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NUMERICAL RECONSTRUCTION OF HEAT FLUXES∗

JIANLI XIE† AND JUN ZOU‡

Abstract. This paper studies the reconstruction of heat fluxes on an inner boundary of a
heat conductive system when the measurement of temperature in a small subregion near the outer
boundary of the physical domain is available. We will first consider two different regularization
formulations for this severely ill-posed inverse problem and justify their well-posedness; then we will
propose two fully discrete finite element methods to approximate the resultant nonlinear minimization
problems. The existence and uniqueness of the discrete minimizers and convergence of the finite
element solution are rigorously demonstrated. A conjugate gradient method is formulated to solve
the nonlinear finite element optimization problems. Numerical experiments are given to demonstrate
the stability and effectiveness of the proposed reconstruction methods.
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1. Introduction. Consider a heat conductive system which occupies an open
bounded domain Ω with an outer boundary Γo and an inner boundary Γi; see Figure 1.
We are interested in a heat conductive system which can be modeled by the parabolic
equation

∂u

∂t
= ∇ · (α(x, t)∇u) in Ω × (0, T ),(1.1)

assuming the initial condition

u(x, 0) = u0(x) in Ω(1.2)

and the heat flux exchanges through the outer and inner boundaries Γo and Γi as
follows:

−α(x, t)
∂u

∂n
= c(x, t)(u(x, t) − ua(x, t)) on Γo × (0, T ),(1.3)

−α(x, t)
∂u

∂n
= q(x, t) on Γi × (0, T ).(1.4)

Here α(x, t) is the heat conductivity, c(x, t) and ua(x, t) are specified functions, and
q(x, t) is the heat flux on the inner boundary Γi.

The forward initial-boundary value problem (1.1)–(1.4) has been well studied.
The focus of this paper is on a physically more interesting and challenging inverse
problem: Is it possible to effectively reconstruct the heat flux q(x, t) on the inner
boundary Γi for all time t ∈ [0, T ] when Γi is inaccessible?
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Fig. 1. Physical domain Ω = ω1 ∪ (ω̄ \ Γo).

In order to possibly reconstruct the heat flux q(x, t), some extra information on
the temperature u(x, t) is needed. One choice is to assume the temperature data
available in a small subregion ω near the outer boundary Γo (see Figure 1). Some
high furnaces in steel companies are such examples, where special small devices are
installed inside the furnaces but near the outer boundary to measure temperature.

This reconstruction problem is known to be a severely ill-posed inverse problem.
One of the main difficulties in the reconstruction comes from both the space and time
dependence of the heat flux q(x, t) and the fact that the inner boundary is away from
the small measurement subregion. The most severe instability of an inverse problem
is triggered when the reconstruction involves some profile at the initial time and on
some large boundary portion of a physical domain [7], [17], [19], [20], as is the case
encountered here. As far as ill-posed inverse problems are concerned, not much work is
found in the literature addressing numerical reconstructions of some physical profiles
of both space and time; even less work can be found on convergence and stability
analysis for numerical reconstruction methods. We refer readers to [1], [2], [3], [8],
[9], [18], and the references therein for numerical reconstructions of profiles of some
time-independent parameters in parabolic and elliptic systems.

The aim of this paper is to justify both theoretically and numerically the val-
idation and effectiveness of two regularization formulations for solving the afore-
mentioned severely ill-posed inverse problem of heat flux reconstruction. Indeed,
as will be seen from the theory, numerical analysis, and simulations developed in
what follows, the regularization methods are very stable and effective in numerical
reconstruction of heat fluxes, without any constraints enforced on the search space
of heat fluxes if appropriate regularizations are selected. In particular, the resulting
nonlinear finite element minimization systems can be efficiently solved by conjugate
gradient method.

The rest of this paper is organized as follows. In section 2, we investigate the
first formulation with an L2-regularization of both space and time for the heat flux
and validate the “true” well-posedness of the formulation under no constraints on
the search space of heat fluxes. In section 3, we study the ill-posedness of heat
flux reconstruction and the stability of the regularization. In section 4, we study
an alternative formulation of the inverse problem, which uses an L2-regularization
in space and H1-regularization in time. As will be seen, this formulation turns out
to be able to demonstrate much more satisfactory reconstructions. Regarding the
approximation of the regularized nonlinear minimization systems, it is very tricky and
essential to decide how to effectively discretize in both time and space the nonlinear
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optimizations and the associated parabolic equation so that the resulting fully discrete
schemes converge. For this purpose, two fully discrete finite element approximations
are proposed in sections 5 and 6, and the unique existence of discrete minimizers
and their convergence to the continuous minimizer are rigorously demonstrated. For
solving the nonlinear finite element minimization systems involved in the formulations,
a conjugate gradient method is formulated in section 7, and the numerical experiments
are presented in section 8 to verify the effectiveness of the proposed reconstruction
methods.

We end this section with some useful notation. We define

Hm(0, T ;B) =
{
u(t) ∈ B for a.e. t ∈ (0, T ) and ‖u‖Hm(0,T ;B) < ∞

}
for a Banach space B and m ≥ 0, with its norm given by

‖u‖Hm(0,T ;B) =

{
m∑

k=0

∫ T

0

‖u(k)(t)‖2
Bdt

}1/2

.

For a given domain O, Hm(O) stands for the standard Sobolev space of mth order
for any m ≥ 0. The norms and seminorms of Hm(O) are denoted by ‖ · ‖m,O and
| · |m,O, respectively. When m = 0, we write L2(O) = H0(O) with the norm ‖ · ‖0,O.
The domain O in the subindex will be dropped if O = Ω.

Further, C is frequently used to denote a generic constant, which depends only
on the given data such as domain Ω and coefficients in (1.1)–(1.4) and is independent
of unknown functions involved and the discrete time step τ and mesh size h.

2. First regularization formulation. Recall that the inverse problem of inter-
est here is to reconstruct the heat flux q(x, t) in (1.4) on the inner boundary Γi, given
the temperature measurement z(x, t) ≈ u(x, t) in the small subdomain ω (cf. Figure 1).
The first approach we will study for solving the inverse problem is to formulate it into
the following constrained minimizing process with L2-regularization in both space and
time for possible heat fluxes:

minJ(q) =
1

2

∫ T

0

∫
ω

(u(q) − z)2dxdt +
β

2

∫ T

0

∫
Γi

q2dsdt(2.1)

subject to q ∈ L2(0, T ;L2(Γi)) and u(q) ≡ u(q)(·, t) ∈ H1(Ω) satisfying

u(x, 0) = u0(x) in Ω,(2.2) ∫
Ω

∂u

∂t
vdx +

∫
Ω

α∇u · ∇vdx +

∫
Γo

c u vds =

∫
Γo

c uavds−
∫

Γi

q vds(2.3)

for all v ∈ H1(Ω) and for a.e. t ∈ (0, T ).
In what follows, we will demonstrate that the inverse problem for reconstruction

of heat flux is an ill-posed problem and that the formulation (2.1)–(2.3) is a true
regularization of the inverse problem; that is, the minimizer q not only exists uniquely,
but also depends on the observation data z continuously.

For the subsequent analysis, we often use the following compactness result (cf. [13]).
Lemma 2.1. Suppose that B0 ⊂ B ⊂ B1 are Banach spaces, B0 and B1 are

reflexive, and B0 is compactly embedded into B. Let

W =

{
v; v ∈ L2(0, T ;B0), v′ =

dv

dt
∈ L2(0, T ;B1)

}
,
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with the norm ‖v‖W = ‖v‖L2(0,T ;B0) +‖v′‖L2(0,T ;B1). Then W is compactly embedded
into L2(0, T ;B).

Throughout this section, the parameter functions α(x, t), c(x, t), and ua(x, t) in
(1.1)–(1.4) are assumed to satisfy the following natural conditions:

α(x, t) ≥ α0 > 0 for a.e. (x, t) ∈ Ω × (0, T ),

c(x, t) ≥ c0 > 0 for a.e. (x, t) ∈ Γo × (0, T ),(2.4)

α(x, t) ∈ L2(0, T ;L2(Ω)); c(x, t), ua(x, t) ∈ L2(0, T ;L2(Γo)).

We start with the following unique existence.
Theorem 2.2. There exists a unique minimizer to the optimization problem

(2.1)–(2.3).
Proof. Clearly minJ(q) is finite over L2(0, T ;L2(Γi)); thus there exists a mini-

mizing sequence {qn} such that

lim
n→∞

J(qn) = inf J(q).(2.5)

This implies the boundedness of {qn} in L2(0, T ;L2(Γi)) and thus the existence
of such a subsequence, still denoted1 as qn, and {qn} converges to q∗ weakly in
L2(0, T ;L2(Γi)). We now prove that this q∗ is the unique minimizer of (2.1)–(2.3).
We divide the proof into four steps.

Step 1. Letting un ≡ u(qn)(x, t), we show that there exists a subsequence of {un}
such that

un → u∗ weakly in L2(0, T ;H1(Ω)) and L2(0, T ;L2(Γo)).(2.6)

By the definition of u(qn) in (2.2)–(2.3), un ∈ H1(Ω) satisfies un(x, 0) = u0(x), and∫
Ω

∂un

∂t
vdx +

∫
Ω

α∇un · ∇vdx +

∫
Γo

c unvds =

∫
Γo

c uavds−
∫

Γi

qnvds(2.7)

holds for any v ∈ H1(Ω) and a.e. t ∈ (0, T ). Taking v = un in (2.7), we obtain

1

2

d

dt
‖un‖2

0 +

∫
Ω

α|∇un|2dx +

∫
Γo

c |un|2ds =

∫
Γo

c uau
nds−

∫
Γi

qnunds.(2.8)

Integrating over (0, t), we derive

1

2
‖un(·, t)‖2

0 +

∫ t

0

∫
Ω

α|∇un(x, t)|2dxdt +

∫ t

0

∫
Γo

c(x, t)|un(x, t)|2dsdt

=
1

2
‖u0‖2

0 +

∫ t

0

∫
Γo

c(x, t)ua(x, t)u
n(x, t)dsdt−

∫ t

0

∫
Γi

qn(x, t)un(x, t)dsdt;

then by the Cauchy–Schwarz inequality and assumptions in (2.4), we have

1

2
‖un(·, t)‖2

0 + α0‖∇un‖2
L2(0,t;L2(Ω)) + c0‖un‖2

L2(0,t;L2(Γo))

≤ 1

2
‖u0‖2

0 + ‖c ua‖L2(0,T ;L2(Γo))‖un‖L2(0,t;L2(Γo)) + ‖qn‖L2(0,T ;L2(Γi))‖un‖L2(0,t;L2(Γi))

≤ 1

2
‖u0‖2

0 + C
(
‖un‖L2(0,t;L2(Γo)) + ‖un‖L2(0,t;L2(Γi))

)
.

