures and on the multiplicative group \mathbb{R}^+ .

An example at the end of $\S 3$ shows that some restrictions on the growth of w are necessary.

We remark that in [BBE], Wiener's Tauberian Theorem was extended to \mathbb{R}^d and used to prove the Wiener-Plancherel theorem on \mathbb{R}^d . It is likely that the present weighted consideration can be carried to such a setting. We also remark that there is another kind of weighted Tauberian theorem that was investigated in [Bi] and [F] (Beurling's Tauberian theorem) and has important applications to the central limit theorem.

2. The Weighted Functions

Let Ω be the class of continuous functions $w: \mathbb{R} \to \mathbb{R}^+$ such that for any $x, y \in \mathbb{R}$,

- i. $w.0 \ge 1, w.x = w.-x$;
- **ii.** $w.x + y \le w.x \le w.y$, $w.xy \le w.x \le w.y$;
- iii. $\lim_{x\to\infty} \frac{w.x}{w.x+1} = 1$ and there exist K > 0 and an integer n > 0 such that $x^{-n}w.x$) is decreasing for x > K.

Some typical examples of this class of functions are

$$w.x) = a + |x|^{\alpha}$$
 and $a + .\log^{+}|x|)^{\beta}$,

where $\alpha, \beta \geq 0$ and a > 1 is sufficiently large. It is easy to check that $w.x) \geq 1$ for $x \in \mathbb{R}$, and if $w_1, w_2 \in \Omega$, then $w_1w_2 \in \Omega$.

Proposition 2.1.

Suppose u is a continuous function on \mathbb{R} that satisfies i and iii and there exists an M>0 such that ii holds for all |x|, |y| > M. Then there exists $w \in \Omega$ such that $\lim_{x \to \infty} u.x)/w.x) = 1$.

Proof. Let a > 1 be large enough so that u.x + y, u.xy) $\le a^2 - a$ for all |x|, $|y| \le M$. Let w.x) = a + u.x). Then it is straightforward to show that $w \in \Omega$ and both u and w have the same property. \square

We use $L^1.w$) to denote the class of f such that $||f||_1 := \int |f.x||w.x| dx < \infty$ and $L^\infty.w^{-1}$) the class of real-valued f such that $||f||_\infty := \operatorname{ess\ sup}_x |f.x|/w.x| < \infty$.

Proposition 2.2.

Let $w \in \Omega$. Then $L^1.w$) is a Banach algebra and its dual is $L^{\infty}.w^{-1}$). Moreover if $f \in L^1.w$) and $\phi \in L^{\infty}.w^{-1}$), then $\|\phi * f\|_{\infty} \le \|\phi\|_{\infty} \|f\|_{1}$.

Proof. The first statement depends upon the fact that $w.x + y \le w.x)w.y$). The last inequality follows from

$$|\phi * f.x\rangle| \le \int |\phi.x - y\rangle f.y\rangle |\frac{w.x\rangle w.y\rangle}{w.x - y\rangle} dy \le w.x\rangle ||\phi||_{\infty} ||f||_{1}.$$

The following is the key lemma of our Tauberian theorems. It is a modification of [R, Lemma 9.2].

Lemma 2.3.

Let $w \in \Omega$ and $f \in L^1.w$). Then for any $\epsilon > 0$ and any fixed ξ_0 , there exists an $h \in L^1.w$) such that $||h||_1 < \epsilon$ and

$$\hat{h}.\xi) = \hat{f}.\xi_0) - \sum_{k=1}^{n+1} (-1)^{k+1} \binom{n+1}{k} \hat{f}.k.\xi - \xi_0) + \xi_0$$
 (2.1)

for all ξ in some neighborhood of $\xi_0 \in \mathbb{R}$. Here n is the integer associated with w in iii.

Proof. Without loss of generality we assume that $\xi_0 = 0$, $\hat{f}(0) = 1$. We can choose a rapid decreasing C^{∞} -function g such that $\hat{g}(\xi) = 1$ for all ξ in some neighborhood of 0. For $\lambda > 0$, let

$$g_{\lambda}.x) = \frac{1}{\lambda}g\left(\frac{x}{\lambda}\right)$$
 and $h_{\lambda}.x) = g_{\lambda}.x) - g_{\lambda} * \sum_{k=1}^{n+1} (-1)^{k+1} {n+1 \choose k} f_{k}.x$.

