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Abstract. In this paper, we study some efficient numerical methods for parameter identifications
in elliptic systems. The proposed numerical methods are conducted iteratively and each iteration
involves only solving positive definite linear algebraic systems, although the original inverse problems
are ill-posed and highly nonlinear. The positive definite systems can be naturally preconditioned with
their corresponding block diagonal matrices. Numerical experiments are presented to illustrate the
efficiency of the proposed algorithms.
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1. Introduction. The purpose of this paper is to investigate some numerical
methods for efficiently identifying the unknown coefficient q in the following elliptic
problem:

−∇ · (q∇u) = f in Ω; u = 0 on Γ.(1.1)

The identifying process is carried out in a way that the solution u matches its ob-
servation data z optimally either in the L2-norm or in the H1-norm. Here Ω can be
any bounded domain in Rd, d = 1, 2, or 3, with piecewise smooth boundary Γ and
f ∈ H−1(Ω) is given. Practically, we are often asked to recover the parameter q(x)
using the observed data z of the solution u. About the data z we are interested in
the following two cases:

(a) the measurement of the gradient of u is available,
(b) the measurement of the solution u itself is available.
For parameter identifications, Itô and Kunisch proposed a hybrid method in [11,

12, 13] which combines the output least squares and the equation error formulation
within the mathematical framework given by the augmented Lagrangian technique
and incorporates a regularization term of the H2-seminorm of the parameters to
be recovered. Chen and Zou [5] and Keung and Zou [14] generalized the method
to the case which allows the identifying coefficients to be discontinuous by using
the regularization of bounded variations and they provided the rigorous theoretical
justifications of the method and its finite element approximation. Independently,
Chan and Tai [3, 4, 18] considered also the regularization of bounded variations and
did numerous experiments on the performance of the augmented Lagrangian method
for identifying highly discontinuous parameters.

The primary approach we are interested in here is based on the following energy-
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norm least squares formulation of the aforementioned parameter identifying problem:

(P1)

{

minimize J(q, v) = 1
2

∫

Ω
q |∇v −∇z|2dx + β N(q)

subject to (q, v) ∈ K × V and e(q, v) = 0

in case (a) or on the following L2-norm least squares formulation:

(P2)

{

minimize J(q, v) = 1
2

∫

Ω
|v − z|2dx + β N(q)

subject to (q, v) ∈ K × V and e(q, v) = 0

in case (b). Here V = H1
0 (Ω) and K is a constrained set given by

K =
{

q ∈ L1(Ω); N(q) < ∞ and α1 ≤ q(x) ≤ α2 almost everywhere (a.e.) in Ω
}

with α1 and α2 being two positive constants. N(q) is a regularization term with a
weighted coefficient β > 0. e(·, ·) is an operator from K × V into V defined by the
residual equation of (1.1) (in the weak sense):

(∇e(q, v),∇φ) = (q∇v,∇φ) − (f, φ) ∀ (q, v) ∈ K × V, φ ∈ V,(1.2)

where (·, ·) denotes the duality pairing between H−1(Ω) and H1
0 (Ω), which is the

extension of the inner product in L2(Ω). It is useful to remark that e(q, v) is convex
with respect to each variable.

The intention of this paper is to investigate some efficient and easy-to-implement
method for the preceding parameter identifications. We know that the regularization
of bounded variations, i.e., N(q) = |q|BV (Ω), is very effective in recovering discontin-
uous parameters, but it also adds a big difficulty to the numerical resolution process.
Namely, one has to solve a nearly singular and indefinite nonlinear minimization sys-
tem of the form

−β∇ ·
∇q

√

|∇q|2 + ε
+ c(q) = g

at each iteration, where ε is the smoothing parameter introduced to smooth the BV-
norm term in numerical implementations and c(q) is a linear function of q, which
causes the indefiniteness of the system; see [3, 4, 5, 14, 18]. It seems there are very
few iterative methods which are known to be globally convergent for solving such a
troublesome system. We refer to Chan and Mulet [2], Dobson and Vogel [8], and the
references therein for some fixed point methods and their global convergence results
when c(q) is not too complicated.