1Where no confusion exists, throughout this paper we shall always use the same notation to
denote a subsequence taken from some sequence.
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Using the Sobolev trace theorem, we can estimate the above last term as follows, a
technique that will be frequently used in the subsequent analysis:

‖un‖2
L2(0,t;L2(Γi))

=

∫ t

0

‖un(·, s)‖2
L2(Γi)

ds ≤
∫ t

0

‖un(·, s)‖2
H1/2(Γi)

ds

≤
∫ t

0

‖un(·, s)‖2
H1(Ω)ds

=

∫ t

0

‖un(·, s)‖2
L2(Ω)ds +

∫ t

0

‖∇un(·, s)‖2
L2(Ω)ds

≤
(
‖un‖L2(0,t;L2(Ω)) + ‖∇un‖L2(0,t;L2(Ω))

)2

.

Taking the square root on both sides, plugging the result into the previous estimate,
and then using Young’s inequality, we obtain

‖un(·, t)‖2
0 ≤ ‖un(·, t)‖2

0 + α0‖∇un‖2
L2(0,t;L2(Ω)) + c0‖un‖2

L2(0,t;L2(Γo))

≤ ‖u0‖2
0 + C +

∫ t

0

‖un(·, s)‖2
L2(Ω)ds.(2.9)

This gives the boundedness of {un} in L∞(0, T ;L2(Ω)) by applying Gronwall’s in-
equality; then using this bound one can get the boundedness of {un} in L2(0, T ;H1(Ω))
and L2(0, T ;L2(Γo)) from the second inequality in (2.9). Now the convergence in (2.6)
follows immediately from this boundedness.

Step 2. We prove u∗ = u(q∗). Taking any function Ψ(t) ∈ C1[0, T ] with Ψ(T ) = 0,
multiplying both sides of (2.7) by Ψ, and then integrating over t ∈ (0, T ), we get∫ T

0

∫
Γo

c uavΨ(t)dsdt−
∫ T

0

∫
Γi

qnvΨ(t)dsdt

= −
∫ T

0

∫
Ω

unvΨ′(t)dxdt +

∫ T

0

∫
Ω

α∇un · ∇vΨ(t)dxdt

−
∫

Ω

Ψ(0)u0(x)vdx +

∫ T

0

∫
Γo

c unvΨ(t)dsdt.

By the weak convergence of qn and un, we deduce from above that∫ T

0

∫
Γo

c uavΨ(t)dsdt−
∫ T

0

∫
Γi

q∗vΨ(t)dsdt

=

∫ T

0

∫
Ω

α∇u∗ · ∇vΨ(t)dxdt +

∫ T

0

∫
Γo

c u∗vΨ(t)dsdt(2.10)

−
∫

Ω

Ψ(0)u0(x)vdx−
∫ T

0

∫
Ω

u∗vΨ′(t)dxdt.

Noting that (2.10) is also true for any Ψ(t) ∈ C∞
0 (0, T ), by integration by parts over

t ∈ (0, T ) for the last term we have∫
Ω

∂u∗

∂t
vdx +

∫
Ω

α∇u∗ · ∇vdx +

∫
Γo

c u∗vds =

∫
Γo

c uavds−
∫

Γi

q∗vds ∀v ∈ H1(Ω)

for a.e. t ∈ (0, T ). Using this and integration by parts again for the last term in (2.10)
shows that u∗(x, 0) = u0(x). This verifies u∗ = u(q∗).



NUMERICAL RECONSTRUCTION OF HEAT FLUXES 1509

Step 3. We prove the strong convergence

lim
n→∞

∫ T

0

∫
ω

|un − z|2dxdt =

∫ T

0

∫
ω

|u∗ − z|2dxdt.(2.11)

It suffices to prove the strong convergence of {un} in L2(0, T ;L2(Ω)). By Lemma 2.1,
we need only show the boundedness of {∂un

∂t } in L2(0, T ; (H1(Ω))′).
It follows from (2.7) that for any v ∈ L2(0, T ;H1(Ω)),

∣∣∣∣
〈
∂un

∂t
, v

〉∣∣∣∣ ≤ C(‖un‖H1(Ω) + ‖un‖L2(Γo) + ‖ua‖L2(Γo) + ‖qn‖L2(Γi))‖v‖H1(Ω);

(2.12)

this, along with the boundedness of {un} proved in Step 1, implies the boundedness
of {∂un

∂t } in L2(0, T ; (H1(Ω))′).
Step 4. We prove q∗ is a unique minimizer to the system (2.1)–(2.3). Using the

results in Step 3 and the lower semicontinuity of a norm, we have

J(q∗) =
1

2

∫ T

0

∫
ω

|u(q∗) − z|2dxdt +
β

2

∫ T

0

∫
Γi

|q∗|2dsdt

≤ lim
n→∞

∫ T

0

∫
ω

|u(qn) − z|2dxdt +
β

2
lim
n→∞

inf

∫ T

0

∫
Γi

|qn|2dsdt

≤ lim
n→∞

inf J(qn) = inf J(q),(2.13)

so q∗ is indeed a minimizer. The uniqueness of minimizers is a consequence of the
convexity of u(q) and the strict convexity of J(q).

Proposition 2.3. Assume that {qn}, with qn ∈ L2(0, T ;L2(Γi)), is a minimizing
sequence of J(q) in (2.1); then {qn} converges to the unique minimizer of J(q) strongly
in L2(0, T ;L2(Γi)).

Proof. From the proof of Theorem 2.2, we know any subsequence of {qn} has
a subsequence converging weakly to the unique minimizer of J(q). Thus the whole
sequence {qn} converges weakly to the unique minimizer of J(q). Further, one notices
from (2.5), (2.11), and (2.13) that

lim
n→∞

∫ T

0

∫
Γi

|qn|2dsdt =

∫ T

0

∫
Γi

|q∗|2dsdt;

thus the weak and norm convergences imply the strong convergence.

3. Ill-posedness of heat flux reconstruction and stability of the reg-
ularization. Next, we study the ill-posedness of heat flux reconstruction and sta-
bility of the regularization system (2.1)–(2.3). The following theorem confirms the
ill-posedness of the heat flux reconstruction problem (1.1)–(1.4).

Theorem 3.1. Let u(q) be a mapping from L2(0, T ;L2(Γi)) to L2(0, T ;L2(ω)),
defined by the system (2.2)–(2.3) associated with any given heat flux q in
L2(0, T ;L2(Γi)). Then there exists a sequence {qn} from L2(0, T ;L2(Γi)) such that
u(qn) → 0 but ‖qn‖L2(0,T ;L2(Γi)) → ∞, and the inverse of u(·) is unbounded.

Proof. From the proof of Theorem 2.2, we know for any bounded sequence {qn}∞n=1

there exists a subsequence {qnk}∞k=1 such that {u(qnk)}∞k=1 is strongly convergent in
L2(0, T ;L2(ω)). Therefore, as an operator from L2(0, T ;L2(Γi)) to L2(0, T ;L2(ω)),
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u(·) is compact. On the other hand, one can directly verify that u(·) is a one-to-one
mapping and can be decomposed into u(q) = w(q) + u(0), where w(q)(·, t) ∈ H1(Ω)
solves the parabolic system (1.1)–(1.4) with w(q)(x, 0) = 0 in Ω and ua ≡ 0. The rest
of the proof follows the routine procedure; for example, see [10, pp. 13–14].

The next theorem shows that the solution q to the regularization system (2.1)–
(2.3) depends continuously on the observation data z, so system (2.1)–(2.3) is a “true”
regularization to the original inverse problem u(q) = z. The detailed proof can be
found in [14].

Theorem 3.2. Let {zn} be a sequence such that

zn → z in L2(0,T; L2(ω)) as n → ∞,(3.1)

and let {qn} be the minimizers of problem (2.1)–(2.3) with z replaced by zn. Then the
whole sequence {qn} converges in L2(0, T ;L2(Γi)) to the unique minimizer of (2.1)–
(2.3).

4. An alternative formulation. In this section, we investigate an alternative
formulation for reconstruction of heat fluxes in the heat conductive system (1.1)–(1.4),
using an L2-regularization in space and H1-regularization in time for heat fluxes.
As one can see from numerical results in section 8, this new formulation is able to
generate more satisfactory reconstructions. This results in the following constrained
minimization:

minJ(q) =
1

2

∫ T

0

∫
ω

(u(q) − z)2dxdt +
β

2

(∫
Γi

q2(x, 0)ds +

∫ T

0

∫
Γi

|qt(x, t)|2dsdt
)(4.1)

subject to q ∈ H1(0, T ;L2(Γi)) and u(q) ≡ u(q)(·, t) ∈ H1(Ω) satisfying

u(x, 0) = u0(x) in Ω,(4.2)

∫
Ω

∂u

∂t
vdx +

∫
Ω

α∇u · ∇vdx +

∫
Γo

c u vds =

∫
Γo

c uavds−
∫

Γi

q vds(4.3)

for all v ∈ H1(Ω) and a.e. t ∈ (0, T ).
The following theorem justifies the well-posedness of the system (4.1)–(4.3) and

its stability with respect to the observation data.
Theorem 4.1. There exists a unique minimizer to the optimization problem

(4.1)–(4.3), and the minimizer depends on the observation data z continuously.
Proof. It is clear that minJ(q) is finite over H1(0, T ;L2(Γi)); thus there exists a

minimizing sequence {qn} such that

lim
n→∞

J(qn) = inf J(q).

