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Abstract. This paper is concerned with the unique determination of a three-
dimensional polyhedral bi-periodic diffraction grating by the scattered electro-

magnetic fields measured above the grating. It is shown that the uniqueness
by any given incident field fails for seven simple classes of regular polyhedral
gratings. Moreover, if a regular bi-periodic polyhedral grating is not uniquely
identifiable by a given incident field, then it belongs to a non-empty class of the
seven classes whose elements generate the same total field as the original grat-
ing when impinged upon by the same incident field. The new theory provides a
complete answer to the unique determination of regular bi-periodic polyhedral
gratings without any restrictions on Rayleigh frequencies, thus extending our
early results (2011) which work under the assumption of no Rayleigh frequen-
cies.
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1. Introduction

This is a continuation of our previous work [9] on the unique determination of a
bi-periodic diffraction grating in three dimensions by the scattered electromagnetic
fields corresponding to some incident plane waves. Throughout the paper, a grating
structure S is said to be bi-periodic of period Λ = (Λ1,Λ2) if for any point x =
(x1, x2, x3) ∈ S, the point (x1+n1Λ1, x2+n2Λ2, x3) also belongs to S for all integers
n1 and n2. We consider such a periodic structure S ruled on a perfect conductor.
The medium above S is assumed to be homogenous with a constant dielectric
coefficient ε0 > 0 and magnetic permeability μ0 > 0, and the corresponding region
is denoted by Ω. Consider a time-harmonic electromagnetic wave Ei(x) = seiq·x

(with time dependence e−iωt) incident on the grating structure S from above. Due
to the solenoidal feature of Ei and its incidence to S from above, the vectors s and
q are orthogonal, and the incident direction q can be written as q = (α1, α2,−β)
with β > 0. Accordingly, the wave number k and the frequency ω are given by

k = |q| , ω = k/
√
ε0μ0 .

For subsequent analysis, we introduce a special vector, α = (α1, α2, 0), which is
defined by the first two components of q and is parallel to the x1x2-plane.

Let E be the total field, the sum of the incident field Ei and scattered field Es.
Then E satisfies the following vector-valued Helmholtz system:

ΔE + k2E = 0 in Ω,(1)

divE = 0 in Ω,(2)

ν × E = 0 on S,(3)

where ν is the unit outward normal vector to the surface S.
Noting the bi-periodic structure of the grating, we are only interested in the

quasi-periodic solutions E to the system (1)-(3), i.e. e−iα·xE is periodic respectively
with period Λ1 in the x1-direction and Λ2 in the x2-direction; see [11], [15]. We
also impose a radiation condition in the x3-direction by assuming that the scattered
field Es is composed of bounded outgoing plane waves. Then it follows from the
knowledge of a fundamental solution to the periodic Helmholtz equation (cf. [11],
[15]) that E can be expressed in the form:

(4) E(x) = Ei(x) +
∑
n∈Z2

Aneiq
n·x for all x in R3 above the highest point on S,

where the An’s are complex vectors, called Rayleigh coefficients, and the qn’s are
wave vectors given by

(5) qn = αn + α+ (0, 0, βn)

with αn = (2πn1/Λ1, 2πn2/Λ2, 0) and

(6) βn =

{ √
k2 − |αn + α|2, k2 ≥ |αn + α|2 ,

i
√
−k2 + |αn + α|2, k2 < |αn + α|2 .

We readily observe from (6) that there are only a finite number of propagating
plane waves in the scattered field, namely those modes in (4) corresponding to
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which the components βn are real; while the remaining modes decay exponentially
along the x3-direction.

For the sake of convenience, we introduce two index sets,

Ξ = {n ∈ Z2; βn > 0} , Ξ∗ = {n ∈ Z2; βn = 0}.
Note that the set Ξ∗ may not be empty. We denote by Ep the propagating field,
namely, the part of the total field of E in (4) with those exponentially decaying
modes removed:

(7) Ep(x) = Ei(x) +
∑
n∈Ξ

Aneiq
n·x .

Different from the total field E in expression (4), the propagating field Ep can be
extended to the whole space R3 naturally, due to the finite number of terms in (7).
This fact will be used repeatedly in our analysis.

Given a periodic structure S and an incident field Ei, the forward diffraction
problem is to solve system (1)-(4) for the total field E, which has been extensively
studied in the literature; see, e.g., [6], [7], [10], [15], [26]. It is known that the solu-
tion to the forward problem is not unique in the case of resonance. Throughout this
work we assume the existence of a solution to the forward problem (1)-(4), though
the solution may not necessarily be unique. Indeed a non-uniqueness example can
be drawn in Subsection 3.6.

This work is mainly concerned with an inverse problem associated with the
system (1)-(4). For a given incident wave Ei, we assume that the total field E can
be measured on a plane Γb above the structure S. Our aim is to find out how many
incident waves should be sent so that measurements of the resulting total fields
on the plane Γb can uniquely determine the shape and position of the structure
S. It is known that global uniqueness with one incident wave is generally not true
[9]. For general periodic grating profiles, the global uniqueness by one or several
incident waves remains open. However, when periodic structures are restricted to
some special classes, significant progress has been achieved in two dimensions; see
[3], [4], [8], [11], [17], [18], [19], [20], [21], and a review of such references in [9].

The situation is much more complicated in three dimensions, for which some
important results were made in [9]. For the description of those results, we introduce
a new concept. We say that a grating is regular if its profile S satisfies the following
convexity condition: for any x ∈ S, the ray γ given by γ(t) = x + te3 for t > 0
lies in the set Ω ∪ S, and γ ∩ S is either empty or an interval. Here we recall that
Ω is the domain above S. This convexity condition is not stated explicitly in [9],
but is assumed in the arguments there; see the proof of Theorem 4.1 in [9]. When
gratings are restricted to such regular bi-periodic polyhedral types, and under the
condition that Rayleigh frequencies do not occur, namely the following relation

(8) k2 �= |αn + α|2

holds for all n ∈ Z2, it was shown in [9] that corresponding to each incident plane
wave, there are three simple classes of unidentifiable gratings such that any regular
bi-periodic polyhedral grating can be uniquely determined by the incident field if
and only if it belongs to none of the three classes.

Different from all existing results, the theoretical development in [9] is based on
the following essential observations and insights: if S is a regular polyhedral grating
unidentifiable by the incident field Ei, then the set of perfect planes associated with
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the total field E is not empty, and so is the set of perfect planes associated with
the propagating field Ep. But it is found that those wave vectors qn which form Ep

in (7) possess some essential symmetry. It is this symmetric property, combined
with some application of group theory and other facts about the coefficients An

appearing in Ep that enables the unique determination of the propagating field Ep

and the structure S.
This paper is devoted to the unique determination of regular bi-periodic polyhe-

dral structures for the general and more challenging case where Rayleigh frequencies
are allowed to occur, i.e., condition (8) is not assumed. From now on, we shall re-
strict our study to bi-periodic gratings which are regular and are of polyhedral
type. To the best of our knowledge, this work represents the first attempt to study
inverse scattering by periodic structures in the resonance case in three dimensions,
while the two-dimensional case was investigated in [19], [20]. Although the basic
analytical methodologies here follow the ones in our early work [9], the presence of
Rayleigh frequencies will lead to four new and more complicated classes of unidenti-
fiable gratings, and this requires much more delicate and technical derivations and
treatments as well as some new analysis tools. Moreover, for each new class, except
for the last one, we are able to construct a series of concrete examples of grating
structures.

The rest of the paper is organized as follows. In Section 2, we introduce some
notation, concepts, and tools which are key to subsequent analysis. In Section 3,
we show how to start from one perfect plane of the total field to find all possible
gratings to which the global uniqueness fails. Finally, we establish the main result
about the uniqueness of our inverse scattering problem in Section 4.

2. Preliminaries

We begin with the following conventions and notation:

(1) For any vector b ∈ R3, its norm is denoted by ‖b‖. For convenience, a
point r ∈ R3 is often viewed as the vector originating from the origin
which directs to the point r.

For any r > 0 and y ∈ R3, we define Br(y) = {x ∈ R3; ‖x− y‖ ≤ r}.
(2) A vector r ∈ R3 is said to be parallel to a line l in R3 with a tangential

unit vector ν, if r ‖ ν. For a plane Π in R3, we denote by νΠ the unit
normal vector to Π . A vector r is said to be parallel to a plane Π in R3, if
r ⊥ νΠ.

For any two parallel planes Π and Π∗ in R3, their distance is denoted
by dist(Π,Π∗).

(3) For any c ∈ C3 and r ∈ R3, the dot product c · r = 0 means Re(c) · r = 0
and Im(c) · r = 0. The same conventions will be made for relations c || r,
c× r and c ⊥ Π for any plane Π in R3.

(4) Let Π be a plane in R3; we denote by RΠ the reflection with respect to
plane Π in R3. The reflection RΠ is always understood to be acting on
points in R3.

Let Π′ be the plane that passes through the origin and is parallel to Π,
and R′

Π be the derivative of RΠ, namely the linear part of RΠ. One can see
that R′

Π is the reflection with respect to the plane Π′. For a point r ∈ R3,
R′

Πr can also be viewed as the reflection of the vector that initiates from the
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origin and points to the point r, with respect to the plane Π′. By natural
extension, we apply R′

Π to complex vectors in C3 as well.
(5) For a set A, we denote by |A| the number of elements in A.
(6) Let G be a group which acts on a set A. Let a ∈ A; then G{a} means the

orbit of a under the action of the group G.

The following concepts about perfect sets and planes are important tools to our
subsequent analysis.

Definition 2.1. Let F : O → C3 be a given analytic complex vector-valued func-
tion in a domain O ⊂ R3. PF is called the perfect set of F if

PF = {x ∈ O; νΠ × F |Π∩Br(x)∩O= 0 for some r > 0

and plane Π passing through x}.
The points in PF are called perfect points of F .

For any x ∈ PF , let Π be a corresponding plane involved in the definition of PF ,

and Π̃ the connected component of Π∩O containing x. Then by the analyticity of

F and analytic continuation, we have νΠ × F = 0 on Π̃. In the sequel, such Π̃ will
be referred to as a perfect plane of F . We also use PF to denote the set of perfect
planes of F whenever there is no confusion caused.

Note that the electric field E to the system (1)-(3) is analytic in the domain Ω,
which leads to the important reflection property of E about a perfect plane; see
[24].

Lemma 2.1 (Reflection principle). Let O be a domain in R3 which is symmetric
with respect to a plane Π, and E be an electric field in O satisfying the vector-valued
Helmholtz equations (1)-(2). Assume that Π̃ is a connected open subset in Π ∩ O.

Then Π̃ is a perfect plane of E if and only if the following relation holds:

E(x) +R′
Π(E(RΠ(x))) = 0 in O.(9)

Moreover, if Γ ⊂ O or Γ ⊂ ∂O is a perfect plane of E, then RΠ(Γ) is also a perfect
plane of E.