In this paper, instead of the BV -norm regularization we are going to utilize the
H1- or piecewise H1-norm regularization. We will see that the H1-norm regulariza-
tion performs perfectly for identifying smooth coefficients as expected. In fact, our
experience indicates that it can also give rise to satisfactory results in most discon-
tinuous coefficient cases. But in the cases where the location of the discontinuities of
the identifying coefficients is available, we can achieve much more accurate recoveries
even for the coefficients with high discontinuities by using the piecewise H1-norm
regularization. The location of the discontinuities of parameters may be known in
some applications or can be identified first by some existing simple algorithms. As
we will show later on, with the H1- or piecewise H1-norm regularization, each itera-
tion of our algorithms involves only solving linear positive definite algebraic systems,
which can be solved by the well-known GMRES iteration with guaranteed conver-
gence [9]. Moreover, the positive definite systems may be preconditioned by their



LINEAR SOLVER FOR PARAMETER IDENTIFICATIONS 1513

natural block diagonal matrices, which are very cheap and easy to implement. The
numerical experiments will also show that these preconditioners are effective.

The problems (P1) and (P2) will be solved by the augmented Lagrangian method
which enables us to relax the residual constraint e(q, u) = 0 and enhance the convexity
of the objective functional. For the purpose we introduce the augmented Lagrangian
functional Lr : K × V × V → R by

Lr(q, v;µ) = J(q, v) + (∇µ,∇e(q, v)) +
r

2
‖∇e(q, v)‖2

L2(Ω),(1.3)

where r ≥ 0 is some given constant.
Following the same arguments as we used in [5] we have the following.
Theorem 1.1. (q∗, v∗) ∈ K × V is a solution of the minimization problem (P1)

or (P2) if and only if there exists a λ∗ ∈ V such that (q∗, v∗, λ∗) ∈ K × V × V is a

saddle-point of the augmented Lagrangian Lr : K × V × V → R, namely,

Lr(q
∗, v∗;µ) ≤ Lr(q

∗, v∗;λ∗) ≤ Lr(q, v;λ
∗) ∀ (q, v, µ) ∈ K × V × V.(1.4)

Remark 1.1. We refer to [5] for the proof of similar results as stated in Theo-
rem 1.1 for the TV-regularization, and [12, 13] for other quadratic regularizations.

2. Discretization and augmented Lagrangian algorithms. We now con-
sider the finite element discretization of the augmented Lagrangian Lr and derive a
discrete saddle-point problem.

Let Ω be a polyhedral domain in Rd, d = 1, 2, or 3, and {T h}h>0 be a family
of regular triangulations (cf. Ciarlet [7]) of the domain Ω with simplicial elements.
Denote by Vh the standard piecewise linear finite element space over the triangulation
T h and

◦

V h= Vh ∩H1
0 (Ω), Kh = K ∩ Vh.

The standard nodal basis functions of
◦

V h and Vh are denoted as {φi}
N0

i=1 and {φi}
N
i=1,

respectively.
We define a discrete version of the operator e(·, ·) : K × V → V as follows:

For any (q
h
, vh) ∈ Kh×

◦

V h, e
h
(q

h
, vh) ∈

◦

V h is the solution of the system

(∇e
h
(q

h
, vh), ∇φ) = (q

h
∇vh, ∇φ) − (f, φ) ∀φ ∈

◦

V h.(2.1)

Then we introduce a discrete augmented Lagrangian Lr from Kh×
◦

V h ×
◦

V h to R:

Lr(qh
, vh;µ

h
) = Jh(q

h
, vh) + (∇µ

h
, ∇eh(q

h
, vh)) +

r

2
‖∇eh(q

h
, vh)‖2

L2(Ω)(2.2)

with

Jh(q
h
, vh) =

1

2

∫

Ω

q
h
|∇vh −∇z|2dx + β

∫

Ω

|∇q
h
|2 dx

in the case (a) and

Jh(q
h
, vh) =

1

2

∫

Ω

|vh − z|2dx + β

∫

Ω

|∇q
h
|2 dx

in the case (b).
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Applying the arguments as we used in [5], we obtain the following.
Theorem 2.1. For any r ≥ 0, there exists at least a saddle-point for the dis-

crete augmented Lagrangian Lr : Kh×
◦

V h ×
◦

V h→ R. Moreover, each saddle-point

(q∗
h
, v∗h, λ

∗
h) of L0 is also a saddle-point of Lr for any r > 0.

We apply the algorithm of the following Uzawa type to find the saddle-points of
the discrete augmented Lagrangian Lr defined in (2.2).

Uzawa Algorithm. Given λ0 ∈
◦

V h. Then for n ≥ 0, determine the pair

{qn, un} ∈ Kh×
◦

V h such that

Lr(q
n, un;λn) = min

{

Lr(p, v;λ
n) ∀ (p, v) ∈ Kh×

◦

V h

}

(2.3)

and then compute λn+1 by

λn+1 = λn + ρn eh
(qn, un).(2.4)

This Uzawa algorithm was proved in [5] to be convergent globally as long as
0 < ρn < r. Earlier proofs of such global convergence of the Uzawa algorithms with
different quadratic regularizations can be found in [15] and the references therein.
The major cost of the algorithm is solving (2.3), a coupled system with qn and un as
unknowns. In our implementations, we will use the following alternative iteration for
solving (2.3).

