Math 1010C Term 1 2015 Supplementary exercises 3

- 1. Let $f: I \to \mathbb{R}$ be a function defined on an open interval I, and $c \in I$.
	- (a) Show that if there exists a function $\phi: I \to \mathbb{R}$ such that

$$
f(x) = f(c) + \phi(x)(x - c) \quad \text{for all } x \in I,
$$

and such that ϕ is continuous at c, then f is differentiable at c, and $f'(c) = \phi(c)$. (Hint: Compute the quotient $\frac{f(x)-f(c)}{x-c}$, and let x tend to c .)

(b) Show that the converse of (a) also holds, in the sense that if f is differentiable at c, then there exists a function $\phi: I \to \mathbb{R}$ such that

$$
f(x) = f(c) + \phi(x)(x - c) \quad \text{for all } x \in I,
$$
 (1)

and such that ϕ is continuous at c. How does the value of $\phi(c)$ depend on f? (Hint: The identity (1) defines $\phi(x)$ for you already, for all $x \in I$ that is not equal to c. Just make $\phi(x)$ the subject of (1)! Now figure out what $\phi(x)$ should be when $x = c$, if ϕ were to be continuous at $c.$)

Note that the above shows that if f is differentiable at c, then for $x \simeq c$, we have

$$
f(x) = f(c) + \phi(x)(x - c) \simeq f(c) + \phi(c)(x - c) = f(c) + f'(c)(x - c)
$$

The (linear) function $x \mapsto f(c) + f'(c)(x - c)$ is just the equation of the tangent line to the graph of f through $(c, f(c))$. Hence if f is differentiable at c, then when x is very close to c, $f(x)$ is very close to the tangent line through $(c, f(c))$. Every differentiable function is almost linear (locally)!

2. In order to prove the chain rule, sometimes the following heuristic argument is given: let f be differentiable at $g(c)$, and g be differentiable at c. Then

$$
(f \circ g)'(c) = \lim_{x \to c} \frac{f(g(x)) - f(g(c))}{x - c}
$$

=
$$
\lim_{x \to c} \frac{f(g(x)) - f(g(c))}{g(x) - g(c)} \frac{g(x) - g(c)}{x - c}
$$

=
$$
\lim_{g(x) \to g(c)} \frac{f(g(x)) - f(g(c))}{g(x) - g(c)} \lim_{x \to c} \frac{g(x) - g(c)}{x - c}
$$

=
$$
f'(g(c))g'(c).
$$

Why is this not quite a completely rigorous proof?

- 3. We are going to give a correct proof of the chain rule in this exercise. Let f be differentiable at $g(c)$, and g be differentiable at c.
	- (a) Using Question 1b, show that there exists functions ϕ and ψ , such that

$$
g(x) = g(c) + \phi(x)(x - c)
$$
 for all x near c,

$$
f(y) = f(g(c)) + \psi(y)(y - g(c))
$$
 for all y near $g(c)$,

and such that ϕ and ψ are continuous at c and $g(c)$ respectively. Note that $\phi(c) = g'(c), \psi(g(c)) = f'(g(c)).$

(b) Using part (a), show that

$$
f(g(x)) = f(g(c)) + \psi(g(x))\phi(x)(x - c)
$$
 for all x near c.

- (c) Show that $\psi(g(x))\phi(x)$ is continuous at $x = c$, and is equal to $f'(g(c))g'(c)$ at $x = c$.
- (d) Using parts (b) and (c), together with Question 1a, conclude that $f \circ g$ is differentiable at $x = c$, with $(f \circ g)'(c) = f'(g(c))g'(c)$.
- 4. (Putnam 2011) Suppose f, g are (real-valued) functions defined on an open interval containing 0, such that g is continuous at 0, and $g(0) \neq 0$. For x sufficiently close to 0, define $u(x) = f(x)g(x)$, $v(x) = f(x)/g(x)$. Suppose u and v are both differentiable at 0. Show that f is also differentiable at 0.

(Hint: If $f(0) \neq 0$, use $f(x) = \pm \sqrt{u(x)v(x)}$ for x near 0. Otherwise $f(0) = 0$, in which case one computes $\lim_{x \to 0}$ $f(x)$ $\frac{d^{(x)}}{dx}$ by using $f(x) = v(x)g(x)$ for x near $0.$)