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OPTIMAL SHAPE DESIGN BY PARTIAL SPECTRAL DATA*

HABIB AMMARIT, YAT TIN CHOW?, KEJI LIU%, AND JUN zOUY

Abstract. In this paper, we are concerned with a shape design problem, in which our target is
to design, up to rigid transformations and scaling, the shape of an object given either its polariza-
tion tensor at multiple contrasts or the partial eigenvalues of its Neumann—Poincaré operator, which
are known as the Fredholm eigenvalues. We begin by proposing to recover the eigenvalues of the
Neumann—Poincaré operator from the polarization tensor by means of the holomorphic functional
calculus. Then we develop a regularized Gauss—Newton optimization method for the shape recon-
struction process. We present numerical results to demonstrate the effectiveness of the proposed
methods and to illustrate important properties of the Fredholm eigenvalues and their associated
eigenfunctions. Our results are expected to have important applications in the design of plasmon
resonances in nanoparticles as well as in the multifrequency or pulsed imaging of small anomalies.
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1. Introduction. Fredholm eigenvalues are the eigenvalues of the integral
Neumann—Poincaré operator, which arises naturally in solving Neumann transmis-
sion problems for the Laplacian. They depend on the shape of the domain but they
are invariant under rigid transformations and scaling. They have been the subject
of intensive investigations; see, for instance, [1, 33, 34, 36]. Spectral analysis of
Neumann—Poincaré type operators has played a key role in the mathematical jus-
tification of cloaking due to anomalous localized resonance [5] and in the analysis of
gradient blow-up phenomena in the presence of nearly touching inclusions [6, 15, 16].
We also refer to [26], where new and interesting facts on spectral analysis related
to the Neumann—Poincaré integral operator have been obtained, and to the works
on plasmon resonances [22, 29, 30]. Plasmon resonant nanoparticles such as gold
nanoparticles offer, in addition to their biocompatibility, enhanced scattering and
absorption, making them suitable not only for use as a contrast agent but also in
therapeutic applications [22]. Recently, it has been shown that plasmon resonances
in nanoparticles can be treated as an eigenvalue problem for the Neumann—Poincaré
operator, which leads to direct calculation of resonance values of permittivity and
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resonance frequency [7, 18, 30]. In biomedical applications, it is challenging to design
nanoparticles that resonate at specified frequencies. It is the purpose of the paper
to propose an efficient approach for solving the optimal design problem (up to rigid
transformations and scaling) from partial Fredholm eigenvalues.

Shape identification from Fredholm eigenvalues also has important applications in
imaging. In electrosensing, the polarization tensor of a target at multiple frequencies
(or equivalently at multiple contrasts) can be reconstructed from electrical capacitance
measurements [2, 3, 4, 27, 35]. The polarization tensor arises naturally when we
describe the perturbation of the electrical potential due to the presence of the target
whose admittivity is different from that of the background. In fact, the polarization
tensor of an inclusion can be expressed in terms of the Neumann—Poincaré operator
and the admittivity contrast.

In this paper, we first show that the Fredholm eigenvalues can be reconstructed
from the polarization tensor at multiple contrasts. By doing so, we connect design
problems for plasmon resonances in nanoparticles to the imaging of small anomalies.
Moreover, we show how to obtain in practice the polarization tensor at multiple con-
trasts from electrical capacitance tomography measurements. By probing the domain
with an electric pulse, the polarization tensor of the anomaly at multiple frequencies
and therefore at multiple contrasts can be recovered [20, 28]; see Appendix A. We
optimize the pulse shape in order to reconstruct in the most stable way the first few
Fredholm eigenvalues.

Then we consider the shape reconstruction problem (up to rigid transformations
and scaling), in which we wish to reconstruct a shape from only the prior knowledge
of the first several Fredholm eigenvalues of the Neumann—Poincaré operator. We start
by giving both analytical and numerical evidence that the first Fredohlm eigenvalues
contain only low-frequency information about the shape of the domain while higher
ones contain higher-frequency information. We estimate the oscillation behavior of
the associated eigenfunctions. We also emphasize the exponential decay of the Fred-
holm eigenvalues in the two-dimensional case. This clearly makes the design problem
exponentially ill-posed. Therefore, we should restrict ourselves to low-frequency shape
reconstructions from the first few Fredholm eigenvalues.

We also derive Hadamard’s formula for the Fredholm eigenvalues. Based on
Osborn’s theorem [31], we compute the shape derivative of Fredholm eigenvalues
using the shape derivative of the Neumann—Poincaré operator. Then we propose a
minimization algorithm to reconstruct a domain given its first Fredholm eigenvalues.
In view of the invariance of the Fredholm eigenvalues under rigid transformations and
scaling, we incorporate some effective penalty and regularization terms in the cost
functional to ensure the local existence and uniqueness of its minimizers. We will
further present several numerical illustrations of our main findings.

Our results on Fredholm eigenvalues and on the polarization tensor are expected
to have important applications not only in shape design problems but also in shape
classification and recognition problems. Various other geometric quantities associated
with the shape of a domain, such as eigenvalues, capacities, harmonic moments, and
generalized polarization tensors, are used to distinguish between objects and classify
them [3, 8, 9, 12, 14, 17, 21, 23]. The concept of polarization tensor at multiple
contrasts seems to be the most natural one for shape classification and recognition
using capacitance electrical impedance tomography.

The paper is organized as follows. In section 2, we introduce the Neumann-—
Poincaré operator and the concept of polarization tensor associated with a given do-
main and a given contrast. In section 3, two methods are provided for reconstructing
Fredholm eigenvalues of a domain from its polarization tensor at all contrasts then
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tested numerically. Section 4 is devoted to the derivation of a Hadamard’s perturba-
tion formula for Fredholm eigenvalues. By combining the results in [12] on the shape
derivative of the Neumann—Poincaré operator together with Osborn’s theorem [31],
we compute the shape derivative of Fredholm eigenvalues. In section 5, we present and
numerically test our minimization procedure for finding low-frequency features of a
domain from its first few Fredholm eigenvalues. In Appendix A, we show the method
to obtain the polarization tensors at multiple contrasts from electrical capacitance
tomography measurements. In Appendix B, we consider the case of multiply con-
nected objects. In that case, it is remarkable to easily find the number of connected
components from the multiplicity of the Fredholm eigenvalues.

2. Neumann—Poincaré operator and polarization tensor. In this section,
we first introduce the Neumann—Poincaré operator of an open connected domain D
with C? boundary in R? (d = 2,3). Given such a domain D, we consider the Neumann
problem

(2.1) Au=0 in D; @:g on 0D, / udo =0,

ov oD
where g € L2(0D) with L3(0D) is the set of functions in L?(0D) with zero mean-
value. In (2.1), 9/Jv denotes the normal derivative. We note that the Neumann
problem (2.1) can be rewritten as a boundary integral equation with the help of the
single-layer potential. Given a density function ¢ € L%(9D), the single-layer potential,
Sap|¢], can be defined as

(22) Sopldl(@) = [ T =u)otu)doty)
D
for 2 € R?, where I' is the fundamental solution of the Laplacian in R¢:

—5=log |z — | if d=2
(2.3) D(z—y) =4 7 q ’
mh}-yp d if d>2,

where wy denotes the surface area of the unit sphere in R?. It is well-known that the
single-layer potential satisfies the following jump condition on dD:

(2.4) 5 (Sonlol)* = (£57+ K5 ) 4]

where the superscripts + indicate the limits from outside and inside D, respectively,
and K}, : L*(0D) — L*(dD) is the Neumann-Poincaré operator defined by

1 (= y,va)
2.5 K5 x) = — / ——=—"o(y)do
(25) oldlie) = - | S oy)do(y)
with v, being the outward normal at € 9D. We note that K}, maps L3(9D) onto
itself.
With these notions, the Neumann problem (2.1) can then be formulated as

(2.6) 9= e (Sanlol)” = (=31 +Kon) 0]

Therefore, the solution to the Neumann problem (2.1) can be reformulated as a solu-
tion to the boundary integral equation with the Neumann-Poincaré operator K.