Modified Uzawa Algorithm. Given λ0 ∈
◦

V h and q0 ∈ Kh. Set n = 1.
1. Set k = 1 and qn,0 = qn−1.

2. Compute un,k ∈
◦

V h by solving

Lr(q
n,k−1, un,k;λn−1) = min

vh∈V 0

h

Lr(q
n,k−1, vh;λn−1),(2.5)

and then compute qn,k ∈ Vh by solving

Lr(q
n,k, un,k;λn−1) = min

p
h
∈Vh

Lr(ph
, un,k;λn−1).(2.6)

Compute qn,k = max{α1,min{qn,k, α2}}.
If ‖qn,k − qn,k−1‖ ≤ tolerance, set un = un,k and qn = qn,k, GOTO 3;
Otherwise set k = k + 1, GOTO 2.

3. Compute λn by

λn = λn−1 +
3

4
r e

h
(qn, un).(2.7)

Set n = n + 1, GOTO 1.

We will show in the next section that solving the minimization problems (2.5)
and (2.6) is equivalent to solving two linear positive definite systems.

2.1. Positive definite systems: Energy-norm case. From the modified
Uzawa algorithm we see that the major cost in each iteration of Step 2 is to solve
the minimization problems (2.5) and (2.6). We next show that (2.5) and (2.6) are
equivalent to two positive definite systems and thus can be solved using the GM-
RES iteration [16, 17], and more efficiently solved by the preconditioned GMRES
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method with their corresponding block diagonal symmetric positive definite matrices
as preconditioners.

We first need to derive Gâteaux derivatives of the augmented Lagrangian func-
tional Lr(q, u;λ). For the function eh(q

h
, u

h
), we can easily see its derivative with

respect to q
h
, denoted as e′h(q

h
, u

h
)p

h
at direction p

h
∈ Vh, is a finite element function

in
◦

V h and solves the equation

(∇e′
h
(q

h
, u

h
)p

h
,∇φ) = (p

h
∇u

h
,∇φ) ∀φ ∈

◦

V h,(2.8)

while its derivative with respect to u
h
, denoted as e′

h
(q

h
, u

h
)w

h
at direction w

h
∈

◦

V h,

is a finite element function in
◦

V h and solves the equation

(∇e′
h
(q

h
, u

h
)w

h
,∇φ) = (q

h
∇w

h
,∇φ) ∀φ ∈

◦

V h.(2.9)

Note from above that for the sake of notation, we distinguish between the directional
derivatives of e

h
(q

h
, u

h
) with respect to q

h
and u

h
only by the direction notation, i.e.,

depending only on whether we use p
h

or w
h
. Using these derivatives of e

h
(q

h
, u

h
),

we can immediately obtain the Gâteaux derivatives of the augmented Lagrangian
functional Lr(q, u;λ). Its derivative with respect to u

h
at direction w

h
is

L′
r(qh

, u
h
;λh)w

h

= (q
h

(∇u
h
−∇z),∇w

h
) + (∇λh,∇e′

h
(q

h
, u

h
)w

h
)

+r (∇e
h
(q

h
, u

h
),∇e′

h
(q

h
, u

h
)w

h
)

= (q
h

(∇u
h
−∇z),∇w

h
) + (q

h
∇λh,∇w

h
) + r (q

h
∇e

h
(q

h
, u

h
),∇w

h
),(2.10)

while its derivative with respect to q
h

at direction p
h

is

L′
r(qh

, u
h
;λh)p

h

=
1

2

∫

Ω

p
h
|∇u

h
−∇z|2 dx + β (∇q

h
,∇p

h
) + (∇λh,∇e′

h
(q

h
, u

h
)p

h
)

+r (∇e
h
(q

h
, u

h
),∇e′

h
(q

h
, u

h
)p

h
)

=
1

2

∫

Ω

p
h
|∇u

h
−∇z|2 dx + β (∇q

h
,∇p

h
) + (p

h
∇u

h
,∇λh)

+r (p
h
∇u

h
,∇e

h
(q

h
, u

h
)).(2.11)

Now combining the formula (2.10) and the definition of e
h
(·, ·), we can find the

solution un,k in (2.5), together with e
h
(qn,k−1, un,k) as follows:

Find (un,k, e
h
(qn,k−1, un,k)) ≡ (u

h
, e

h
) ∈

◦

V h ×
◦

V h such that

(qn,k−1 ∇u
h
,∇w

h
) + r (qn,k−1 ∇e

h
,∇w

h
) = (qn,k−1 ∇(z − λn−1),∇w

h
),(2.12)

(∇e
h
,∇φh) − (qn,k−1 ∇u

h
,∇φh) = −(f, φh)(2.13)

∀w
h
∈

◦

V h and φh ∈
◦

V h. Similarly, the solution qn,k in (2.6) can be solved together
with e

h
(qn,k, un,k):

Find (qn,k, e
h
(qn,k, un,k)) ≡ (q

h
, e

h
) ∈ Vh×

◦

V h such that

β (∇q
h
,∇p

h
) + r (∇e

h
, p

h
∇un,k) = −g

k
(ph),(2.14)

(∇e
h
,∇φh) − (q

h
∇un,k,∇φh) = −(f, φh)(2.15)
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∀p
h
∈ Vh and φh ∈

◦

V h. Here g
k
(ph) is given by

g
k
(ph) =

1

2

∫

Ω

p
h
|∇(un,k − z)|2dx + (p

h
∇un,k,∇λn−1).

Next we show that the linear systems (2.12)–(2.13) and (2.14)–(2.15) are both
positive definite. To see this, we introduce

A = (aij), B = (bij), Λ = (Λj), F = (fj)

with

aij = (qn,k−1∇φi,∇φj), bij = (∇φi,∇φj)

and

Λj = (qn,k−1∇(z − λn−1),∇φj), fj = (f, φj)

for i, j = 1, 2, . . . , N0. Then (2.12)–(2.13) can be written as follows:

Au + rAe = Λ, Be − Au = −F,

or equivalently

(B + rA) e = Λ − F, Au = Be + F,(2.16)

where u and e are the coefficient vectors of uh and eh in terms of the basis {φi}
N0

i=1,
respectively. These two equations are both symmetric positive definite and can be
solved by the conjugate gradient methods, or more efficiently by PCG method with
the standard domain decomposition type preconditioners [1].

In an analogous manner, we introduce the following notation for the system
(2.14)–(2.15):

Q = (qij), N = (nij), G = (gk(φj))

with

qij = (∇ϕi,∇ϕj), nij = (ϕi∇un,k,∇φj)

for i, j = 1, 2, . . . , N . Then (2.14)–(2.15) can be written as follows:

βQq + rNe = −G, Be − N⊤ q = −F.

By eliminating e, we can easily show that the system has a unique solution pair (q, e).
For implementation, we write the system as

(

rB −rN⊤

rN βQ

)(

e

q

)

=

(

−rF

−G

)

.(2.17)

If we let A2 be the coefficient matrix of the above system, and D2 be the block
diagonal matrix of A2, then we can easily verify that

(e⊤,q⊤)A2

(

e

q

)

= r e⊤Be + β q⊤Qq = (e⊤,q⊤)D2

(

e

q

)

> 0
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for any nonzero pair (q, e). Therefore A2 is positive definite, and so (2.17) can
be solved using the GMRES iterative method, or more efficiently solved using the
preconditioned GMRES method. A natural choice of the preconditioner matrix for
A2 is D−1

2 , with

D2 =

(

rB

βQ

)

,(2.18)

which is independent of the number of iterations and so is very cheap and easy to
implement.

2.2. Positive definite systems: L
2-norm case. In the L2-norm case, we can

similarly obtain the Gâteaux derivative of the augmented Lagrangian functional with
respect to u

h
and q

h
as in section 2.1. The derivative with respect to u

h
at direction

w
h

is

L′
r(qh

, u
h
;λh)w

h
= (u

h
− z, w

h
) + (q

h
∇λh,∇w

h
) + r (q

h
∇e

h
(q

h
, u

h
),∇w

h
),(2.19)

while its derivative with respect to q
h

at direction p
h

is

L′
r(qh

, u
h
;λh)p

h
= β (∇q

h
,∇p

h
) + (p

h
∇u

h
,∇λh) + r (p

h
∇u

h
,∇e

h
(q

h
, u

h
)).(2.20)

Now combining the formula (2.19) and the definition of e
h
(·, ·), we can find the

solution un,k in (2.5), together with e
h
(qn,k−1, un,k), as follows:

Find (un,k, e
h
(qn,k−1, un,k)) ≡ (u

h
, e

h
) ∈

◦

V h ×
◦

V h such that

(u
h
, w

h
) + r (qn,k−1 ∇e

h
,∇w

h
) = (z, w

h
) − (qn,k−1 ∇λn−1,∇w

h
),(2.21)