3. Classification of unidentifiable periodic structures

3.1. Observations and the first class. We recall some basic notation from Sec-
tion 1.

Ei(x) = seiq·x: the incident electric field;
E(x): the total field;
S: the grating profile of bi-period Λ. S is also often referred to as the grating

for the purpose of simplifying notation;
Γb: the plane {x3 = b} above the grating S, on which the total field E is

measured;
Ωb: the domain above the plane Γb.
We also introduce

Ξ0 = {n ∈ Ξ; An �= 0} , Q = {q} ∪ {qn}n∈Ξ0
,(10)

Ep(x) = seiq·x +
∑
n∈Ξ0

Aneiq
n·x,(11)

P = {Π; Π is a perfect plane of Ep} .(12)
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Now for the incident field Ei, we intend to find all the regular bi-periodic poly-
hedral structures which cannot be identified by Ei. We start with an assumption,
which is the first fundamental fact to be established in the demonstration of our
main global uniqueness result in Section 4.

Assumption 1. There exists a perfect plane of E, which intersects Ωb and is not
perpendicular to the plane {x3 = 0}.

The aim of this section is to show that under Assumption 1, there are seven cases,
in each of which we can determine the propagating field Ep, the set of perfect planes
P, and the structure of grating S simultaneously. This leads to seven classes of
unidentifiable regular polyhedral structures in correspondence to each given incident
field Ei.

Next we recall several important observations and results in [9].

Lemma 3.1. If Π is a perfect plane of E, then Π is also a perfect plane of Ep.

Lemma 3.1 presents an obvious advantage to working with the perfect planes of
the propagating field Ep over the ones of the total field E: the perfect planes of Ep

are truly two-dimensional planes in R3.

Proposition 3.1. Each vector in Q except q has a non-negative x3-component.

Proposition 3.2. For each perfect plane Π in P, we have R′
ΠQ = Q, RΠP = P.

Moreover, both maps R′
Π: Q → Q and RΠ: P → P are bijective.

Lemma 3.2. Let F = teip·x be one of the Fourier modes of Ep in (11). Then the
following two statements hold:

1. If Π is a perfect plane in P such that R′
Πp = p, then t ⊥ Π.

2. If Π and Π∗ are two perfect planes in P such that R′
Πp = R′

Π∗p, then Π ‖ Π∗.

We now begin the process of finding all seven classes of unidentifiable gratings
corresponding to the incident field Ei = seiq·x. Our approach is based on the
analysis of the set of perfect planes of Ep, namely P. We know that P is not empty
by Assumption 1 and Lemma 3.1, and that planes of P are all true planes in R3.

Clearly P may have the following three cases:

Case 1. Any two planes in P are parallel to each other.

Case 2. There are at least two planes in P that are not parallel to each other;
and the intersection line between any two intersecting planes in P is parallel to the
plane {x3 = 0}.

Case 3. There are at least two planes in P that are not parallel to each other; and
there exists an intersection line between two intersecting planes in P, which is not
parallel to the plane {x3 = 0}.

Case 1 was studied in [9], which yields the first unidentifiable class of polyhedral
gratings:

S1(q, r) =
{
all planes which are parallel to {x3 = 0} and have equal distance

π/β between each other, with r lying on one of the planes
}
,

where r is an arbitrary point in R3.
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According to [9], any two gratings belonging to the class S1(q, r), say S1 and S2,
are not distinguishable by the incident wave Ei, since the total fields generated by
the incident wave Ei in the domain above S1 and S2 respectively are exactly the
same.

Cases 2 and 3 above will be studied in detail in Subsections 3.2-3.6 and 3.7-3.9,
respectively.

3.2. Preparations for Case 2. In this section we study Case 2 classified in Sub-
section 3.1. In this case, there are at least two planes in P that are not parallel
to each other, and the intersection line between any two intersecting planes in P
is parallel to the plane {x3 = 0}. As we shall see, this case leads to five classes of
unidentifiable gratings.

Let Π0 and Π1 be two planes in P which are not parallel to each other. We
further introduce the following notation:

L: the intersection line between Π0 and Π1;
r: an arbitrary but fixed point on L;
ν: the unit tangential vector along L;
Γ: the plane in R3, which passes through the origin and has a normal ν. For

convenience, we assign an orientation to Γ: its normal ν and Γ form a right-handed
coordinate system.

PΓ: the projection from R3 onto Γ.
Tθ: the rotation on the plane Γ about the origin by angle θ. Clearly Tθ can also

be viewed as a rotation in the whole space R3 about the axis fixed to be the line
passing through the origin and parallel to direction ν. In both cases, the rotation is
understood to be counterclockwise with respect to the assigned orientation on the
plane Γ.

We remark that ν ‖ {x3 = 0}. As a result, Γ is perpendicular to the plane
{x3 = 0}. Viewing (ν,Γ) as a coordinate system, we can write all vectors in Q as
follows:

(13) q = τν + PΓq, qn = τnν + PΓq
n for all n ∈ Ξ0,

where τ and τn are constants. It is important to observe that (Lemma 3.4, [9]):

for any p ∈ Q, PΓp �= 0.

Define

P0 = {Π; Π is a perfect plane of Ep and passes through the line L},
G = the group generated by reflections {R′

Π; Π ∈ P0}.

Lemma 3.3 (cf. [9]). The set P0 and group G have the following properties:
(1) The number of perfect planes in P0 is finite. In fact |P0| ≤ |Q|.
(2) The angles formed by any two neighboring planes in P0 are all equal; G

consists of |P0| reflections and |P0| rotations, and has the structure of a dihedral
group of order 2|P0|.

We remark that the proof of Lemma 3.3 is independent of the assumption that
L is parallel to the plane {x3 = 0}. Thus its conclusions still hold in the case
when L is not parallel to the plane {x3 = 0}. The same holds for the subsequent
Lemma 3.4, (1)-(3).

In the sequel, we denote by G∗ the subgroup of G which consists of all its
rotations. It is clear that |G∗| = |P0|. Note that the identity element of both
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the groups G and G∗ is the rotation by angle 2π. When the domain on which
transformations in G act is restricted to the plane Γ, G reduces to a dihedral group,
which acts only on vectors lying on the plane Γ.

The following important properties of groups G and G∗ and the set P0 can be
derived in a similar way to the one in the proof of Lemma 3.6 in [9].

Lemma 3.4. The following statements hold:

(1) For any T ∈ G, TQ = Q and Tν = ν. For any qn ∈ G{q}, τn = τ .
(2) |{R′

Πq; Π ∈ P0}| = |G∗{q}| = |P0|.
(3) |G{q}| = 2|P0| or |G{q}| = |P0|. If |G{q}| = 2|P0|, there exists some

q1 ∈ G{q} such that G{q} = G∗{q}∪G∗{q1}; if |G{q}| = |P0|, then G{q} =
G∗{q} and there exists a plane Π in P0 such that R′

Πq = q. Moreover, these
results hold when q is replaced by any element in G{q}.

(4) If |G{q}| = 3, there exists at least one element in G{PΓq} whose x3-
component is negative.

(5) If |G{q}| = 4 (resp. |G{q}| > 4), there exist at least two elements in
G{PΓq} whose x3-components are non-positive (resp. negative).

With the help of set G{q}, Case 2 can be further divided into two subcases:

Case 2.1. Q = G{q}.

Case 2.2. Q �= G{q} .

For the sake of exposition, we assume that the angle between Π0 and Π1 is
the minimum one among all angles formed by intersecting planes in P. Here the
attainability of the minimum angle is guaranteed by Lemma 3.3. In fact, by Lemma
3.3 (2), the angle between any two intersecting planes in P can take only values of
the form π/m for some positive integers m. By Lemma 3.3 (1), we know that
m ≤ |Q|. Thus the set of angles formed by all pairs of intersecting planes in P is
finite and the minimum angle can then be realized.

Before we study Cases 2.1 and 2.2 in Subsections 3.3-3.6, we first introduce a
transformation that can simplify many of our subsequent derivations. To do so, we
fix a point r on the line L, and then introduce the following transformation by the
change of variables:

(14) x̂ = x− r.

In terms of the x̂-variable, the propagating field Ep(x) in (11) takes the form

Ep(x) = Ep(x̂+ r) = seiq·(x̂+r) +
∑
n∈Ξ0

Aneiq
n·(x̂+r) ≡ Êp(x̂) .

By setting ŝ = seiq·r and Ân = Aneiq
n·r, we can write Êp(x̂) as

(15) Êp(x̂) = ŝeiq·x̂ +
∑
n∈Ξ0

Âneiq
n·x̂.

A significant advantage of the x̂-variable over the original x-variable can be seen
from the following lemma (see Lemma 3.8, [9]), where we write ŝ for Â0 and q for
q0.

Lemma 3.5. Let Π be a plane passing through the intersection line L between Π0

and Π1. Then Π ∈ P0 if and only if R′
ΠQ ⊂ Q and the relation R′

ΠÂ
l + Âm = 0

holds whenever R′
Πq

l − qm = 0 for ql, qm ∈ Q.
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The next result will facilitate us to divide our analysis of Case 2.1 into different
possible subcases.

Lemma 3.6. Case 2.1 allows only four subcases to occur:

Case 2.1.1. |P0| = 2 and |G{q}| = 4.

Case 2.1.2. |P0| = 3 and |G{q}| = 3.

Case 2.1.3. |P0| = 4 and |G{q}| = 4.

Case 2.1.4. |P0| = 2 and |G{q}| = 2.

Proof. Since the intersection line L ‖ {x3 = 0}, the x3-component of ν is zero.
Using the decomposition (13) and Proposition 3.1, we see that all vectors inG{PΓq},
except PΓq, have non-negative x3-components. Then our lemma follows directly
from Lemma3.4 (3)-3.4 (6). �

We shall handle the above four Cases 2.1.1-2.1.4 respectively in Subsections 3.3-
3.5.

3.3. Cases 2.1.1-2.1.2: The second and third classes of unidentifiable grat-
ings. Cases 2.1.1-2.1.2 were studied in [9], which leads to the second and third
classes of unidentifiable gratings corresponding to the given incident field Ei. To
describe the second class, we specify the following notation:

r: a point in R3;
Γ: the plane which passes through the origin with normal s× e3;
Π0: the plane which passes through r with normal s;
Π1: the plane which passes through r with normal (s× e3)× s.
Then the set of perfect planes of Ep in (11) is given by

P=
{
plane Π; Π ‖ Π0

}
∪

{
plane Π; Π ‖ Π1, dist(Π,Π1) =

mπ

‖PΓq‖
for somem∈ N

}
,

which gives rise to the second class of unidentifiable gratings corresponding to the
incident Ei:

S2(s, q,Λ, r) =
{
regular gratings with profile S, which are Λ-periodic polyhedral

structures such that faces of S lie on planes in P
}
.

