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Abstract

This paper proposes a new model function iterative method, that improves our
earlier work (Kunisch K and Zou J 1998 Inverse Problems 14 1247-64), on
finding some reasonable regularization parameters in the widely used output
least squares formulations of linear inverse problems, based on the Morozov and
damped Morozov principles. The new algorithm updates the model parameters
in a computationally more stable manner. In addition, the method can be
rigorously shown to have global convergence, in particular, its convergence
is carried on strictly monotone decreasingly. This property seems especially
useful and important in real applications as it enables us to start with some larger
regularization parameters, and thus with more stable least squares problems.
Numerical experiments for one- and two-dimensional elliptic inverse problems
and an inverse integral problem are presented to illustrate the efficiency of the
proposed algorithm.

1. Introduction

Inverse problems can find wide applications in engineering and scientific computation [7].
Most inverse problems are ill-posed. The hardest issue in numerical solutions of inverse
problems is the instability of the solutions with respect to the noise in the observation data,
namely, small perturbations in the observation data may lead to large effects on the considered
solutions. To ensure a feasible and stable numerical resolution, some type of regularization
should be introduced, which entails the necessity of choosing an appropriate regularization
parameter. In fact, the effectiveness of a regularization method depends strongly on the choice
of a good regularization parameter.

Also, in testing the Tikhonov regularization method for solving an inverse problem, one
often needs to try a large number of regularization parameters in order to find a reasonably good
parameter. This is often very time-consuming. One may save lots of time and computational
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cost if there is an iterative method which can give us a reasonable regularization parameter
within a practically acceptable number of iterations.

There exists a significant amount of research in the literature on the development of
appropriate strategies for selecting regularization parameters, see [1, 2,4, 8, 13] and references
therein, while much less work has been carried out on the numerical realization of such
strategies. In fact, it appears that very few of the strategies are utilized for practical applications.

Motivated by a similar technique developed by Hebden et al (cf [3]) for quasi-Newton
methods, Ito and Kunisch proposed a model function approach (with four parameters) to solve
some nonlinear parameter identification problems [9]. In [11], Kunisch and Zou proposed a
two-parameter algorithm to choose some reasonable regualrization parameters in the Tikhonov
regularization formulation for linear inverse problems. The basic tool is to use the well known
Morozov discrepancy principle and the damped Morozov discrepancy principle [5, 6,9-12].

This paper intends to make some further contribution to the subject in proposing some
practical parameter choice strategies. We first derive a new model function which is quite
different from the model used in [11] and is more consistent with our original approximation
of the Morozov function. Some nice properties of the new model are analysed. Then we
combine the model function with an approximation technique to propose a new two-parameter
algorithm to solve the Morozov equation. The new algorithm updates the model parameters in
acomputationally more stable manner. In addition, the method can be rigorously shown to have
global convergence, in particular, its convergence is carried on strictly monotone decreasingly.
This property seems especially useful and important in real applications as it enables us to start
with some larger regularization parameters, and thus with more stable least squares problems.
Numerical experiments for three linear elliptic and integral inverse problems are presented to
illustrate the efficiency of the proposed algorithm. In addition, the method and techniques
adopted in this paper may be generalized to solve some other regularization parameter choice
principles, though only the Morozov discrepancy principles are focused upon here. This is
one of our future research topics.

2. Output least squares formulation with Tikhonov regularization

In this section, we shall first formulate our problem and review some basic notation and useful
results from [11]. We shall consider inverse problems of the form

Tf =z

where T is a linear bounded operator mapping the parameter space X into the observation
space Y, and z is the observation data. In applications, z is often corrupted by some error and
the noisey data of z with noise level 8§ are denoted by z°. Such ill-posed problems are often
solved through the following well-posed minimization problem of the Tikhonov functional:

1 2 B
; = _||ITf —7° L 2 2.1
_r;lelg(lfﬂ(f) SITS =20y + 5111y 2.1)
where B > 0 is the regularization parameter, and || - ||y and || - |[x denote the norms in the

Hilbert spaces Y and X, respectively. The problem (2.1) has a unique minimizer for any
fixed B, denoted as f(B), and it can be characterized as the solution to the system

T*Tf +Bf =T*7°
or in variational form

(Tf. Tg)y +B(f.8)x = . Tg)y forall g € X. (2.2)
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We will frequently use the minimal cost functional of (2.1):