(∇e
h
,∇φh) − (qn,k−1 ∇u

h
,∇φh) = −(f, φh)(2.22)

∀w
h
∈

◦

V h and φh ∈
◦

V h.
We next show that (2.21)–(2.22) is a positive definite system. To see this, we

introduce

A = (aij), B = (bij), M = (mij), H = (hj), F = (fj)

with

aij = (qn,k−1∇φi,∇φj), bij = (∇φi,∇φj), mij = (φi, φj)

and

hj = (z, φj) − (qn,k−1∇λn−1,∇φj), fj = (f, φj),

for i, j = 1, 2, . . . , N0. Then (2.21)–(2.22) can be written as follows:

Mu + rAe = H, Be − Au = −F,

or equivalently,

(

rB −rA

rA M

)(

e

u

)

=

(

−rF

H

)

.
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Let A3 be the coefficient matrix of the above system and D3 be the block diagonal
matrix of A3; then we can see that A3 is positive definite as

(e⊤,u⊤)A3

(

e

u

)

= r e⊤Be + u⊤Mu = (e⊤,u⊤)D3

(

e

u

)

> 0

for any nonzero pair (q, e). Thus the system can be solved by the GMRES method.
Another way to solve the system is to first eliminate u and solve the symmetric
positive definite system (B+ rAM−1A)e = −F+AM−1H for e and then substitute
e back to the system. Note that if we use the lumped mass scheme to approximate
the mass matrix M, then M is a diagonal matrix. This simplification keeps the same
accuracy of approximation as we calculate M exactly (cf. Hoffmann–Zou [10]).

On the other hand, combining the formula (2.20) and the definition of e
h
(·, ·),

we know that the solution qn,k in (2.6) satisfies the same equation as (2.17) but with
gk(φj) replaced by

∫

Ω

ϕi ∇un,k · ∇λn−1 dx .

3. Regularization with piecewise H
1 seminorms. In some applications, the

location of the discontinuities of the identifying parameters may be available, either
achieved technically or obtained by some simple numerical methods. In this case, we
propose to use the piecewise H1-seminorm regularization to obtain a more accurate
recovery for the highly discontinuous parameters.

For simplicity, let us assume that the coefficient q(x) has jumps only across the
interface Γ between two subdomains Ω1 and Ω2 of Ω, namely,

q(x) =

{

q1(x), x ∈ Ω1,
q2(x), x ∈ Ω2,

with Ω̄ = Ω̄1 ∪ Ω̄2. The corresponding residual equation (1.2) becomes

(∇e(q, v),∇φ) = (q∇v,∇φ) −

{
∫

Γ

[

q
∂u

∂n

]

φ + (f, φ)

}

∀ (q, v) ∈ K × V, φ ∈ V.

Here
[

q ∂u
∂n

]

is the jump of the flux q ∂u
∂n

across the interface Γ, which is given and in fact
vanishes in many real applications. We assume that Γ is a piecewise line segment (d =
2) or a polygon (d = 3). In other cases the finite element discretization needs to be
taken care of very technically (cf. Chen–Zou [6]). Let T h be a triangulation of Ω with
all the finite elements aligning with the interface Γ and Ṽh be the standard piecewise
linear finite element space, respectively, in Ω1 and Ω2, namely, with piecewise linear
functions which are continuous both in Ω1 and Ω2 but probably having jumps across
Γ. We define the discrete constrained set to be K̃h = K ∩ Ṽh.

Now we can reformulate the augmented Lagrangian functional Lr in (1.3) by
replacing the regularization term N(q) there by

Ñ(q) = β

∫

Ω1

|∇q1|
2 dx + β

∫

Ω2

|∇q2|
2 dx.

And in this case the discrete constrained set is defined to be K̃h = K ∩ Ṽh, and the

discrete augmented Lagrangian functional Lr in (2.2) is now defined on K̃h×
◦

V h ×
◦

V h
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and has the same form as (2.2) but with the regularization terms in Jh(q
h
, v

h
) replaced

by Ñ(q
h
).

All the derivations in sections 2.1–2.2 can be carried over with only minor nota-
tional changes. The resulting linear algebraic systems from (2.5) and (2.6) are still
all positive definite as we showed in sections 2.1–2.2.