To describe the third class of unidentifiable gratings, we introduce the following
notation:

r, Γ, Π0: the same as above;
L: the line passing through r with direction s× e3;
Π1, Π2: planes which contain line L and form an angle of π/3 and 2π/3 with

Π0, respectively.
Then the set of perfect planes of Ep in (11) is given by

P =
{
plane Π; ∃j ∈ {0, 1, 2} such that Π ‖ Πj , dist(Π,Πj)

=
2mπ√
3‖PΓq‖

for some m ∈ N
}
,
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which gives the third class of unidentifiable gratings corresponding to Ei:

S3(s, q,Λ, r) =
{
regular gratings with profile S, which are Λ-periodic polyhedral

structures such that faces of S lie on planes in P
}
.

We know from [9] that the class Sk(s, q,Λ, r) (k = 2, 3) corresponds to a unique
electric field Ep (see [9] for the formula for Ep in the respective cases), which solves
the direct scattering problem (1)-(4) for all gratings in Sk. Thus the system (1)-(4)
has a solution E = Ep, which is a total field without evanescent modes. We remark
that since we may not have uniqueness for the forward problem, we do not exclude
the existence of other solutions with evanescent modes. But this fact does not affect
our conclusion that any two gratings in Sk cannot be distinguished by the incident
field Ei(x) = seiq·x. Thus, the following results hold.

Lemma 3.7. When Case 2.1.1 (resp. Case 2.1.2) happens, the corresponding
grating S belongs to S2(s, q,Λ, r) (resp. S3(s, q,Λ, r)) for some point r ∈ R3.
Furthermore, all gratings in S2(s, q,Λ, r) (resp. S3(s, q,Λ, r)) can generate the same
total field E = Ep as the grating S.

3.4. Case 2.1.3: The fourth class of unidentifiable gratings. In this sub-
section we consider Case 2.1.3 stated in Lemma 3.6, which will lead to the fourth
class of unidentifiable gratings corresponding to the given incident field Ei. We
first show that both the propagating field Ep and its perfect planes in P0 are all
uniquely determined by Ei.

Lemma 3.8. In Case 2.1.3, the following statements hold:

(1) s ‖ {x3 = 0}, L ‖ (s× e3).
(2) P0 consists of four planes. The first one is a plane which is perpendicular to

s, denoted by Π0. The other three planes are Π1 = Tπ/4Π0, Π2 = Tπ/2Π0,
Π3 = T3π/4Π0.

(3) The propagating field Ep(x) in (11) or Êp(x̂) in (15) can be written as

Ep(x) = s(eiq·x − eiq
2·x+(q−q2)·r) + Tπ/2s(e

iq1·x+(q−q1)·r − eiq
3·x+(q−q3)·r),

Êp(x̂) = ŝ(eiq·x̂ − eiq
2·x̂) + Tπ/2ŝ(e

iq1·x̂ − eiq
3·x̂),

where qj = Tjπ/2q, j = 1, 2, 3. Moreover, vectors q1, q3 ∈ Ξ∗.

Proof. The proof may be divided into three steps.

Step 1. We show that PΓq ‖ e3. By observing |G{q}|= |P0|, by Lemma3.4 (3) we
have that

Q = G{q} = G∗{q} = τν +G∗{PΓq} = τν + {PΓq, Tπ/2PΓq, TπPΓq, T3π/2PΓq}
= τν + {PΓq, Tπ/2PΓq,−PΓq,−Tπ/2PΓq}.

Recall that the x3-component of ν is zero. By Proposition 3.1, the x3-component
of PΓq should be zero as well, or Tπ/2PΓq ‖ {x3 = 0}. It follows that PΓq ‖ e3.

Step 2. We determine P0. Note that |G{q}| = |P0|. By Lemma3.4 (3), there is
a plane in P0, denoted by Π0, such that R′

Π0
q = q. Since R′

Π0
ν = ν, we see

R′
Π0

PΓq = PΓq. Thus PΓq ‖ Π0. This, combined with the result PΓq ‖ e3 in Step 1,
gives Π0 ⊥ {x3 = 0}. But according to Lemma 3.2, R′

Π0
q = q also implies s ⊥ Π0,

consequently s ‖ {x3 = 0}. The direction of the line L or the vector ν is hence
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determined. Indeed, since s ⊥ Π0 and ν ‖ Π0, we have ν ⊥ s. This together with
ν ⊥ e3 yields ν ‖ (s× e3), which determines ν, hence the direction of the line L.

Now, by Lemma3.3 (2) we know that planes in P0 are determined as well: in
addition to Π0, the other three planes are formed by rotating Π0 by angles π/4,
π/2 and 3π/4 respectively about the axis L.

Step 3. We determine the coefficients of Ep in (11) or Êp in (15). By Lemma3.4 (2),
we have

Q = {R′
Πq : Π ∈ P0} = {R′

Π0
q, R′

Π1
q, R′

Π2
q, R′

Π3
q} .

Let qj = R′
Πj

q, j = 1, 2, 3. Then

qj = τν + Tjπ/2PΓq = Tjπ/2q, j = 1, 2, 3.

We can write Êp as

(16) Êp(x̂) = ŝeiq·x̂ + Â1eiq
1·x̂ + Â2eiq

2·x̂ + Â3eiq
3·x̂.

Using Lemma 3.5 and the relations qj = R′
Πj

q for j = 1, 2, 3, we obtain

Â1 = −R′
Π1

ŝ, Â2 = −R′
Π2

ŝ, Â3 = −R′
Π3

ŝ .

These equalities can be further simplified by observing that ŝ ⊥ Π0 and ŝ ‖ Π2. As
a result,

Â1 = −R′
Π1

ŝ = Tπ/2ŝ, Â2 = −R′
Π2

ŝ = −s, Â3 = −R′
Π3

ŝ = −Â1,

which completes the proof of Lemma 3.8. �

The next lemma shows the determination of the perfect planes of Êp.

Lemma 3.9. Let Êp and Πj, j = 0, 1, 2, 3, be defined as in Lemma 3.8. Then:

(1) The set P is uniquely determined by the incident field Ei. Specifically, a
plane Π belongs to P if and only if there exists some j ∈ {0, 1, 2, 3} such
that Π ‖ Πj and the distance between Π and Πj equals mπ

‖PΓq‖ for j = 0, 2

and ‘m
√
2π

‖PΓq‖ for j = 1, 3, where m is some integer.

(2) Each face of the grating structure S lies on a plane in P.

Proof. Consider a plane Π ∈ P; we know R′
Πq ∈ Q by Proposition 3.2. It follows

from Step 3 of the proof of Lemma 3.8 that Q = {R′
Π0

q, R′
Π1

q, R′
Π2

q, R′
Π3

q}. Hence
we have R′

Πq = R′
Πj

q for some j ∈ {0, 1, 2, 3}. Now by Lemma 3.2 we deduce that

Π ‖ Πj . The rest of the proof can be carried out in the same manner as in the
proof of Lemma 3.7 of [9]. �

We are ready to define the fourth class of unidentifiable gratings. Let us first
recall some notation:

r: a point in R3;
L: the line passing through the point r with the direction s× e3;
Π0: the plane in R3 which passes through L and is perpendicular to the plane

{x3 = 0};
Π1, Π2, Π3: planes in R3 which pass through L and form an angle of π/4, π/2,

3π/4 respectively, with Π0.
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With the above notation, the set of perfect planes of Ep can be described by

P =

{
plane Π; ∃j ∈ {0, 1, 2, 3} such that Π ‖ Πj , and for

j = 0, 2, dist(Π,Πj) =
mπ

‖PΓq‖
for some m ∈ N,

for j = 1, 3, dist(Π,Πj) =
m′√2π

‖PΓq‖
for some m′ ∈ N

}
,

which leads to a new class of gratings unidentifiable by the incident field Ei = seiq·x:

S4(s, q,Λ, r) =
{
regular gratings with profile S, which are Λ-periodic polyhedral

structures such that faces of S lie on planes in P
}

for some point r ∈ R3. The results of this subsection can be summarized in the
following lemma.

Lemma 3.10. When Case 2.1.3 in Lemma 3.6 happens, the corresponding grating
S belongs to S4(s, q,Λ, r) for some r ∈ R3. Furthermore, all gratings in S4(s, q,Λ, r)
can generate the same total field E = Ep as the grating S.

Next we provide an example to show that the class S4(s, q,Λ, r) is not empty.

Example 1. Consider an incident field Ei = seiq·x, with s = e2 = (0, 1, 0) and
q = (α1, α2,−β) = (0, 0,−1) = −e3. Then we construct some concrete grating
profile belonging to the class S4(s, q,Λ, 0) for Λ = (Λ1,Λ2) = (0, 2π). Clearly, the
grating should be invariant along the x1-axis since the period is 0 in that direction.

First, we determine P0 and Ep according to Lemma 3.8. It is evident that the
intersection line of planes in P0 is the x1-axis, the plane Π0 is {x2 = 0}, and
the other three planes Π1, Π2, Π3 are generated by rotating Π0 counterclockwise
about the x1-axis by angles π/4, π/2, 3π/4, respectively. In addition, the field Ep

is determined by

Ep(x) = e2(e
iq·x − eiq

2·x) + e3(e
iq1·x − eiq

3·x)

with q1 = (0, 1, 0) = e2, q
2 = (0, 0, 1) = e3 and q3 = (0,−1, 0) = −e2. One can

easily check by the formulas (5)-(6) that q1 = q(0,1), q2 = q(0,0) and q3 = q(0,−1).
Second, we determine the set of perfect planes of the field Ep by Lemma 3.9.

We see that P consists of four sets of planes: the first two sets contain all planes
that are parallel to Π0 or Π2 with distance π between any two neighboring parallel
planes; the last two sets contain all planes parallel to Π1 or Π3 with the distance√
2π between any two neighboring parallel planes.
Third, we find some Λ-periodic structure in the set P. For each l ∈ Z, we denote

by L3l, L3l+1, L3l+2 the lines of forms {(λ, 2lπ, 0) : λ ∈ R}, {(λ, 2lπ+π, π) : λ ∈ R},
{(λ, 2lπ + π, 0) : λ ∈ R}, respectively. For each m ∈ Z, let Πm be the plane that
contains lines Lm and Lm+1, and let Fm be the part on Πm which lies between
lines Lm and Lm+1. Then it is easy to see that Πm belongs to P for all m ∈ Z and
that

⋃
m∈Z Fm forms a Λ−periodic structure in P.

