THE INVERSE TRIGONOMETRIC FUNCTIONS

PO-LAM YUNG

We knew that sin is a strictly increasing function from $\left[-\frac{\pi}{2}\right]$ $\frac{\pi}{2}, \frac{\pi}{2}$ $\frac{\pi}{2}$, and cos is a strictly decreasing function on $[0, \pi]$. The image of both is $[-1, 1]$. This allows us to *define* the inverse functions to these, by

arcsin: $[-1, 1] \rightarrow [-\frac{\pi}{2}]$ $\frac{\pi}{2}, \frac{\pi}{2}$ $\frac{n}{2}$],

 $\arccos: [-1, 1] \rightarrow [0, \pi],$

and

so that

 $sin(arcsin(x)) = x$

and

 $cos(arccos(x)) = x$

for all $x \in [-1, 1]$.

By the inverse function theorem, arcsin and arccos are differentiable functions on the open interval $(-1, 1)$, and their derivatives are given by

$$
\frac{d}{dx}\arcsin(x) = \frac{1}{\cos(\arcsin(x))} = \frac{1}{\sqrt{1 - x^2}},
$$

$$
\frac{d}{dx}\arccos(x) = -\frac{1}{\sin(\arccos(x))} = -\frac{1}{\sqrt{1 - x^2}}.
$$

for all $x \in (-1,1)$. (The last equalities follow from $\sin^2 y + \cos^2 y = 1$ with $y = \arcsin(x)$ and $y = \arccos(x)$ respectively.)

The tangent function is a strictly increasing function on $\left(-\frac{\pi}{2}\right)$ $\frac{\pi}{2}, \frac{\pi}{2}$ $(\frac{\pi}{2})$, and its image is \mathbb{R} . Hence we can define the inverse function to tan, by

$$
\arctan\colon \mathbb{R}\to \left(-\frac{\pi}{2},\frac{\pi}{2}\right),
$$

by

$$
\tan(\arctan(x)) = x
$$

for all $x \in \mathbb{R}$.

By the inverse function theorem, arctan is a differentiable function on \mathbb{R} , and its derivative is given by

$$
\frac{d}{dx}\arctan(x) = \frac{1}{\sec^2(\arctan(x))} = \frac{1}{1+x^2}
$$

for all $x \in (-1, 1)$. (The last equality follows from $\sec^2 y = 1 + \tan^2 y$ with $y = \arctan(x)$.)

The above gives us some useful formula in computing the anti-derivatives of

$$
\frac{1}{\sqrt{1-x^2}} \quad \text{and} \quad \frac{1}{1+x^2}
$$

later on. In addition, we now know how to expand $\arctan x$ in power series:

Proposition 1. For any $|x| < 1$, we have

$$
\arctan(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots
$$

Proof. The radius of convergence of the power series on the right hand side is equal to 1. Hence it defines a differentiable function on $(-1, 1)$. Let's call this function $f(x)$. Then for $|x| < 1$, we have

$$
f'(x) = \sum_{k=0}^{\infty} \frac{d}{dx} \frac{(-1)^k}{2k+1} x^{2k+1} = \sum_{k=0}^{\infty} (-1)^k x^{2k} = \frac{1}{1+x^2},
$$

the last equality following from the formula for a geometric series. This shows that

$$
\frac{d}{dx}(f(x) - \arctan(x)) = 0
$$

for all $|x|$ < 1. In particular, by a corollary to the mean-value theorem, $f(x)$ – $arctan(x)$ is a constant, and hence

$$
f(x) - \arctan(x) = f(0) - \arctan(0) = 0
$$

for all $|x| < 1$, as desired.