1
FB)=3ITf(B) = 23+ gllf(ﬂ)lli- (2.3)

It is known (cf [11]) that both f(B8) and F(B) are infinitely differentiable with respect to S,
and w = f'(B) € X solves

(Tw, Tg)y + B(w, g)x = —(f(B), &)x forall g € X. (2.4
Moreover, we have
F'B) =31 Bk F"(B) = (f(B), f'(B))x. (2.5)

It is easy to see that f(B) = 0 if and only if z° € kerT*. Therefore, we shall always assume
7% ¢ kerT* in the subsequent discussions. This implies by (2.4) and (2.5)

F'(B) >0, F'(B) < 0. (2.6)

The Morozov and damped Morozov principles

The very popular Morozov principle has received a considerable amount of attention in
linear inverse problems (cf [1,7,12,13]) and turns out to be very effective for many inverse
problems [4,5,9-11]. This principle suggests choosing the regularization parameter £ in such
a way that the error due to the regularization is equal to the error due to the observation data.
That is, B is chosen according to

ITFB) =2 lly + B I F B = 62, 2.7)

where y € [1, oo], and § is the noise level defined by § = ||z — Z2|ly. In terms of F(B), the
Morozov equation (2.7) can be written as

F(B)+ (B — B)F'(B) = 38°. (2.8)

Then the entire difficulty of choosing the regularization parameter f lies in how to solve this
highly nonlinear equation (2.8) of B effectively. One may apply Newton’s method or the
quasi-Newton’s method to solve (2.8) with quadratical or superlinear convergence, see [11].
But these methods converge only locally, and they must start with some very good initial
regularization parameters. This is certainly not practical as these good initial parameters may
already be good enough to serve as the required regularization parameters in most applications.
We shall propose a more practical and global convergent iterative method in the subsequent
sections.

3. The model function for F'(3)

This section is devoted to the derivation of a new model function for F(8) and to some of its
nice properties. This model function is the basis for our new iterative method for solving the
Morozov equation (2.8). It is quite different from the one proposed in [11], which is based on
the assumption F(0) = 0, and is computationally more stable.

The two-parameter algorithm in [11] is based on the following important identity:

2F(B)+2BF' (B)+ITF (B} =2Co 3.1

where Cy is an integration constant. By further assuming

(TfB), TF By = T(f(B), f(B)x (3.2)
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where T is a constant, one derives the model function m(8) from (3.1):

m(B) = Co+ ¢
- 7~"+ﬂ'

Then by assuming F(0) = 0, or m(0) = 0, one can remove the constant Cy and arrive at the
following two-parameter model function (cf [11]):

m(B) = c(l _ ﬁ) 3.3)

With this model function, Kunisch and Zou [11] proposed the following two-parameter
algorithm to solve the Morozov equation (2.8):

Two-parameter algorithm I

Given By > 0O and e > 0, setk = 0.

(1) Solve (2.2) for f(B) and thus compute F(8;) and F’(By) = %Hf(ﬂk)lli.
Then update #; and ¢ from

7%
m(Br) = ck <1 T +,3k> = F(Bu), (3.4)
/ _ Cilk v
m (By) = Gt B F(Br). (3.5)

(2) Set the kth model function

m(ﬁ)=ck<1— fk )
th+p

and solve for B, the approximate Morozov’s equation
m(B) +(B" — pym'(B) = 38°. (3.6)
(3) STOP if |Br+1 — Br| < ¢€; otherwise set k := k + 1, GOTO (1).
The following formulae can be easily found from (3.4) and (3.5) for computing #; and cy:
_ BF B B i 1:)
F(Be) — BeF' (B’ F(Bo) — BeF' (B
We remark that the denominators in both #;, and ¢; can be written as
2
F(B) — BF'(B) = 31T (B) — 2Ny (3.8)

which may approach zero when B becomes close to its convergence limit, and so may cause
some computational instability in applications.

t (3.7)

A new model function

Now, we are going to present a new model function, which is intended to be computationally
more stable. Unlike in [11], we will not assume F(0) = 0 here but are still able to derive a
model function with only two parameters. In fact we will find the exact value of the integration
constant Cy in (3.1). To do so, by (2.3) we have
1o 5,2 s 1 2