Finally, we choose the above periodic structure to be our grating profile S in (3).
Since all faces of this structure lie on perfect planes of Ep determined in the first step
above, the field E = Ep solves the direct scattering problem (1)-(4) associated with
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the incident field Ei and the previously specified grating S. By making appropriate
shifts, one obtains infinitely many Λ−periodic structures in P, thus showing the
existence of infinitely many gratings in the class S4(s, q,Λ, 0). It follows that all
these gratings generate the same total field E = Ep, and hence cannot be identified
by the incident field Ei.

3.5. Case 2.1.4: The fifth class of unidentifiable gratings. In this subsection
we study Case 2.1.4 classified in Lemma 3.6, leading to the fifth class of unidentifi-
able gratings corresponding to the given incident field Ei. For this purpose, we first
show that both the propagating field Ep and the set P0 are uniquely determined
by the incident field Ei and the directional vector ν of the line L.

Lemma 3.11. If Case 2.1.4 happens, then:

(1) P0 consists of two planes, Π0 and Π1, which are perpendicular respectively

to vectors PΓq −
√
k2 − τ2(e3 × ν) and PΓq +

√
k2 − τ2(e3 × ν).

(2) The propagating field Ep in (11) or Êp in (15) can be written as

Ep(x) =seiq·x −R′
Π0

seiq
1·x+(q−q1)·r +R′

Π1
(R′

Π0
s)eiq

2·x+(q−q2)·r

−R′
Π1

seiq
3·x+(q−q3)·r,

Êp(x̂) =ŝeiq·x̂ −R′
Π0

ŝeiq
1·x̂ + R′

Π1
(R′

Π0
ŝ)eiq

2·x̂ −R′
Π1

ŝeiq
3·x̂,(17)

where q1 = τν +
√
k2 − τ2(e3 × ν), q3 = τν −

√
k2 − τ2(e3 × ν) and q2 =

τν − PΓq. Moreover, q1, q3 ∈ Ξ∗.

Proof. The proof may be divided into four steps.

Step 1. We determine elements of G{q} in terms of q and ν. Note that |G| =
|G{q}| = 4. By Lemma 3.4 (3), we can find q1 ∈ G{q} such that G{q} = G∗{q} ∪
G∗{q1}. Since |G∗| = |G|/2 = 2, we have G∗ = {Tπ, Id}. Thus

G∗{q} = {τν + PΓq, τν − PΓq}, G∗{q1} = {τν + PΓq
1, τν − PΓq

1}.
By Proposition 3.1 and the assumption that ν ‖ {x3 = 0}, the x3-component of
PΓq

1 should be zero. Therefore, we have PΓq
1 ‖ {x3 = 0}, which yields PΓq

1 ‖
(e3 × ν) by noting that PΓq

1 ⊥ ν. It follows that PΓq
1 = ±

√
k2 − |q · ν|2(e3 × ν)

since ‖q1‖2 = k2 = τ2 + ‖PΓq
1‖2 = τ2 + ‖PΓq

1‖2. We then fix q1 by letting

PΓq
1 =

√
k2 − |q · ν|2(e3 × ν) .

Also, we write q2 = τν − PΓq, q
3 = τν − PΓq

1.

Step 2. It is clear that P0 = {Π0,Π1} since |P0| = 2. Let Π ∈ {Π0,Π1}; we claim
that R′

Πq ∈ {q1, q3}. Indeed, by Proposition 3.2, R′
Π{q, q1, q2, q3} = {q, q1, q2, q3}.

Since |P0| = 2 and |G{q}| = |G{q1}| = |G{q3}| = 4, Lemma 3.4 (3) implies that
R′

Πq �= q, R′
Πq

1 �= q1 and R′
Πq

3 �= q3. Therefore, it suffices to show that the
case when R′

Πq = q2 and R′
Πq

1 = q3 cannot happen. Indeed, if R′
Πq = q2 and

R′
Πq

1 = q3, then R′
ΠPΓq = −PΓq and R′

ΠPΓq
1 = −PΓq

1 by using the fact that
R′

Πν = ν. Hence both PΓq and PΓq
1 are perpendicular to the plane Π. We then

have PΓq ‖ PΓq
1, which implies that either q = q1 or q = q2. This contradiction

leads to our claim.

Step 3. We determine the plane Π0 and Π1. By the result in Step 2, we can fix Π0

by letting R′
Π0

q = q1. Consequently

R′
Π0

q2 = q3, R′
Π1

q = q3, R′
Π1

q1 = q2.
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Using R′
Πν = ν for Π = Π0, Π1 again, we have R′

Π0
PΓq = PΓq

1 and R′
Π1

PΓq =

PΓq
3. Thus

νΠ0
‖ (PΓq − PΓq

1), νΠ1
‖ (PΓq + PΓq

3).

Recalling that PΓq
1 =

√
k2 − τ2(e3 × ν) = −PΓq

3, the first part of our lemma
follows immediately.

Step 4. We determine the field Ep. We write

Êp(x̂) = ŝeiq·x̂ + Â1eiq
1·x̂ + Â2eiq

2·x̂ + Â3eiq
3·x̂.

A direct application of Lemma 3.5 and the relations R′
Π0

q = q1, R′
Π1

q = q3 and

R′
Π0

q2 = q3 yields

Â1 = −R′
Π0

ŝ, Â3 = −R′
Π1

ŝ, Â2 = −R′
Π0

Â3 = R′
Π0

(R′
Π1

ŝ).

This completes the proof of Lemma 3.11. �
After obtaining P0 and Ep, we now proceed to find P. We first present an

auxiliary result.

Lemma 3.12. Let Ep, Π0, Π1 be as determined in Lemma 3.11. Then the condition
stated in Case 2 (cf. Subsection 3.1) that the intersection line between any two
intersecting planes in P is parallel to the plane {x3 = 0} implies that ν ∦ s.

Proof. We prove by contradiction. Assume ν ‖ s. Then ŝ ‖ s ‖ Π0 and ŝ ‖ Π1,
implying

Â1 = −R′
Π0

ŝ = −ŝ, Â3 = −R′
Π1

ŝ = −ŝ, Â2 = −R′
Π0

Â3 = ŝ.

Thus we can write

Êp(x̂) = ŝ(eiq·x̂ − eiq
1·x̂ + eiq

2·x̂ − eiq
3·x̂).

By the definition of a perfect plane, it is easy to verify that all the planes perpen-
dicular to s are perfect planes of Ep. Let Π be such a plane. Note that Π0 and Π1

are two planes in P which have an intersection line L with L ‖ ν ‖ {x3 = 0} and
ν ‖ s. It is clear that there exists one intersection line, either Π ∩ Π0 or Π ∩ Π1,
which is not parallel to the plane {x3 = 0}. This contradicts the condition that all
intersection lines between planes in P are parallel to the plane {x3 = 0}. �

With the help of Lemma 3.12, we can show the next lemma.

Lemma 3.13. Let Ep, Π0, Π1 be determined as in Lemma 3.11. Then

(1) The condition that the intersection line between any two intersecting planes
in P is parallel to the plane {x3 = 0} implies that ν ∦ s. Moreover, P
consists of only two sets of planes: the first set contains only planes parallel
to Π0 with the distance π

‖q·νΠ0
‖ between any two parallel neighboring planes,

while the second set contains only planes parallel to Π1 with the distance
π

‖q·νΠ1
‖ between any two parallel neighboring planes.

(2) Each face of the grating structure S lies on a plane in P.

Lemma 3.13 enables us to find a new class of unidentifiable gratings. To describe
the class, we first recall some notation:

r: a position vector, viewed as a point in R3;
ν: a non-zero vector in R3 which is parallel to the plane {x3 = 0};
Γ: the plane in R3, which passes through the origin with normal ν;
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L: the line in R3 passing through r with direction ν;
Π0: the plane in R3 which passes through L with PΓq+

√
k2 − τ2(e3 × ν) as its

normal;
Π1: the plane in R3 which passes through L and is perpendicular to Π0.
With these notation, the set of perfect planes of Ep can be explicitly described

by

P =

{
plane Π; Π ‖ Π0 or Π1, and dist(Π,Π0) =

mπ

|q · νΠ0
| for some m ∈ N

or dist(Π,Π1) =
m′π

|q · νΠ1
| for some m′ ∈ N

}
.

Now, for the incident field Ei = seiq·x, a point r ∈ R3 and a non-zero vector
ν ‖ {x3 = 0}, we define the fifth class of unidentifiable gratings:

S5(s, q,Λ, r, ν) =
{
regular gratingswith profileS, which areΛ-periodic polyhedral

structures such that faces of S lie on planes in P
}
.

Using S5(s, q,Λ, ν, r), we can summarize results of this subsection in the following
lemma.

Lemma 3.14. When Case 2.1.4 stated in Lemma 3.6 happens, the grating S be-
longs to S5(s, q,Λ, ν, r) for some point r ∈ R3 and the direction vector ν ‖ {x3 = 0}.
Furthermore, all gratings in S5(s, q,Λ, ν, r) can generate the same total field E = Ep

as the grating S.

Finally, we give a concrete example of the non-empty class S5(s, q,Λ, ν, r).

Example 2. Consider an incident field Ei = seiq·x, with s = (
√
3
2 , 0, α1), q =

(α1, α2,−β) = (α1,
1
2 ,−

√
3
2 ), where α1 is a non-zero real number. Next we construct

some grating in the class S5(s, q,Λ, ν, 0) for Λ = (Λ1,Λ2) = (0, 2π) and ν = (1, 0, 0).
Note that ν ∦ s and that the grating should be invariant along the x1-axis.

First, we determine P0 and Ep according to Lemma 3.11. It is obvious that
the intersection line of planes in P0 is the x1-axis, and that planes Π0 and Π1 are

determined by their normals νΠ0
= (0, 12 ,

√
3
2 ), νΠ1

= (0,−
√
3
2 , 1

2 ) respectively, and
Π0 ⊥ Π1. In addition, the field Ep is determined by

Ep(x) = seiq·x −R′
Π0

seiq
1·x +R′

Π1
(R′

Π0
s)eiq

2·x − R′
Π1

seiq
3·x

with q1 = (α1, 1, 0), q
2 = (α1,− 1

2 ,
√
3
2 ) and q3 = (α1,−1, 0). One can check by

formulas (5)-(6) that q1 = q(0,3), q2 = q(0,2) and q3 = q(0,1).
Second, we determine the set of perfect planes of the field Ep by Lemma 3.13.

It is evident that P consists of two sets of planes: the first set contains all planes
that are parallel to Π0 with the distance 2π between any two neighboring planes;
the second set contains all planes that are parallel to Π1 with distance 2π√

3
between

any two neighboring planes.
Third, we find some Λ-periodic structure in the set P. For each l ∈ Z, we denote

by L3l, L3l+1, L3l+2 the lines of the form {(λ, 4lπ, 0) : λ ∈ R}, {(λ, 4lπ+π,−
√
3π
3 ) :

λ ∈ R}, {(λ, 4lπ + 2π, 2
√
3π
3 ) : λ ∈ R}, respectively. For each m ∈ Z, let Πm be

the plane that contains lines Lm and Lm+1, and Fm be the part on Πm which lies
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between lines Lm and Lm+1. Then it is easy to see that Πm belongs to P for all
m ∈ Z and that

⋃
m∈Z Fm forms a Λ−periodic structure in P.

