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Summary. For 0 < a < 1, let R(z) = 3 j2, 2" Ri(z) for 0 € z < 1, where {R;}{° is
the sequence of Rademacher functions. If the distribution of R is absolutely continuous
and the derivative is in LP for some p > 1 then for [Leb] almost all y in the range of R,
the y-level set of its graph has Hausdorff dimension 1 — a. '

1. Introduction and preliminaries. Let R;(z), ¢ = 1,2,..., denote
the Rademacher functions on R : R;(z) has period 1, and takes values 1 and
—1 on the intervals [0,1/2) and [1/2, 1) respectively, and R;(z) = R;(2'~1z)
fori>1.For0<a<l,let

R(z) = Ro(z) = ) 27" Ri(z). 0<z <L,
=1

then the range of R is an interval [—1,!], where | = I, = 2,27 Let
F(y) = Fa(y) = H{z € [0,1): B(z) < y}{, y€R,

be the distribution function of R, where |A| denotes the Lebesgue measure
of a measurable subset A of R. The following theorem is proved in [4]:

THEOREM 1.1. If F is absolutely continuous and F' € LP for somep > 1,
then the Hausdorff dimension of the graph of R is 2 - a.
The reader may refer to (4, 5, 7] for the motivation and the interest of

the theorem.

In this note we will extend the theorem to conclude that under the same
assumptions almost all the level sets L(y) = {(z,y) : R(z) = y} of the graph
are of Hausdorff dimension 1 — o (Theorems 2.1, 2.3).
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Let H*® denote the s-Hausdorff measure. A general theorem related to the
above is due to Marstrand [6, Thm III}: if A is a set with 0 < H*(A4) < o,
where s > 1, then for almost all points & of A, the intersection of A with
almost every line passing through = has dimension s—1 and has finite (s—1)-
dimensional measure. This result together with Theorem 1.1, however, is not
enough to derive Theorems 2.1, 2.3.

Throughout the letter n will denote a positive integer, 7 will be the
family of all dyadic intervals of [0, 1), and Z, will be the subfamily of Z
consisting of those members of size 27".

For any I € Z, let Fi(y) = |[{z € I : R(z) < y}|. It is easy to prove that
if F is absolutely continuous, than Fy is absolutely continuous, and F'(y) >
F(y). The following self-similarity property is the key of our consxderatlon,
its proof can be found in (4, Lemma 2.2}:

Foranyl € I, letby = 31 27 Ri(z), z € I, then for each y € [-1,]]
we have

Fi(y) = 27" F(2*"(y - b1)).

(See Fig. 1, the graph inside the rectangle is affinely similar to the whole
graph, and the distribution F7 is related to F' as indicated). The statement

implies that

(1.1) Fi(y) = 27O F'(2°"(y - br)),
or, equivalently,
(1.2) Fi(y) = {I'=*F'([I|7*(y - br)).

In the following we will use (1.1) or (1.2) whichever is convenient. Let
R(I), I € I, be the image of I under R, then R([) is an interval and

|R(D)| = 241>

ProprosITION 1.1. Let 1 € p € oo. If F is absolutely continuous and
F' restricted to J is in LP(J) for some interval J in the range of R, then
F'eLP.

Proof. Assume 1 € p < 0o, the case p = 0o can be proved similarly.
Choose n and I € Z, so that R(I) = [-l-27°™,1.272"] C J. By a change
of variables and using (1.1), we have

]
[(F@yrdy =22 [ (F'(2*(z - br)) dz
ey R(I)
— 9(atp—ap)n f (Fi(z))P dz < 2(a+p—ap)nf(Ff(x))p dz < o,
R(I)
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Fig. 1.
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and the proposition follows.

ProposITION 1.2. Let E = {y € [=1,1] : F'(y) = 0}, then either |E| = 0
or |E| =2l.

Proof. Suppose that |E| > 0. We will show that |E| > 3 for any
0 < 8 < 2l. Since for any I € Z, R(I) is an interval, we can choose I € 7,

for n large enough such that
(1.3) |R(I) N E|/IR(I)| > (21)7'B.
Observe that for every y € R(I)N E, Fi(y) = 0, hence F'(2°*(y — br)) =0
by (1.1). It follows that
{2°"(y—br):y e RUI)NE}C E.
By (1.3) we obtain
|E| > 2°™|R(I) n E| > 2°™|R(D)|(2)7"8 = B.

2. The level sets. For any y € [—[,1], let L(y) be the level set of the
graph of R on the y-level, let I, = I x {y}, where I € I, and let

Tn(y) = {I, : I € In, I, N L(y) # 0},
then Z,(y) is a cover of L(y) and is unique among the “dyadic intervals” of

equal size 27",

THEOREM 2.1. If F is absolutely continuous with F' € L, then F'(y) >
0 for almost all y in [—1,1]. For such y, 0 < H~*(L(y)) < oo, and hence

dim L(y) = 1 — e

Proof. It follows from Proposition 1.2 that 0 < F'(y) < M holds for
almost all y in [—/,{]. Let y € [=1,1], we first show that H'~*(L(y)) < oo.
Since R(I), I € I,, is an interval of length 2[.2—on,

27 #7u(y) = U € Zn - L0 L) # 0} = | U € Zn 2y € RD)
< Hz €[0,1): |R(z) —y| < 20-27°"}
= Fy+2l-27°") = F(y —21-27°").
Now, considering Z,(y) as a cover of L(y), we have

Z lIyll—a = #In(y) .9-m1-a)

Iy €Za(y)

[Fly+20-27°") = F(y -2l 2™y /27n,
which converges to 4/F'(y) as n — oo, therefore HI=*(L(y)) < co.
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To prove H'~*(L(y)) > 0, let y € [—1, ) with F'(y) > 0 and let ¢ = {1, :
I € I} be an arbitrary cover of L(y). By observing that E,v ec F1(y) = F'(y)

and using (1.2) we have

(2:1) oI =) Fiy)/ Py - by))
I,ec Iyec
>M™ Y Fi(y)= MTUF(y) > 0.
I,ec

Hence H'~*(L(y)) > 0. This completes the proof of the theorem.