The operator K}, arises not only in solving the Neumann problem for the Lapla-
cian but also for representing the solution to the transmission problem as described
below.
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Consider an open connected domain D with C? boundary in RZ. Given a harmonic
function ug in R%, we consider the following transmission problem in R<:

. u) = in R?
e {v (epVu) =0 R,

u—wup=O0(|z|'=%) as |z] = oo,
where ep = e.x(D) 4+ emx(R*\D) with &.,,, being two positive constants, and x(€2)
is the characteristic function of the domain Q2 = D or R4\ D. With the help of the

single-layer potential, we can rewrite the perturbation u — wug, which is due to the
inclusion D, as

(2.8) U — uyg = SaD[¢] )

where ¢ € L?(0D) is an unknown density, and Spp[¢)] is the refraction part of the
potential in the presence of the inclusion. The transmission problem (2.7) can be
rewritten as

Au=0 in DURND),
2.9) ut =u" on 9D,
' acag—: =& 85‘; on 0D,

u—up=O0(z['7%) as |z| = 0.
With the help of the jump condition (2.4), solving the above system (2.9) can be

regarded as solving the density function ¢ € L?(9D) of the following integral equation:

8u0 EctEm
2.10 — =1 - K} .
(2.10) o= (et~ Ko ) 0
With the harmonic property of ug, we can write
1 (0% (0%
(2.11) up(z) = ) —0%u0(0)z
a€eNd
with a = (a1, ...,aq) € N4, 9, = O .09t and o = aq!. L ag!.

Consider ¢“ as the solution of the Neumann—Poincaré operator:

oz Ec+Em
2

(2.12) T = e

I Ksp ) 67

The invertibilities of the operator (ze<t&=<] — K%,) from L?(0D) onto L?(0D)

2(ec—em)
and from L(0D) onto L3(0D) are proved, for example, in [10, 25], provided that

|2(5;;56’:n)| > 1/2. We can substitute (2.11) and (2.12) back into (2.8) to get

(2.13) u—up = Z ﬁaauo(O)SaD[QW] = Z éaauo(O)/ Iz —y)o*(y)do(y) -

la|>1 la>1 oD

Using the Taylor expansion,

(2.14) Nx—y)=T(x)—y -VI(zx)+ O (#) ,
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which holds for all z such that |2| — oo while y is bounded [10], we get the result by
substituting (2.14) into (2.13) that

(215) (1 — u0)(x) = Vuo(0) - M(\, D)V () + O (@) as |a| = oo,

where M = (Mij);ij:]_ is the polarization tensor associated with the domain D and
the contrast A defined by

(216) My D)= [T =K ) ()
with A := % and v; being the jth component of v. Here we have used in (2.15)

the fact that [, vdo = 0.

Typically the constants €. and &, are positive in order to make the system (2.9)
physical. This corresponds to the situation with [A| > 3.

However, recent advances in nanotechnology make it possible to produce noble
metal nanoparticles with negative permittivities at optical frequencies [22, 32]. There-
fore, we can have the possibility for some frequencies that A := % actually lies
in the spectrum of K} .

If this happens, the integral equation

(2.17) 0=\ —-Kjp)[¢] on 0D

has nontrivial solutions ¢ € L?(9D) and the nanoparticle resonates at those frequen-
cies.

Therefore, we have to investigate the mapping properties of the Neumann—
Poincaré operator. Assume that 9D is of class CV*. It is known that the oper-
ator Kjp @ L2(0D) — L*(0D) is compact [25], and its spectrum is discrete and
accumulates at zero. All the eigenvalues are real and bounded by 1/2. Moreover, 1/2
is always an eigenvalue and its associated eigenspace is of dimension one, which is
nothing else but the kernel of the single-layer potential Syp. In two dimensions, it
can be proved that if A\; # 1/2 is an eigenvalue of K}, then —\; is an eigenvalue
as well. This property is known as the twin spectrum property; see [29]. The Fred-
holm eigenvalues are the eigenvalues of K} ,. It is easy to see, from the properties of
K% p, that they are invariant with respect to rigid motions and scaling. They can be
explicitly computed for ellipses and spheres. If a and b denote the semi-axis lengths
of an ellipse, then it can be shown that :I:(Z—_z)i are its Fredholm eigenvalues [26].
For the sphere, they are given by 1/(2(2i + 1)); see [24]. Tt is worth noticing that
the convergence to zero of Fredholm eigenvalues is exponential for ellipses while it is
algebraic for spheres.

Equation (2.17) corresponds to the case when plasmonic resonance occurs in D;
see [18]. The optimal shape design for Fredholm eigenvalues is of great interest in
plasmonics [22, 29, 32]. Given negative values of ., we show in this paper how to
design a shape with prescribed plasmonic resonances.

3. Reconstruction of Fredholm eigenvalues from the polarization
tensor.

3.1. Reconstruction method via holomorphic functional calculus. In
this subsection we propose for two dimensions to recover the Fredholm eigenvalues
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from the polarization tensor

(3.1) M(A D) = /8 WO = K)o ()

for X\ along a simple closed curve v by means of the holomorphic functional calculus.
From this expression, one observes that M (A, D) actually encodes vast information
of the resolvent of the operator K3, at A,

(3.2) Ra(K3p) = (M —Kjp)~t.

Motivated by this observation, we propose to recover eigenvalues {\;}i>1 (A #
1/2) of K}, from M (A, D) via the holomorphic functional calculus of K}, . Let H be
the space L§(0D) equipped with the inner product —(-,Sop(+))r2(op). Since Spp is
injective on L2(dD), L3(0D) is complete for this inner product. If dD is of class C1,
there exists a complete orthonormal set {¢7"};>; in H such that K5, = +\¢F
for all ¢ > 1 and the eigenvalues 1/2 > A\; > --- > \; — 0 as i — o0, by using the
self-adjointness and the compactness of the operator K}, over # and the Hilbert—
Schmidt theorem; see [26]. For notation’s sake, we will often write )\ii := £\; in our
subsequent discussions. Then we can decompose the operator K}, as
53) Koo =S (N 060 o + 3 (00 o1 |

i=1
_ iA{< Fom b — (67w "55}'

Note that as K}, is a pseudodifferential operator of order —1, the eigenfunctions ¢§t
oscillate as 1/A;, and there exists a positive constant C' such that

oo
=97l z2(aD) < c

167 ll2om) ~ Ai’
where 0/0T denotes the tangential derivative.