This implies the boundedness of {qn} in H1(0, T ;L2(Γi)) and the existence of a sub-
sequence, still denoted as {qn}, such that

qn → q∗ weakly in L2(0, T ;L2(Γi)),

∂qn

∂t
→ p∗ weakly in L2(0, T ;L2(Γi)),

qn(x, 0) → q∗0 weakly in L2(Γi).
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We can show that p∗ = ∂q∗/∂t and q∗(x, 0) = q∗0 . In fact, taking any function
ϕ(x) ∈ L2(Γi) and ψ(t) ∈ C∞

0 (0, T ), we deduce

∫ T

0

∫
Γi

∂

∂t
qn(x, t)ϕ(x)ψ(t)dsdt = −

∫ T

0

∫
Γi

qn(x, t)ϕ(x)ψ′(t)dsdt.

Passing to the limit, we derive

∫ T

0

∫
Γi

p∗(x, t)ϕ(x)ψ(t)dsdt = −
∫ T

0

∫
Γi

q∗(x, t)ϕ(x)ψ′(t)dsdt.

This shows p∗ = ∂q∗/∂t.
Then letting ϕ(x) ∈ L2(Γi) and ψ(t) ∈ C∞(0, T ) with ψ(T ) = 0 and ψ(0) = 1,

we obtain∫ T

0

∫
Γi

∂

∂t
qn(x, t)ϕ(x)ψ(t)dsdt =

∫
Γi

qn(x, 0)ϕ(x)ds−
∫ T

0

∫
Γi

qn(x, t)ϕ(x)ψ′(t)dsdt.

By the weak convergence of ∂qn/∂t, qn(x, 0), and qn, we deduce

∫ T

0

∫
Γi

∂

∂t
q∗(x, t)ϕ(x)ψ(t)dsdt =

∫
Γi

q∗0(x)ϕ(x)ds−
∫ T

0

∫
Γi

q∗(x, t)ϕ(x)ψ′(t)dsdt.

Integrating by parts the left-hand side, we obtain for any ϕ(x) ∈ L2(Γi) that∫
Γi

q∗0(x)ϕ(x)ds =

∫
Γi

q∗(x, 0)ϕ(x)ds,

which implies q∗(x, 0) = q∗0 . The rest of the proof is similar to those of Theorems 2.2
and 3.2.

Similarly to Proposition 2.3, we have the following strong convergence (cf. [14]).
Proposition 4.2. Any minimizing sequence {qn} of J(q) in (4.1) over H1(0, T ;

L2(Γi)) converges to the unique minimizer of J(q) strongly in H1(0, T ;L2(Γi)).

5. Finite element approximation of system (2.1)–(2.3) and its conver-
gence. We now propose a fully discrete finite element method for solving the contin-
uous minimization problem (2.1)–(2.3). For the sake of exposition, we study in detail
the case where the outer and inner boundaries Γo and Γi are both circles centered
at the origin; see Figure 2. The subsequent results can be extended to more general
domains by combining the analysis used here and the finite element analysis for the
case when the approximation of the physical domain is involved [4].

Let us start with a triangulation of the domain Ω. To do so, we generate a set
of circles all centered at the origin, starting with Γi and ending with Γo. Next we
choose a set of quasi-uniformly distributed points on Γo, which are then connected to
the origin to yield a set of radial lines, and the intersections of these lines with all the
previous generated circles also yield a partition of each circle; see Figure 2. Now the
triangulation T h of Ω is formed by these sectorial elements. The arc segments on Γo

and Γi generate naturally two triangulations of Γo and Γi, respectively, denoted by
Γh
o and Γh

i .
For each sectorial element K, say K = {(r cos θ, r sin θ); r1 ≤ r ≤ r2, θ1 ≤ θ ≤

θ2}, there exists a one-to-one mapping F̂K : K̂ → K such that K = F̂K(K̂), where K̂
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Fig. 2. Circular partition of Ω and partition of each circle.

is a rectangular reference element. For example, if K̂ = [0, 1]× [0, 1], we can take F̂K

as {
x = (r r2 + (1 − r)r1) cos(θ θ2 + (1 − θ)θ1),
y = (r r2 + (1 − r)r1) sin(θ θ2 + (1 − θ)θ1).

(5.1)

Now we can define the finite element space V h to be

V h =
{
vh ∈ C(Ω̄); vh(x)

∣∣
K

= v̂ ◦ F̂−1
K (x) ∀v̂ ∈ Q1(K̂)

}
,

where Q1(K̂) is the space of bilinear functions on the reference element K̂, and V h
Γo

,

V h
Γi

are the restrictions of V h on Γo and Γi, respectively.
To fully discretize the system (2.1)–(2.3), we also need the time discretization.

For this, we divide the time interval [0, T ] into M equally spaced subintervals using
nodal points

Δ : 0 = t0 < t1 < · · · < tM = T(5.2)

with tn = nτ , τ = T/M . For a continuous mapping u : [0, T ] → L2(Ω), we define
un = u(·, tn) for 0 ≤ n ≤ M . For a given sequence {un}Mn=0 ⊂ L2(Ω), we define its
difference quotient and the averaging ūn of a function u(·, t) as follows:

∂τu
n =

un − un−1

τ
, ūn =

1

τ

∫ tn

tn−1

u(·, t)dt,(5.3)

where for n = 0, we let ū0 = u(·, 0).
In our subsequent convergence analysis, we need a crucial projection operator Qh

from L2(Ω) into V h defined on sectorial elements, which should possess the following
L2- and H1-stability and optimal L2-norm error estimate:

lim
h→0

‖v −Qhv‖1 = 0 ∀v ∈ H1(Ω),(5.4)

‖Qhv‖0 ≤ C‖v‖0, ‖Qhv‖1 ≤ C‖v‖1 ∀v ∈ H1(Ω),(5.5)

‖v −Qhv‖0 ≤ Ch‖v‖1 ∀v ∈ H1(Ω).(5.6)
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Noting that the transform F̂K : K̂ → K is not of polynomial type and that the func-
tions in V h may not be piecewise polynomials, the standard L2-projection operator
from L2(Ω) into V h (cf. [16]) does not satisfy these properties. Instead, we introduce
a novel weighted L2-projection operator Qh from L2(Ω) into V h as follows:

∑
K∈T h

∫
K

(Qhw) v |J−1
K (x, y)| dxdy =

∑
K∈T h

∫
K

w v |J−1
K (x, y)| dxdy ∀w ∈ L2(Ω), v ∈ V h,

where JK(x, y) = ĴK(r, θ) for all x, y and r, θ defined by (5.1) and ĴK(r, θ) is the
Jacobian determinant of the transform F̂K . One can show that this weighted operator
Qh is well-defined, and it possesses all the properties (5.4), (5.5), and (5.6). The
detailed proof was given in Xie [14].

Now we are ready to formulate the finite element approximation of the minimiza-
tion (2.1)–(2.3). We approximate the heat flux q(x, t) by a piecewise constant function
qh,τ (x, t) over the time partition Δ in (5.2):

qh,τ (x, t) =

M∑
n=1

χn(t)qnh(x),(5.7)

where qnh(x) ∈ V h
Γi

and χn(t) is the characteristic function on the interval (tn−1, tn).
Using the composite trapezoidal rule for the time discretization of the first integral

in (2.1) and the exact time integration for the second term, the fully discrete finite
element approximation to problem (2.1)–(2.3) can be formulated as follows:

minJh,τ (qh,τ ) =
τ

2

M∑
n=0

αn

∫
ω

(un
h − zn)2dx +

βτ

2

M∑
n=1

∫
Γi

|qnh |2ds(5.8)

over all qnh ∈ V h
Γi

with un
h ≡ un

h(qh,τ ) ∈ V h satisfying

u0
h = Qhu0(x),(5.9) ∫

Ω

∂τu
n
hφhdx +

∫
Ω

ᾱn∇un
h · ∇φhdx +

∫
Γo

c̄nun
hφhds

=

∫
Γo

c̄nūn
aφhds−

∫
Γi

qnhφhds ∀φh ∈ V h(5.10)

for n = 1, 2, . . . ,M. Here {αn} are the coefficients of the composite trapezoidal rule,
i.e., α0 = αM = 1

2 and αn = 1 for all n �= 0,M .
For convenience, the minimization of Jh,τ also shall be regarded as the minimiza-

tion over the product space
∏M

n=1 V
h
Γi

, and we will often write (5.8) as

minJh,τ ({q1
h, q

2
h, . . . , q

M
h }) =

τ

2

M∑
n=0

αn

∫
ω

(un
h − zn)2dx +

βτ

2

M∑
n=1

∫
Γi

|qnh |2ds.

(5.11)

Before verifying the existence of a unique minimizer to the finite element minimization
(5.8)–(5.10), we first derive some useful a priori estimates on the discrete solutions un

h

to the system (5.9)–(5.10).
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In the rest of this section, we assume on the functions α(x, t) and c(x, t) in (1.1)–
(1.4) that

α ∈ H1(0, T ;L∞(Ω)) and c ∈ H1(0, T ;L∞(Γo))

and introduce two related constants

C1 = ‖α‖H1(0,T ;L∞(Ω)), C2 = ‖c‖H1(0,T ;L∞(Γo)).

The following auxiliary lemma (cf. [14]) will be needed in the subsequent analysis.