4. Numerical experiments. We now show some numerical experiments on
the proposed method for parameter identifications. We apply the modified Uzawa
algorithm for the identification of the coefficients in the following test problems:

−
d

dx

(

q(x)
d

dx
u(x)

)

= f(x), x ∈ (0, 1),(4.1)

u(0) = 0, u(1) = 0(4.2)

and

−∇ · (q(x, y)∇u) + c(x, y)u = f(x, y), (x, y) ∈ Ω,(4.3)

u(x, y) = 0, (x, y) ∈ ∂Ω,(4.4)

where Ω = (0, 1) × (0, 1). In our implementations, the interval (0, 1) is divided into
N uniformly distributed subintervals of length h = 1/N , the domain (0, 1) × (0, 1) is
triangulated uniformly into triangular elements with horizontal and vertical edges of
length h = 1/N .

Most parameters required in the algorithm are attached in each figure. The
error E shown is the relative L2-norm error between the exact parameter q(x) to be
identified and the numerically identified parameter qh. The numerically recovered qh
shown throughout this section are the result obtained at the 5th iteration, i.e., n = 5,
in the modified Uzawa algorithm. The augmented Lagrangian coefficient r and the
initial guess of the Lagrangian multiplier λ0 are always set to be 1 and 0, and the
finite element mesh size h to be 1/80 unless otherwise specified. The lower and upper
bounds α1 and α2 in the constrained set K are taken to be 0.5 and 20.0, respectively.
The tolerance is taken to be 10−6, i.e., ‖qn,k − qn,k−1‖∞ ≤ 10−6.

To generate the noisy observation data, we will always take the following form:

∇zδ(x) = ∇z + δ rand(x)

in case (a) or

zδ(x) = z + δ rand(x)

in case (b), where rand(x) is a uniformly distributed random (vector-valued in (a))
function in [−1, 1], δ is the noise level parameter. Then in our implementations, we
replace all previously appeared ∇z and z by ∇zδ and zδ, respectively.

4.1. Energy-norm case. We first show some results for the energy-norm case.
Example 1. We take the observed data z as

z(x) = u(q)(x) = sin(2πx)
with the coefficient q(x) as

q(x) = 3 + 2x2 − 2 sin(2πx).

Figures 1 and 2 show the exact solution q(x) (the solid line in Figure 1 but dashed
line in Figure 2) and the numerically identified solution qh(x) (the “o” line in Figure
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Fig. 1: q0
h

= 5.0, β = 10−5, δ = 1%, E=0.0025. Fig. 2: q0
h

= 5.0, β = 10−5, δ = 10%, E=0.021.
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Fig. 3: q0
h

= 5.0, β = 5 × 10−5, δ = 1%, E=0.026. Fig. 4: q0
h

= 5.0, β = 10−5, δ = 10%, E=0.031.

1 but solid line in Figure 2) with the noise level δ = 1% and δ = 10%, respectively.
Note that the initial guess q0

h = 5.0 is not a good initial guess at all, but the numerical
method converges very stably and fast. Figures 1 and 2 are the results obtained at the
5th iteration (n = 5). As the numerical algorithm is a globally convergent algorithm,
one can take the initial q0

h much worse than q0
h = 5.0, say, q0

h = 50.0, and still obtain
the same accurate recovery. This is true for all examples shown in this section.

Example 2. We take the observed data z as

z(x) = u(q)(x) = sin(πx)

with the discontinuous coefficient q(x) as

q(x) =







2 − x, x ∈ [0, 0.3],
1 − x + 4x2, x ∈ (0.3, 0.7),
3, x ∈ [0.7, 1].

Figures 3 and 4 show the exact solution q(x) (the dashed line) and the numerically
identified solution qh(x) (the solid line) with the noise level δ = 1% and 10%, respec-
tively.

Example 3. We take the observed data z as

z(x, y) = u(q)(x, y) = sin(πx) sin(πy)

and the coefficient q(x, y) as

q(x, y) = 1 + 6x2y(1 − y).
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Fig. 5: q0
h

= 5.0, β = 10−5, δ = 1%, E=0.025. Fig. 6: q0
h

= 5.0, β = 10−4, δ = 10%, E=0.079.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0.8

1

1.2

1.4

1.6

1.8

2

2.2

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0.5

1

1.5

2

2.5

Fig. 7: q0
h

= 5.0, β = 10−5, δ = 1%, E=0.049. Fig. 8: q0
h

= 5.0, β = 10−5, δ = 10%, E=0.069.

Figures 5–6 show the numerically identified solution qh(x, y) with h = 1/40 and the
noise level δ = 1% and δ = 10%, respectively.

Example 4. We take the observed data z as

z(x) = u(q)(x, y) = sin(πx) sin(πy)

with a discontinuous coefficient q(x, y) as

{

q(x, y) = 1, y ∈ [0, 0.5],
q(x, y) = 2, y ∈ (0.5, 1].