Now, given the Neumann-Poincaré operator K}, corresponding to a shape D (D
being an open domain with C'® boundary), we define, for any holomorphic function
f on an open domain U C C containing the spectrum of K}, the following notion:

o0
(3.4 FO5p) = 3 [FND@E ol + FOD)07 o |

i=1
Clearly, if f is a polynomial in z € C, say, f(z) := Zf;o a;z" for some N € N, the
definition (3.4) coincides with the conventional one, i.e., f(K},) = Zij\io ai (K3p)"s
where (K%p)" means the composition of the operator i times. For our subsequent
description, we may write for any ¢ € L?(9D) that

(&, y)L2(0D) = /01:) yd(y)do(y) .

Then we have the following representation result.
LEMMA 3.1. Given a shape D and the corresponding Neumann—Poincaré operator
Kjp, the following identity holds for the polarization tensor M (X, D) in (3.1) and any
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holomorphic function f on an open domain U C C containing the spectrum o(Kjp,)
of Kip:

(35) 37 | SO DY = [ i i wety

Z[*fﬁ T+ o0

where v is an arbitrary simple closed curve in U enclosing o(KC} ), and c?‘ and c;
are defined by

(36) C?_ = <I/7 ¢;‘F>H<¢j_ay>L2(aD)a Ci_ = <V7 ¢:>H<¢;7Q>L2(8D) .

Proof. By the holomorphic functional calculus, we know for any holomorphic
function f on an open domain U C C containing o (K} ) and any simple closed curve
v in U enclosing U(’CBD) that

(37) 3ot | SR = 75)

_ [f(A+)< b+ PTG b

—1

Combining this with (3.1), we readily derive that

(389) 3ot | FOMODIA= [ 70000t

Now the desired representation comes from the above two identities. 0

We note that even if 9D is only Lipschitz, a similar result can be obtained for the
(noncompact) operator K, from the spectral decomposition K, = [ AdE\, where
E)\ is the projection-valued measure. However, we will not pursue this direction for
the sake of simplicity. We refer the reader to [19].

Based on the relation (3.5), we can make use of different choices of holomorphic
functions f to reconstruct the eigenvalues A; of K3, from its polarization tensor. One
of the methods is based on the following observation. For any n € N we define

(n) 1 2n
: pim = A2" M (A, D)dA
(3.9) 1 2m/7 (A, D)
(n) . 2n 2n
(3.10) h .—2m/>\ M(\, D)dX — ch F o)A for j > 1

=1

then we come to the following corollary.
COROLLARY 3.2. Assume that all the eigenvalues of IC5, are simple. Then for
any j € N such that cj +c¢; # 0, it holds that

h(n) h(n)
I )2 L —ct 4
(3.11) nl;n;o h(n ) =A; and nl;n;o /\2n ¢+

Proof. Taking f = A\*" for n € N in (3.5), we have

1 . 2] o ~\ y2n
(3.12) %/v M(\, D)d\ = Z{ "+ —Ai)Q]:;(cj+ci)A§.

=1
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Substituting (3.12) into (3.9)-(3.10), we get that for all j € N,

(3.13) WY =37 (e + o) A

i=j
Noting that all the eigenvalues of K} are simple and c;r +¢; # 0, we readily obtain
from (3.13) that

(n) 0 + — 2n
Ba0 g = i e =
J 1=] 7 7 7
and
(3.15) Jim /\JJW = nl;rrgoz (cf +¢) <)\—;) =cf+c .
i=j
This gives the conclusion of the corollary. O

With the help of Corollary 3.2, we can propose the following method to reconstruct
the Fredholm eigenvalues from the polarization tensor at multiple contrasts.

Method 1. Given two integers J, N € N, for j =1,2,...,J and n=1,2,..., N,
(

jn) based on (3.9)-(3.10), then compute the square root of the quotient

(n) /(1)
VRN

for the approximation of the eigenvalue ;.
Next, we introduce another reconstruction method. For a o9 > 0, t € R, and a
simple closed curve v enclosing o(KC3 ), we define

compute h

1 (A —1)?
1 Dy 4 (E) i= — — M(X\, D)dA.
(3.16) 0= 5 [ (<55 )
Then by taking a different holomorphic function f in (3.5), we have the following
useful result from Lemma 3.1.
COROLLARY 3.3. Given a shape D and the corresponding Neumann—Poincaré
operator K3, the following equality holds:

(3.17) Dy, (1) = i [cj exp <—%> +c; exp <—%>} .

i=1

Proof. Forog > 0andt € R, let f(A, 1) := exp( A—t)® ). As f(A,t) is holomorphic

202
with respect to A\, we can substitute it in (3.5) to get the 0desired representation. d
2
(Aég St)
decays exponentially away from ¢ = \;, we observe from (3.17) that the local extrema
of the function ®,, ,(t) are approximately located at the eigenvalues \; of operator
K%p. So we can reconstruct the eigenvalues A; by evaluating the local extrema of
function ®,, ~(t). This leads us to the following second reconstruction method.
Method 2. Given a small constant oy > 0, evaluate function ®,, (¢) in (3.16)
for t € [-1/2,1/2]. Then locate the local extrema of function ®,, ~(t) one by one,
starting from the one with the largest magnitude of c;t, then moving to the one with
the second largest magnitude of cjt, and so on.

Noting that the function exp(— ) achieves its maximum at ¢ = \; and
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3.2. Numerical results. In this subsection, we will first present some numerical
results on the approximations of the Fredholm eigenvalues and the decay properties of
eigenvalues. Then we shall focus on the inverse problem to reconstruct the Fredholm
eigenvalues from the observed PT at multiple contrasts.

For the approximations of the Neumann—Poincaré operator and Fredholm eigen-
values, we use a fine mesh of size h = 1/1024 to discretize the integral operator (2.5)
by the trapezoidal quadrature rule over the curve 0D, and we compute the eigenvalues
of Kjp.

For a given shape D, we plot the decay of eigenvalues and the growth of oscillation.
Let A; be the ith eigenvalue and ¢;r be the corresponding eigenfunction. Then we
define the oscillation of the eigenfunction ¢;" by

1% |
(3.18) a; = w ,

|16: |22 0D)
In order to have an effective comparison between the scales of eigenvalues and the
values of a; in different shapes D, we normalized each of the shape D such that it has
unit volume.

In Figures 1 and 2, we can see the detailed changes of \;, log \;, and a; against 4,
respectively, from which one can observe the decay of eigenvalues and the growth of
oscillation of eigenfunctions, corresponding to two domains D, an ellipse of the form

2
(3.19) %4—1/2:1/[(1, v,y €R,

and a heart-shaped domain of the form (with 6 = 0.8 and m = 1)
(3.20) r=(14dsin(mb))/K2, 0 € (0,2n],

where K7 and K5 are chosen such that the volumes of the corresponding shapes are 1.

Next, we carry out some numerical examples for the reconstructions of Fredholm
eigenvalues from the polarization tensor at multiple contrasts. The forward data is
obtained by first approximating the Neumann—Poincaré operator as done earlier in this
subsection, then the polarization tensor, M (A, D) = (Mij(/\,D))gjzl, is calculated
based on (3.1) using the trapezoidal rule over a fine mesh of size h = 1/1024 on 0D.
Values of M (A, D) are obtained for A € C on the grid points of a uniform mesh of size
1/100 over the curve =,

(3.21) v={023e""+03[0<0<1},

and are regarded as the observed data for the reconstructions of the Fredholm eigen-
values. For the numerical comparisons, we have implemented both Methods 1 and 2
in section 3.1. We notice that, in Method 1, quadrature rules with accuracy of ex-
tremely higher orders are necessary for the approximation of the contour integration
in order to accurately approximate hgn) in (3.9) for large n € N, which is the case for
an accurate estimate of eigenvalues. Hence Method 1 may be very expensive, and we
shall demonstrate only the reconstructions by Method 2 below.