Lemma 5.1. For any

f ∈ H1(0, T ;L∞(Ω)) and g ∈ L2(0, T ;L∞(Ω)),

we have the estimates

‖f̄n − f̄n−1‖L∞(Ω) ≤
√
τ‖ft‖L2(tn−2,tn;L∞(Ω)),(5.12)

‖f̄nḡn − fg
n‖L2(Ω) ≤

2

3
‖ft‖L2(tn−1,tn;L∞(Ω)) ‖g‖L2(tn−1,tn;L2(Ω)).(5.13)

Lemma 5.2. Assume that un
h is the solution of the finite element system (5.9)–

(5.10) corresponding to qh,τ . Then we have the following stability estimates:

max
1≤n≤M

‖un
h‖2

0 + τ

M∑
n=1

‖∇un
h‖2

0 + τ

M∑
n=1

‖un
h‖2

0,Γo

≤ C (‖u0‖2
0 + C2

2‖ua‖2
L2(0,T ;L2(Γo)) + ‖qh,τ‖2

L2(0,T ;L2(Γi))
),(5.14)

max
1≤n≤M

‖∇un
h‖2

0 + max
1≤n≤M

‖un
h‖2

0,Γo
+ τ

M∑
n=1

‖∂τun
h‖2

0

≤ C τ−1(‖u0‖2
1 + C2

2‖ua‖2
L2(0,T ;L2(Γo)) + ‖qh,τ‖2

L2(0,T ;L2(Γi))
),(5.15)

τ
M∑
n=1

‖∂τun
h‖2

(H1(Ω))′

≤ C (C2
1 + C2

2 + τ−1h2) (‖u0‖2
0 + C2

2‖ua‖2
L2(0,T ;L2(Γo)) + ‖qh,τ‖2

L2(0,T ;L2(Γi))
).(5.16)

Proof. The proof of (5.14) follows directly by taking φh = τun
h in (5.10) and then

applying the Sobolev trace theorem and Young’s and Gronwall’s inequalities.

Next, we show (5.15). Taking φh = τ∂τu
n
h = un

h − un−1
h in (5.10), we obtain

τ‖∂τun
h‖2

0 +

∫
Ω

ᾱn∇un
h · ∇(un

h − un−1
h )dx +

∫
Γo

c̄nun
h(un

h − un−1
h )ds

=

∫
Γo

c̄nūn
a(un

h − un−1
h )ds−

∫
Γi

qnh(un
h − un−1

h )ds.
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Summing up the above equation over n = 1, 2, . . . , k ≤ M , we obtain

τ

k∑
n=1

‖∂τun
h‖2

0 +
1

2

k∑
n=1

∫
Ω

ᾱn(|∇un
h|2 − |∇un−1

h |2)dx

+
1

2

k∑
n=1

∫
Γo

c̄n(|un
h|2 − |un−1

h |2)ds

≤
k∑

n=1

∫
Γo

c̄nūn
a(un

h − un−1
h )ds−

k∑
n=1

∫
Γi

qnh(un
h − un−1

h )ds.

Then using the discrete integration by parts formula

k∑
n=1

(an − an−1)bn = akbk − a0b0 −
k∑

n=1

an−1(bn − bn−1),(5.17)

where b0 appearing on the right-hand side can be any real number, we derive

τ

k∑
n=1

‖∂τun
h‖2

0 +
1

2
α0‖∇uk

h‖2
0 +

1

2
c0‖uk

h‖2
0,Γo

≤ 1

2

∫
Ω

ᾱ0|∇u0
h|2dx +

1

2

k∑
n=1

∫
Ω

(ᾱn − ᾱn−1)|∇un−1
h |2dx

+
1

2

∫
Γo

c̄0|u0
h|2ds +

1

2

k∑
n=1

∫
Γo

(c̄n − c̄n−1)|un−1
h |2ds

+

∫
Γo

c̄kūk
au

k
hds−

k∑
n=1

∫
Γo

(c̄nūn
a − c̄n−1ūn−1

a )un−1
h ds

−
∫

Γi

qkhu
k
hds +

k∑
n=1

∫
Γi

(qnh − qn−1
h )un−1

h ds,

where ū0
a and q0

h are taken to be 0. We now estimate the terms on the right-hand side
of the above inequality. First, for those terms without summation, we can deduce by
using the properties of Qh and the Sobolev trace theorem that

1

2

∫
Ω

ᾱ0|∇u0
h|2dx +

1

2

∫
Γo

c̄0|u0
h|2ds ≤ C (C1 + C2)‖u0‖2

1,

∫
Γo

c̄kūk
au

k
hds ≤

1

2
‖c̄kūk

a‖2
0,Γo

+
1

2
‖uk

h‖2
0,Γo

≤ τ−1

(
τ

k∑
n=1

‖c̄nūn
a‖2

0,Γo
+ τ

M∑
n=1

‖un
h‖2

0,Γo

)
,

∫
Γi

qkhu
k
hds ≤

1

2
‖qkh‖2

0,Γi
+

1

2
‖uk

h‖2
1 ≤ τ−1

(
‖qh,τ‖2

L2(0,T ;L2(Γi))
+ τ

M∑
n=1

‖un
h‖2

1

)
.

Using (5.12) we have the following estimates:

k∑
n=1

∫
Ω

(ᾱn − ᾱn−1)|∇un−1
h |2dx ≤ 4

3
C1

√
τ

k∑
n=1

‖∇un−1
h ‖2

0,

k∑
n=1

∫
Γo

(c̄n − c̄n−1)|un−1
h |2ds ≤ 4

3
C2

√
τ

k∑
n=1

‖un−1
h ‖2

0,Γo
.
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Applying the Cauchy–Schwarz inequality and the Sobolev trace theorem, we have

k∑
n=1

∫
Γo

(c̄nūn
a − c̄n−1ūn−1

a )un−1
h ds ≤

k∑
n=1

‖c̄nūn
a‖2

0,Γo
+

k∑
n=1

‖un−1
h ‖2

0,Γo
,

k∑
n=1

∫
Γi

(qnh − qn−1
h )un−1

h ds ≤
k∑

n=1

‖qnh‖2
0,Γi

+

k∑
n=1

‖un−1
h ‖2

1.

Combining all these estimates with (5.14), we obtain (5.15).
It remains to show (5.16). For any φ ∈ H1(Ω), taking φh = Qhφ in (5.10), we

have∫
Ω

∂τu
n
hQhφdx+

∫
Ω

ᾱn∇un
h∇Qhφdx+

∫
Γo

c̄nun
hQhφds =

∫
Γo

c̄nūn
aQhφds−

∫
Γi

qnhQhφds.

Using the property of Qh in (5.5) and the Cauchy–Schwarz inequality, we derive

∣∣∣ ∫
Ω

∂τu
n
hQhφdx

∣∣∣ ≤ C (C1 ‖∇un
h‖0 + C2 ‖un

h‖0,Γo + C2 ‖ūn
a‖0,Γo + ‖qnh‖0,Γi) ‖φ‖1.

On the other hand, applying the Cauchy–Schwarz inequality and the property of Qh

in (5.6), we obtain ∣∣∣∣
∫

Ω

∂τu
n
h(φ−Qhφ)dx

∣∣∣∣ ≤ Ch‖∂τun
h‖0‖φ‖1.

It follows from the above two inequalities that for any φ ∈ H1(Ω),∣∣∣∣
∫

Ω

∂τu
n
hφdx

∣∣∣∣ ≤ C (C1 ‖∇un
h‖0 + C2 ‖un

h‖0,Γo + C2 ‖ūn
a‖0,Γo

+ ‖qnh‖0,Γi
+ h‖∂τun

h‖0)‖φ‖1,

which implies

‖∂τun
h‖(H1(Ω))′ ≤ C (C1 ‖∇un

h‖0 + C2 ‖un
h‖0,Γo

+ C2 ‖ūn
a‖0,Γo

+ ‖qnh‖0,Γi
+ h‖∂τun

h‖0).

Taking squares on both sides and adding up over n = 1, . . . ,M , (5.16) then follows
from (5.14) and (5.15).

Remark 5.3. Fortunately, the unbounded factor τ−1 in the estimate (5.15) can
be cancelled in the subsequent convergence analysis; see (5.28) and the last estimate
in the proof of Lemma 5.5.

Based on the stability estimates (5.14)–(5.16), we are now ready to show the
existence and uniqueness of minimizers to the finite element system (5.9)–(5.11).

Theorem 5.4. There exists a unique minimizer to the finite element system
(5.9)–(5.11).

Proof. By the stability estimates of Lemma 5.2 and the same argument as in
Theorem 2.2, we know there exists a minimizing sequence {q1,k

h , q2,k
h , . . . , qM,k

h }∞k=1

such that

lim
k→∞

Jh,τ ({q1,k
h , q2,k

h , . . . , qM,k
h }) = inf

{qnh}M
n=1∈V h

Γ

Jh,τ ({q1
h, q

2
h, . . . , q

M
h }),
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and

qn,kh → qn,∗h in any norm for n = 1, 2, . . . ,M as k → ∞.

Next, we prove {q1,∗
h , q2,∗

h , . . . , qM,∗
h } is the unique minimizer of (5.9)–(5.11). Let

qkh,τ and q∗h,τ be the functions defined in (5.7) by {qn,kh }Mn=1 and {qn,∗h }Mn=1, respec-

tively; then un
h(qkh,τ ) and un

h(q∗h,τ ) are the finite element solutions to (5.9)–(5.10)

corresponding to qkh,τ and q∗h,τ , respectively.

Let wn,k
h = un

h(qkh,τ ) − un
h(q∗h,τ ); then w0,k

h = 0 and for n = 1, 2, . . . ,M , wn,k
h

solves ∫
Ω

∂τw
n,k
h φhdx +

∫
Ω

ᾱn∇wn,k
h · ∇φhdx +

∫
Γo

c̄nwn,k
h φhds

=

∫
Γi

(qn,∗h − qn,kh )φhds ∀φh ∈ V h.

Taking φh = τwn,k
h in the above equation, one can directly show by Gronwall’s in-

equality that

max
1≤n≤M

‖wn,k
h ‖2

0 ≤ Cτ

M∑
n=1

‖qn,∗h − qn,kh ‖2
0,Γi

.(5.18)

This proves wn,k
h → 0, and so we have un

h(qkh,τ ) → un
h(q∗h,τ ) as k → ∞.

The rest of the proof is basically the same as that of Theorem 2.2.
The remaining part of this section is devoted to one of the central issues of our

interest: Will the discrete minimizer of the system (5.8)–(5.10) converge to the global
minimizer of the continuous problem (2.1)–(2.3)? If yes, is the convergence only weak
or can it be strong in some norm? To answer this question, we need some preparations.