Figures 7–8 show the numerically identified solution qh(x, y) with h = 1/40, and the
noise level δ = 1% and δ = 10%, respectively.

4.2. L
2-norm case. In this subsection, we show some numerical experiments

on the proposed method with the L2-norm formulation for the identification of the
coefficient q(x) in the test problems (4.1)–(4.2) and (4.3)–(4.4). The L2-norm for-
mulation assumes that the observation data is available via the pointwise function
values, not the gradient values as in the energy-norm case. Note that the behavior
of the gradient of a function is more essential for knowing the changes of a function
than the function values, so in general we cannot expect the same nice performance
in the current case as in the energy-norm case.

Example 5. The observed data z and the coefficient q(x) are the same as in Ex-
ample 1. Figure 9 shows the exact solution q(x) (the dashed line) and the numerically
identified solution qh(x) (the solid line) with the noise level δ = 1%.
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Fig. 9: q0
h

= 3.0, β = 10−7, δ = 1%, E=0.018.
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Fig. 10: q0
h

= 5.0, β = 10−6, δ = 1%, E=0.031.
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Fig. 11: q0
h

= 5.0, β = 10−6, δ = 1%, E=0.091. Fig. 12: q0
h

= 5.0, γ = 10−4, δ = 10%, E=0.018.

Example 6. The observed data z and the discontinuous coefficient q(x) are taken
to be the same as in Example 3. Figure 10 shows the numerical solution qh(x, y) with
h = 1/40 and the noise level δ = 1%.

Example 7. The observed data z and the discontinuous coefficient q(x) are taken
to be the same as in Example 4. Figure 11 shows the numerically identified solution
qh(x, y) with h = 1/40 and the noise level δ = 1%; the recovery seems acceptable but
not very satisfactory.

If the location of the discontinuity of the parameter q(x) is available, then we can
achieve much better identification by using the piecewise H1-seminorm regularization
(see section 3). Figure 12 is the numerically identified results using piecewise H1-
seminorm regularization with the noise level δ = 10% and h = 1/40. Compared with
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Figure 11, where the noise level is only δ = 1%, we can see that the numerical results
using piecewise H1-seminorm regularization are much more satisfactory.

4.3. GMRES iteration. As stated in the modified Uzawa algorithm, we have
to eventually solve two minimization problems (2.5) and (2.6) at each iteration of step
2. But we have shown in sections 2.1–2.2 that these two problems are both equivalent
to solving two positive definite systems. In this section we take the energy-norm
formulation as an example and present some detailed numerical performance of the
Uzawa algorithm using the GMRES method to solve the nonsymmetric but positive
definite system (2.17). From the GMRES theory we know this system can be solved
by GMRES with guaranteed convergence. However, when discretization mesh size
is very fine, (2.17) is large and still expensive to solve, especially in two and three
dimensions. So good preconditioners are needed. Fortunately we have a cheap and
natural preconditioner available, i.e., M−1. Here M is the block diagonal coefficient
matrix

M =

(

rB 0
0 β Q

)

(4.5)

of (2.17). We are going to demonstrate some numerical experiments and compare the
results using GMRES with or without preconditioning.

In our implementation, the stopping criterion of all GMRES or preconditioned
GMRES iteration for a system Ax = b is taken to be 10−6, i.e.,

‖b−Ax‖

‖b‖
< 10−6.

The system Mx = c involved in the preconditioned GMRES is always solved by the
backward and forward substitutions using the LU factorization of M , i.e., M = LU .
Note that the two diagonal block matrices B and Q of the preconditioner M are both
symmetric and positive definite, in fact they are the stiffness matrices arising from the
finite element discretization of the simple Laplacian operator, so the preconditioner
M is unchanged in the whole outer (Uzawa iteration) and inner (GMRES) iterations.
Thus the LU factorization of M needs to be done only once for all, namely, it can be
done before we start the Uzawa algorithm.

We remark that the matrix Q used in the preconditioner M is a singular matrix, so
the upper triangular matrix U of the LU factorization may have zeros on its diagonal.
In this case, we add 10−10 (for d = 1) and 10−6 (for d = 2) to those diagonal entries
with magnitudes less than 10−10.

Another way to avoid the singularity of the matrix Q is to replace the seminorm
∫

Ω
|∇q|2 dx by the full-norm

∫

Ω
(|∇q|2 + q2) dx as the regularization term. In this

case,

Q = (qij), qij = (∇ϕi,∇ϕj) + (ϕi, ϕj)

and the preconditioner M̃ formed as in (4.5) is always nonsingular.
In the following examples, we will demonstrate the effectiveness of the precondi-

tioner M and the effect of seminorm and full-norm regularizations, by showing the
number of GMRES iterations performed.