Erd8s [2] showed that for any positive integer k, there is an a; > 0
(sufficiently close to 0) so that for almost all 0 < a < ai, F, has derivative
of order k. Propositions 1.1 and 1.2 imply that for such an a,F! € L* and
the set of those y so that F/(y) = 0 is a closed nowhere dense subset of
[~lasla], hence 0 < H!~*(L(y)) < oo holds for every y in an open dense
subset of Lebesgue measure 2/, in [—la,la].

For the special case where a = 1/k, k = 1,2,..., it is known that Fyyy
has derivative of order k, actually its derivative is positive for every y ¢
(=l1/ksl1/k). Theorem 2.1 hence improves the corresponding result of Beyer
(1]: For k= 1,2,...,dim L(y) = 1 — « for every y € (—ly/k,115). A simple
proof for 0 < Fl'/k(y) < M < oo for every y € (~ll/k,11/k) is as follows: Let
f = 2=%, since the characteristic function of Fyis

o(u,B) = H cos 3'u.

i=1
A direct computation shows that for any &£ > 1,
(1, 0) = @(u, B*)p(uf ™", B¥) ... p(uf=(-=1) gky,
That ¢(u,27') = sin u/u implies that for & > 1

k-1
o(u,271%) = T] sin(2"/*u)/(2/*u).
=0

For i = 0,...,k — 1, since sin(2"/*u)/(2"/*u) is the characteristic function
of the uniform distribution G; over the interval (=2/k 2i/k), Fi/x equals
the convolution Gy * Gy *... % G-1; it is hence supported by (- Z:ol 2i/k,
E::OI 21/ky = (= /k+h1/k) and has a positive, bounded derivative at every
point in the interval (—ll/k,ll/k)-

In the following we will consider the case F’ € L” for some p > 1. In the
proof of Theorem 2.1, we use the boundedness of F’ to control the inequality
in (2.1). We will first show that this inequality is still valid for almost all

y € [-1,1] in the present case.
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Let 6 > 0 be an arbitrary fixed number. For any [ € Z, let
Er={ye R(): [F'(1]*(y - b)) < 11°}.

For any fixed y € [~/,!] and for any cover C(y) of L(y) of the form {7, =
Ix{y}:I€TI},let )
C'(y)={Iy €C(y) : y € Ef}

be the “exceptional” intervals in the cover. Let
r(y) =lim sup Y Fi(y)
oc(y)<e-n 1,€C'(y)
where |C(y)] = sup{|Ly| : I, € C(y)} (If C'(y) = 0, define 1 ¢eryy Fi(y) =
0). Then
7(y) < lim >N Fiy) - xe(y).

i=n I€T;

LEMMA 2.2. Let A = {y € [-,1] : 7(y) 2 F'(y)/2}. If F is absolutely
continuous and F' € LP for some p > 1, then |A| = 0.

~ Proof.Letvbethe probability measure defined by v((—o0, y]) = F(y),
then :

)= [Fydy<2[r)dy<2im} > [Fiy)dy.
A A i=n IEI. E[
Applying (1.1) and following by a change of variables we have for I € Z;
[Fityydy =207 [Py~ b)) dy =27 [ Fly)dy
Ef E, Ei(5)
- where E;(6) = {y € [=1,1] : F'(y) > 2'}. Note that |E;(§)| < 27 and
F' € LP for some p > 1, the Holder inequality yields
[ Fydy <1BGH Pl = € 2707
Ei(8)
where 1/p + 1/p’ = 1. Therefore
oQ
v(A) < 2lim Y f F'(y)dy = 0.
i=nF(5)
Hence [A| = 0 by Proposition 1.2 and v(A) = [, F'(y)dy.

THEOREM 2.3. If F is absolutely continuous and F' € LP for somep > 1,
then dim L(y) = 1 — a for almost all y € [-1,1].
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Proof. Let B = {y € [-/,{] : F'(y) = 0 or does not exist}, then
[B| = 0 by Proposition 1.2. Let D = AU B, where A is as in Lemma 2.2,
then |D| = 0. We will show that if y ¢ D then dim L(y) = 1 — o. That
dim L(y) < 1 — a follows from the same proof as in Theorem 2.1, we only
need to prove the reverse inequality.

Let y ¢ D. Sincey ¢ A, by Lemma 2.2, 7(y) < F'(y)/2. By the definition
of 7, there is an integer £ so that for all n > k and for any cover C(y) =

{I, : 1 € I} of L(y) with [C(y)| < 277,
(2.2) Y. Fily) < Fl(y)/2.

I,eC'(y)
Note that 37, oy Fi(y) = F'(y), thus (2.2) is equivalent to

> Fiy) > Fly)/2

I, €C(y)\C'(v)

Let C(y) = {I, : I € I} be any cover of L(y) with |C(y)] < 2", where
n > k. By the definition of C'(y), I, € C(y)\C'(y) implies that [F(|I|=*(y -
br))I=" > [I|°, combining this with (1.2) we have

YT = ST E) T (y ~ b))

1,eC(y) I, eCly)
> > FUF Ny = b)Y

L eC(y\C'(v)

> ) Fy>r(y/2>o
I, €Cy)\C'(y)

Since 6 > 0 is arbitrary, dim(L(y)) > 1 — «, proving the theorem.
- We remark that Theorem 1.1 is a corollary of Theorem 2.3 by using a
theorem of Marstrand [3, Thm 5.8].
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