For a given function f ∈ C([0, T ];X), with X being a Banach space, we define a
step function approximation, based on the time partition (5.2):

SΔf(x, t) =

M∑
n=1

χn(t)f(x, tn).(5.19)

We know (cf. [21]) that

lim
τ→0

∫ T

0

‖SΔf(·, t) − f(·, t)‖2
Xdt = 0.(5.20)

Next, we shall demonstrate a most important and technical result in the paper:
for any weakly convergent sequence qh,τ in L2(0, T ;L2(Γi)) with respect to h and τ ,
the corresponding finite element solution un

h(qh,τ ) defined in (5.9)–(5.10) will converge
strongly in L2(0, T ;L2(ω)). More accurately, we have the following lemma.

Lemma 5.5. If qh,τ converges to some q weakly in L2(0, T ;L2(Γi)) as h and τ
tend to 0, then

τ

M∑
n=0

αn

∫
ω

(un
h(qh,τ ) − zn)2dx →

∫ T

0

∫
ω

(u(q) − z)2dxdt.
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Proof. For 1 ≤ n ≤ M , we shall use the following notation:

un
h = un

h(qh,τ ), un = u(q)(·, tn).

By (5.20), we can directly verify

lim
τ→0

τ

M∑
n=0

αn

∫
ω

(un − zn)2dx =

∫ T

0

∫
ω

(u(q) − z)2dxdt.

Therefore it suffices to show

lim
h→0
τ→0

τ

M∑
n=0

αn

∫
ω

(un
h − zn)2dx = lim

h→0
τ→0

τ

M∑
n=0

αn

∫
ω

(un − zn)2dx

or, equivalently,

lim
h→0
τ→0

τ

M∑
n=0

∫
ω

(un
h − un)2dx = 0.(5.21)

For this, we construct two interpolations based on {un
h}: the first one is the piecewise

linear interpolation over the time partition (5.2),

uh,τ (x, t) =
t− tn−1

τ
un
h +

tn − t

τ
un−1
h , t ∈ (tn−1, tn),

while the second one is the piecewise constant interpolation

ũh,τ (x, t) =

M∑
n=1

χn(t)un
h(x).

By straightforward computations, we have

‖ũh,τ‖2
L2(0,T ;H1(Ω)) = τ

M∑
n=1

‖un
h‖2

1,
∥∥∥ ∂

∂t
uh,τ

∥∥∥2

L2(0,T ;(H1(Ω))′)
= τ

M∑
n=1

‖∂τun
h‖2

(H1(Ω))′

and

‖uh,τ‖2
L2(0,T ;H1(Ω))

=
τ

3

M∑
n=1

∫
Ω

(|un
h|2 + |un−1

h |2 + un
hu

n−1
h + |∇un

h|2 + |∇un−1
h |2 + ∇un

h · ∇un−1
h )dx

≤ τ

M∑
n=0

‖un
h‖2

1.

These, together with the stability estimates (5.14)–(5.16), indicate that both {uh,τ}
and {ũh,τ} are bounded in L2(0, T ;H1(Ω)) and { ∂

∂tuh,τ} is bounded in L2(0, T ;
(H1(Ω))′). So by Lemma 2.1 there exist a subsequence of {uh,τ} such that

uh,τ → u∗ weakly in L2(0, T ;H1(Ω)) and strongly in L2(0, T ;L2(Ω)),(5.22)

∂

∂t
uh,τ → v∗ weakly in L2(0, T ; (H1(Ω))′),(5.23)
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and a subsequence of {ũh,τ} such that

ũh,τ → ũ∗ weakly in L2(0, T ;H1(Ω))(5.24)

for some u∗, ũ∗ ∈ L2(0, T ;H1(Ω)) and v∗ ∈ L2(0, T ; (H1(Ω))′).
From (5.23), we know for any ϕ(x) ∈ H1(Ω) and ψ(t) ∈ C∞

0 (0, T ),

lim
h→0
τ→0

∫ T

0

∫
Ω

∂uh,τ (x, t)

∂t
ϕ(x)ψ(t)dxdt =

∫ T

0

∫
Ω

v∗(x, t)ϕ(x)ψ(t)dxdt.(5.25)

Integrating by parts the left-hand side and using (5.22), we obtain

−
∫ T

0

∫
Ω

u∗(x, t)ϕ(x)ψ′(t)dxdt =

∫ T

0

∫
Ω

v∗(x, t)ϕ(x)ψ(t)dxdt,

which gives

v∗(x, t) =
∂u∗(x, t)

∂t
.(5.26)

Next, taking any ϕ(x) ∈ H1(Ω) and ψ(t) ∈ C1[0, T ] with ψ(T ) = 0, integrating by
parts to both sides of (5.25), and noting (5.26), we get

lim
h→0
τ→0

{
−
∫

Ω

Qhu0(x)ϕ(x)ψ(0)dx−
∫ T

0

∫
Ω

uh,τ (x, t)ϕ(x)ψ′(t)dxdt

}

= −
∫

Ω

u∗(x, 0)ϕ(x)ψ(0)dx−
∫ T

0

∫
Ω

u∗(x, t)ϕ(x)ψ′(t)dxdt.

By the convergence property of Qh and (5.22) we obtain

u∗(x, 0) = u0(x).(5.27)

Next, we show u∗(x, t) = ũ∗(x, t). In fact, by direct computing and (5.15), we obtain

∫ T

0

‖uh,τ (·, t) − ũh,τ (·, t)‖2
0dt =

τ3

3

M∑
n=1

‖∂τun
h‖2

0 ≤ Cτ ;(5.28)

this with (5.22) proves that ũh,τ converges to ũ∗ strongly in L2(0, T ;L2(Ω)) and
u∗(x, t) = ũ∗(x, t).

Below we will show u∗ = u(q). For any ϕ(x) ∈ H1(Ω) and ψ(t) ∈ C∞
0 (0, T ), let

φ(x, t) = ϕ(x)ψ(t) and φh,τ (x, t) =
∑M

n=1 χn(t)Qhφ(x, tn). Then we have∫ T

0

‖φ(·, t) − φh,τ (·, t)‖2
1dt

≤ 2

∫ T

0

‖φ(·, t) − SΔφ(·, t)‖2
1dt + 2

∫ T

0

‖SΔφ(·, t) − φh,τ (·, t)‖2
1dt

≤ 2

∫ T

0

‖φ(·, t) − SΔφ(·, t)‖2
1dt + 2T max

0≤t≤T
|ψ(t)|2 ‖Qhϕ(·) − ϕ(·)‖2

1.

Therefore by (5.20) and the convergence property of Qh, we deduce

φh,τ converges to φ strongly in L2(0, T ;H1(Ω)).(5.29)
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By direct computations we have the following equalities:∫ T

0

∫
Ω

∂

∂t
uh,τ (x, t)φh,τ (x, t)dxdt = τ

M∑
n=1

∫
Ω

∂τu
n
hQhφ(x, tn)dx,

∫ T

0

∫
Ω

α(x, t)∇ũh,τ (x, t)∇φh,τ (x, t)dxdt = τ

M∑
n=1

∫
Ω

ᾱn∇un
h∇Qhφ(x, tn)dx,

∫ T

0

∫
Γo

c(x, t)ũh,τ (x, t)φh,τ (x, t)dsdt = τ

M∑
n=1

∫
Γo

c̄nun
hQhφ(x, tn)ds,

−
∫ T

0

∫
Γo

c(x, t)ua(x, t)φh,τ (x, t)dsdt = −τ

M∑
n=1

∫
Γo

cun
aQhφ(x, tn)ds,

∫ T

0

∫
Γi

qh,τ (x, t)φh,τ (x, t)dsdt = τ

M∑
n=1

∫
Γi

qnhQhφ(x, tn)ds;

adding them together and using the discrete parabolic equation (5.10), we obtain∫ T

0

∫
Ω

∂

∂t
uh,τ (x, t)φh,τ (x, t)dxdt +

∫ T

0

∫
Ω

α(x, t)∇ũh,τ (x, t)∇φh,τ (x, t)dxdt

+

∫ T

0

∫
Γo

c(x, t)ũh,τ (x, t)φh,τ (x, t)dsdt−
∫ T

0

∫
Γo

c(x, t)ua(x, t)φh,τ (x, t)dsdt(5.30)

= −
∫ T

0

∫
Γi

qh,τ (x, t)φh,τ (x, t)dsdt + τ

M∑
n=1

∫
Γo

(c̄nūn
a − cun

a)Qhφ(x, tn)ds.

Taking the limit as h and τ tend to 0 and using the convergence (5.22)–(5.24) and
(5.29), we derive that for any ϕ(x) ∈ H1(Ω) and ψ(t) ∈ C∞

0 (0, T )∫ T

0

∫
Ω

∂u∗

∂t
ϕ(x)ψ(t)dxdt +

∫ T

0

∫
Ω

α∇u∗ · ∇ϕ(x)ψ(t)dxdt +

∫ T

0

∫
Γo

c u∗ϕ(x)ψ(t)dsdt

=

∫ T

0

∫
Γo

c uaϕ(x)ψ(t)dsdt−
∫ T

0

∫
Γi

q ϕ(x)ψ(t)dsdt,(5.31)

where we have used the limit

lim
h→0
τ→0

τ

M∑
n=1

∫
Γo

(c̄nūn
a − cun

a)Qhφ(x, tn)ds = 0.(5.32)

To see this, it follows from (5.13), the trace theorem, and the Cauchy–Schwarz in-
equality that

τ

M∑
n=1

∫
Γo

(c̄nūn
a − cun

a)Qhφ(x, tn)ds

≤ C τ max
0≤t≤T

|ψ(t)| ‖Qhϕ‖1

M∑
n=1

∥∥c̄nūn
a − cun

a

∥∥
0,Γo

≤ C τ max
0≤t≤T

|ψ(t)| ‖ϕ‖1

(
M∑
n=1

‖ct‖2
L2(tn−1,tn;L∞(Γo))

) 1
2
(

M∑
n=1

‖ua‖2
L2(tn−1,tn;L2(Γo))

) 1
2

≤ C τ max
0≤t≤T

|ψ(t)| ‖ϕ‖1 ‖ct‖L2(0,T ;L∞(Γo)) ‖ua‖L2(0,T ;L2(Γo)).
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Clearly, the fact that u∗ = u(q) follows then from (5.31).

