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In this note we define the hyperbolic sine and the hyperbolic cosine by the following power
series. For any x ∈ R, we define

sinhx = x +
x3
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5!
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,

and
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.

This is possible since the radius of convergence of the two power series above are infinite. One
should compare these formula to those defining the sine and the cosine: recall that
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,

and
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∞∑
k=0

(−1)kx2k

(2k)!
.

They are almost the same series, except that there are no minus signs at all in the series
expansion of sinh and cosh.

Since the radius of convergence of the series defining sinh and cosh are infinite, we may thus
differentiate term by term, and obtain that

d

dx
sinhx = coshx, and

d

dx
coshx = sinhx.

(No minus sign in the last formula, as opposed to the derivative of cos!) Also, from this
definition, it is clear that sinh 0 = 0, cosh 0 = 1, and sinh(−x) = − sinhx, cosh(−x) = coshx
for all x ∈ R.

Below we list some properties of sinh and cosh, along side with those of sin and cos. The
reader is invited to provide proofs of all these properties (just follow what we have done for sin
and cos).

cos2 x + sin2 x = 1 cosh2 x− sinh2 x = 1

sin(x + y) = sinx cos y + cosx sin y sinh(x + y) = sinhx cosh y + coshx sinh y

cos(x + y) = cosx cos y − sinx sin y cosh(x + y) = coshx cosh y + sinhx sinh y

Once we have the above compound angle formula, it is easy to derive the double angle formula:

sin(2x) = 2 sinx cosx sinh(2x) = 2 sinhx coshx

cos(2x) = cos2 x− sin2 x cosh(2x) = cosh2 x + sinh2 x

cos(2x) = 2 cos2 x− 1 cosh(2x) = 2 cosh2 x− 1

cos(2x) = 1− 2 sin2 x cosh(2x) = 1 + 2 sinh2 x

cos2 x = 1
2(1 + cos(2x)) cosh2 x = 1

2(1 + cosh(2x))

sin2 x = 1
2(1− cos(2x)) sinh2 x = 1

2(cosh(2x)− 1)
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One may also derive the sum-to-product or product-to-sum formula. We leave this to the
interested reader.

We close by mentioning the connection of all these to the exponential function. First, it is
clear, from the definition of sinh and cosh, that

sinhx =
ex − e−x

2
, and coshx =

ex + e−x

2
.

Indeed this allows us to derive all properties of sinh and cosh via the exponential function,
rendering the memorization of most of the formulas above unnecessary.

On the other hand, if we introduce complex numbers, we can also express sin and cos in
terms of the exponential function. First, the set of all complex numbers will be denoted by C;
it is the set of numbers of the form a + bi, where i2 = −1, and a, b ∈ R. They can be added,
subtracted, multiplied and divided. Please refer to any standard text on basic properties of
complex numbers.

To proceed further, one first shows that one can define a function exp: C→ C such that

exp(z) =
∞∑
n=0

zn

n!

for all complex numbers z (in particular, the series converges for all z ∈ C). Then one verifies
that

exp(z) exp(w) = exp(z + w)

for all complex numbers z, w ∈ C. Also, one checks that

exp(ix) = cosx + i sinx

for all real numbers x ∈ R. (This is the so-called Euler’s identity.) It follows that for all x ∈ R,
we have

cosx =
1

2
(exp(ix) + exp(−ix)) (1)

and

sinx =
1

2i
(exp(ix)− exp(−ix)). (2)

Hence for any x, y ∈ R, we have

sin(x + y) =
1

2i
(exp(i(x + y))− exp(−i(x + y)))

=
1

2i
(exp(ix) exp(iy)− exp(−ix) exp(−iy))

=
1

2i
((cosx + i sinx)(cos y + i sin y)− (cosx− i sinx)(cos y − i sin y))

=
1

2i
(i cosx sin y + i sinx cos y + i cosx sin y + i sinx cos y)

= sinx cos y + cosx sin y,

as in the table above. Similarly one can deduce the formula for cos(x+y). One can then deduce
the double angle formula, the half-angle formula, etc as before.

In fact, sometimes one turns thing around, and define the sine and cosine of a complex number
by formula (2) and (1): in other words, for z ∈ C, sometimes people define

sin z =
1

2i
(exp(iz)− exp(−iz))

and

cos z =
1

2
(exp(iz) + exp(−iz)).
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Then the compound angle formula continues to hold for this complex sine and cosine, by the
same proof we just gave. They also admit the same power series expansions as in the real case:

sin z = z − z3

3!
+

z5

5!
− z7

7!
+ · · · =

∞∑
k=0

(−1)kz2k+1

(2k + 1)!

cos z = 1− z2

2!
+

z4

4!
− z6

6!
+ · · · =

∞∑
k=0

(−1)kz2k

(2k)!

But they also have many new properties: the most notable one is that they are no longer
bounded by 1 (in fact, one can check that cos(iy) = i cosh y → ∞ as y → ∞). You will learn
more about these functions in complex analysis.