Then

$$\widehat{h_{\lambda}}.\xi) = \widehat{g}.\lambda\xi) \left(1 - \sum_{k=1}^{n+1} (-1)^{k+1} \binom{n+1}{k} \widehat{f}.k\xi\right),$$

which satisfies (2.1) in some neighborhood of 0.

We claim that $||h_{\lambda}||_1 \to 0$ as $\lambda \to \infty$. Once this is established, the lemma then follows by taking $h = h_{\lambda}$ for λ large enough. To prove the claim, we observe that

where I_1 is the integral over $\{y : |y| < \delta\lambda\}$ and I_2 is the integral over $\{y : |y| \ge \delta\lambda\}$. If $0 < \delta < 1$ and $|y| < \delta\lambda$, then the mean value theorem implies

$$\left| \sum_{k=0}^{n+1} (-1)^k \binom{n+1}{k} g\left(x - \frac{ky}{\lambda}\right) \right| \le \left| \frac{y}{\lambda} \right|^{n+1} \tau.x),$$

where $\tau.x$) = max{ $|g^{n+1/}.u\rangle$ | : $x-1 \le u \le x+1$ }. Note that τ is still rapidly decreasing and belongs to $L^1.w$). The decreasing property of $x^{-n}w.x$) in iii implies that for |y| > K, $\lambda^{-n}w.\lambda$) $\le y^{-n}w.y$); hence,

$$\begin{split} I_{1} &= \int_{|y| < \delta\lambda} \left| f.y \right| \left(\int \tau.x)w.x \right) dx \right) \left| \frac{y}{\lambda} \right|^{n+1} w.\lambda) \, dy \\ &= \|\tau\|_{1} \left(\int_{\substack{|y| < \delta\lambda, \\ |y| < K, \lambda \geq K}} + \int_{\substack{|y| < \delta\lambda, \\ |y| < K, \lambda \geq K}} + \int_{K \leq |y| < \delta\lambda} \right) \left| f.y \right| \left| \frac{y}{\lambda} \right|^{n+1} w.\lambda) \, dy \\ &\leq \delta \|\tau\|_{1} \left(\delta^{n} w.K \right) \int_{|y| < K} |f.y| \, dy + \max_{\lambda > K} \left\{ \frac{w.\lambda}{\lambda^{n}} \right\} \int_{|y| < K} |f.y| |y^{n} \, dy \\ &+ \int_{|y| < \delta\lambda} \left| f.y \right| |w.y| \, dy \right) \\ &< C \, \delta. \end{split}$$

To establish I_2 we note that for $|y| \ge \delta \lambda$ and any x

$$\sum_{k=0}^{n+1} \binom{n+1}{k} w. \lambda |x| + k|y| \le \sum_{k=0}^{n+1} \binom{n+1}{k} \left(w \left(\frac{1}{\delta} \right) w. y) w. x) + w. k) w. y) \right) \le Cw. x) w. y),$$

where $C = \sum_{k=0}^{n+1} \binom{n+1}{k} \left(w \left(\frac{1}{\delta} \right) + w.k \right) \right)$. Thus

$$I_{2} \leq \int_{|y| \geq \delta\lambda} |f.y| \left(\int |g.x| \sum_{k=0}^{n+1} {n+1 \choose k} w.\lambda |x| + k|y| \right) dx dy$$

$$\leq C \|g\|_{1} \int_{|y| \geq \delta\lambda} f.y w.y dy,$$

which converges to 0 as $\lambda \to \infty$. The claim now follows from the two estimates on the integrals I_1 and I_2 . \square

3. The Tauberian Theorems

We first formulated the Tauberian theorem in terms of the spectra of ϕ and f.

Theorem 3.1.

Let $w \in \Omega$. Let $\phi \in L^{\infty}.w^{-1}$ and Y be a subspace of $L^{1}.w$). If $\phi * f = 0$ for all $f \in Y$, then $\sup \hat{\phi} \subseteq \bigcap \{\xi : \hat{f}.\xi\} = 0$ for all $f \in Y\}$,

where supp $\hat{\phi}$ is the support of the tempered distribution $\hat{\phi}$.

The proof is the same as in [R, Theorem 9.3], using Lemma 2.3 (replacing [R, Lemma 9.2]) to localize \hat{f} on a given neighborhood and that f has only small perturbation. By using the same argument as in [R, Theorem 9.4], we have the following Tauberian theorem expressed in translation invariant subspaces.

Theorem 3.2.