Now we can show the desired relation (5.21). For this, setting f(x, t) = uh,τ (x, t)−
u(x, t), we can write and estimate using Lemma 5.2 as follows:

τ
M∑
n=1

∫
Ω

(un
h − un)2dx−

∫ T

0

‖uh,τ (·, t) − u(·, t)‖2
0dt

=

M∑
n=1

∫ tn

tn−1

∫
Ω

(
|f(x, tn)|2 − |f(x, t)|2

)
dxdt

≤
{

M∑
n=1

∫ tn

tn−1

‖f(·, tn) + f(·, t)‖2
0dt

} 1
2
{

M∑
n=1

∫ tn

tn−1

‖f(·, tn) − f(·, t)‖2
0dt

} 1
2

≤ C

{
M∑
n=1

∫ tn

tn−1

‖f(·, tn) − f(·, t)‖2
0dt

} 1
2

.

By (5.22), the second term at the left-hand side of the above inequality tends to 0 as
h, τ → 0. But the last term can be estimated as follows:

M∑
n=1

∫ tn

tn−1

‖f(·, tn) − f(·, t)‖2
0dt

=

M∑
n=1

∫ tn

tn−1

‖u− un + (tn − t)∂τu
n
h‖2

0dt

≤ 2

M∑
n=1

∫ tn

tn−1

‖u− un‖2
0dt + 2

M∑
n=1

∫ tn

tn−1

∫
Ω

(tn − t)2|∂τun
h|2dxdt

= 2

M∑
n=1

∫ tn

tn−1

‖u− un‖2
0dt +

2

3
τ3

M∑
n=1

‖∂τun
h‖2

0.

From (5.20) and (5.15), the last two terms both tend to 0, and (5.21) follows.

Finally, we are ready to show the main convergence results of this section.

Theorem 5.6. Let {q∗h,τ} be a sequence of minimizers to the finite element
minimization problem (5.8)–(5.10); then as h and τ tend to 0, the whole sequence
{q∗h,τ} converges strongly in L2(0, T ;L2(Γi)) to the unique minimizer of the continuous
problem (2.1)–(2.3).

Proof. Using the stability estimate (5.14), it is easy to know that Jh,τ (q
∗
h,τ ) ≤ C

for some constant C independent of h and τ . This implies that {q∗h,τ} is bounded in

L2(0, T ;L2(Γi)) and there exists a subsequence of {q∗h,τ}, still denoted as {q∗h,τ}, such

that q∗h,τ → q∗ weakly in L2(0, T ;L2(Γi)) as h, τ → 0.

Now for any q ∈ L2(0, T ;L2(Γi)) and any fixed ε > 0, by the density results there
exists a qε ∈ H1(0, T ;H1/2(Γi)) such that

‖q − qε‖L2(0,T ;L2(Γi)) ≤ ε.

Then we define an extension q̃ε of qε as follows: q̃ε ∈ H1(Ω) solves

−Δq̃ε = 0 in Ω, q̃ε = qε on Γi, q̃ε = 0 on Γo.
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One can verify that q̃ε ∈ H1(0, T ;H1(Ω)) and ‖q̃ε‖H1(0,T ;H1(Ω)) ≤ C‖qε‖H1(0,T ;H1/2(Γi)).
Define

q̃h,τε (x, t) =

M∑
n=1

χn(t)Qhq̃ε(x, tn).

Let qh,τε be the restriction of q̃h,τε on Γi; then qh,τε ∈ V h
Γi

and for any ε > 0,

‖qh,τε − qε‖2
L2(0,T ;L2(Γi))

≤ ‖qh,τε − qε‖2
L2(0,T ;H1/2(Γi))

≤ C‖q̃h,τε − q̃ε‖2
L2(0,T ;H1(Ω))

= C

M∑
n=1

∫ tn

tn−1

‖Qhq̃ε(·, tn) − q̃ε(·, t)‖2
1dt

≤ C

M∑
n=1

∫ tn

tn−1

‖Qhq̃ε(·, tn) −Qhq̃ε(·, t) + Qhq̃ε(·, t) − q̃ε(·, t)‖2
1dt

≤ C

∫ T

0

‖SΔq̃ε(·, t) − q̃ε(·, t)‖2
1dt + C

∫ T

0

‖Qhq̃ε(·, t) − q̃ε(·, t)‖2
1dt.

Thus qh,τε → qε in L2(0, T ;L2(Γi)) as h, τ → 0. Using this and Lemma 5.5, we can
derive

J(q∗) ≤ lim
h→0
τ→0

τ

2

M∑
n=0

αn

∫
ω

(un
h(q∗h,τ ) − zn)2dx +

β

2
lim
h→0
τ→0

inf

∫ T

0

∫
Γi

|q∗h,τ |2dsdt

≤ lim
h→0
τ→0

inf Jh,τ (q
∗
h,τ ) ≤ lim

h→0
τ→0

inf Jh,τ (q
h,τ
ε )

=
1

2

∫ T

0

∫
ω

(u(qε) − z)2dxdt +
β

2

∫ T

0

∫
Γi

q2
εdsdt

= J(qε).

Letting ε → 0, we deduce

J(q∗) ≤ J(q) ∀ q ∈ L2(0, T ;L2(Γi)),(5.33)

which indicates that q∗ is the unique minimizer of the continuous problem (2.1)–(2.3).
The strong convergence follows by the same trick as used in Proposition 2.3.
Remark 5.7. All the results obtained in this paper can be naturally extended

to a three-dimensional domain Ω with every two-dimensional cross-section being the
domain as in Figure 2.

6. Finite element approximation of system (4.1)–(4.3) and its conver-
gence. Next, we shall discuss the discretization of system (4.1)–(4.3). As we did for
system (2.1)–(2.3), we use the composite trapezoidal rule for the time discretization
of the first integral in (4.1) and the exact time integration for the second term. But as
the time derivative of the identifying parameter q(x, t) is involved in the regularization
term now, we cannot ensure the convergence of the resultant fully discrete scheme for
the entire system (4.1)–(4.3) if the backward Euler scheme is still used for approximat-
ing the parabolic problem (4.3). Instead we shall adopt the Crank–Nicolson scheme.
This results in the following finite element approximation of (4.1)–(4.3):

minJh,τ (qh,τ ) =
τ

2

M∑
n=0

αn

∫
ω

(un
h − zn)2dx +

β

2

(∫
Γi

|q0
h|2ds + τ

M∑
n=1

∫
Γi

|∂τqnh |2ds
)(6.1)
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over all qnh ∈ V h
Γi

with un
h ≡ un

h(qh,τ ) ∈ V h satisfying u0
h = Qhu0 in Ω and

∫
Ω

∂τu
n
hφhdx +

∫
Ω

ᾱn∇un
h + un−1

h

2
· ∇φhdx +

∫
Γo

c̄n
un
h + un−1

h

2
φhds

=

∫
Γo

c̄nūn
aφhds−

∫
Γi

qnh + qn−1
h

2
φhds ∀φh ∈ V h(6.2)

for n = 1, 2, . . . ,M . Here {αn} are the coefficients of the composite trapezoidal rule:
α0 = αM = 1

2 and αn = 1 for all n �= 0,M . The heat flux q is approximated by qh,τ ,
a piecewise linear interpolation based on {qnh} over the time partition Δ in (5.2):

qh,τ (x, t) =
t− tn−1

τ
qnh +

tn − t

τ
qn−1
h , t ∈ (tn−1, tn).(6.3)

For the fully discrete finite element scheme (6.1)–(6.2), we can show (cf. [14]) the
following theorem.

Theorem 6.1. There exists a unique minimizer to the finite element problem
(6.1)–(6.2).

In the rest of this section, we study the convergence of the discrete minimizer of
(6.1)–(6.2) to the global minimizer of the continuous problem (4.1)–(4.3). For this
purpose, we assume on functions α(x, t), c(x, t), and ua(x, t) in (1.1)–(1.4) that

α ∈ W 1,∞(0, T ;L∞(Ω)) and c, ua ∈ W 1,∞(0, T ;L∞(Γo))(6.4)

and introduce three related constants:

C1 = ‖α‖W 1,∞(0,T ;L∞(Ω)), C2 = ‖c‖W 1,∞(0,T ;L∞(Γo)), C3 = ‖ua‖W 1,∞(0,T ;L∞(Γo)).

(6.5)

Using these constants, we can derive the following estimates (cf. [14]):

‖ᾱn − ᾱn−1‖L∞(Ω) ≤ C1 τ, ‖c̄nūn
a − c̄n−1ūn−1

a ‖L∞(Γo) ≤
5

3
C2C3 τ.(6.6)

For the convergence analysis, we first establish some stability estimates of the
finite element solution to (6.2).

Lemma 6.2. Let un
h be the finite element solution of system (6.2) corresponding

to the given heat flux {qnh}Mn=0; then we have the following stability estimates:

max
1≤n≤M

‖un
h‖2

0 + τ

M∑
n=1

∥∥∥∥∇un
h + un−1

h

2

∥∥∥∥
2

0

+ τ

M∑
n=1

∥∥∥∥un
h + un−1

h

2

∥∥∥∥
2

0,Γo

≤ C

(
‖u0‖2

0 + C2
2C

2
3 + τ

M∑
n=0

‖qnh‖2
0,Γi

)
,(6.7)

τ
M∑
n=1

‖∂τun
h‖2

0 + max
1≤n≤M

‖∇un
h‖2

0 + max
1≤n≤M

‖un
h‖2

0,Γo

≤ C

(
‖u0‖2

1 + C2
2C

2
3 + max

1≤n≤k
‖qnh‖2

0,Γi
+ τ

M∑
n=1

‖∂τqnh‖2
0,Γi

+ τ

M∑
n=0

‖qnh‖2
0,Γi

)
.(6.8)
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Proof. Taking φh = τ
un
h+un−1

h

2 in (6.2), we have

1

2
‖un

h‖2
0 −

1

2
‖un−1

h ‖2
0 + α0τ

∥∥∥∥∇un
h + un−1

h

2

∥∥∥∥
2

0

+ c0τ

∥∥∥∥un
h + un−1

h

2

∥∥∥∥
2

0,Γo

≤ τ

∫
Γo

c̄nūn
a

un
h + un−1

h

2
ds− τ

∫
Γi

qnh + qn−1
h

2

un
h + un−1

h

2
ds.