Finally, we choose the above periodic structure to be our grating profile S in
(3). It follows that the field E = Ep solves the direct scattering problem (1)-(4)
associated with the incident field Ei and the grating S. By making appropriate
shifts, one obtains infinitely many Λ−periodic structures in P, thus showing the
existence of infinitely many gratings in the class S5(s, q,Λ, ν, 0). All these gratings
generate the same total field E = Ep, and hence cannot be identified by the incident
field Ei.

3.6. Case 2.2: The sixth class of unidentifiable gratings. So far we have
studied all the possibilities in Case 2.1. Now we proceed to study Case 2.2. We
show that this case leads to the sixth unidentifiable grating class corresponding to
the incident electric field Ei. To demonstrate this, we first present some useful
properties about the propagating field Ep and the set of perfect planes that pass
through the line L, i.e. P0.

Lemma 3.15. When Case 2.2 happens, the following statements hold:

(1) s ‖ {x3 = 0}, L ‖ (s× e3);
(2) P0 consists of two planes: one is perpendicular to the vector s, and is

denoted by Π0; the other is perpendicular to e3, and is denoted by Π1;
(3) R′

Π0
q = q and G{q} = {q, R′

Π1
q};

(4) Q \G{q} ⊂ Ξ∗.

Proof. We divide the proof into the following four steps.

Step 1. We first prove (4) and that |P0| = 2. For each q∗ ∈ Q \ G{q}, consider
the set G∗{q∗} ⊂ Q and we see |G∗{q∗}| ≥ 2. According to Proposition 3.1, all
its elements have non-negative x3-components. However, this is possible only if
G∗ = {Id, Tπ} and PΓq

∗ ‖ {x3 = 0} by Lemma 3.4 and the assumption that the
x3-component of ν is zero. Hence |P0| = 2 and the result (4) follows.

Step 2. We derive some information about the set P0. As |P0| = 2, we can write
P0 = {Π0,Π1}. Let q∗ ∈ Q\G{q}; then {R′

Π0
q∗, R′

Π1
q∗} ⊂ G{q∗} ⊂ Q\G{q} ⊂ Ξ∗.

This means that vectors R′
Π0

q∗ and R′
Π1

q∗ lie on the plane {x3 = 0}. Since q∗ also
lies on the plane, we see that Π0 and Π1 are either parallel or perpendicular to the
plane {x3 = 0}. Besides, we know that Π0 and Π1 are perpendicular since they are
the only two planes in P. Thus one of them is parallel to {x3 = 0} and the other
is perpendicular to {x3 = 0}. Let the plane which is perpendicular to the plane
{x3 = 0} be Π0, and the other be Π1.

Step 3. We prove (3) and (1). We first establish (3). Note that Π0 ⊥ {x3 = 0},
and the x3-component of R′

Π0
q is the same as that of q. But q is the only element

in Q which has a negative x3-component, so we have R′
Π0

q = q and it follows by
the definition of the group G that G{q} = {q, R′

Π1
q}. This proves (3). Now, a

direct application of Lemma 3.2 yields s ⊥ Π0. Note that Π0 ⊥ {x3 = 0}; we have
s ‖ {x3 = 0}. Besides, we know ν ‖ Π0, so s ⊥ Π0 also implies that ν ⊥ s. It then
follows that ν ‖ (s× e3) since ν ⊥ e3. This proves (1).

Step 4. We prove (2). We know that νΠ1
⊥ s since Π1 ⊥ Π0 and s ‖ Π0. In

addition, since Π1 ‖ ν and ν ‖ (s × e3), we have νΠ1
⊥ (s × e3). It then follows

that νΠ1
⊥ s× (s× e3). We know s ⊥ e3 from Step 3. Thus s × (s× e3) ‖ e3 and
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νΠ1
‖ e3. This completes the proof of the assertions in (2), hence the proof of the

lemma. �

By now, we have obtained some useful information about Ep and P0 in Lemma
3.15. We continue to determine P as we did before. For this, we first consider the
case with |Q| = 4.

Lemma 3.16. If |Q| = 4 in Case 2.2, then the propagating field Ep in (11) or Êp

in (15) can be written as

Ep(x) = s(eiq·x − eiq
2·x+(q−q2)·r) +A1(eiq

1·x − eiq
3·x+(q1−q3)·r)),(18)

Êp(x̂) = ŝ(eiq·x̂ − eiq
2·x̂) + Â1(eiq

1·x̂ − eiq
3·x̂),(19)

where q2 = R′
Π1

q = Tπq, q1, q3 ∈ Ξ∗ with R′
Π0

q1 = q3, and Â1 is any non-zero
vector which is parallel to e3.

Proof. We know from the previous lemma that |G{q}| = 2. Since |Q| = 4, we can
write Q = G{q} ∪G{q1} with G{q} = {q, q2} and G{q1} = {q1, q3}. We also write

Êp in the form

Êp(x̂) = ŝeiq·x̂ + Â1eiq
1·x̂ + Â2eiq

2·x̂ + Â3eiq
3·x̂.

By the results in Lemma 3.15, the following relations hold:

R′
Π1

q1 = q1, R′
Π1

q = q2, R′
Π0

q1 = q3.

Now, a direct application of Lemma 3.2 and Lemma 3.5 yields

Â1 ⊥ Π1, Â2 = −R′
Π1

s, Â3 = −R′
Π0

Â1.

Recalling that Π1 ‖ s and Π1 ‖ {x3 = 0} (see Lemma 3.15), we have Â2 = −R′
Π1

s =

−ŝ and Â1 ‖ e3 from the first two equalities. Besides, by the relation Π0 ⊥ e3, the

last equality, combined with Â1 ‖ e3, gives Â
3 = −Â1, which leads to (19). �

By Lemma 3.16, it is clear that the electric field Ep is not totally determined
in Case 2.2 under the additional assumption that |Q| = 4. In fact, (q1, q3) can be

any pair in Ξ∗ such that R′
Π0

q1 = q3, and Â1 can be any non-zero vector that is
parallel to e3.

Next, we want to find the set of perfect planes of Ep in Lemma 3.16.

Lemma 3.17. Let Ep, Π0, Π1 be defined as in Lemma 3.16. Then

(1) P consists of two sets of planes: the first set contains the planes that are
parallel to Π0 with a distance of some multiple of π

‖PΓq1‖ ; the second set

contains the planes that are parallel to Π1 with a distance of some multiple
of π

‖PΓq‖ .

(2) Each face of the grating S lies on a plane in P.

Proof. Let Π be a plane in P. By the minimum angle assumption made on the
planes Π0 and Π1, we see that only three cases are possible:

(i) Π ‖ Π0;
(ii) Π ‖ Π1;
(iii) Π ⊥ Π0 and Π ⊥ Π1.
Following similar arguments as in the proof of Lemma 3.13, we can show that

Case (i) happens if the distance between Π and Π0 is of some multiple of π
|q1·νΠ0

| =
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π
‖PΓq1‖ ; the same for Case (ii). We claim that Case (iii) is impossible to occur.

Indeed, in Case (iii), one has Π ⊥ Π1, and Π1 ‖ {x3 = 0}, hence Π ⊥ {x3 = 0}.
Thus the x3-component of R′

Πq is the same as q. But q is the only element in Q
whose x3-component is negative, hence R′

Πq = q. This combined with R′
Π0

q = q
in Lemma 3.15 yields Π ‖ Π0 by Lemma 3.5. But our assumption for Case (iii) is
that Π ⊥ Π0. This contradiction leads to our claim. The rest of the lemma follows
from the same arguments as in the proof of Lemma 3.13. �

We have studied the case with |Q| = 4 in Lemmas 3.16-3.17, and we now turn
to the case with |Q| > 4. We start by partitioning the set Q into pairwise disjoint
orbits under the group G’s action, that is,

Q = G{q} ∪ (
⋃

1≤j≤m0−1

G{qj})

for some integer m0 > 2. By Lemma 3.15, we know that Π1 ‖ {x3 = 0} and qj

lies on the plane {x3 = 0} for 1 ≤ j ≤ m0 − 1. It follows that R′
Π1

qj = qj and

G{qj} = G∗{qj} = {qj , R′
Π0

qj}. Clearly we have |Q| = 2m0. Following the same
steps as those in the proof of Lemmas 3.16-3.17 (for m0 = 2), we can determine Ep

and P.

Lemma 3.18. If L ‖ {x3 = 0}, |G| = 4, |G{q}| = 2 and |Q| = 2m0 for some
integer m0 > 2, then the following statements hold:

(1) Êp can be written as

(20) Êp(x̂) = ŝ(eiq·x̂ − eiq
m0 ·x̂) +

∑
1≤j≤m0−1

Âj(eiq
j ·x̂ − eiq

j+m0 ·x̂)

where each qj is a vector in Ξ∗ ∩Ξ0 such that qj+m0 =: R′
Π1

qj also belongs

to Ξ∗ ∩ Ξ0. Here each Âj is a non-zero vector that is parallel to e3.
(2) There are two sets of perfect planes in P. The first set contains planes

that are parallel to Π0 with a distance of some multiple of π
‖PΓqj‖ for all

1 ≤ j ≤ m0 − 1; the second set contains planes that are parallel to Π1 with
a distance of some multiple of π

‖PΓq‖ .

(3) Each face of the grating structure S lies on some plane in P.

We note that compared with the case of |Q| = 4, the presence of additional
modes in the case |Q| = 2m0 (m0 > 2) requires more stringent conditions on the
distance between planes in P which are parallel to Π0.

Now, we are ready to define the sixth class of unidentifiable gratings. Recall that
r: a point in R3;
L: the line in R3 which passes through the point r and has direction s× e3;
Π0: the plane in R3 which passes through L with normal s/‖s‖; here s ⊥ e3.
Π1: the plane in R3 which passes through L and is perpendicular to Π0.
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With these notation, we conclude that

P =

{
plane Π; ∃j ∈ {0, 1} such that Π ‖ Πj , and for j = 0,

dist(Π,Π0) =
mπ

|qn · νΠ0
| for some m ∈ N and for all qn ∈ Ξ∗ ∩ Ξ0

satisfying R′
Π1

qn ∈ Ξ∗; for j = 1, dist(Π,Π1) =
mπ

|q · νΠ1
|

for some m ∈ N} ,

which leads us to the sixth class of unidentifiable gratings for the incident field
Ei = seiq·x and each point r ∈ R3:

S6(s, q,Λ, r) =
{
regular gratings with profile S, which are regular Λ-periodic

polyhedral structures such that faces of S lie on planes in P
}
.