By considering only those eigenvalues lying inside v (which are all positive), we
compute (3.16) in our implementations of Method 2 as follows:

(3.22) By ()= Zim /7 exp (-%) M(, D)dA

0

-y cjexp(_%).

0.07<X;<0.53
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TABLE 1
The five reconstructed eigenvalues for the kite-shaped domain.

Eigenvalues | Exact solutions | Approximate solutions
First 0.5000 0.5000
Second 0.2707 0.2700
Third 0.1902 0.1800
Fourth 0.0891 0.0900
Fifth 0.0718 0.0700
TABLE 2

The three reconstructed eigenvalues for the pear-shaped domain.

Eigenvalues | Exact solutions | Approximate solutions
First 0.5000 0.5000
Second 0.1035 0.1050
Third 0.1035 0.1050
TABLE 3

The five reconstructed eigenvalues for the floriform domain.

Eigenvalues | Exact solutions | Approximate solutions
First 0.5000 0.5000
Second 0.3322 0.3300
Third 0.3322 0.3300
Fourth 0.1404 0.1300
fifth 0.1404 0.1300

Then we can locate the local extrema of function (3.23) one by one, starting from the
one with the largest magnitude of ¢;, then the one with the second largest magnitude
of cf, and so on. This process provides us with a set of approximate eigenvalues from
the knowledge of polarization tensor M (A, D) over . We would like to emphasize
that only eigenvalues sitting inside the interval (0.07,0.53) can be reconstructed in
our numerical experiment with the choice of 7, considering the fact that v only en-
closes such eigenvalues. The exact eigenvalues and the approximate ones obtained
by Method 2 described in section 3.1 with o9 = 0.05 are listed in Table 1 for the
kite-shaped domain D of the form

(3.23) x =cosf+0.65cos20 —0.65, y=1.5sin0, 6¢c (0,2n],

a pear-shaped domain in Table 2, and a floriform domain with three petals in Table
3. The latter two domains are of the form (3.20) with the same parameter m = 3 but
a different 4, i.e., 6 = 0.3 and 0.6.

As we can observe from Tables 1, 2, and 3, the reconstructed eigenvalues are rather
satisfactory and accurate in view of the severe ill-posedness of recovering eigenvalues.

To have a better understanding of the performance of Method 2, we have tried to
push our algorithm to the limit and consider a numerically very challenging example
with a complicated domain consisting of 12 eigenvalues in the range (0.07,0.53); see
Figure 3 for the shape of this domain. Now, due to the fact that the eigenvalues
sit very close to each other, we have chosen a smaller value of g = 0.02 to increase
the resolution of obtaining eigenvalues from locating local extrema of (3.23). Table 4
shows a comparison between the exact eigenvalues and the approximate ones obtained
by our method. Although this example is very challenging, the eigenvalues are still
reconstructed with a quite reasonable degree of accuracy, ensuring the reliability of
our method in solving this severely ill-posed inverse problem.
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Fic. 3. Shape of the complicated domain.

TABLE 4
The 12 reconstructed eigenvalues for the chosen complicated domain.

Eigenvalues | Exact solutions | Approximate solutions

First 0.5000 0.5000
Second 0.4820 0.4800
Third 0.4056 0.4050
Fourth 0.3320 0.3150
Fifth 0.2817 0.2850
Sixth 0.2271 0.2050
Seventh 0.1889 0.1850
Eighth 0.1546 0.1400
Ninth 0.1284 0.1250
Tenth 0.1056 0.1050
Eleventh 0.0906 0.0850
Twelfth 0.0762 0.0750

4. Hadamard’s formula for Fredholm eigenvalues. In this section, we turn
our attention to the optimal shape design problem given the Fredholm eigenvalues
corresponding to a geometric shape. Our strategy to approach the problem is via an
appropriately formulated Tikhonov regularization. For this purpose, we first discuss
how to obtain the shape derivatives of the Neumann—Poincaré operator and the Fred-
holm eigenvalues. These derivatives are needed when we compute the gradients of the
concerned least-squares functional.

To start with, we first derive the shape derivative of the Neumann—Poincaré op-
erator corresponding to a shape D sitting inside a general space R for any d > 1.
The special two-dimensional case was treated in [12]. For the sake of exposition, we
shall first introduce some notation. Given a shape D sitting inside R¢, we consider a
regular parametrization of the surface 0D as

X:UcR! - 9D c RY,

u = (ul,uz, ...,ud_l) — X(U) .

For notation’s sake, we shall often write the vector X; := %. For a given d — 1

vectors {v;}9=}, we shall denote the d — 1 cross product x"'v; = v; X vg... x
v4—1 as the dual vector of the functional det(-,vi,ve,...,v4-1), i.e., {(w, xf;fvﬁ =
det(w, vy, va,...,v4—1) for any w, which is guaranteed to exist by the Reisz represen-
tation theorem. Then, from the fact that X is regular, we know x?;llxi is nonzero,
and the normal vector v := x97'X; /| 9=} X;| is well-defined.
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Now consider an e-perturbation of D, namely, 0D, is given by
(4.1) 0D, :={z|T =z +ceh(u)v(z), z € 0D},

with h € C1(OD). Let V.(z) := = + eh(u)v(z) be the diffeomorphism from 9D to
0D.; then it is easy to see that

Xf:U c R - 9D, c R,
u= (ug,uz,...,ug—1) — Vlu] = X(u) + eh(u)r(X(u))

is a regular parametrization over 0D, for small e. Furthermore, directly from the
definition, we have X5 = X; +¢ 21 1/+ah Zd LA; X5, where the matrix A;; is defined
as

A = (Aij) = <II(X“XJ), I/> s
and IT is the second fundamental form given by

I1: T(9D) x T(D) — T*(8D),
II(v,w) = —(Vyr,w)v = (v, Vyw)r,

where V is the standard covariant derivative on the ambient space R?. From the
multilinearity and alternating property of the d — 1 cross product, we can readily
calculate at any point b € U that

(4.2) XAZIXE(b) = X421 (8) + e L()[A] | x 1K (b))
where the vector L(b)[h] is defined as

F A A SO
hAll hA12 hAld—l 6% i
Jh
L(b) [h] = hAsq hAss R hAsg_1 € Fus _ (hﬁ Vljh)
hAd*l 1 hAd*l 1 hAdfl d—1 5_81?;1_1

and X; := X3 x Xy... x S/S\Z .. X Xg—1 X v with the hat meaning the removal of the
corresponding vector from the cross product. Hence it yields that
(- 5 (b)) do®(b) = (-, x (X5 (b)) db
(-, x{IX(0) + eLO)[] [ Xi(b)]) db
(-, v(b) +eL(b)[n]) do®(b),

(4.3)

where v°(b) denotes the normal vector at X¢(b). Moreover, for two arbitrary points
x,y € 0D given by x = X(a),y = X(b) for some a,b € U, we have

X (a) — X5(b) = X(a) — X(b) + eK (a, b)[A],

where K (a,b)[h] := h(a)v(a) — h(b)v(b). Hence, by the Taylor expansion of |X*(a) —
Xe(b)|74 in ¢,

|X*(a) — X*(b)|
= ([X(a) = X(b)* + 22(X(a) — X(b), K (a, b)[A]) + | K (a,b)[A]|?) "
(44) =[X(a) = X(b)| " — de|X(a) = X(0)|7*"*(X(a) — X(b), K (a,0)[h]) + O(¢?).
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Combining (4.3) and (4.4), we obtain the series expression

(X°(a) =X°(0) ,v°(0)) , .0\ _ N~
X (a) — X (0)]2 do* (b) .—nzzos K. (a,b) do(b),

where

Kol t) = PG —x
(K(a) (), LA + (6 (o, )[1] v(8)
e K(a) — X0)1

|
_ g Xla) = X(b) , K(a, b)[A]) {X(a) — X(b), v(b))
X(a) —X(b)|4+2 ’

and the higher order terms K ; can be explicitly calculated from (4.4) in a similar
fashion. Therefore we can see that the kernel of the Neumann—Poincaré operator
varies analytically with respect to small € along any direction h € C*(9D).