Summing up the above equation over n = 1, 2, . . . , k ≤ M , we derive

1

2
‖uk

h‖2
0 −

1

2
‖u0

h‖2
0 + α0τ

k∑
n=1

∥∥∥∥∇un
h + un−1

h

2

∥∥∥∥
2

0

+ c0τ

k∑
n=1

∥∥∥∥un
h + un−1

h

2

∥∥∥∥
2

0,Γo

≤ τ

k∑
n=1

∫
Γo

c̄nūn
a

un
h + un−1

h

2
ds− τ

k∑
n=1

∫
Γi

qnh + qn−1
h

2

un
h + un−1

h

2
ds;

then (6.7) follows by applying the trace theorem and Young’s and Gronwall’s inequal-
ities.

Next, taking φh = τ∂τu
n
h in (6.2), we have

τ‖∂τun
h‖2

0 +
1

2

∫
Ω

ᾱn(|∇un
h|2 − |∇un−1

h |2)dx +
1

2

∫
Γo

c̄n(|un
h|2 − |un−1

h |2)ds

=

∫
Γo

c̄nūn
a(un

h − un−1
h )ds−

∫
Γi

qnh + qn−1
h

2
(un

h − un−1
h )ds.

Summing up the above equation over n = 1, 2, . . . , k ≤ M and using the formula
(5.17), we deduce

τ

k∑
n=1

‖∂τun
h‖2

0 +
1

2
α0‖∇uk

h‖2
0 +

1

2
c0‖uk

h‖2
0,Γo

≤ 1

2

∫
Ω

ᾱ0|∇u0
h|2dx +

1

2

k∑
n=1

∫
Ω

(ᾱn − ᾱn−1)|∇un−1
h |2dx

+
1

2

∫
Γo

c̄0|u0
h|2ds +

1

2

k∑
n=1

∫
Γo

(c̄n − c̄n−1)|un−1
h |2ds

+

∫
Γo

c̄kūk
au

k
hds−

∫
Γo

c̄0ū0
au

0
hds−

k∑
n=1

∫
Γo

(c̄nūn
a − c̄n−1ūn−1

a )un−1
h ds

−1

2

∫
Γi

(qkh + qk−1
h )uk

hds +
1

2

∫
Γi

q0
hu

0
hds

+
k∑

n=1

∫
Γi

(
qnh + qn−1

h

2
− qn−1

h + qn−2
h

2

)
un−1
h ds.

We now estimate all the terms on the right-hand side above. First, for those terms
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without summation, we can easily deduce∫
Ω

ᾱ0|∇u0
h|2dx +

∫
Γo

c̄0|u0
h|2ds ≤ C (C1 + C2)‖u0‖2

1,∫
Γo

c̄0ū0
au

0
hds +

1

2

∫
Γi

q0
hu

0
hds ≤ C (C2C3 + ‖q0

h‖0,Γi)‖u0‖1,∫
Γo

c̄kūk
au

k
hds ≤

1

4
c0‖uk

h‖2
0,Γo

+ C C2
2C

2
3 ,

−1

2

∫
Γi

(qkh + qk−1
h )uk

hds ≤
1

4
α0‖∇uk

h‖2
0 + C

(
max

1≤n≤M
‖un

h‖2
0 + max

1≤n≤M
‖qnh‖2

0,Γi

)
.

Using (6.6), we obtain the following estimates:

1

2

k∑
n=1

∫
Ω

(ᾱn − ᾱn−1)|∇un−1
h |2dx ≤ 1

2
C1 τ

k∑
n=1

‖∇un−1
h ‖2

0,

1

2

k∑
n=1

∫
Γo

(c̄n − c̄n−1)|un−1
h |2ds ≤ 1

2
C2 τ

k∑
n=1

‖un−1
h ‖2

0,Γo
,

−
k∑

n=1

∫
Γo

(c̄nūn
a − c̄n−1ūn−1

a )un−1
h ds ≤ C τ

k∑
n=1

‖un−1
h ‖2

0,Γo
+ C.

For the last term, we use the Cauchy–Schwarz inequality to obtain

k∑
n=1

∫
Γi

(
qnh + qn−1

h

2
− qn−1

h + qn−2
h

2

)
un−1
h ds

≤ 1

2
τ

k∑
n=1

‖un−1
h ‖2

0,Γi
+

1

8τ

k∑
n=1

∥∥∥(qnh + qn−1
h ) − (qn−1

h + qn−2
h )

∥∥∥2

0,Γi

≤ C τ

k∑
n=1

(
‖∇un−1

h ‖2
0 + ‖un−1

h ‖2
0 + ‖∂τqnh‖2

0,Γi

)
.

Now (6.8) follows by combining all of the above estimates and using Gronwall’s in-
equality.

As we did for the finite element system (5.8)–(5.10), we need the following crucial
technical result for the convergence of the finite element approximation (6.1)–(6.2).

Lemma 6.3. If qh,τ converges to some q weakly in H1(0, T ;L2(Γi)) as h and τ
tend to 0, then

lim
h→0
τ→0

τ

M∑
n=0

αn

∫
ω

(un
h(qnh) − zn)2dx =

∫ T

0

∫
ω

(u(q) − z)2dxdt.

Proof. As in the proof of Lemma 5.5, it suffices to show (5.21).
We first construct two interpolations based on {un

h}: one is a piecewise linear
interpolation over the time partition Δ,

uh,τ (x, t) =
t− tn−1

τ
un
h +

tn − t

τ
un−1
h , t ∈ (tn−1, tn) for n = 1, 2, . . . ,M,
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and the other is a piecewise constant interpolation,

ũh,τ (x, t) =
1

2
(un

h + un−1
h ), t ∈ (tn−1, tn) for n = 1, 2, . . . ,M.

Using the definition of qh,τ in (6.3) and the simple identity

qnh = τ

n∑
k=1

∂τq
k
h + q0

h,

we can directly see that

τ
M∑
n=1

‖∂τqnh‖2
0,Γi

= τ

M∑
n=1

∥∥∥∥ ∂

∂t
qh,τ

∥∥∥∥
2

0,Γi

=

∥∥∥∥ ∂

∂t
qh,τ

∥∥∥∥
2

L2(0,T ;L2(Γi)

,

‖qnh‖2
0,Γi

≤ 2τT

n∑
k=1

‖∂τqkh‖2
0,Γi

+ 2‖q0
h‖2

0,Γi
.

With these relations, the assumption on qh,τ , and the stability estimates (6.7)–(6.8),
we can easily check that both {uh,τ} and {ũh,τ} are bounded in L2(0, T ;H1(Ω)) and
that { ∂

∂tuh,τ} is bounded in L2(0, T ;L2(Ω)). So there exist a subsequence {uh,τ} such
that

uh,τ → u∗ weakly in L2(0, T ;H1(Ω)) and strongly in L2(0, T ;L2(Ω)),

∂

∂t
uh,τ → ∂u∗

∂t
weakly in L2(0, T ;L2(Ω)),

and a subsequence {ũh,τ} such that

ũh,τ → ũ∗ weakly in L2(0, T ;H1(Ω))(6.9)

for some u∗ ∈ H1(0, T ;L2(Ω)) and ũ∗ ∈ L2(0, T ;H1(Ω)). We can further show that
u∗(x, 0) = u0(x) and u∗ = ũ∗ using the fact that

∫ T

0

‖uh,τ (·, t) − ũh,τ (·, t)‖2
0dt =

τ3

12

M∑
n=1

‖∂τun
h‖2

0 → 0.(6.10)

Next, we show u∗ = u(q). Let φh,τ (x, t) be defined as in the proof of Lemma 5.5.
By simple computations we have the following equalities:∫ T

0

∫
Ω

∂

∂t
uh,τ (x, t)φh,τ (x, t)dxdt = τ

M∑
n=1

∫
Ω

∂τu
n
hQhφ(x, tn)dx,

∫ T

0

∫
Ω

α(x, t)∇ũh,τ (x, t)∇φh,τ (x, t)dxdt = τ

M∑
n=1

∫
Ω

ᾱn∇un
h + un−1

h

2
∇Qhφ(x, tn)dx,

∫ T

0

∫
Γo

c(x, t)ũh,τ (x, t)φh,τ (x, t)dsdt = τ

M∑
n=1

∫
Γo

c̄n
un
h + un−1

h

2
Qhφ(x, tn)ds,

∫ T

0

∫
Γo

c(x, t)ua(x, t)φh,τ (x, t)dsdt = τ

M∑
n=1

∫
Γo

cun
aQhφ(x, tn)ds,

∫ T

0

∫
Γi

qh,τ (x, t)φh,τ (x, t)dsdt = τ

M∑
n=1

∫
Γi

qnh + qn−1
h

2
Qhφ(x, tn)ds.
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Adding them together and using (6.2), we obtain a similar equation to (5.30). The
rest of the proof is basically the same as that in Lemma 5.5.

By virtue of Lemma 6.3, we can show the convergence of the finite element ap-
proximation (6.1)–(6.2), following the same lines as for Theorem 5.6; see Xie [14].

Theorem 6.4. Let {q∗h,τ} be a sequence of minimizers to the discrete minimiza-
tion problem (6.1)–(6.2); then as h and τ tend to 0, the whole sequence {q∗h,τ} con-

verges strongly in H1(0, T ;L2(Γi)) to the unique minimizer of the continuous problem
(4.1)–(4.3).

7. Solutions of finite element minimizaton problems. In this section, we
shall formulate a conjugate gradient algorithm to solve the nonlinear finite element
minimization problems (5.8)–(5.10) and (6.1)–(6.2). We present details only for sys-
tem (6.1)–(6.2), while the algorithm for system (5.8)–(5.10) can be formulated simi-
larly; for details of the latter system, we refer to Xie [14].