In summary, the major result of this subsection can be stated in the following
lemma.

Lemma 3.19. When Case 2.2 happens, the corresponding grating S belongs to
S6(s, q,Λ, r) for some r ∈ R3. Furthermore, all gratings in S6(s, q,Λ, r) can gen-
erate the same total field E = Ep as the grating S.

Finally, we give a concrete example of the non-empty class S6(s, q,Λ, r).

Example 3. Consider an incident field Ei = seiq·x, with s = e2 = (0, 1, 0) and q =
(α1, α2,−β) = (0, 0,−1). We next construct some grating in the class S6(s, q,Λ, 0)
for Λ = (Λ1,Λ2) = (0, 2π). It is clear that the grating should be invariant along
the x1-axis.

First, we determine P0 and Ep according to Lemmas 3.15-3.16. Clearly, the
intersection line of planes in P0 is the x1-axis, and Π0 and Π1 are respectively the
planes {x2 = 0} and {x3 = 0}. In addition, the field Ep is determined by

Ep(x) = s(eiq·x − eiq
2·x) +A1(eiq

1·x − eiq
3·x)

with q1 = (0, 1, 0), q2 = (0, 0, 1) and q3 = (0,−1, 0). Here A1 can be any non-zero
vector which is parallel to e3. One can check by formulas (5)-(6) that q1 = q(0,1),
q2 = q(0,0) and q3 = q(0,−1).

Second, we determine the set of perfect planes of the field Ep by Lemma 3.17.
It is evident that P consists of two sets of planes: the first set contains all planes
parallel to Π0 with the neighboring distance mπ

‖q1·νΠ0
‖ = mπ; the second set contains

all planes parallel to Π1 with the neighboring distance mπ
‖q·νΠ1

‖ = mπ.

Third, we try to find some Λ-periodic structure in the set P. For each l ∈ Z,
we denote by L4l, L4l+1, L4l+2, L4l+3 the lines of the form {(λ, 2lπ, 0) : λ ∈ R},
{(λ, 2lπ + π, 0) : λ ∈ R} {(λ, 2lπ + π, π) : λ ∈ R}, {(λ, 2lπ + 2π, π) : λ ∈ R},
respectively. For each m ∈ Z, let Πm be the plane that contains lines Lm and
Lm+1, and Fm be the part on Πm which lies between Lm and Lm+1. Then it is
clear that Πm belongs to P for all m ∈ Z and that

⋃
m∈Z Fm forms a Λ−periodic

structure in P.
Finally, we choose the above periodic structure to be our grating profile S in

(3). As we argued in Examples 1-2, by making appropriate shifts one can obtain



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1352 G. BAO, H. ZHANG, AND J. ZOU

infinitely many Λ−periodic structures in P and hence infinitely many gratings in
the class S6(s, q,Λ, 0). All these gratings can generate the same total field E = Ep,
hence cannot be identified by the incident field Ei.

We remark that based on the results in Lemma 3.16, the above example illus-
trates the non-uniqueness of the direct scattering problem.

3.7. Preparations for Case 3. We have studied Cases 1 and 2 for the set P
of perfect planes of Ep classified in Subsection 3.1. Next, we investigate the last
possible case, Case 3, and demonstrate that this case leads to the final class of
unidentifiable gratings.

Our analysis is similar to the one in Subsection 3.2. Let Π0, Π1 be two planes
in P such that the following two conditions are satisfied: first, their intersection
line L is not parallel to the plane {x3 = 0}; second, the angle between them is the
smallest one among those between intersecting planes in P whose intersection lines
are not parallel to the plane {x3 = 0}. Here again the existence of minimum angle
is guaranteed by Lemma 3.3 of Subsection 3.2. Also, we choose the direction vector
of L, ν, to be the one with unit length and positive x3-component, and define the
plane Γ, the projection PΓ, the set P0 and the groups G and G∗ as before.

We claim that Γ does not coincide with the plane {x3 = 0}. Otherwise, both
planes Π0 and Π1 would be perpendicular to the plane {x3 = 0}. Consider the
vectors R′

Π0
q and R′

Π1
q: as the x3-component of vector q is negative, so are the x3-

components of R′
Π0

q and R′
Π1

q. Noting that both R′
Π0

q and R′
Π1

q belong to Q, we
can conclude from Proposition 3.1 that R′

Π0
q = R′

Π1
q. It then follows from Lemma

3.5 that Π0 ‖ Π1, which contradicts our assumption that Π0 and Π1 intersect, and
thus proves our assertion. We shall use the fact that Γ does not coincide with the
plane {x3 = 0} in the proofs of Lemmas 3.22 and 3.25.

We now recall two lemmas from [9] that are fundamental to our subsequent
analysis.

Lemma 3.20. When Case 3 for the set P of perfect planes of Ep classified in
Subsection 3.1 occurs, there exists a plane Π∗ ∈ P such that Π∗ ∦ L. As a result,
we have Π∗ ∦ Π0 and Π∗ ∦ Π1.

Lemma 3.21. When Case 3 occurs it holds that

q +
∑
n∈Ξ0

qn = 0 ,(21)

τ +
∑
n∈Ξ0

τn = 0 ,(22)

τn ≥ 0 ∀ qn ∈ Q \G{q} .(23)

We shall separate our next analysis based on τ = 0 or τ �= 0, and study

Case 3.1. τ = 0,

and

Case 3.2. τ �= 0

in Subsections 3.8-3.9 respectively, and show that both cases lead to the seventh
class of unidentifiable gratings.
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3.8. Case 3.1: The seventh class of unidentifiable gratings.

Lemma 3.22. If Case 3.1 happens, then

(1) s ‖ ν.

(2) Let q1 = k s×e3
‖s×e3‖ . Then the propagating field Ep in (11) or Êp in (15) can

be written as

Ep(x) = s(eiq·x − eiq
1·x+(q−q1)·r + e−iq·x+2q·r − e−iq1·x+(q+q1)·r),(24)

Êp(x̂) = ŝ(eiq·x̂ − eiq
1·x̂ + e−iq·x̂ − e−iq1·x̂).(25)

(3) P0 consists of two planes. One is perpendicular to the vector q − q1, and
is denoted by Π0; the other is perpendicular to the vector q + q1, and is
denoted by Π1.

Proof. We divide the proof into the following five steps.

Step 1. Since τ = 0, using Lemma 3.21 and Lemma 3.4 (1), we know τn = 0 for all
qn ∈ Q. Hence all elements in Q lie on the plane Γ.

Step 2. We claim that |P0| = 2. We assume otherwise that |P0| > 2. Consider the
setQ; we can write it as the union of pairwise disjoint orbitsG∗{p} for p ∈ Q. Recall
that the plane Γ does not coincide with the plane {x3 = 0}. Since |P0| > 2, there
exists at least one element in each orbit G∗{p} whose x3-component is negative. But
q is the only element in Q whose x3-component is negative. So we get Q = G∗{q},
hence G{q} = G∗{q}. It is clear that vectors in Q can span the plane Γ. By
Proposition 3.2, we have R′

Π∗Γ = Γ. As a result, either Π∗ ‖ Γ or Π∗ ⊥ Γ.
However, Π∗ ⊥ Γ implies that Π∗ ‖ L, which contradicts Lemma 3.20. So we have
Π∗ ‖ Γ. It follows by using the assumption τ = 0 that R′

Π∗q = q. On the other
hand, it follows from G{q} = G∗{q} and Lemma 3.4 (3) that there exists Π in P0

such that R′
Πq = q. Then, by Lemma 3.2, Π ‖ Π∗, which contradicts Lemma 3.20.

The claim is verified.

Step 3. We show that Q = G{q} = G∗{q}∪G∗{q1} = {q,−q}∪{q1,−q1} for some
q1 in Q. Indeed, since |P0| = 2, we can write P0 = {Π0,Π1} and G∗ = {Tπ, Id}. By
the result in Step 1, all elements inQ lie on the plane Γ, so we have G∗{p} = {p,−p}
for each p ∈ Q. This together with Proposition 3.1 yields that each orbit G∗{p} for
p ∈ Q\G∗{q} lies on the plane {x3 = 0} and hence on the intersection line between
plane Γ and {x3 = 0}. Note that all elements in Q have the same length. It follows
that there is at most one such orbit in Q. We next show the existence of such
an orbit. If it is not the case, then Q = G∗{q} = {q,−q}; hence G{q} = G∗{q}.
By Lemma 3.4 (3), there is a plane in P0, say Π0, such that R′

Π0
q = q. Then

R′
Π1

q = −q. On the other hand, let Π∗ be the plane in Lemma 3.20; then we obtain
by Proposition 3.2 that R′

Π∗{q,−q} = {q,−q}. So either R′
Π∗q = q or R′

Π∗q = −q.
Then one can deduce from Lemma 3.2 that either Π∗ ‖ Π0 or Π∗ ‖ Π1. But this
contradicts Lemma 3.20, which shows that we can write Q = G∗{q} ∪ G∗{q1} for
some q1 in Q.

Now we show that G∗{q} ∪ G∗{q1} = G{q}. In fact, since vectors in the set
G∗{q}∪G∗{q1} span the plane Γ, we can apply the same argument as in Step 2 to
show that Π∗ ‖ Γ and R′

Π∗q = q. Let Π be a plane in P0. It is implied by Lemma
3.2 that R′

Πq �= q, for otherwise one has Π ‖ Π∗, which contradicts Lemma 3.20.
Thus we can conclude by Lemma 3.4 (3) that G{q} �= G∗{q}, hence it follows that
G{q} = G∗{q} ∪G∗{q1}.
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Step 4. It is clear by Proposition 3.1 that q1 ‖ {x3 = 0}, or equivalently q1 ∈
Ξ∗. We claim that R′

Πq ∈ {q1,−q1} for Π ∈ P0. Indeed, by Proposition 3.2,
R′

Π{q, q1,−q,−q1} = {q, q1,−q,−q1}. Note that |G| = |G{q}| = 4 and G{q} =
G{q1} = G{−q1}. By Lemma 3.4 (3) we have R′

Πq �= q, R′
Πq

1 �= q1 and R′
Πq

3 �= q3.
So it suffices to show that the case with R′

Πq = −q and R′
Πq

1 = −q1 cannot occur.
In fact, the equalities R′

Πq = −q and R′
Πq

1 = −q1 would imply that both q and
q1 are perpendicular to the plane Π, and hence are parallel to each other, which
is impossible since q1 ‖ {x3 = 0} and q ∦ {x3 = 0}. This contradiction proves our
claim.

Step 5. By the result in Step 4, we can fix Π0 and Π1 by letting

R′
Π0

q = q1, R′
Π1

q = −q1.