Let $w \in \Omega$. Suppose Y is a closed translation invariant subspace in $L^1.w$) generated by the translates of f. Then $Y = L^1.w$) if and only if $\hat{f}.\xi$) $\neq 0$ for all ξ in \mathbb{R} .

Let P_a denote the class of bounded periodic functions with period a.

Theorem 3.3.

Let $w \in \Omega$. Let $\phi \in L^{\infty}.w^{-1}$), and assume f in $L^{1}.w$) is such that $\hat{f}.\xi$) $\neq 0$ for all $\xi \in \mathbb{R}$. Suppose

$$\lim_{x \to \infty} \left(\frac{1}{w.x} \phi * f.x \right) - p.x \right) = 0$$

for some $p \in P_a$. Then for any $g \in L^1.w$), there exists $q \in P_a$ such that

$$\lim_{x \to \infty} \left(\frac{1}{w \cdot x} \phi * g \cdot x \right) - q \cdot x \right) = 0. \tag{3.1}$$

Moreover, the Fourier coefficients $\{a_k\}$ and $\{b_k\}$ of p, q, respectively, are related by

$$b_k = a_k \frac{\hat{g}.2\pi k/a}{\hat{f}.2\pi k/a}, \quad k \in \mathbb{N}.$$
 (3.2)

Proof. For convenience we assume that $a = 2\pi$. Let

$$Y = \left\{ g \in L^1.w \right\} : \lim_{x \to \infty} \left(\frac{1}{w.x} \phi * g.x \right) - q.x \right) = 0 \quad \text{for some} \quad q \in P_a \right\}.$$

Clearly Y is translation invariant. To show that Y is closed, let $\{g_n\} \subset Y$ with $g_n \to g \in L^1.w$), and let $\{q_n\}$ be the corresponding periodic functions in P_a . Then for any $\epsilon > 0$ and any m, n there exists k_0 such that for $k > k_0$ and for any x in $[0, 2\pi]$

$$\begin{aligned} \left| q_{m}.x) - q_{n}.x \right| &= \left| q_{m}.x + 2\pi k \right) - q_{n}.x + 2\pi k \right| \\ &\leq \frac{1}{w.x + 2\pi k} \left| \phi * g_{m}.x + 2\pi k \right) - \phi * g_{n}.x + 2\pi k \right| + \epsilon \\ &\leq \left\| \phi \right\|_{\infty} \left\| g_{m} - g_{n} \right\|_{1} + \epsilon. \end{aligned}$$

This implies that $\{q_n\}$ is a Cauchy sequence in $L^{\infty}[0,2\pi]$ and converges to a bounded period function q. It is straightforward to show that $\lim_{x\to\infty} .\frac{1}{w.x/}\phi *g.x) - q.x)) = 0$ so that $g\in Y$. Then Theorem 3.2 implies that $Y=L^1.w$) and the first part of the theorem holds.

To determine the Fourier coefficients of the periodic function q, we first observe that

$$b_k = \frac{1}{2\pi} \int_0^{2\pi} q \cdot x \cdot e^{-ikx} \, dx = \lim_{l \to \infty} \frac{1}{2\pi} \int_0^{2\pi} \frac{\phi * g \cdot x + 2\pi l}{w \cdot x + 2\pi l} e^{-ikx} \, dx.$$

Since $L^1.w$) equals the closed subspace spanned by the translates of f, we can find a sequence $\{h_n\} \subset L^1.w$) such that $\{h_n * f\}$ converges to g in $L^1.w$). Hence for $x \in [0, 2\pi]$ and n, l positive integers,

$$\left| \int_0^{2\pi} \frac{\phi * .h_n * f - g).x + 2\pi l}{w.x + 2\pi l} e^{-ikx} dx \right| \le 2\pi \|\phi\|_{\infty} \|h_n * f - g\|_1.$$

We apply this to interchange the limit in the following calculation and thus complete the proof as

$$b_{k} = \lim_{l \to \infty} \lim_{n \to \infty} \frac{1}{2\pi} \int_{0}^{2\pi} \frac{.\phi * h_{n} * f).x + 2\pi l}{w.x + 2\pi l} e^{-ikx} dx$$

$$= \lim_{n \to \infty} \lim_{l \to \infty} \frac{1}{2\pi} \int_{0}^{2\pi} \frac{.\phi * h_{n} * f).x + 2\pi l}{w.x + 2\pi l} e^{-ikx} dx$$

$$= \lim_{n \to \infty} \frac{1}{2\pi} \int_{0}^{2\pi} h_{n} * p.x e^{-ikx} dx$$

$$= \lim_{n \to \infty} \hat{h}_{n}.k a_{k} = \frac{\hat{g}.k}{\hat{f}.k} a_{k}. \quad \Box$$