F(B) = S 127y = (Tf(B), 2y + EIITf(ﬂ)IIy +
Taking g = f(B) in (2.2) we know

(TF(B), )y = ITL BT +BIS Bk

B

Ellf(ﬁ)lli- (3.9)
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Substituting this into (3.9), we obtain the following identity:

1 1
F(B) = Enz% - Ean(ﬁ)n% — gllf(ﬂ)lli, (3.10)
which, by (2.5), can be rewritten as

2F(B) +2BF (B) + ITF (B} = 123 (3.11)

This is exactly the identity (3.1), but Cy is now explicitly given by %Hz‘S ||?,. Using the
approximation (3.2), where 7 is a constant, equation (3.11) reduces to

~ 2
Bm'(B) +m(B) + Tm'(B) = 512’ |ly, (3-12)
where m(f) is the model function for F(B).
Solving the ordinary differential equation (3.12), we obtain a new model function
1 2 C
m(B) = 12’ lly + =—. (3.13)
2 YT B
This model function still keeps only two parameters, C and T, without assuming F(0) = 0.
Replacing the model function m(f) in the two-parameter algorithm I by our new model
function (3.13), we can formulate a new two-parameter algorithm as follows.

The two-parameter algorithm I1

Given Sy > 0and e > 0, setk = 0.

(1) Solve (2.2) for f(B) and thus compute F(8;) and F'(B) = %Hf(ﬁk)ll%(.
Then update 7; and Cy from

C

I 502
=— =F 3.14
my (i) 2IIZ Iy + T+ fe (B, (3.14)
’ k /
=——" _=F . 3.15
. (Br) Te+ B2 (Br) (3.15)
(2) Set the kth model function
1 52 Cr
== 3.16
me(B) = -z ”Y+Tk+/3’ (3.16)
and solve for By, the approximate Morozov’s equation
mi(B) + (87 — Bymy(B) = 36 (3.17)

(3) STOP if |Br+1 — Br| < €; otherwise set k := k + 1, GOTO (1).

This new algorithm has some advantages over the two-parameter algorithm I. From the
equalities (3.14) and (3.15) we can easily derive the formulae for updating the two parameters
Cy and Tj:

I LFACAI _ _UTFBONT + Bl fBOIR)*

IfBolx ‘ 201 B lI%

It is interesting to note that the formula for updating 7 in (3.18) is exactly the approximation
form (3.2) that we have made for deriving the model function. However, the formula for
t in (3.7) derived in [11] does not have this property. So the new model function appears
more consistent with the original approximation principle. Clearly the inconsistency of the
formulation in (3.7) comes from the assumption F(0) = 0 made in [11]. In addition, the new
formulae in (3.18) are more computationally stable than those in (3.7), see (3.8).

(3.18)
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Also, one can easily see from (3.18) and (3.16) that for any 8 > 0,
Cr 2Ck
- >0, mi(f) = ——= <0
(T + B) Tk + B)

So the new model function m () in (3.16) still preserves the monotonicity and concavity

of F(B).

m(B) = (3.19)

Monotonicities of the parameters Ty and Cy

In the rest of this section, we shall present some observations about the two parameters T
and Cy in (3.18), which are very important for us to greatly improve our new two-parameter
algorithm II: both 7} and Cj are monotonic with respect to . To see this, we define

ITf By AT B +BIfBIZ)
B) = ——, h(B) = (3.20)
SO =R g £ B2
associated with 7} and Cy respectively, see (3.18), and their quotient
2 242
4(B) = UTFBIy +BIfB)Iy) . G.21)

ITfBIF
Lemma 3.1. Forany B > 0, we have g’(B) > 0.

Proof. It is easy to verify that

2T (B), Tf B IF Bk = 2(f'B), fBNxITS By
1f B ’
so it suffices to show the numerator is non-negative, or equivalently
9(B) = (Tf'B), TF BN ILf BIX = (f' B FBNxITF (BT = 0. (3.22)
From (2.2) and (2.4) we have the following identities:

g'(B) =

(TF'B), TfB)y = —lIlfFBI: — BUB), fF(B)x, (3.23)
(f'B), FBx =—=ITF By — BIL B)llx- (3.24)
Substituting them into (3.22), we derive
9(B) = (ITFBE+BILBIUTL BT+ BIL B — If Bk (3.25)