It then follows that R′
Π0

(−q) = −q1 and R′
Π1

q1 = −q. We write

Êp(x̂) = ŝeiq·x̂ + Â1eiq
1·x̂ + Â2e−iq·x̂ + Â3e−iq1·x̂.

A direct application of Lemma 3.5 yields that

(26) Â1 = −R′
Π0

ŝ, Â3 = −R′
Π1

ŝ, Â2 = −R′
Π1

Â1.

To simplify the equalities above, we observe that ŝ ‖ ν. Indeed, recall that
Π∗ ‖ Γ (see the second paragraph in Step 3). By the result in Step 1, we have
R′

Π∗q = q. Referring to Lemma 3.2, this implies that s ⊥ Π∗, hence s ⊥ Γ.
Therefore we have s ‖ ν, so ŝ ‖ ν. As a result we conclude from equalities in (26)

that Â1 = Â3 = −ŝ, Â2 = ŝ.
Finally, recall that q1 lies on the plane Γ, so q1 ⊥ ν. But ν ‖ s, leading to the

fact that q1 ⊥ s. This combined with q1 ⊥ e3 yields q1 ‖ (s × e3). Since ‖q‖ = k,
we see q1 = ±k s×e3

‖s×e3‖ . We can fix q1 by letting q1 = k s×e3
‖s×e3‖ . Then the rest of the

lemma follows. �

We remark that in the proof of Lemma 3.22, the condition that the intersection
line L is not parallel to the plane {x3 = 0} and the minimum angle assumptions
are not used. In fact, Π0 and Π1 may be any two planes in P which have the
intersection line L. What we have used is the condition that τ = 0 and that there
exists a plane in P not parallel to the line L. We shall use this fact in the proof of
Lemma 3.26.

So far, we have determined the propagating field Ep in terms of vectors s and q.
The set of perfect planes of Ep can be determined as well. By the same approach
as in the proof of Lemma 3.17, we can show the following result.

Lemma 3.23. Let Ep, Π0, Π1 be determined as in Lemma 3.22. Then

(1) P consists of three sets of planes: the first set consists of planes that are
parallel to Π0 with a distance of some multiple of π

‖q·νΠ0
‖ ; the second set

consists of planes that are parallel to Π1 with a distance of some multiple
of π

‖q·νΠ1
‖ ; the last set consists of planes that are perpendicular to s.

(2) Each face of the grating structure S lies on a plane in P.

Lemma 3.23 enables us to find a new class of unidentifiable gratings. To describe
the class explicitly, we specify

r: a point in R3;
L: the line in R3 which contains r and has direction ν with ν ‖ s;
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Γ: the plane in R3 which passes through the origin with normal ν;
Π0: the plane in R3 which passes through L with normal q − k s×e3

‖s×e3‖ ;

Π1: the plane in R3 which passes through L and is perpendicular to Π0.
With the notation, the set of perfect planes of Ep is given by

P =

{
plane Π; either Π ⊥ s or ∃j ∈ {0, 1} such that Π ‖ Πj

and dist(Π,Πj) =
mπ

‖q · νΠj
‖ for some m ∈ N

}
.

Now, for the incident field Ei = seiq·x and a point r ∈ R3 we can define the
seventh class of unidentifiable gratings:

S7(s, q,Λ, r, ν) =
{
regular gratingswith profileS, which areΛ-periodic polyhedral

structures such that faces of S lie on planes in P
}
.

We summarize the above results in the following lemma.

Lemma 3.24. If Case 3.1 happens, then the grating S belongs to S7(s, q,Λ, r) for
some point r ∈ R3. Furthermore, all gratings in S7(s, q,Λ, r) can generate the same
total field E = Ep as the grating S.

3.9. Case 3.2: The seventh class of unidentifiable gratings. Finally, we
investigate Case 3.2. We have the following results.

Lemma 3.25. In Case 3.2, |G{q}| = |P0| = 2.

Proof. We prove the lemma in six steps: we show |G{q}| �= 3 in Steps 1-4, then
|G{q}| ≤ 3 in Step 5, and finally |G{q}| = |P0| = 2 in Step 6.

Step 1. To show that |G{q}| �= 3, we assume otherwise that |G{q}| = 3. First, note
that τn = τ for all qn ∈ G{q}. We have by using (22) that

(27) 3τ +
∑

qn∈Q\G{q}
τn = 0.

Since τn ≥ 0 for all qn ∈ Q\G{q} by using (23), we see that τ < 0 and there exists
some qm ∈ Q \G{q} such that τm > 0.

Step 2. We claim Q = G{q} ∪G{qm} and |G{qm}| = 3. Indeed, since |G{q}| = 3,
Lemma 3.4 (3) implies that |P0| = 3 and that either |G{qm}| = 3 or |G{qm}| = 6.
Then equation (27) yields

3τ + 3τm ≤ τ +
∑

qn∈G{q}
τn +

∑
qn∈G{qm}

τn ≤ τ +
∑
qn∈Q

τn = τ +
∑
n∈Ξ0

τn = 0.

Thus we have τ + τm ≤ 0. Define

d0 = min{x3; x = (x1, x2, x3) ∈ Γ and ‖x‖ ≤ ‖PΓq‖ }.

Recall that Γ �= {x3 = 0}. It is clear that d0 < 0. We can find qn1 ∈ G{q}\{q} such
that the x3-component of PΓq

n1 is less than or equal to −d0/2. Since ‖qm‖ = ‖q‖ =
k and τ + τm ≤ 0, we have ‖PΓq

m‖ ≥ ‖PΓq‖. Therefore we can find qn2 ∈ G{qm}



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1356 G. BAO, H. ZHANG, AND J. ZOU

such that its x3-component of PΓq
n2 is less than or equal to d0/2. Now, consider

the x3-component of of the vector

qn1 + qn2 = (τ + τm)ν + PΓq
n1 + PΓq

n2 ,

which is non-negative by Proposition 3.1. Note that the x3-component of ν is
positive. The following three conditions hold:

(1) τ + τm = 0 and ‖PΓq‖ = ‖PΓq
m‖.

(2) The x3-component of PΓq
n1 is equal to −d0/2.

(3) The x3-component of PΓq
n2 is equal to d0/2.

It follows from condition (1) and equations (22)-(23) in Lemma 3.21 that
|G{qm}| = 3 and τn = 0 for all qn ∈ Q \ (G{q} ∪ G{qm}). Now we take
qn ∈ Q \ (G{q} ∪G{qm}. Since Γ �= {x3 = 0}, one can show, by a similar proof to
that of Lemma 3.4 (4), that at least one element from the set

G∗{qn} = τnν + {PΓq
n, T2π/3PΓq

n, T4π/3PΓq
n} = {PΓq

n, T2π/3PΓq
n, T4π/3PΓq

n}
has a negative x3-component. This is impossible according to Proposition 3.1. Thus
the set Q \ (G{q} ∪G{qm}) is empty, and our claim is proved.

Step 3. We show that G{qm} = −G{q}. Indeed, let V1 and V2 be the two vectors on
the plane Γ such that ‖V1‖ = ‖V2‖ = ‖PΓq‖, V1 ‖ {x3 = 0} and the x3-component
of V2 is d0. It is clear that V1 ⊥ V2 and the set {ν, V1, V2} forms an orthogonal
basis in R3. By using the conditions (2) and (3) in Step 2, G{q} and G{qm} can
be written as:

G{q} = τν + {V2, T2π/3V2, T4π/3V2},
G{qm} = τmν + {−V2,−T2π/3V2,−T4π/3V2} = −τν + {−V2,−T2π/3V2,−T4π/3V2}.
The conclusion that G{qm} = −G{q} now follows.

Step 4. Let G{q} = {q, q1, q2}; then Q = {q, q1, q2,−q,−q1,−q2}. Clearly both q1

and q2 lie on the plane {x3 = 0} by Proposition 3.1. Since |P0| = |G{q}| = 3, we
write P0 = {Π0,Π1,Π2}. By Lemma 3.4 (3) there exists a plane from P0, say Π0,
such that q = R′

Π0
q. Then G{q} = {R′

Π0
q, R′

Π1
q, R′

Π2
q}, and hence {R′

Π1
q, R′

Π2
q} =

{q1, q2}. Now, we fix q1, q2 by letting q1 = R′
Π2

q, q2 = R′
Π1

q. Then it is easy to

check that q1 = R′
Π1

q1 and q2 = R′
Π2

q2.
Let Π∗ be the perfect plane in Lemma 3.20. By Proposition 3.2 we have

R′
Π∗{q, q1, q2,−q,−q1,−q2} = {q, q1, q2,−q,−q1,−q2}.

Then the following four cases may happen:

(1) R′
Π∗q ∈ {q, q1, q2}. Recall in Step 4 that {q, q1, q2} = {R′

Π0
q, R′

Π1
q, R′

Π2
q}.

By Lemma 3.2, this implies that Π∗ is parallel to one of the planes in
{Π0,Π1,Π2} if R′

Π∗q ∈ {q, q1, q2}. This contradicts Lemma 3.20.
(2) R′

Π∗q = −q. In this case, R′
Π∗{q1, q2,−q1,−q2} = {q1, q2,−q1,−q2}. So

R′
Π∗ maps the plane {x3 = 0} to itself. Therefore, either Π∗ ⊥ {x3 = 0} or

Π∗ ‖ {x3 = 0}. But it follows from R′
Π∗q = −q that q ⊥ Π∗, so we have

Π∗ ‖ {x3 = 0}. We now have that R′
Π∗q1 = q1, since q1 lies on the plane

{x3 = 0}. This together with the relation R′
Π1

q1 = q1 in Step 4 yields
Π1 ‖ Π∗ by using Lemma 3.2, which contradicts Lemma 3.20.

(3) R′
Π∗q = −q1. In this case, R′

Π∗{q2,−q2} = {q2,−q2}. Since R′
Π∗q2 = q2

would imply Π∗ ‖ Π2, which contradicts Lemma 3.20, we have R′
Π∗q2 =

−q2. As a result, q2 ⊥ Π∗. Recall in Step 4 that q2 lies on the plane
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{x3 = 0}, so Π∗ ⊥ {x3 = 0}. It then follows that the x3-component of
R′

Π∗q is the same as q and hence is negative. Thus it is impossible to
have R′

Π∗q = −q1, since the x3-component of q1 is zero (see Step 4). This
contradiction shows that we cannot have R′

Π∗q = −q1.
(4) R′

Π∗q = −q2. This case can be excluded by the same method as we do for
R′

Π∗q = −q1.

We have shown that all four cases are impossible, and hence have established the
assertion that |G{q}| �= 3.