Remark. The referee suggested the following proof. Assume $a=2\pi$ and let $h_n.t)=\phi.2\pi n+t)/w.2\pi x$). Since

$$\left|\frac{h_{n}.t)}{w.t)}\right| = \left|\frac{\phi.2\pi n + t)}{w.2\pi n)w.t)}\right| \le \left|\frac{\phi.2\pi n + t)}{w.2\pi n + t)}\right| < \infty \quad \text{uniformly on } n \text{ and } t,$$

 $\{h_n\}_n$ is a bounded family in $L^{\infty}.w^{-1}$) and has a weak* limit ψ in $L^{\infty}.w^{-1}$) as $n \to \infty$. It follows from the limit assumption that

$$\int_{-\infty}^{\infty} \psi . s - t) f.t) dt = p.s).$$

Since p has spectrum in \mathbb{Z} , we can apply the same argument as in Theorem 3.1 (i.e., [R, Theorem 9.3]), again using Lemma 2.3 and $\hat{f}.\xi$) $\neq 0$ to show that the spectrum of ψ is contained in \mathbb{Z} . Thus ψ is a bounded periodic function. Let F.s) = $\sum_{k=-\infty}^{\infty} f.s + 2\pi k$) be the periodization of f. Then

$$\int_0^{2\pi} \psi . s - t (F.t) dt = p.s$$

and $\hat{p}.k) = \hat{F}.k)\hat{\psi}.k$, $k \in \mathbb{Z}$. This implies that ψ is the unique limit point of $\{h_n\}_n$ as $n \to \infty$. Now for any $g \in L^1.w$) we have

$$\int_{-\infty}^{\infty} \psi . s - t) g.t \, dt = q.s),$$

which implies (3.1). That $\hat{F}.k$) (Fourier coefficient) = $\hat{f}.k$) (Fourier transformation) yields the relationship of the Fourier coefficients in (3.2).

Corollary 3.4.

Let $w \in \Omega$. Suppose $\phi \in L^{\infty}.w^{-1}$) and $f \in L^{1}.w$) is such that $\hat{f}.\xi$) $\neq 0$ for all $\xi \in \mathbb{R}$. If

$$\lim_{x \to \infty} \frac{1}{w.x} \phi * f.x) = \hat{f}.0c$$

for some $c \in \mathbb{R}$, then

$$\lim_{x \to \infty} \frac{1}{w.x} \phi * g.x) = \hat{g}.0c \text{ for all } g \in L^1.w).$$

In the following we show that some growth restrictions on the weighted function w in Theorems 3.1, 2, 3 are necessary.

Let $w.x) = e^x$. Then $L^1.w$) is a Banach algebra, but $w \notin \Omega$. Consider

$$\phi . x) = e^x;$$
 $f . x) = \begin{cases} e^{-2x} & \text{for } x \ge 0, \\ 0 & \text{for } x < 0. \end{cases}$

Then

$$\int_{-\infty}^{\infty} f(x)e^{-i\xi x} dx = \frac{1}{(2+i\xi)} \neq 0 \quad \text{for all } \xi \in \mathbb{R}$$

and

$$\phi * f.x) = \int_0^\infty e^{x-y} e^{-2y} dy = \frac{1}{3} e^x.$$
 (3.3)

Let h be a bounded function on \mathbb{R} with the property that h vanishes for x < 0 and

$$\int h.y e^{-2y} \, dy \neq 0, \qquad \int h.y e^{-3y} \, dy = 0.$$

If $g.x) = h.x e^{-2x}$, then $g \in L^1.w$, $\hat{g}.0 = \int g.y \, dy \neq 0$, and

$$\phi * g.x) = \int g.y e^{x-y} dy = e^x \int h.y e^{-3y} dy = 0.$$
 (3.4)

Since (3.3) and (3.4) are inconsistent with Corollary 3.4, it follows that the theorems in this section do not hold for $L^1.w$) where w has the exponential growth.