From now on, whenever the context is clear, by an abuse of notation we will not
distinguish between F(x) and F'(a) for any function F over 0D if z = X(a) € OD.

Now we define a sequence of integral operators IC e L2(0D) — L2(8D) by

(4.5) K516@) = | Knn(2,9)6()doly) V¢ € L*(9D)
D
for n > 0. Then we can directly obtain the following result from (4.5).
THEOREM 4.1. For N € N, there exists constant C depending only on N, ||X||c2

and ||h||cr such that the following estimate holds for any ¢ € L2(dD,) and ¢ := oW, :

N
(46) H/czDs 80T, — K3pld] — 3 ek (6] < CN 6] o)
=1

L2(8D)
In particular, the kernel of ICS))h can be explicitly expressed by

(r —y, Ly)[h]) + (K(z, y)[h], v(y))

(4.7) Kpi(z,y) = P—r
_glemy K@ y)h)) (e —y v(y))
|z — y|d+2 ’

where K (z,y)[h] := h(z)v(z) — h(y)v(y) and (v, L(y)[h]) can be given explicitly by

(v, L(y)[h]) = <hoj4 Vﬁh)

forallvzz . L X; + v e R%.
We know now from (4.6) that the shape derivative of the Neumann-Poincaré
operator at the variation h and D is given by

(4.8) [D(Cs))(h) = K, .

We would like to remark that the special case of the above theorem for d = 2
was treated in [12]. In this special case, the above formulae for Ky, ,, can be stated
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explicitly. With a shape D sitting inside R?, a parametrization of its boundary can
be simplified to be an arc-length parametrization of 0D, X (t) : [a,b] — 0D, where
a,b € R with a < b. Let T'(x) and v(z) be respectively the tangent vector and the
outward unit normal to 0D at x € 9D, and let 7(x) be the curvature defined by

(4.9) X"(t) = 7(x)v(z).

Now for two arbitrary points z,y € 0D such that © = X (¢),y = X(s) for some
t,s € [a,b], we define

(4.10)
Fp(x,y) = 9, h(tﬁ;(_x)yg MEYW) Ghlz,y) = |h(t)”3(3|2 = Z|(;)V(y)|2
and define F, , as the coefficients in the following series:
(4.11)
! V(1 —eT(y)h(s))? + e2(h'(s))?

;5nF han(TY) = T ) + G (@) VA —er@h)2 + 2 D)2

where the series converges absolutely and uniformly [12]. We can directly see that
(412) Fho(z,y) =0 and  Fpa(z,y) = —2F(z,y) + 7(x)h(z) — 7(y)h(y) .
Then, following the argument in [12] and using (4.5) and (4.10)—(4.11) we have
(z —y,v(z))

|z —y[?
Knn = FpnKpno+ Fhpn-1Kp1 + FpnoKpp

Kpo = y Kni=KpoFhi+ Kna,

for n > 2, where K} 0, Kp,,1, and K} 2 are given by

0T T
o (h(t)v(x) = h(s)v(y),v(z)) (z—y,7(@)h(t)v(z) + 1 ()T (2))
e |z —y|? |z —y? ’
(h(t)v(x) = h(s)v(y), T(x)h(t)v(z) — W' (t)T (x)) .

Kpo=
|z —yl?

We end this section with the shape derivatives of the Fredholm eigenvalues. Let
¢§t (D) be the orthonormal eigenfunctions of the operator K}, with respect to the
eigenvalues /\ii (D); then we have from the Osborn’s theorem [31] that

(4.13)
INS(D) = A (D:) = (Kjp — Khp, © U2)¢; (D), ¢ (D))| < C|IKsp — Kjp, © Tel|?

by using the facts that Kpp,_ is collectively compact, i.e., {Kjp_[#] : [[¢[ln < 1,6 > 0}
is sequentially compact, and that K3, converges to K, pointwisely. Now we can
easily see from (4.6) and (4.13) the following estimates for the variation of eigenvalues:

(4.14) INE(D) = ME(De) — (KD, 08, 0F) < C 2.
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This yields the following result.
PropPOSITION 4.2. Let /\;‘E be simple Fredholm eigenvalues; then their shape
deriwatives are given by

(4.15) [DOE)]|p(h) = (K, 67, 6F) .

It is worth mentioning that if \; is a multiple eigenvalue, it may evolve, under
some perturbation, into several separated and distinct eigenvalues. The splitting of
eigenvalues may only become apparent at high orders in their Taylor expansions with
respect to the perturbation parameter. The splitting in the evaluation of perturbations
in A; can be studied by arguments similar to the ones in [11, section 3.4].

5. Optimal shape design using partial spectral data.

5.1. Shape design via an appropriate Tikhonov regularization. In this
subsection, we formulate our design problem via an optimization framework. We first
recall our shape design problem: given a set of eigenvalues {£\;(B)}Y, correspond-
ing to a target shape B, we intend to find a shape D such that the eigenvalues of
the Neumann—Poincaré operator K}, denoted as \;(D), are approximately equal to
Ai(B),i.e., Ai(D) =~ X\;(B) for 1 <i < N. Inorder to achieve this, we have to introduce
an appropriate objective functional. In view of the invariance of eigenvalues under
rigid transformations and scaling, some effective penalty and regularization terms
should be incorporated in the functional to ensure the local existence and uniqueness
of the minimizers. This leads us to the following nonlinear functional for our shape
design:

¢ 2 2 @ 2, B 2 2
TrasD) = 3 S u (D) MBI + 5D~ 4 G ([ 2+ ool
61 =(T(D) + SAD)+ SBD).

where I < N is a given integer index, and «, 8 € RT are the parameters for the
penalty and the regularization, respectively. In view of the large variation of the
magnitudes of eigenvalues, we have also introduced some weights w; in (5.1), which
we will naturally choose to be w; = 1/X;(B).

For most existing optimization algorithms, we need to compute the variational
derivatives of the functionals involved. For this purpose, we introduce some auxiliary
tools.

LEMMA 5.1. For a given shape D and f € L'(D), the shape derivative of the
integral

(5.2) I(D) := /Dfdx
is given by
(53) Dnp() = [ fht

at the variation h € C(9D).
Proof. Given a shape D and a,b € R with a < b, let X (t) : [a,b] — 0D be an arc-
length parametrization of 0D and v(z) be the outward unit normal to 9D at x € 9D.
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For a h € C*(0D) which is nonzero everywhere, we consider the e-perturbation D. of
D asin (4.1). For sufficiently small € > 0, we consider a change of variables (21, x2) —
(£,t) in an e-tabular neighborhood of dD. Denoting det(u,v) = det (i} 1) for any
u,v € R?, then we can write

(5.4) /D fdx:/: /8Dfdet(X’+5hu’,hu)dtdé+/Dfdx.

Using the fact that X’ Lv and v/ Lv, we can evaluate the shape derivative of I at h
by

DIIp(h) = £ / fr|

= f det(X' + EhV/, hv)dt|.—o
oD

= fdet(X', hv)dt
0D

= [ fhat.
oD

This leads to the desired formula. O
Using (5.3), we readily know the shape derivative of the following integrals at h:

(5.5)
PPN = [ nite D[ [ 2Pt ) [ = [ el 4 leanar.

With the above preparations we can now discuss the minimization of functional
(5.1). In this work we will focus on the Gauss-Newton method for this minimization.
We first introduce some more notions.

Given a shape D and I €N, we write the vector A, (D)= (w1 A1 (D), ..., wA; (D))"
with the superscript T denoting the transpose and define the Jacobian of the map
D — \y(D):

Jr|p : L*(0D) — RY
(5.6) Tilp(h) = (wi[DM]] (h), ..., wi[DAL)] , ()T

where [D);] } p(h) is the shape derivative of the Fredholm eigenvalue A;(D) at h, which
can be computed by (4.15). Let Jr |*D and [D(|D|) ‘D be the respective L?(9D) adjoint

of Ji| p and [D(|D])]| ; then the Gauss- Newton direction of (5.1) for a shape D can
be written as

Nrap(D) = ([T1| ) [T1| )) " Ti | A (D) = A (B)]

(5.7) o[ DD}, |D|—1>+ﬁ[7> </DZ|331|2—|—|$2|2)]

s

*

D

Now we are ready to formulate the Gauss—Newton method for the minimization of
functional (5.1): Let D,, be the nth approximation of the shape D, and let X,, be its
arc-length parametrization; then we update X,, by the following iteration:

(58) Xn+1 =X, — A/nNLan,Bn (Dn) )
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where 7, ay, and 3, are parameters chosen at each iteration and Ny, 3, (Dy) is
the Gauss-Newton direction as defined in (5.7) with a = «,, and 8 = ,,. The choice
of parameters v,, a,, and [, will be discussed in detail in the next subsection.

5.2. Successive refinement for optimization and parameter selection.
In this subsection, we describe several detailed strategies for the minimization of the
functional Jj o, in (5.1). These strategies are crucial for our algorithm to work
efficiently and to overcome the difficulties arising from the strong nonlinearity and
severe ill-posedness of the current shape design problem.

Our first strategy is a successive refinement technique for the minimization. This
strategy is motivated by our observations from numerical experiments. Due to the
strong nonlinearity and ill-posedness, iteration (5.8) may stop at some local minima
of (5.1) when I € N is large. On the other hand, for small I, we observe that iteration
(5.8) converges often to a global minimum of (5.1) rapidly even with a poor initial
guess. But functional (5.1) does not capture fine features of the target shape if T is
too small. These observations motivate us with the following successive refinement
strategy: We first minimize Jj o, in (5.1) with I = 2, then minimize Jr g for
I =3,..., N recursively by using the minimizer of J7_1 4,5 as an initial guess. As we
will see in our numerical experiments, this strategy works very effectively in avoiding
the trapping of the minimization process at some local minima as well as providing
us with more fine details for our shape design.

The next strategy is on the choice of parameters «,, and 3, for iteration (5.8). «,
and S, should be chosen such that the contributions on the search directions in (5.8)
from three parts (J1)o(D), A(D), and B(D) in (5.1) are balanced at each iteration.
Under these considerations, a possible choice is that we first fix two small positive
constants Cy and Cs, then update a,, and (3, at each iteration by

(jI)O(Dn) ]

Bn:CQ

Our last strategy is on the choice of step size ,, along the Gauss—Newton direction
Nr.a,.8,(Dy), for which we will carry out the line search, namely,

(5.10) Yn = argmin {jLam,Bn (Xn —¥N1a,,6,(Dn)) v € R+}~

Combining the above three strategies, we arrive at the successive refinement
Gauss—Newton shape design algorithm.

RECONSTRUCTION ALGORITHM.
Step 1. Given a tolerance € and an initial guess D .
Step 2. For I =1 to N,
Step 2.1. Set n :=1;
Step 2.2. Compute af ., 81 as in (5.9);
Step 2.3. Compute the Gauss—Newton direction Ny q,, 3, (Dr,n) as in (5.7);
Find the step size v, as in (5.10); Then update Xy ,, by

Xin+1=X1n —Y.0N1,00.8,.(D1n) ;
Step 24. If |jj7an,ﬁn (X[)n) — j[)amgn (X]7n+1)| <ég, set DI,stab = Dl,n+1; other-

wise set n:=mn + 1 and go to Step 2.2;
Step 2.5. Take D110 := Dy stab-
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Step 3. Find ng € {1,2, .., N} such that D, stap has the minimal residue:

(JN)O(DnO,stab) = IG{{r,l2i,I.1.,N} {(jN)O(DLstab)} .

Output Dy, stab and stop.

5.3. Numerical experiments. In this section, we shall present several numeri-
cal examples to check the performance of the newly proposed reconstruction algorithm
in section 5.2 for the optimal shape design using partial spectral data.

Given a domain D, we first obtain the observed data of the forward problem,
the Fredholm eigenvalues of D, as in section 3.2. In order to test the robustness of
our reconstruction algorithm, we introduce some multiplicative random noise in the
eigenvalues of the forward problem as follows:

(5.11) No=N(1+0€), i=1,...,N,

where £ is uniformly distributed between —1 and 1 and o corresponds to the level of
the noise in the data, which is always set to be 1% in all our examples. For each
of the examples, we conduct the same experiment with 50 independent realizations
of multiplicative noise. Then we apply our reconstruction algorithm for shape recon-
struction with the noisy data. As the eigenvalues are invariant under scaling, rotation,
and translation, a postprocessing of scaling, rotating, and translating is performed for
better comparisons between the reconstructed and exact shapes. The relative error
of each independent realization is then defined by

Area ((Droconstruct U D)\(Drcconstruct ﬂ D))

(5.12) Relative Error := Area(D)

and the shape of each realization can then be classified by its relative error based
on the standard derivation of the statistical data obtained. Because of the strong
ill-posedness, the perturbations in the eigenvalues often lead to great changes in nu-
merical reconstructions. However, it is quite interesting to us that for each example
we demonstrate in this section, we obtain only two basic shapes by our reconstruction
algorithm, and all the other shapes obtained with a different set of random noise are
basically of very small perturbations, quantified by (5.12), around these two basic
shapes. It may indicate the robustness and effectiveness of our chosen regulariza-
tion formulation. Because of these observations, we shall present only the two basic
shapes for each example, each of which represents a class of its perturbed shapes
achieved in our reconstructions. Clear statistics showing this classification of all re-
constructed shapes into these two basic shapes together with the average relative
error and its standard deviation of each class are tabulated. In our choices of «,,
Bn, and tolerance e, we take C; = Co = 0.01 in (5.9), and ¢ = 5 x 1074 And
we will take the first seven eigenvalues in the observed data, namely, N = 7 in our
reconstructions.

Ezample 1. This example tests an ellipse of the form (3.19) as the target shape;
see Figure 4(a). Table 5 tabulates the relative errors of the reconstructed shapes after
50 independent realizations of random noise, classified into two classes. Figures 4(c)
and 4(d) show the two basic shapes achieved by our reconstructions. The initial guess
in the reconstruction is a shape of the form (3.20) with § = 0.6, m = 5, Ko = 1; see
Figure 4(b). Clearly this is a very poor initial shape, but the reconstructed shapes
seem quite satisfactory.
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TABLE 5
Statistical result of reconstructed shapes in Example 1.

Results Frequency | Mean relative error | Standard deviation of relative error
Figure 4(c) 54% 11.59% 0.0113
Figure 4(d) 46% 5.37% 0.0103
Total 100 % 8.73% 0.0332

Fia. 4. (a) Target shape in Ezample 1; (b) initial guess; (c), (d) two basic shapes in recon-
structions after 50 independent realizations of 1% random noise (exact shape in blue, reconstructed
shape in red).

Ezxample 2. In this example, our target shape is a heart-shaped domain of the
form (3.20) with 6 = 0.8, m = 1, Ky = 1; see Figure 5(a). Table 6 shows the relative
errors of the reconstructed shapes after 50 independent realizations of random noise,
classified into two classes. Starting with a very poor initial guess, a shape of the form
(3.20) with § = 0.6, m =7, K2 = 1 (see Figure 5(b)), the two basic shapes achieved in
our reconstructions with different sets of random noise are shown in Figures 5(c) and
5(d). Considering the invariance of the target shape up to translation, rotation, and
scaling, our reconstructions seem to be very satisfactory, and our algorithm is able to
reconstruct the correct dimensions and the shape of the target rather accurately.

Ezample 3. A peanut-shaped domain of the form (3.20) with § = 0.6, m = 2,
K> = 1 is investigated in this example; see Figure 6(a). Our initial guess is of the
form (3.20) with § = 0.6, m = 5, Ky = 1; see Figure 6(b). Figure 6(c) and Fig-
ure 6(d) present the two basic shapes achieved in our reconstructions with different
sets of random noise. The relative errors of the reconstructed shapes are tabulated
in Table 7. This example is actually rather numerically challenging, considering the
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TABLE 6

Statistical result of reconstructed shapes in Example 2.

B875

Results Frequency | Mean relative error | Standard deviation of relative error
Figure 5(c) 52% 5.15% 0.0104
Figure 5(d) 48% 5.43 % 0.0112
100 % 5.28% 0.0109
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(a) Target shape in Example 2; (b) initial guess; (c), (d) two basic shapes in recon-

structions after 50 independent realizations of 1% random noise (exact shape in blue, reconstructed

shape in red).

TABLE 7

Statistical result of reconstructed shapes in Example 3.

Results Frequency | Mean relative error | Standard deviation of relative error
Figure 6(c) 54% 24.78% 0.0115
Figure 6(d) 46% 28.11 % 0.0124
Total 100 % 26.31% 0.0121

fact that the peanut shape has two small and sharp concave dips. Notwithstanding
the high sensitivity and ill-posedness of the eigenvalue shape reconstruction prob-
lem and the very challenging nature of target shape, the reconstructed results still
seem to be rather satisfactory, providing necessary and recognizable features of the
peanut.

Ezample 4. In this example, we consider a pear-shaped domain of the form (3.20)
with § = 0.3, m = 3, K3 = 1; see Figure 7(a). We start from the initial guess of the
form (3.20) with § = 0.6, m = 3, Ky = 1; see Figure 7(b). The two basic shapes
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(a) Target shape in Example 3; (b) initial guess; (c), (d) two basic shapes in recon-
structions after 50 independent realizations of 1% random noise (exact shape in blue, reconstructed

Statistical result of reconstructed shapes in Ezxample 4.

Results Frequency | Mean relative error | Standard deviation of relative error
Figure 7(c) 52% 3.20% 0.0097
Figure 7(d) 48% 3.32 % 0.00103
Total 100 % 3.26% 0.0099

achieved in our reconstructions from the data polluted by different sets of random
noise are shown in Figure 7(c) and Figure 7(d). Table 8 presents the relative errors
of the reconstructed shapes. Considering the random noise added in the spectral
data and the sensitivity of eigenvalue problem, our reconstructions prove to be quite
satisfactory.

6. Concluding remarks. In this work we have proposed numerical methods
to recover the Fredholm eigenvalues of a domain from the measurements of its po-
larization tensor at multiple contrasts or frequencies. Then we have developed an
optimal shape design algorithm (up to rigid transformations and scaling) based on
partial knowledge of Fredholm eigenvalues. Both inverse problems are highly non-
linear and severely ill-posed, but our numerical experiments have demonstrated the
effectiveness and robustness of the proposed reconstruction algorithms. By using only
the first few Fredholm eigenvalues, we have regularized the considered inverse prob-
lems. We expect that our results will have important applications in plasmon resonant
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() (d)

Fic. 7. (a) Target shape in Example 4; (b) initial guess; (c), (d) two basic shapes in recon-
structions after 50 independent realizations of 1% random noise (exact shape in blue, reconstructed
shape in red).

nanoparticle design and in multifrequency imaging and classification of small anoma-
lies from electrical capacitance measurements.

Appendix A. Pulsed imaging. In this section, we show how to acquire the
polarization tensor at multiple contrasts in electrical capacitance tomography using
pulsed imaging. To begin with, we first introduce the governing equation of the voltage
potential in the electrosensing electrical capacitance tomography problem [13], which
reads, for any given final time 7" > 0,

% <0 + €3t>Vu(x,t) = f(x,t) in (0,T) x R
(A1) u(z,t) = O(|z| ) as |z| — 0oVt € (0,T),
u(0,2) = u,(x) in R?.

In what follows we assume D is an open bounded domain in R? of class C1* (0 < a <
1), and the conductivity and permittivity coefficients o and e are piecewise constant
respectively of the form

0 =0xX(D) 4 0 x(R}\D) and &= e.x(D) + emx(R*\D),

where o, and ¢, are respectively the conductivity and permittivity of D, whereas
Om > 0, €y, > 0 are the background values. The solution to (A.1l) is shown in
[13] to be unique in the Banach space H' ((0,T), H (R?)) if u, € H'(R?) and
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feH((0,T), H 1 (R?)). Our aim is to reconstruct the polarization tensor from the
measurements of the solutions u(z,t) to (A.1).

For the sake of brevity, we consider the initial condition u, = 0 and the source
current f of the physically interesting form

ft,x) = h(t) f(x) == h(t) Zajao@: —al) |,

where Jg is the Dirac mass located at 0, and h € S(R) is a casual function sitting
inside the classical Schwartz space, compactly supported in (0,7), and represents the
time profile of the source. Function f models an electric organ, say, of a fish, with
source points 27 € R?\D and intensities a; at 2/ satisfying the neutrality condition
;;-7:1 aj; = 0.

Suppose that wug(x,t) is the solution to (A.1) with the homogeneous medium
0 = 0, and € = &, . Then following the argument in [13], we can apply the Fourier
transform to (A.1) in the temporal domain, together with the single layer potential
formalism as introduced in section 2, to yield the following identity of the scattered
field in the frequency domain:

(A.2) (w, z) — tip(w, z) Z A My (w, D)BT (),

nml

where w is the operating frequency, and {Ag,,} and {B,(x)} are the vectors of the
form

Z (cos(mb4), sin(mb;)),

7Tm|335|

(A.3) B, (z) = (cos(nﬁw), sin(nGw))

2mn|z|

and the matrices

- M (w,D) M (w,D)
an 7-D — A’ITL’I’L ? Amn ’
@)= (o D)

are the Fourier transforms in the space of tempered distributions S’(R) of the time-
dependent generalized polarization tensor defined by [13]:

(A0 N = [ 8.0 0@ Kp) 50| oty

aD
where A(w) is the admittivity given by

(A.5) A = (

(0c+0om) +i(ec + em)w
2 )

(0c —om) +i(ec —em)w

and Cp, and S, denote the real and imaginary parts of the harmonic polynomial
(1 +ix2)™, respectively. The other components M, M5¢, and M55, in M,,,(w, D)
are defined in a similar manner.

Next we will derive the polarization tensor at multiple contrasts from pulsed
imaging. We notice directly from the previously defined polarization tensor M (A(w),
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D) = (M;;(Mw), D))i=1,2 (see (2.16)), that it coincides with the Fourier transform of
the first order time-dependent generalized polarization tensor Mi;(w, D), namely,

,D)  Mg5(

My (A(w), D) Mxmmm>_cﬁ< ! MDO
,D) Mij(w,D))

(A.6) (M21 (Aw), D) Mz (A(w), D)

Now, consider the scattered fields u®(z,8s,t) from the measurement events with re-
ceivers on a circle of radius R,, 2 two source points with polar coordinates (Rs, 0s),
(Rs,m—0,), and intensities a; = —as = 1; then following (A.2), (A.4), and (A.6), we
can derive

R.R,
h(w)

where §; is the temporal Fourier transform with kernel exp(iwt), whereas §j and
§ are respectively the spatial Fourier transform with kernels cos(m#@) and sin(m#).
With the help of the scattered fields u®(x,0s,t) from another set of measurement
events with two source points (R, +:60) and intensities a1 = —ag = %, the other three
entries of M (A(w), D) can also be obtained similarly. The general representation of
polarization tensor at multiple contrasts then reads as follows:

Mz (A(w)) =

cs o 351 o gt(uc - UO)[]-a 170')] )

R.R,
h(w)

where 1; = ¢ for i = 1 and n; = s for ¢ = 2. This simple formula is used to recover
the polarization tensor at contrasts A(w) from pulsed imaging.

Now, consider the curve v := {A(w) € C : w € R} given by (A.5); then this
smooth simple closed curve gives rise to a circle with diameter passing through the
points 1 Z"LJ“’C and <= *2< on the complex plane. Therefore y encloses the spectrum
of (I(IC8 D ( 1/2,1 /§ whenever o, — 0. and €, — . have different signs. Clearly,
this enables us to recover the eigenvalues of o(K} ) from M (A, D) as discussed in
subsection 3.1.

The results above can be naturally extended to three dimensions.

(A7) Mij (A(w)) =

‘ SZ; Ogt(um —UO)[I,l,W],

Appendix B. Multiply connected objects. In this section, we briefly investi-
gate the eigenvalue of the Neumann—Poincaré operator of a domain consisting of two
identical copies of a nonoverlapping shape with C*® boundary and the same contrast.
Consider a given shape D;, and define the shape

(B.1) D, := Dy D2,

where Do := D; + v, with v € R? being a vector such that the distance d(D1, D)
between D; and D- is positive. The Neumann-Poincaré operator K} D, associated
with D, is given by [6]

K 2_S5p
(B.2) Kjp, ::< 9Dy Om TOT2
oD, aiyzsaDl IC(’)Dg

As we will observe numerically later in this section, the number of connected com-
ponents and the multiplicity of eigenvalue % are the same, which is briefly described
below.
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For the sake of exposition, we first define the space H = (L?(0D,), (Sap, -, - ))
and Ho = H({[,p, ¢do = 0}, then H = Ho @ R*. The Neumann-Poincaré opera-
tor Kjp is then self-adjoint in H considering the fact that a generalized version of
Calderon identity holds [6]. We also consider the double layer potential operator

_ 9 d
(B3) Doplol(e) = [ ZLT(@=ol)daty). o€ RAOD,
which has the following well-known jump condition:
(B.4) Diplel(e) = (75 + Ko ) ((a). =< 0D.

Then, by an integration by parts, we directly obtain that the L2-adjoint of the operator
K%p, 1s given by

_ (Kop, Dap,
(B.5) Kop, = <D8D1 Kam) :
Now following the arguments in [5], we consider the equation (A — K3, ) x = 0 with
X = (x1,x2) € H. We integrate the two equations in this linear system on 9D; for
i = 1,2 respectively and use (B.5) together with Dyp,[1] = 0 on dD; and Kop,[1] = 1
on 0D; to obtain (A — 3) (Jyp, x1d0, [5p, X2do) = 0. This implies either A = 3 or
(A # 3 and x € Ho); hence we know that 31 — K%, is invertible in Ho.

With the above knowledge, we can explicitly construct the eigenfunctions corre-
sponding to the eigenvalue %, thereby show the multiplicity of the eigenvalue is indeed
2 following the arguments in [6]. Indeed, since 31 — K}, is invertible in o, there
exist the unique solutions 1; := (¥}, 1?) € Ho to the equation

(B.6) <%I - K7 U) Vi = 88%;[1] € Ho,

as,
where we have also used the fact that [, azl’jj[l] do =0 for j = 1,2. Consider now
@i =P+ 0; for §; := (0i1,d;2) with J;; being the Kronecker delta. Then from the fact

sy 1
that — g}j[ - (%I — K},v) d;, We can see (%I— K*bu) ¢; = 0. This proves that ¢;
are the corresponding eigenfunctions for the eigenvalue % Now by a direct integration,

we have faDi ¢jdo = |0D;|0;;, and {¢;}i=1,2 are hence linear independent. Since H,

has co-dimension 2 and %I — K%, is invertible in Ho, the multiplicity of % is 2.

0.6

R |
02 \

-0.2

—04l —

-0.6

Fic. 8. The ellipse D .
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12 1

Fra. 9. Spectrum of Kyp, in (B.2) as k =5 —n withn = 1,2,...,10, starting from (a) with
n =1 to (j) with n = 10.
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We remark that one can use the same technique to show the multiplicity of the
eigenvalue 1 of a Neumann-Poincaré operator K}, of a domain D with N connected
component is IV, therefore establishing the relationship between the number of con-
nected components and the multiplicity of eigenvalue %; we refer to [5, 6, 15] for more
details.

In addition to the aforementioned property of the Fredholm eigenvalues, we are
also interested in how the eigenvalues of Kj, ~behave as v varies, and particularly
when d(Di, Dy) — 0. As an example, we consider an ellipse, Dy, of the form (3.19)
(see Figure 8).

Letting v = (2% +2)(0,1), where k =5 —n and n = 1,2,...,10, we observe the
change of the spectrum of K3, . As v varies, Figure 9 shows those eigenvalues of
K%p, which are larger than 0.0005.

We can observe numerically that the spectrum gradually forms a smoother curve,
and the multiplicity of the eigenvalue 1/2 reflects the number of connected components
of D, as demonstrated earlier.
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