In each table below,
(a) is the total number of GMRES solvers used when the number of the outer-loop

iteration of the modified Uzawa algorithm is n = 5;
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Table 4.1

Averaged number of iterations in each GMRES solver using H1-seminorm regularization.

Without preconditioning With preconditioning
h (a) (b) (a) (b)

1/80 65 132 66 132
1/160 65 215 67 160
1/320 65 377 67 166

Table 4.2

Averaged number of iterations in each GMRES solver using H1-full-norm regularization.

Without preconditioning With preconditioning
h (a) (b) (a) (b)

1/80 66 132 67 122
1/160 66 215 66 146
1/320 69 376 67 156

Table 4.3

Averaged number of iterations in each GMRES solver using H1-seminorm regularization.

Without preconditioning With preconditioning
h (a) (b) (a) (b)

1/80 57 123 57 115
1/160 57 203 57 129
1/320 57 363 57 135

(b) represents the average number of iterations within one GMRES solver, i.e.,
the total number of iterations accumulated in all GMRES iterations divided by the
number given in (a).

Example 8. The observed data z and the exact coefficient q(x) are taken to be the
same as in Example 1. Results by using H1-seminorm and full-norm regularizations
with or without preconditioning are shown in Tables 4.1 and 4.2.

For all the examples given in this section, the graphs of the numerically identified
solution qh(x) are similar to the ones we have shown in section 4.1, so we do not present
them here again. From Tables 4.1–4.2, we see that the numbers of GMRES solvers
performed (column (a)) are approximately the same with different mesh sizes, which
means the convergence of the algorithm is almost independent of finite element mesh
sizes; this seems to be a surprising observation. When considering the average number
of iterations within one GMRES solver (column (b)), the one with preconditioning
seems to have much fewer iterations, and this averaged number of iterations seems
to be asymptotically constant. This indicates the preconditioners we used are almost
optimal, namely, the numbers of the iterations of the preconditioned GMRES required
to reach the stopping criteria are independent of the finite element mesh sizes. So the
advantage of the preconditioning is more obvious when the problem sizes are larger.
We can see such conclusion more evidently when we compare the results in Tables
4.1–4.2 and Tables 4.3–4.4 for the one-dimensional problems with the results in Tables
4.5–4.6 and Tables 4.7–4.8 for the two-dimensional problems.

The above observations are true for all other examples shown below.
Example 9. We take the observed data z and the true parameter q(x) (discon-

tinuous) to be the same as in Example 2. Results using H1-seminorm and full-norm
regularizations with or without preconditioning are shown in Tables 4.3 and 4.4.

Example 10. We take the observed data z and the true coefficient q(x, y) to be
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Table 4.4

Averaged number of iterations in each GMRES solver using H1-full-norm regularization.

Without preconditioning With preconditioning
h (a) (b) (a) (b)

1/80 57 123 57 112
1/160 57 204 57 127
1/320 57 363 57 131

Table 4.5

Averaged number of iterations in each GMRES solver using H1-seminorm regularization.

Without preconditioning With preconditioning
h (a) (b) (a) (b)

1/10 42 143 41 125
1/20 45 446 45 227
1/30 45 830 45 269
1/40 45 1122 44 276

Table 4.6

Averaged number of iterations in each GMRES solver using H1-full-norm regularization.

Without preconditioning With preconditioning
h (a) (b) (a) (b)

1/10 41 143 41 110
1/20 45 446 45 207
1/30 45 830 44 236
1/40 45 1122 44 247

Table 4.7

Averaged number of iterations in each GMRES solver using H1-seminorm regularization.

Without preconditioning With preconditioning
h (a) (b) (a) (b)

1/10 42 145 42 130
1/20 49 449 49 245
1/30 50 840 50 284
1/40 50 1149 50 295

Table 4.8

Averaged number of iterations in each GMRES solver using H1-full-norm regularization.

Without preconditioning With preconditioning
h (a) (b) (a) (b)

1/10 43 144 42 114
1/20 49 449 49 224
1/30 50 840 50 266
1/40 50 1148 50 282

the same as in Example 3. Results using H1-seminorm and full-norm regularizations
with or without preconditioning are shown in Tables 4.5 and 4.6.

Example 11. The observed data z and the true parameter q(x, y) (discontinuous)
are taken to be the same as in Example 4. Results using H1-seminorm and full-norm
regularizations with or without preconditioning are shown in Tables 4.7–4.8.
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