But using the Cauchy—Schwarz inequality, we have by (3.23)

LFBIX < ITFBIITF By +BIL Bl Bl
Taking squares on both sides and then applying the Cauchy—Schwarz inequality leads to

Lf B < 2BITF B NTFB Iy F Bl f By + 1TL BINTF B
+ B BN BIE < BATL BN LB +ITLB RIS B
+ITFBINTL B + B2 BN By
= TFBI} +BILBIATL B +BIF B,
which, together with (3.25), implies ¢(8) > 0. [l

Lemma 3.2. Forany B > 0, we have h'(8) > 0.
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Proof. We rewrite h(8) as h(B) = £(B)n(B), where
175 BT +BILF B

= = 3.26
£(B) TR g(B)+B (3.26)
and
nB) = ITfBI3 + Bl f B (3.27)
By (3.23), we have
n'(B) =2(Tf'(B), TF By +2B(f B, FBNx + I fBIx = =1L B)- (3.28)
Therefore

W (B) = £ (B)nB) +EB)N' (B)
ITFBIy +BIf Bk

=B+ DT 24 2y _ 2

& B+ DUTLBIT +BIFBIY) AL £ Bk
=gBUTLBIE+BIFBIZ), (3.29)
which implies #'(8) > 0 by lemma 3.1. (|

Lemma 3.3. Forany B > 0, we have ¢’(8) < 0.

Proof. We rewrite g () as

B
= 1 —_—
q(B) n(ﬂ)( + g(ﬂ))

where 1(f) is as in (3.27). Then a straightforward computation together with (3.28) gives

4B =n'(B)+ n(B)+pn'(B)  Bn(B)g'(B)

0] g*(B)
B BUTLBI+BILL B
B g2 (B)
which completes the proof by lemma 3.1. (|

4. An improved two-parameter algorithm

In this section, we first show the solvability of the approximate Morozov equation (3.17) and
then propose an improved two-parameter algorithm.
We denote u = }ng \Tf — Z°|ly. If the error-free data z is obtainable, i.e. there exists
€

some f* € X such that Tf* = z, then u < §. Without loss of generality, we assume

0< <3, w< 112y 4.1)
One can show (cf [10]) that
. _ l 2 . 2 —
Jim Fg)y =32, Jim BB =0, (4.2)

based on which we obtain for ¢(f), see (3.21), that

. 2
lim ¢(B) = I12°lly — n* (4.3)
p—0+
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For y € [1, o], we introduce two functions of S as follows:
G(B)=F(B)+(B" —BF'(B), 4.4)
Gi(B) = me(B) + (B” — Bym(B), (4.5)
then we can show the following result about the solvability of the approximate Morozov

equation (3.17).

Theorem 4.1. Assuming that G(Bx) > 8/2 and By is small enough, then there exists a unique
solution By to (3.17) and G (Brs1) < 382

Proof. By (3.4), (3.5), (4.4) and (4.5), we have

Gr(Br) = G(Br)- (4.6)
From (3.18), (3.16) and the definition of ¢ (8), we know
G(0) = 3112’11y — Sa(Bo), @.7)

which together with lemma 3.3 and equation (4.3) indicates G4 (0) < %82 when gy is very close
to zero. Therefore, By is well defined whenever f; is small enough. Moreover, it follows
from (3.19) that

G (B) = yB" 'mi(B) + (B — Bym{(B) > 0, B € (0, 1]. (4.8)
This monotonicity of G¢(8) implies Br+1 < Br. To show G(Bi+1) < %82, noting (4.6) and

Gr(Brs1) = %82, it is sufficient to prove G+ (Bi+1) < Gr(Br+1). By direct computation we
have

R h(Br+1) oy
Gir1(Brs1) = 2||Z Iy e +g(ﬂk+1))2{g(ﬁk+l) + 2Bkt — Byl (49)
_Los2 o hBY _ g
Gr(Brs1) = 2||Z Iy 2B +g(’3k))2{g(ﬂk) +2Bis1 — Bisr ) (4.10)

Consider the following function with @ = Bj41:

_ hB)(g(B) +2a —a”)
@(p) = @B +a) . B € (Br+1, Pr)- (4.11)