We first derive the Gateaux derivative of the cost functional Jh,τ (qh,τ ) in (6.1), or
the form Jh,τ ({q0

h, . . . , q
M
h }). Let N = dim(V h

Γi
), and let {ψi}Ni=1 be the basis of V h

Γi
.

For any element from space V h
Γi

× · · · × V h
Γi

, say {q0
h, . . . , q

M
h }, let Un

h ≡ un
h(qh,τ )

′ph,τ
be the Gateaux derivative of solution un

h(qh,τ ) to (6.1)–(6.2) in the direction ph,τ , or
{p0

h, . . . , p
M
h }. We easily see that U0

h = 0, and for n = 1, 2, . . . ,M and any φh ∈ V h,
the derivative Un

h ∈ V h satisfies∫
Ω

∂τUn
hφhdx +

∫
Ω

ᾱn∇Un
h + Un−1

h

2
· ∇φhdx +

∫
Γo

c̄n
Un
h + Un−1

h

2
φhds

= −
∫

Γi

pnh + pn−1
h

2
φhds.

This enables us to derive the first and second derivatives of the cost functional Jh,τ
in (6.1):

Jh,τ (qh,τ )
′ph,τ = τ

M∑
n=1

αn

∫
ω

(un
h − zn)Un

h dx(7.1)

+ β

(∫
Γi

q0
hp

0
hds + τ

M∑
n=1

∫
Γi

∂τq
n
h ∂τp

n
hds

)
,

Jh,τ (qh,τ )
′′ph,τrh,τ = τ

M∑
n=1

αn

∫
ω

(
un
h(qh,τ )

′ph,τ

)(
un
h(qh,τ )

′rh,τ

)
dx(7.2)

+ β

(∫
Γi

p0
hr

0
hds + τ

M∑
n=1

∫
Γi

∂τp
n
h ∂τr

n
hds

)
.

Clearly, evaluating the derivatives of Jh,τ at a given point qh,τ using formula (7.1)
is extremely expensive. To reduce the cost, we introduce an adjoint equation for the
Crank–Nicolson scheme (6.2), which seems to have not been studied in the literature
before. This needs to be done carefully in order to meet our final goal. A discrete
sequence {wn

h}Mn=0 is defined in such a way that wM
h = 0 and wn

h ∈ V h for n �= M solves

−
∫

Ω

wn
h − wn−1

h

τ
φhdx +

∫
Ω

ᾱn+1∇wn
h + ᾱn∇wn−1

h

2
· ∇φhdx

+

∫
Γo

c̄n+1wn
h + c̄nwn−1

h

2
φhds = αn

∫
ω

(un
h − zn)φhdx ∀φh ∈ V h.(7.3)
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Now taking φh = Un
h in (7.3), we can rewrite the first term in Jh,τ (qh,τ )

′ph,τ as

J1
h,τ = −

M∑
n=1

∫
Ω

wn
h − wn−1

h

τ
Un
h dx +

M∑
n=1

∫
Ω

ᾱn+1∇wn
h + ᾱn∇wn−1

h

2
· ∇Un

h dx

+
M∑
n=1

∫
Γo

c̄n+1wn
h + c̄nwn−1

h

2
Un
h ds.

Then using formula (5.17), the identity2

k∑
n=1

(an + an−1)bn = akbk − a0b0 +

k∑
n=1

an−1(bn + bn−1),

and the equation for Un
h , we obtain

J1
h,τ =

M∑
n=1

∫
Ω

Un
h − Un−1

h

τ
wn−1

h dx +

M∑
n=1

∫
Ω

ᾱn∇Un
h + Un−1

h

2
· ∇wn−1

h dx

+

M∑
n=1

∫
Γo

c̄n
Un
h + Un−1

h

2
wn−1

h ds

= −
M∑
n=1

∫
Γi

pnh + pn−1
h

2
wn−1

h ds.

This, along with (7.1), leads to a very simple formula for evaluating the derivative of
Jh,τ :

Jh,τ (qh,τ )
′ph,τ =

∫
Γi

(
βq0

hp
0
h +

M∑
n=1

{
β(qnh − qn−1

h )(pnh − pn−1
h )

τ

− τ(pnh + pn−1
h )wn−1

h

2

})
ds.(7.4)

Next, we are going to formulate the conjugate gradient method for the nonlin-
ear minimization (6.1). Let us first establish one-to-one correspondences between
finite element functions and their coefficient vectors. For any qjh ∈ V h

Γi
, we write its

representation in terms of the basis {ψi}Ni=1 as

qjh =

N∑
i=1

qjiψi.

Then each finite element function qh,τ or {q0
h, q

1
h, . . . , q

M
h } corresponds uniquely to an

(M + 1)N -dimensional vector

q = (q0
1 , . . . , q

0
N , q1

1 , . . . , q
1
N , q2

1 , . . . , q
2
N , . . . , qM1 , . . . , qMN )T .

2This crucial identity has not been seen in the literature before and has no continuous counterpart,
unlike the widely used identity (5.17) that is known as the discrete integration by parts formula.
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Letting f(q) = Jh,τ (qh,τ ), one can directly verify the relation for the first derivatives
of f(q),

∂f(q)

∂qji
= Jh,τ ({q0

h, q
1
h, . . . , q

M
h })′({0, . . . , ψi, . . . , 0}),

and the relation for the Hessian H = (hij),

hik :≡ ∂2f(q)

∂qji ∂q
l
k

= Jh,τ ({q0
h, q

1
h, . . . , q

M
h })′′({0, . . . , ψi, . . . , 0})({0, . . . , ψk, . . . , 0}).

This leads to the following expression:

f(q) =
1

2
qTHq + ∇f(0)Tq + f(0).

We see that the evaluation of the Hessian H is extremely expensive. Fortunately,
only its products with vectors are needed in the conjugate gradient method, and
such products can be done with much less cost by noting the identity that Hq =
∇f(q) −∇f(0) and the simple formula (7.4).

We are now ready to state the conjugate gradient algorithm for solving the discrete
minimization problem (6.1)–(6.2). We shall use (Jh,τ (qh,τ ))

′ for ∇f(q) to emphasize
the dependence of the first order derivatives on mesh size h and time step τ .

Conjugate Gradient Algorithm

Step 1. Given a tolerance ε, compute g̃0 = (Jh,τ (0))′.

Step 2. Given an initial guess q
(0)
h,τ , solve the direct problem (6.2) and the adjoint

equation (7.3), then compute g0 = (Jh,τ (q
(0)
h,τ ))

′ by using (7.4). Set d0 := −g0

and k := 0.
Step 3. Solve the one-dimensional problem

Jh,τ (q
(k)
h,τ + αkd

(k)
h,τ ) = min

α
Jh,τ (q

(k)
h,τ + αd

(k)
h,τ )

by computing

αk = − gT
k dk

dT
k ((Jh,τ (d

(k)
h,τ ))

′ − g̃0)
.

Set q
(k+1)
h,τ := q

(k)
h,τ + αkd

(k)
h,τ and k := k + 1. Compute

gk = (Jh,τ (q
(k)
h,τ ))

′,

βk =
gT
k gk

gT
k−1gk−1

,

dk = −gk + βkdk−1.

Step 4. If ‖gk‖ ≤ ε ‖g0‖, stop; otherwise goto Step 3.

8. Numerical experiments. In this section we show some numerical experi-
ments on heat flux reconstructions using the two regularization methods (5.8)–(5.10)
and (6.1)–(6.2). The physical domain Ω is taken to be Ω = {(x, y); ( 1

2 )2 ≤ x2 + y2 ≤
1}. The domain Ω is triangulated as in Figure 2 using sectorial elements, with each
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Fig. 3. Exact q.
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Fig. 4. Method (6.1) used, β = 7 × 10−6, iter = 21, error = 4.19 × 10−2.

circle divided into 60 arcs of equal length. The time interval [0, 1] is divided into 40
equally spaced subintervals. For the conjugate gradient method, we take the tolerance

ε = 10−4, and the initial guess q
(0)
h,τ of the heat flux is taken to be a constant zero

everywhere in the whole space-time domain. In all three-dimensional figures shown
below, the x-axis stands for the time interval varying from 0 to 1 and the y-axis
stands for the inner boundary Γi = {(x, y); x2 + y2 = ( 1

2 )2} represented by the polar
coordinate θ varying from 0 to 2π, while the z-axis shows the magnitude of the heat
flux at each point (t, θ). The errors listed under each figure are the relative L2-norm
errors between the exact and numerically reconstructed heat fluxes.

In our simulations, the coefficients α, c, and ua in (1.1) and (1.3) are taken to
be α(x, t) = 1, c(x, t) = 1, and ua(x, t) = 0. In order to select more general and
difficult profiles of heat fluxes for our tests, we add a source term f(x, t) in (1.1). As
our first example, we try the exact solution u(x, y, t) and the heat flux q(x, y, t) to be
reconstructed as follows:

u(x, y, t) = x2 + 2y2 + t + sin(xyt), q(x, y, t) = 4x2 + 8y2 + 4xyt cos(xyt).

Instead of the exact data u(x, y, t), we use the perturbed data of the form z(x, y, t) =
u(x, y, t) + δ u(x, y, t) as the measurement data, with the noise level δ = 1% (1%
relative noise pointwise). We first test the case when the measurement region is
taken to be ω = {(x, y); ( 3

4 )2 ≤ x2 +y2 ≤ 1}. Figure 3 plots the exact heat flux, while
Figure 4 shows the numerically reconstructed heat flux using the finite element method
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Fig. 5. Method (5.8) used, β = 2 × 10−6, iter = 5, error = 7.73 × 10−2.
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Fig. 6. Method (5.8) used, plots from the initial 4 and last 5 time points removed, error =
3.09 × 10−2.

(6.1) with L2-regularization in space but H1-regularization in time for heat fluxes.
From Figure 4 we see that the numerical reconstruction works very well, considering
the difficult oscillation of the heat flux in space. