Hausdorff Dimension of the Level Sets of Rademacher Series

by

Tian-You HU and Ka-Sing LAU

Presented by K. URBANIK on March 24, 1992

Summary. For $0 < \alpha < 1$, let $R(x) = \sum_{i=1}^{\infty} 2^{-\alpha i} R_i(x)$ for $0 \le x < 1$, where $\{R_i\}_{1}^{\infty}$ is the sequence of Rademacher functions. If the distribution of R is absolutely continuous and the derivative is in L^p for some p > 1 then for [Leb] almost all y in the range of R, the y-level set of its graph has Hausdorff dimension $1 - \alpha$.

1. Introduction and preliminaries. Let $R_i(x)$, $i=1,2,\ldots$, denote the Rademacher functions on $\mathbb{R}: R_1(x)$ has period 1, and takes values 1 and -1 on the intervals [0,1/2) and [1/2,1) respectively, and $R_i(x)=R_1(2^{i-1}x)$ for i>1. For $0<\alpha<1$, let

$$R(x) = R_{\alpha}(x) = \sum_{i=1}^{\infty} 2^{-\alpha i} R_i(x), \quad 0 \le x < 1,$$

then the range of R is an interval [-l, l], where $l = l_{\alpha} = \sum_{i=1}^{\infty} 2^{-\alpha i}$. Let

$$F(y) = F_{\alpha}(y) = |\{x \in [0,1) : R(x) < y\}|, y \in \mathbb{R},$$

be the distribution function of R, where |A| denotes the Lebesgue measure of a measurable subset A of \mathbb{R} . The following theorem is proved in [4]:

THEOREM 1.1. If F is absolutely continuous and $F' \in L^p$ for some p > 1, then the Hausdorff dimension of the graph of R is $2 - \alpha$.

The reader may refer to [4, 5, 7] for the motivation and the interest of the theorem.

In this note we will extend the theorem to conclude that under the same assumptions almost all the level sets $L(y) = \{(x,y) : R(x) = y\}$ of the graph are of Hausdorff dimension $1 - \alpha$ (Theorems 2.1, 2.3).

AMS Classification: primary 28A78, secondary 11K99.

Key words: absolute continuity, distribution function, Hausdorff dimension, Rademacher functions.

Let \mathcal{H}^s denote the s-Hausdorff measure. A general theorem related to the above is due to Marstrand [6, Thm III]: if A is a set with $0 < \mathcal{H}^s(A) < \infty$, where s > 1, then for almost all points x of A, the intersection of A with almost every line passing through x has dimension s-1 and has finite (s-1)-dimensional measure. This result together with Theorem 1.1, however, is not enough to derive Theorems 2.1, 2.3.

Throughout the letter n will denote a positive integer, \mathcal{I} will be the family of all dyadic intervals of [0,1), and \mathcal{I}_n will be the subfamily of \mathcal{I} consisting of those members of size 2^{-n} .

For any $I \in \mathcal{I}$, let $F_I(y) = |\{x \in I : R(x) < y\}|$. It is easy to prove that if F is absolutely continuous, than F_I is absolutely continuous, and $F'(y) \geqslant F'_I(y)$. The following self-similarity property is the key of our consideration, its proof can be found in [4, Lemma 2.2]:

For any $I \in \mathcal{I}_n$, let $b_I = \sum_{i=1}^n 2^{-\alpha i} R_i(x)$, $x \in I$, then for each $y \in [-l, l]$ we have

$$F_I(y) = 2^{-n} F(2^{\alpha n} (y - b_I)).$$

(See Fig. 1, the graph inside the rectangle is affinely similar to the whole graph, and the distribution F_I is related to F as indicated). The statement implies that

(1.1)
$$F_I'(y) = 2^{(\alpha-1)n} F'(2^{\alpha n} (y - b_I)),$$

or, equivalently,

(1.2)
$$F_I'(y) = |I|^{1-\alpha} F'(|I|^{-\alpha} (y - b_I)).$$

In the following we will use (1.1) or (1.2) whichever is convenient. Let R(I), $I \in \mathcal{I}$, be the image of I under R, then R(I) is an interval and $|R(I)| = 2l|I|^{\alpha}$.

PROPOSITION 1.1. Let $1 \leq p \leq \infty$. If F is absolutely continuous and F' restricted to J is in $L^p(J)$ for some interval J in the range of R, then $F' \in L^p$.

Proof. Assume $1 \leq p < \infty$, the case $p = \infty$ can be proved similarly. Choose n and $I \in \mathcal{I}_n$ so that $R(I) = [-l \cdot 2^{-\alpha n}, l \cdot 2^{-\alpha n}] \subseteq J$. By a change of variables and using (1.1), we have

$$\int_{-l}^{l} (F'(y))^{p} dy = 2^{\alpha n} \int_{R(I)} (F'(2^{\alpha n}(x - b_{I})))^{p} dx$$

$$= 2^{(\alpha + p - \alpha p)n} \int_{R(I)} (F'_{I}(x))^{p} dx \le 2^{(\alpha + p - \alpha p)n} \int_{I} (F'(x))^{p} dx < \infty,$$

Fig. 1.

and the proposition follows.

PROPOSITION 1.2. Let $E=\{y\in [-l,l]: F'(y)=0\}$, then either |E|=0 or |E|=2l.

Proof. Suppose that |E|>0. We will show that $|E|>\beta$ for any $0<\beta<2l$. Since for any $I\in\mathcal{I},\ R(I)$ is an interval, we can choose $I\in\mathcal{I}_n$ for n large enough such that

$$(1.3) |R(I) \cap E|/|R(I)| > (2l)^{-1}\beta.$$

Observe that for every $y \in R(I) \cap E$, $F'_I(y) = 0$, hence $F'(2^{\alpha n}(y - b_I)) = 0$ by (1.1). It follows that

$$\{2^{\alpha n}(y-b_I): y \in R(I) \cap E\} \subseteq E.$$

By (1.3) we obtain

$$|E| \geqslant 2^{\alpha n} |R(I) \cap E| > 2^{\alpha n} |R(I)| (2l)^{-1} \beta = \beta.$$

2. The level sets. For any $y \in [-l, l]$, let L(y) be the level set of the graph of R on the y-level, let $I_y = I \times \{y\}$, where $I \in \mathcal{I}$, and let

$$\mathcal{I}_n(y) = \{I_y : I \in \mathcal{I}_n, \ I_y \cap L(y) \neq \emptyset\},$$

then $\mathcal{I}_n(y)$ is a cover of L(y) and is unique among the "dyadic intervals" of equal size 2^{-n} .

THEOREM 2.1. If F is absolutely continuous with $F' \in L^{\infty}$, then F'(y) > 0 for almost all y in [-l, l]. For such y, $0 < \mathcal{H}^{1-\alpha}(L(y)) < \infty$, and hence $\dim L(y) = 1 - \alpha$.

Proof. It follows from Proposition 1.2 that 0 < F'(y) < M holds for almost all y in [-l, l]. Let $y \in [-l, l]$, we first show that $\mathcal{H}^{1-\alpha}(L(y)) < \infty$. Since R(I), $I \in \mathcal{I}_n$, is an interval of length $2l \cdot 2^{-\alpha n}$,

$$2^{-n} \# \mathcal{I}_n(y) = \left| \bigcup \{ I \in \mathcal{I}_n : I_y \cap L(y) \neq \emptyset \} \right| = \left| \bigcup \{ I \in \mathcal{I}_n : y \in R(I) \} \right|$$

$$\leq \left| \{ x \in [0,1) : |R(x) - y| < 2l \cdot 2^{-\alpha n} \} \right|$$

$$= F(y + 2l \cdot 2^{-\alpha n}) - F(y - 2l \cdot 2^{-\alpha n}).$$

Now, considering $\mathcal{I}_n(y)$ as a cover of L(y), we have

$$\sum_{I_{y} \in \mathcal{I}_{n}(y)} |I_{y}|^{1-\alpha} = \#\mathcal{I}_{n}(y) \cdot 2^{-n(1-\alpha)}$$

$$\leq [F(y+2l\cdot 2^{-\alpha n}) - F(y-2l\cdot 2^{-\alpha n})]/2^{-\alpha n},$$

which converges to 4lF'(y) as $n \to \infty$, therefore $\mathcal{H}^{1-\alpha}(L(y)) < \infty$.

To prove $\mathcal{H}^{1-\alpha}(L(y)) > 0$, let $y \in [-l, l]$ with F'(y) > 0 and let $\mathcal{C} = \{I_y : I \in \mathcal{I}\}$ be an arbitrary cover of L(y). By observing that $\sum_{I_y \in \mathcal{C}} F'_I(y) = F'(y)$ and using (1.2) we have

(2.1)
$$\sum_{I_{y} \in \mathcal{C}} |I_{y}|^{1-\alpha} = \sum_{I_{y} \in \mathcal{C}} F'_{I}(y) / F'(|I|^{-\alpha}(y - b_{I}))$$

$$\geqslant M^{-1} \sum_{I_{y} \in \mathcal{C}} F'_{I}(y) = M^{-1} F'(y) > 0.$$

Hence $\mathcal{H}^{1-\alpha}(L(y))>0$. This completes the proof of the theorem.

Erdös [2] showed that for any positive integer k, there is an $\alpha_k > 0$ (sufficiently close to 0) so that for almost all $0 < \alpha \leqslant \alpha_k$, F_α has derivative of order k. Propositions 1.1 and 1.2 imply that for such an α , $F'_\alpha \in L^\infty$ and the set of those y so that $F'_\alpha(y) = 0$ is a closed nowhere dense subset of $[-l_\alpha, l_\alpha]$, hence $0 < \mathcal{H}^{1-\alpha}(L(y)) < \infty$ holds for every y in an open dense subset of Lebesgue measure $2l_\alpha$ in $[-l_\alpha, l_\alpha]$.

For the special case where $\alpha=1/k,\ k=1,2,\ldots$, it is known that $F_{1/k}$ has derivative of order k, actually its derivative is positive for every $y\in (-l_{1/k},l_{1/k})$. Theorem 2.1 hence improves the corresponding result of Beyer [1]: For $k=1,2,\ldots$, dim $L(y)=1-\alpha$ for every $y\in (-l_{1/k},l_{1/k})$. A simple proof for $0< F'_{1/k}(y)< M<\infty$ for every $y\in (-l_{1/k},l_{1/k})$ is as follows: Let $\beta=2^{-\alpha}$, since the characteristic function of F_{α} is

$$\varphi(u,\beta) = \prod_{i=1}^{\infty} \cos \beta^i u.$$

A direct computation shows that for any $k \geqslant 1$,

$$\varphi(u,\beta) = \varphi(u,\beta^k)\varphi(u\beta^{-1},\beta^k)\dots\varphi(u\beta^{-(k-1)},\beta^k).$$

That $\varphi(u, 2^{-1}) = \sin u/u$ implies that for $k \geqslant 1$

$$\varphi(u, 2^{-1/k}) = \prod_{i=0}^{k-1} \sin(2^{i/k}u)/(2^{i/k}u).$$

For $i=0,\ldots,k-1$, since $\sin(2^{i/k}u)/(2^{i/k}u)$ is the characteristic function of the uniform distribution G_i over the interval $(-2^{i/k},2^{i/k})$, $F_{1/k}$ equals the convolution $G_0*G_1*\ldots*G_{k-1}$; it is hence supported by $(-\sum_{i=0}^{k-1}2^{i/k},\sum_{i=0}^{k-1}2^{i/k})=(-l_{1/k},l_{1/k})$ and has a positive, bounded derivative at every point in the interval $(-l_{1/k},l_{1/k})$.

In the following we will consider the case $F' \in L^p$ for some p > 1. In the proof of Theorem 2.1, we use the boundedness of F' to control the inequality in (2.1). We will first show that this inequality is still valid for almost all $y \in [-l, l]$ in the present case.

Let $\delta > 0$ be an arbitrary fixed number. For any $I \in \mathcal{I}$, let

$$\mathbf{E}_I = \{ y \in R(I) : [F'(|I|^{-\alpha}(y - b_I))]^{-1} < |I|^{\delta} \}.$$

For any fixed $y \in [-l, l]$ and for any cover C(y) of L(y) of the form $\{I_y = I \times \{y\} : I \in \mathcal{I}\}$, let

$$\mathcal{C}'(y) = \{I_y \in \mathcal{C}(y) : y \in \mathbf{E}_I\}$$

be the "exceptional" intervals in the cover. Let

$$\tau(y) = \lim_{n} \sup_{|\mathcal{C}(y)| < 2^{-n}} \sum_{I_y \in \mathcal{C}'(y)} F_I'(y)$$

where $|\mathcal{C}(y)| = \sup\{|I_y| : I_y \in \mathcal{C}(y)\}\ (\text{If } \mathcal{C}'(y) = \emptyset, \text{ define } \sum_{I_y \in \mathcal{C}'(y)} F_I'(y) = 0).$ Then

$$\tau(y) \leqslant \lim_{n} \sum_{i=n}^{\infty} \sum_{I \in \mathcal{I}_{i}} F'_{I}(y) \cdot \chi_{\mathbf{E}_{I}}(y).$$

LEMMA 2.2. Let $A = \{y \in [-l, l] : \tau(y) \geqslant F'(y)/2\}$. If F is absolutely continuous and $F' \in L^p$ for some p > 1, then |A| = 0.

Proof. Let ν be the probability measure defined by $\nu((-\infty,y])=F(y),$ then

$$\nu(A) = \int_A F'(y) \, dy \leqslant 2 \int_A \tau(y) \, dy \leqslant 2 \lim_n \sum_{i=n}^{\infty} \sum_{I \in \mathcal{I}_i} \int_{E_I} F'_I(y) \, dy.$$

Applying (1.1) and following by a change of variables we have for $I \in \mathcal{I}_i$

$$\int_{\mathbf{E}_I} F_I'(y) \, dy = 2^{(\alpha - 1)i} \int_{\mathbf{E}_I} F'(2^{\alpha i}(y - b_I)) \, dy = 2^{-i} \int_{E_i(\delta)} F'(y) \, dy$$

where $E_i(\delta) = \{y \in [-l, l] : F'(y) \ge 2^{i\delta}\}$. Note that $|E_i(\delta)| \le 2^{-i\delta}$ and $F' \in L^p$ for some p > 1, the Hölder inequality yields

$$\int_{E_i(\delta)} F'(y) \, dy \leqslant |E_i(\delta)|^{1/p'} ||F||_p = C \cdot 2^{-i\delta/p'},$$

where 1/p + 1/p' = 1. Therefore

$$\nu(A) \leqslant 2 \lim_{n} \sum_{i=n}^{\infty} \int_{E_{i}(\delta)} F'(y) \, dy = 0.$$

Hence |A| = 0 by Proposition 1.2 and $\nu(A) = \int_A F'(y) dy$.

THEOREM 2.3. If F is absolutely continuous and $F' \in L^p$ for some p > 1, then dim $L(y) = 1 - \alpha$ for almost all $y \in [-l, l]$.

Proof. Let $B=\{y\in [-l,l]: F'(y)=0 \text{ or does not exist}\}$, then |B|=0 by Proposition 1.2. Let $D=A\cup B$, where A is as in Lemma 2.2, then |D|=0. We will show that if $y\notin D$ then $\dim L(y)=1-\alpha$. That $\dim L(y)\leqslant 1-\alpha$ follows from the same proof as in Theorem 2.1, we only need to prove the reverse inequality.

Let $y \notin D$. Since $y \notin A$, by Lemma 2.2, $\tau(y) < F'(y)/2$. By the definition of τ , there is an integer k so that for all n > k and for any cover $C(y) = \{I_y : I \in \mathcal{I}\}$ of L(y) with $|C(y)| \leq 2^{-n}$,

(2.2)
$$\sum_{I_{y} \in C'(y)} F'_{I}(y) < F'(y)/2.$$

Note that $\sum_{I_y \in C(y)} F_I'(y) = F'(y)$, thus (2.2) is equivalent to

$$\sum_{I_y \in \mathcal{C}(y) \setminus \mathcal{C}'(y)} F_I'(y) \geqslant F'(y)/2.$$

Let $C(y) = \{I_y : I \in \mathcal{I}\}$ be any cover of L(y) with $|C(y)| \leq 2^{-n}$, where n > k. By the definition of C'(y), $I_y \in C(y) \setminus C'(y)$ implies that $[F'(|I|^{-\alpha}(y-b_I))]^{-1} \geq |I|^{\delta}$, combining this with (1.2) we have

$$\sum_{I_{y} \in \mathcal{C}(y)} |I_{y}|^{1-\alpha-\delta} = \sum_{I_{y} \in \mathcal{C}(y)} F'_{I}(y) [F'(|I|^{-\alpha}(y-b_{I}))]^{-1} |I|^{-\delta}$$

$$\geqslant \sum_{I_{y} \in \mathcal{C}(y) \setminus \mathcal{C}'(y)} F'_{I}(y) [F'(|I|^{-\alpha}(y-b_{I}))]^{-1} |I|^{-\delta}$$

$$\geqslant \sum_{I_{y} \in \mathcal{C}(y) \setminus \mathcal{C}'(y)} F'_{I}(y) \geqslant F'(y)/2 > 0.$$

Since $\delta > 0$ is arbitrary, $\dim(L(y)) \geqslant 1 - \alpha$, proving the theorem.

We remark that Theorem 1.1 is a corollary of Theorem 2.3 by using a theorem of Marstrand [3, Thm 5.8].

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN-GREEN BAY, GREEN BAY, WI 54311, USA; E-MAIL: HUTGGBMS01.UWGB.EDU (TYH)

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF PITTSBURGH, PITTSBURGH, PA 15260, USA; E-MAIL: LAUKSQUNIX.CIS.PITT.EDU (KSL)

REFERENCES

- [1] W. A. Beyer, Hausdorff dimension of level sets of some Rademacher series, Pacific J. Math., 12 (1962) 35-46.
- [2] P. Erdös, On the smoothness properties of a family of Bernoulli convolutions, Amer. J. Math., 62 (1940) 180-186.
- [3] K. J. Falconer, The geometry of fractal sets, Cambridge University Press (1985).

- [4] T. Y. Hu, K. S. Lau, The sum of Rademacher functions and Hausdorff dimension, Math. Proc. Camb. Philos. Soc., 108 (1990) 97-103.
- [5] T. Y. Hu, K. S. Lau, Fractal dimensions and singularities of the Weierstrass type functions, Trans. Amer. Math. Soc., 335 (1993) 649-665.
- [6] J. M. Marstrand, Some fundamental geometrical properties of plane sets of fractional dimensions, Proc. London Math Soc., 4 (1954) 257-302.
- [7] F. Przytycki, M. Urbański, On the Hausdorff dimension of some fractal sets, Studia Math., 93 (1989) 155-186.