The desired result then follows if we can show that ¢ () is decreasing.
In fact, by the definition of g(8), h(8) and (3.29), we have
h(B) = £ (B (2(B) + ), W) = If(Bxe (B &)+ B). (4.12)
Then by direct computation and rearrangement, we obtain
o(B) = ILfBIIXg (B (B)+B)
(8(B) +a)’
Among the three terms in the brackets, the first one is negative and the rest are linear functions

of B. The linear function is decreasing due to 2a¥ — 3a < O and its value at § = a is
aa? —3a)+aa—a”) = a(a¥ —a) < 0. Therefore ¢’'(B) < 0, and ¢(p) is decreasing. [

{(a¥ — B)g(B) + B(a¥ —3a) +a(2a — a”)}. (4.13)

Theorem 4.1 indicates that the solution to the approximate Morozov equation (3.17) is
guaranteed only when Sy is sufficiently small. Our numerical experiments also confirm this
observation, and we found that only when the starting value By is of the same magnitude as
the true solution to the Morozov equation (2.8) does B; exist. That is, the two-parameter
algorithm IT is only a locally convergent algorithm, and moreover, as analysed in theorem 4.1,
By is already smaller than the true solution, so it is overestimated and is not regarded as a
reasonable regularization parameter in practical applications.
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4.1. An improved two-parameter algorithm

Next, we propose an improved two-parameter algorithm, which can preserve the nice properties
of the new model function (3.16) but also achieve a global convergence. For this, we replace
the function G, () by the following relaxation form:

Gi(B) = Gk (B) + au(Gi(B) — Gk (B))- (4.14)

It is important to observe that the sign of the second term in (4.14) is determined by the sign
of ay as G (B) < Gr(B) for B € [0, Bi]. ok should lie in a range such that the approximate
Morozov equation

Gr(B) = 38

always has a unique solution, or equivalently, if G(0) < 8%/2. This suggests we should
choose ¢y, as follows:

G (0) = a8, V& e [0, ). (4.15)
Combining (4.14) with (4.15), we can easily find
G(0) — & 82
G WO —a (4.16)

T Ge(Bo) — G (0)

From the monotonicity of G;(8) we know 1 + oy =
which implies

G,(B) > 0. (4.17)

G()—a 8

102
GG > Oaslongas G(By) > 387,

So Gy (B) preserves the monotonicity. With this new function Gy (B), we are now ready to
state our improved two-parameter algorithm.

Two-parameter algorithm I11
Given ffy > 0and e > 0, setk = 0.

(1) Solve (2.2) for f(B) and thus compute F'(Bx) and F’(B) = %Hf(ﬁk)lli.
Then update 7j and Cy from

1 502 Cr
= =F 4.18
mi(Bi) = 1%y + T+ fe (B, (4.18)
’ k ’
=——=F . 4.19
. (Br) Te+ B2 (Br) (4.19)
(2) Set the kth model function
I 52 Cr
= - —_— 4.20
mi(B) vl + To+p (4.20)
and solve for S, the approximate Morozov’s equation
Gr(B) = 182 4.21)

(3) STOP If Gk(ﬂk) < %82 or |Br+1 — Br| < &; otherwise set k := k + 1, GOTO (1).

Theorem 4.2. If Go(ﬂo) > %52, then the sequence {Bi} generated by the two-parameter
algorithm Il is well defined. Moreover, the sequence is either finite and terminates at some By
satisfying G(Br) < %82, or it is infinite and converges to the unique solution B* of the Morozov
equation (2.8) strictly monotone decreasingly with any initial value By lying in (8%, 1).
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Proof. It suffices to show that if G Br) < %52 is never reached then {8} converges to 8*. So
we assume

Gi(B) > 167 for all k. (4.22)
First, we have from (4.21), (4.22) and the monotonicity of ék(ﬁ ) (see (4.17)) that

Bre1 < Bk
second, the following relation is obvious by using (4.18), (4.19) and (4.14):

Gi(B) = Gr(B) = G(By). (4.23)
this, together with (4.22), implies

Bk > B* for all k. (4.24)

Therefore, the convergence of {8} follows from the monotone convergence theorem.
Let limy—, o B = B. We next show that g is the unique solution * to the Morozov
equation (2.8), namely G(B8) = %62. First, taking limits for 7 and Cy in (3.18), we obtain