4. Some Extensions

We can extend Theorem 3.3 to include convolutions of measures as in Wiener's second Tauberian Theorem [W2; T, Theorem 7.6]. Let W be the class of continuous functions f on \mathbb{R} such that

$$||f|| := \sum_{k=-\infty}^{\infty} \left(\sup_{x} |f(x_{[k,k+1]}).x)| \right) w_A.k) < \infty,$$

where $w_A.k) = \int_k^{k+1} w.\xi \, dt$. It is easy to show that W^* , the dual of W, is the class of regular Borel measures μ satisfying

$$\|\mu\| := \sup_{k} |\mu|[k, k+1)/w_A.k) < \infty.$$

Note that by assumption iii for $w \in \Omega$, we can actually use w.k) instead of $w_A.k$).

Theorem 4.1.

If we replace $L^1.w$) and $L^{\infty}.w^{-1}$) in Theorem 3.3 by W and W*, then the same conclusion holds.

The proof is essentially the same as Theorem 3.3, starting from a straight forward modification of Lemma 2.3 (see [T, Theorem 7.6]).

Next we give a very useful criterion (see Corollaries 4.4 and 4.5) when the measure μ is not known to be in W^* a priori.

Corollary 4.2.

Let $w \in \Omega$ and let μ be a positive regular Borel measure on \mathbb{R} such that $\overline{\lim}_{k \to -\infty} \mu[k, k+1) < \infty$. Suppose there exists $f \in W$, $f \geq 0$, such that $\hat{f}.\xi$) $\neq 0$ for all $\xi \in \mathbb{R}$ and

$$\lim_{x \to \infty} \left(\frac{\mu * f.x}{w.x} - p.x \right) = 0 \tag{4.1}$$

for some $p \in P_a$. Then for any $g \in W$, there exists $q \in P_a$ such that

$$\lim_{x \to \infty} \left(\frac{\mu * g.x)}{w.x)} - q.x) \right) = 0$$

and the Fourier coefficients of p and q are related as in Theorem 4.1.

Proof. We need only show that $\overline{\lim}_{k\to\infty}\mu[k,k+1)/w.k\rangle < \infty$; this combined with the given condition $\overline{\lim}_{k\to-\infty}\mu[k,k+1)<\infty$ implies that $\mu\in W^*$ and then we can apply Theorem 3.5. To prove this we let $h.x\rangle = e^{-x^2}$ and $f_1 = f*h$. Then $f_1 \in W$ and $\hat{f}_1.\xi\rangle = \hat{f}.\xi\rangle\hat{h}.\xi\rangle \neq 0$ for all $\xi\in\mathbb{R}$. By the dominated convergence theorem we obtain

$$\lim_{x \to \infty} \left(\frac{\mu * f_1.x}{w.x} - p * h.x \right) = 0.$$

It follows that $\mu * f_1.x)/w.x$, x > 0, is bounded, say by C. Hence for k > 0,

$$C \ge \frac{1}{w.k!} \int_{-\infty}^{\infty} f_1.k - y) \, d\mu.y) \ge \frac{1}{w.k!} \int_{k}^{k+1} f_1.k - y) \, d\mu.y)$$

$$\ge \inf\{f_1.y\} : -1 \le y \le 0\} \frac{\mu[k, k+1)}{w.k!}$$

$$\ge C' \frac{\mu[k, k+1)}{w.k!},$$

where $C' = \inf\{f_1.y\}: -1 \le y \le 0\} > 0$. This implies that $\overline{\lim}_{k\to\infty}\mu[k,k+1)/w.k\} < \infty$ and the proof is complete.

For many applications it is useful to include discontinuous functions f and g. A way to handle this case is to use the space \widetilde{W} of locally Riemann integrable functions f such that

$$\sum_{k=-\infty}^{\infty} \operatorname{ess sup}_{x} |f(\chi_{[k,k+1]}).x)| w.k) < \infty$$

$$(4.2)$$

(see [W2, T, Chapter 7]).

Corollary 4.3.

The f and g in Corollary 4.2 can be replaced by f and $g \in \widetilde{W}$.

Proof. Let $f \in \widetilde{W}$ be as in Corollary 4.2. By convolving with e^{-x^2} , we can actually assume that f is continuous, hence in W (see the proof in the last corollary) and so by Theorem 4.1,

$$\lim_{x \to \infty} \left(\frac{\mu * g.x)}{w.x} - q.x \right) = 0$$

for all $g \in W$. To extend this to all the $g \in \widetilde{W}$, we make use of an equivalent definition of (4.2) [T, Chapter 7]. If $g \in \widetilde{W}$, then there exist $\{g_i\}$, $\{h_i\} \subset W$ such that the sequences $g_i \setminus_{\mathcal{A}} g$, $h_i \nearrow g$ and $\lim_{i \to \infty} \int |g_i.x) - h_i.x|w.x|dx = 0$. If $\{q_j\}$ and $\{r_j\}$ denote the corresponding periodic functions, then $q_j \setminus_{\mathcal{A}} q$, $r_j \nearrow r$ for some periodic functions q, r of period a. We observe that $q \ge r$. An application of Corollary 4.2 yields that

$$\frac{1}{2\pi} \int_0^{2\pi} .q.x (-r.x) e^{ikx} dx = \frac{1}{2\pi} \lim_{j \to \infty} \int_0^{2\pi} .q_j (x) - r_j (x) e^{ikx} dx$$
$$= \lim_{j \to \infty} a_k \frac{\hat{g}_j (2\pi k/a) - \hat{h}_j (2\pi k/a)}{\hat{f} (2\pi k/a)}$$
$$= 0.$$

This implies that q = r. For such a q it is easy to show directly that $\lim_{x\to\infty} \frac{\mu * g.x/}{w.x/} - q.x)$ = 0.

Finally we like to express the Tauberian theorem on the multiplicative group \mathbb{R}^+ . For simplicity we just write down a special case. Let

$$W_{\alpha,\beta}.\mathbb{R}^+) = \big\{ f : f \text{ continuous on } \mathbb{R}^+, \sum_{k=-\infty}^{\infty} \sup_{2^k \le t < 2^{k+1}} t^{\alpha} |\ln t|^{\beta} |f.t| |< \infty \big\},$$

where $\alpha, \beta \in \mathbb{R}$ and $\widetilde{W}_{\alpha,\beta}.\mathbb{R}^+$) is the class of locally Riemann integrable functions on \mathbb{R}^+ satisfying the same growth condition.

Corollary 4.4.

For $\alpha, \beta \geq 0$, let $f \in W_{\alpha,\beta}.\mathbb{R}^+$) or $\widetilde{W}_{\alpha,\beta}.\mathbb{R}^+$) be positive and $\int_0^\infty f(t)t^{\alpha-1/+i\xi}dt \neq 0$ for all $\xi \in \mathbb{R}$. Suppose μ is a positive regular Borel measure on $\{x : x \geq 0\}$ such that

$$\lim_{T \to \infty} \left(\frac{1}{T^{\alpha} |\ln T|^{\beta}} \int_{0}^{\infty} f\left(\frac{t}{T}\right) d\mu.t \right) - P.T \right) = 0 \tag{4.3}$$

for some bounded multiplicative periodic function of period a, that is P.aT = P.T. Then

$$\lim_{T \to \infty} \left(\frac{1}{T^{\alpha} |\ln T|^{\beta}} \int_{0}^{\infty} g\left(\frac{t}{T}\right) d\mu.t \right) - Q.T) \right) = 0$$

for all $g \in W_{\alpha,\beta}.\mathbb{R}^+$). $\widetilde{W}_{\alpha,\beta}.\mathbb{R}^+$), respectively), and Q.aT = Q.T for all T > 0.

Proof. By using the transformation $x = \ln T$, $y = \ln t$, $\tilde{f}(y) = e^{-\alpha y} f(e^{-y})$, and $d\tilde{\mu}(y) = e^{\alpha y} d\mu(e^y)$, (4.3) is transformed into

$$\lim_{x \to \infty} \left(\frac{1}{x^{\beta}} \int_{-\infty}^{\infty} \tilde{f}.x - y) \, d\tilde{\mu}.y \right) - P.x \right) = 0,$$

where $\tilde{f} \in W = \{h : h \text{ continuous on } \mathbb{R}, \sum_{k=-\infty}^{\infty} \sup_{x} |\underline{h}\chi_{[k,k+1/)}.x\rangle| |k|^{\beta} < \infty \}$ and P is a bounded periodic function of period $\ln a$. Since $\tilde{\mu}$ satisfies $\overline{\lim}_{k\to -\infty} \tilde{\mu}[k,k+1) < \infty$, one applies Corollary 4.2 and the proof is complete.

Corollary 4.5.

Suppose $\phi \geq 0$ on \mathbb{R}^+ and is integrable on [0,h] for some h>0. Let $f\in \widetilde{W}_{\alpha,\beta}.\mathbb{R}^+$) with $\alpha \geq 0$, $\beta \geq 0$ be such that $\int_0^\infty f(t)t^{\alpha-1+i\xi}dt \neq 0$ for all ξ . Then

$$\lim_{T \to \infty} \left(\frac{1}{T^{\alpha - 1} . \ln T)^{\beta}} \int_0^{\infty} \phi . Tt (f . t) dt - P . T (f . t) dt \right) = 0$$

if and only if

$$\lim_{T \to \infty} \left(\frac{1}{T^{\alpha} . \ln T)^{\beta}} \int_{0}^{T} \phi . t) dt - Q.T \right) = 0$$

for some bounded multiplicative periodic functions P and Q.

Proof. By letting $d\mu . t$ = $\phi . t$ dt and using a change of variables, the first expression reduces to

$$\lim_{T \to \infty} \left(\frac{1}{T^{\alpha} . \ln T)^{\beta}} \int_{0}^{\infty} \phi . t) f\left(\frac{t}{T}\right) dt - P.T. \right) = 0,$$

and the second expression reduces to

$$\lim_{T\to\infty}\left(\frac{1}{T^{\alpha}.\ln T)^{\beta}}\int_{0}^{\infty}\phi.t)\;\chi_{[0,1]}\left(\frac{t}{T}\right)dt\;-\;Q.T)\right)=0.$$

Note that $g.t) = \chi_{[0,1]}$ is in $\widetilde{W}_{\alpha,\beta}.\mathbb{R}^+$) for $\alpha \geq 0$ and $\int_0^\infty g.t)t^{\alpha-1+i\xi}\,dt = 1/.\alpha+i\xi$) $\neq 0$ for all ξ . Thus Corollary 4.4 can be applied.

Note that Wiener's third Tauberian theorem is the special case when α , $\beta = 0$ and P.T) and Q.T) are constants. Corollary 4.5 is used in [LMW] to estimate the Fourier transformation of the compactly supported L^2 -solution of the two-scale dilation equation (as in (1.2)).

References

- [Bi] Bingham, N. (1981). Tauberian theorems and the central limit theorem. Ann. Probab. 9, 221–231.
- [B] Benedetto, J. (1975). Spectral Synthesis. Academic Press, New York.
- [BBE] Benedetto, J., Benke, J., and Evans, W. (1989). An n-dimensional Wiener-Plancherel formula. *Adv. in Appl. Math.* **10**, 457–487.
- [D] Daubechies, I. (1992). Ten Lectures on Wavelets. CBMS-NSF Reg. Conf. Ser. in Appl. Math., no. 61. Society for Industrial and Applied Mathematics, Philadelphia, PA.
- [F] Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Vol. 2. 2nd ed. Wiley, New York.
- [Fe] Feichtinger, H. (1986). Weighted versions of Beurling's Tauberian thereom. *Math. Ann.* 275, 353–363.
- [JRS] Janardham, P., Rosenblum, D., and Strichartz, R. (1992). Numerical experiments in Fourier asymptotics of Cantor measures and wavelets. *Experimental Math.* 1, 249–273.
- [L] Lau, K. S. (1992). Fractal measures and the mean p-variations. J. Funct. Anal. 108, 427–457.
- [LMW] Lau, K. S., Ma, M. F., and Wang, J. R. (1996). On a sharp regularity estimation of the L² scaling functions. SIAM J. Appl. Math. 27, 835–864.
- [LW] Lau, K. S., and Wang, J. R. (1993). Mean quadratic variations and Fourier asymptotics of self-similar measures. Monatsh. Math. 115, 99–132.
- [R] Rudin, W. (1973). Functional Analysis. McGraw-Hill, New York.
- [S1] Strichartz, R. (1990). Self-similar measures and their Fourier transformation I. Indiana Univ. Math. J. 39, 797–817.
- [S2] —— (1993). Self-similar measures and their Fourier transforms II. Trans. Amer. Math. Soc. 336, 335–361.
- [T] Taylor, M. (1981). Pseudodifferential Operators. Princeton Univ. Press, Princeton, NJ.
- [W1] Wiener, N. (1930). Generalized harmonic analysis. Acta Math. 55, 117-258.
- [W2] . (1932). Tauberian theorems. Ann. of Math. 33, 1–100.

Received June 21, 1995

Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (lauks+@pitt.edu).