Step 5. We show that |G{q}| ≤ 3. By contradiction we assume |G{q}| > 3. Con-
sider the set G{PΓq}. By Lemma 3.4 there exist at least two elements in G{PΓq}
whose x3-components are non-positive. Note that G{q} = τν + G{PΓq} and that
the x3-component of ν is positive. We have τ > 0, for otherwise G{q} would con-
tain at least two elements whose x3-components are negative, which contradicts
Proposition 3.1. But then equality (27) and inequality (23) cannot be satisfied
simultaneously. This contradiction proves that |G{q}| ≤ 3.

Step 6. Now we have |G{q}| < 3. It is clear that |G{q}| > 1, so |G{q}| = 2. By
Lemma 3.4 (3) we have either |P0| = |G{q}| or |P0| = |G{q}|/2, leading to the fact
that |P0| = 2, and the lemma is proved. �

Lemma 3.26. If Case 3.2 happens, then the grating S belongs to S7(s, q,Λ, r) for
some point r ∈ R3.

Proof. By Lemma 3.25, we know |G{q}| = |P0| = 2. Then P0 = {Π0,Π1} and
Π0 ⊥ Π1. Let Π∗ be the perfect plane in Lemma 3.20. We claim that Π∗ is
perpendicular to both planes Π0 and Π1. Indeed, assume otherwise that Π∗ �⊥ Π0.
Let L̃, P̃0, G̃ denote the line of intersection between Π∗ and Π0, the set of perfect
planes in P which pass through the line L̃, and the group generated by reflections
{R′

Π : Π ∈ P̃0}, respectively. As Π∗ �⊥ Π0, we see that |P̃0| ≥ 3, and |G̃| ≥ 6. By

the minimum angle assumption on planes Π0 and Π1, it is clear that L̃ ‖ {x3 = 0}.
Similarly to Lemma 3.6, one can show only two cases are possible: (i) |P̃0| =

|G̃{q}| = 3; (ii) |P̃0| = |G̃{q}| = 4. By the remark at the end of Subsection 3.4, we
can apply the same arguments as in Subsection 3.4 to work out all perfect planes
in P. By the description of the set P there, the intersection lines of planes in P
are all parallel to L̃ in both cases. In particular, we have L ‖ L̃. This is impossible

since L̃ ‖ {x3 = 0}, while L ∦ {x3 = 0}. This contradiction proves that Π∗ ⊥ Π0.
Similarly, we can show that Π∗ ⊥ Π1, and hence prove our claim.

Now, we know that Π∗ ⊥ Π0, Π
∗ ⊥ Π1 and Π0 ⊥ Π1. Then the vectors ν,

νΠ0
and νΠ1

form an orthogonal basis of R3. We can write q = τν + PΓq =
τν + τ0νΠ0

+ τ1νΠ1
where τ0 and τ1 are real numbers. Since |G{q}| = |P0| = 2,

by Lemma 3.4 (3) there exists a plane in P0, say Π0, such that R′
Π0

q = q. But
R′

Π0
q = R′

Π0
(τν + τ0νΠ0

+ τ1νΠ1
) = τν − τ0νΠ0

+ τ1νΠ1
. So we have τ0 = 0, and

hence q = τν + τ1νΠ1
.

Finally, let L̃, ν̃, Γ̃, P̃0, G̃ denote the line of intersection between Π∗ and Π1, the
direction of L̃, the plane passing through the origin with normal ν̃, the set of perfect
planes in P which pass through the line L̃, and the group generated by reflections
{R′

Π : Π ∈ P̃0}, respectively. Then ν̃ = νΠ0
and the plane Γ̃ is spanned by vectors

ν and νΠ1
. It follows that the decomposition for the vector q in the coordinate

system (ν̃, Γ̃) is given by q = τ̃ · ν̃ + PΓ̃q with τ̃ = 0. Thus we are now in the same



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1358 G. BAO, H. ZHANG, AND J. ZOU

situation as in Lemma 3.22 in Subsection 3.8. Note that here Π0 plays the role of
the plane Π∗ in Lemma 3.20. By the remark after the proof of Lemma 3.22, we can
apply the same arguments to work out Ep and P0. This leads to the conclusion
that the grating S belongs to S7(s, q,Λ, r). Hence our proof is completed. �
3.10. Summary on all the classes of unidentifiable gratings. Summing up
results in Subsections 3.1-3.7, especially Lemmas 3.6, 3.7, 3.10, 3.14, 3.19, 3.22,
3.24, 3.26, we obtain the following conclusion.

Theorem 3.1. Let S be a regular polyhedral grating with bi-period Λ, Ei(x) = seiq·x

be an incident field, and E be a solution to the direct scattering problems (1)-(4).
Then under Assumption 1, seven possibilities may happen: S belongs to one of
the seven classes S1(q, r), S2(s, q, r,Λ), S3(s, q, r,Λ), S4(s, q, r,Λ), S5(s, q, r, ν,Λ),
S6(s, q, r,Λ) and S7(s, q, r,Λ).

We have found seven classes of unidentifiable gratings corresponding to each
incident field. Now, a natural question arises: when is each class of gratings non-
empty? From the description of the set P in each case, we see that there may
not exist a grating structure of period Λ, whose faces lie on planes in P. Besides,
vectors qj appearing in the formula of each Ep may not be the wave vectors defined
by (5)-(6). Consequently, the corresponding class of unidentifiable gratings may be
an empty set. On the other hand, we do have examples for non-empty classes, as
shown in the previous subsections. Thus, certain conditions on s, q and Λ (and
ν in S5) should be satisfied to guarantee the existence of each class. Although
the analysis tools developed in this work shed some light for deriving the complete
conditions that ensure such an existence, the study is on-going and will be reported
elsewhere. In fact, for a given class with Λ, s and q, we can first calculate the
corresponding Ep and P, and then solve equations (5)-(6) with wave vectors qj in
Ep for the integer index n = (n1, n2). This leads to a set of algebraic equations. In
addition, one also needs to find a grating structure of period Λ in P, which gives
another set of equations. The class is non-empty if these two sets of equations are
held simultaneously; otherwise we denote the corresponding class to be the empty
set. A simple condition that is necessary for the existence of a grating structure of
bi-period Λ in P in the case corresponding to the second, third, fourth, fifth and
the sixth class is that the line of intersection of planes in P0, namely L, should
be parallel to either e1 or e2. Thus ν = e1 or ν = e2 in each class. This is
true especially for the class S5(s, q, r, ν,Λ). For this reason, we can refine the fifth
unidentifiable class as

S5(s, q, r,Λ) = S5(s, q, r, e1,Λ) ∪ S5(s, q, r, e2,Λ).

In the two-dimensional case, i.e., when gratings considered are invariant in one
axis and periodic in the other, one can refer to [20] for the necessary and sufficient
condition to ensure the existence of each unidentifiable grating class.

4. Unique determination of periodic polyhedral gratings

In this section we apply the theory developed in the previous sections on the
classification of unidentifiable gratings in correspondence to one incident field for
the unique determination of regular polyhedral gratings by scattered fields.

Theorem 4.1. Let Ei = seiq·x be a given incident electric field, S1 and S2 be two
regular bi-periodic polyhedral gratings with period Λ, and E1 and E2 be respectively
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the solution to the forward scattering problem (1)-(4) associated with S1 and S2. If
Γb = {x3 = b} is a plane located above both S1 and S2, then

(28) E1 = E2 on Γb

implies that both S1 and S2 belong to one of the seven classes of gratings S1(q, r),
S2(s, q, r,Λ), S3(s, q, r,Λ), S4(s, q, r,Λ), S5(s, q, r,Λ), S6(s, q, r,Λ) and S7(s, q, r,Λ).

Proof. Assume that (28) is true for two different grating profiles S1 and S2. We only
need to show that E1 = E2 in the domain above the measurement plane {x3 = b}.
The rest can be carried out in the same way as that of [9] with the help of Theorem
3.1. For this purpose, we recall the following expansions:

E1(x) = Ei(x) +
∑
n∈Z2

An
1 e

iqn·x, E2(x) = Ei(x) +
∑
n∈Z2

An
2 e

iqn·x.

It suffices to show that An
1 = An

2 for all n ∈ Z2. To see this, we have by (28) that

(E1 − E2)|x3=b =
∑
n∈Z2

(An
1 −An

2 )e
iβn·beiα

n·x = 0.

Noting that {eiαn·x}n∈Z2 is an orthogonal family in L2((0,Λ1)×(0,Λ2)) of variables
x1 and x2, we immediately get the desired result. This completes the proof. �

Theorem 4.1 immediately leads to the following corollary.

Corollary 4.1. Let S be a regular polyhedral grating of bi-period Λ. Consider a
plane Γb = {x3 = b} located above S. Then the measurement of the total field E
on Γb corresponding to the incident field Ei determines S uniquely if the following
condition holds:

There are two faces of S which do not form an angle of π/4, π/3, π/2 or 2π/3.

It follows from Corollary 4.1 that a general regular polyhedral grating structure
can be uniquely determined by one incident plane wave. Furthermore, only regular
polyhedral gratings of very special structures may require more incident waves for
their unique determination.

Now we give a simple condition that guarantees the unique determination by two
incident waves for those special structures. Let S be a regular polyhedral grating
of bi-period Λ, which is not an entire plane in R3, and let Ei,1 = s1e

iq1·x and
Ei,2 = s2e

iq2·x be two incident fields. Then we define

S1 =

j=7⋃
j=2

⋃
r∈R3

Sj(s1, q1,Λ, r)) , S2 =

j=7⋃
j=2

(
⋃

r∈R3

Sj(s2, q2,Λ, r)) .

It is clear that S can be uniquely determined by Ei,1 and Ei,2 if and only if S does
not belong to S1 ∩S2. Consider the case S ∈ S1, and denote the set of the normals
to the faces on S by N1. By our construction of the unidentifiable classes, we have

N1 ⊂ M1 =

{
λs1, λTπ

4
s1, λTπ

3
s1, λTπ

2
s1, λ(PΓq1 ±

√
k2 − τ2(e3 × ν)),

λ(q1 ± k
s1 × e3
‖s1 × e3‖

);

λ ∈ R\{0}, ν = e1 or e2

}
,
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where Γ is a plane passing through the origin with normal ν, Tθ denotes the rotation
on the plane Γ about the origin by angle θ, and PΓq and τ are defined as in (13).
Similarly, in the case S ∈ S2, denote the set of the normals to the faces on S by
N2. Then

N2 ⊂ M2 =

{
λs2, λTπ

4
s2, λTπ

3
s2, λTπ

2
s2, λ(PΓq2 ±

√
k2 − τ2(e3 × ν)),

λ(q2 ± k
s2 × e3
‖s2 × e3‖

);

λ ∈ R\{0}, ν = e1 or e2

}
.

If we choose Ei,1 and Ei,2 in such a way that M1 ∩M2 = ∅, then S1 ∩ S2 = ∅. It
follows that S can be uniquely determined by the two incident waves Ei,1 and Ei,2.
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