=2
lim 7; = M =g(B), (4.25)
ke ILf Bk

2 5 22
lim ¢, — _ATrBIly +13||{(/3)||x) _ —111(3). 4.26)
ko 20£ (Bl 2

Then by (4.18) and (4.19) we know

G(Br+1) = Gra1(Bre1),
which, with (4.9) and (4.10), gives

G(B) = lim G(Buu) = lm Grar(Buur) = lim Gr(Buan). (427)
But it follows from (4.21) and (4.14) that
Gr(Bis1) + o (Gi(Bra1) — Gr(Br) = 3687 (4.28)

By the definitions of G¢(8) and oy, (4.25), (4.26) and the convergence of f;, we see
kliﬁ}c{Gk(,Bk+1) - Gi(B)} =0,

and that a; is convergent. This, along with (4.27) and (4.28) gives G(8) = %82. 1

5. Numerical examples

We now present some numerical experiments to show the effectiveness of the new algorithm,
the two-parameter algorithm III. The same three examples as in [11] are tested. All the
discretizations used here, e.g., finite element methods, integral quadrature rules, for the forward
problems and inverse problems are the same as in [11]. The algorithms will terminate when
[Bre1 — Bil/Bre1 < 1072, The initial guesses Py for all iterations are always taken to be 0.1,
a very rough initial value. In all the tables, B, stands for the optimal 8 value which achieves
the minimum for || f(8) — f*|l12(), and is computed as in [11]; By stands for the solution
of the exact Morozov principle (y = oo in (2.8), examples 1 and 2) and for the solution of
the damped Morozov principle (2.8) (example 3); the rows with TPA(1) and TPA(3) give the
number of iterations required by the two-parameter algorithms I and III respectively, the row
with Iter(3) contains the 8 values obtained at the third iterations of TPA(3); the row with
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Table 1. f,,;, B and the number of iterations with & = %

$ 0.01 0.03 0.05 0.07 0.1

Bopt 277x107%  990x107%  1.72x 1075  260x107° 434 x 1075
Iter(3) 363x10°  132x107° 240x 1075  334x107° 493 x 1070
Bu 362x 1070 125x107° 223x 1075 324x107° 474 x 1075
TPAG3) 4 6 6 6 6

TPA(I) 9 11 14 15 16

Iter(KZ) 4 4 5 5 5

Iter(KZ) gives the number of iterations required by the combined algorithm proposed in [11],
namely the locally convergent quasi-Newton’s method with the initial guesses from the second
iterates of the two-parameter algorithm I (these numbers also count two iterations from the
two-parameter algorithm, so are different from the numbers shown in [11] by 2).

Example 1. Consider the following two-point boundary value problem:

—(q(X)uy)x = f(x) in (0, 1), with u(0) = u(1) = 0. (.1
We take the coefficient function ¢ (x) and the observation data z of u as
q(x) = e, 2= u(f*) = e *sin(rx),

then the exact source term f(x) which is to be recovered can be obtained from (5.1):
f* = —qee “{mcos(mx) — sin(wx)}+ge *{2mcos(mx) + (m? — 1) sin(wx)}.

For the convenience of readers’ numerical verifications, we take the following observation data
with the sinusoidal noise:

2(x) = z(x) + 8 sin(1.57(2x — 1)).

The results are listed in table 1, starting with a very poor initial value Sy = 0.1. We can see
from the table that the new two-parameter algorithm TPA(3) converges much faster than the
two-parameter algorithm TPA(1), and with almost the same speed as the Iter(KZ) method. In
fact, from the results in the row with Iter(3), one can find that the S values obtained at the third
iterations of TPA(3) are already acceptable.

Example 2. Consider the following two-dimensional elliptic problem:

=V - (qx,y)Vu) +c(x,y)u = f(x,y) in 2, (5.2)
ou
— =0 on 0%. (5.3)
on

We take the coefficient functions g (x, y), c(x, y) and the unperturbed observation data as
g, y) =€, el y) =" u(f*) = cos(rx)cos(ry).

For the convenience of readers’ numerical verifications, the noisy data are taken to be of
the sinusoidal form

P, y) = ulx, y)+8sin(1.57(2x — 1)) sin(1.57(2y — 1)).

The exact source term f(x, y) to be recovered is the right-hand side function of equation (5.2)
using the given coefficients g (x, ), c(x, y) and the exact observation u(x, y). The numerical
results are shown in table 2, starting with a very poor initial value Sy = 0.1. We can see from
the table that the new algorithm TPA(3) converges much faster than TPA(1), and even faster
than the Iter(KZ) method. In fact, from the results in the row with Iter(2), one can find that
the B values obtained at the second iterations are already acceptable.
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Table 2. 8, B and the number of iterations using & = %

$ 0.01 0.03 0.05 0.07 0.1

Bopt 121 x10°° 381 x10% 685x10° 098x1075 1.39x 1075
Iter(2) 0.99x 107 370x107° 6.93x10° 1.05x 1075 1.64 x 1075
Bu 1.02x107% 327x107° 555x10°% 0.78x 1075 1.11x 1073
TPAG3) 2 3 3 3 4

TPA(l) 5 6 7 8 8

Iter(KZ) 5 5 6 5 5

Table 3. 8, By and the number of iterations with y = 1.3.

5 0.01 0.03 0.05 0.07 0.1

Bopr  430x 1075 134x 107 230x107* 333x107* 502x107*
By 336x107°  1.81x107* 395x107* 6.59 x 107*  1.14 x 1073
Iter 3 3 3 3 3

Table 4. The number of iterations with different y values.

y\é 0.01 0.03 0.05 007 0.1

1.0 2 2 2 2 2
1.3 3 3 3 3 3
1.5 3 3 3 3 3
20 4 4 4 4 4
0 4 4 4 4 4

Example 3. Consider the integral equation arising from the irrigation canal problem [7]

h
z(h) =2 ; V2g(h —y) f(y)dy. (5.4)

We want to reconstruct f(y) from the measurements of z(%). We take the true function

() =e Y @mcos(my) + (1> — 1) sin(ry))
and the observation function z(h), h € [0, 1], was computed using formula (5.4). Then we
add noise to the observation data as follows:

2 (h) = z(h) + 8 sin(3rh).

The numerical results of the two-parameter algorithm IIT are shown in table 3 when the damped
Morozov principle with y = 1.3 isused; the number of iterations required for different y values
are summarized in table 4.

More numerical results regarding the three examples discussed in this section can be found

in [11], including some results and algorithms regarding the prediction of the noise level é.

Acknowledgments

The work of J Zou was partially supported by the Hong Kong RGC grants CUHK4244/01P
and a Direct Grant of CUHK. The work of J Xie was supported by State Key Laboratory of
Software Engineering, Wuhan University, People’s Republic of China.



An improved model function method for choosing regularization parameters in linear inverse problems 643

References

(1]
(2]

[3]

[4]
(3]

6]
(7
(8]
9]

[10]
[11]

[12]
[13]

Baumeister J 1986 Solutions of Inverse Problems (Braunschweig: Vieweg)

Cheng J and Yamamoto M 2000 One new strategy for a priori choice of regularizing parameters in Tikhonov’s
regularization Inverse Problems 16 L31-8

Dennis J E and Schnabel R B 1983 Numerical Methods for Unconstrained Optimization and Nonlinear Equations
(Englewood Cliffs, NJ: Prentice-Hall)

Engl H W, Hanke M and Neubauer A 1996 Regularization of Inverse Problems (Dordrecht: Kluwer Academic)

Engl HW, Kunisch K and Neubauer 1989 A convergence rates for Tikhonov regularization of nonlinear ill-posed
problems Inverse Problems 5 523—40

Engl HW and Zou J 2000 A new approach to convergence rate analysis of Tikhonov regularization for parameter
identification in heat conduction Inverse Problems 16 1907-23

Groetsch C W 1993 Inverse Problems in Mathematical Sciences (Braunschweig: Vieweg)

Hansen P C 1992 Analysis of discrete ill-posed problems by means of the L-curve SIAM Rev. 34 561-80

Ito K and Kunisch K 1992 On the choice of the regularization parameters in nonlinear inverse problems SIAM
J. Optim. 2 376-404

Kunisch K 1993 On a class of damped Morozov principles Computing 50 185-98

Kunisch K and Zou J 1998 Iterative choices of regularization parameters in linear inverse problems Inverse
Problems 14 1247-64

Louis A K 1989 Inverse und Schlecht Gestellte Probleme (Stuttgart: Teubner)

Morozov V A 1984 Methods for Solving Incorrectly Posed Problems (New York: Springer)



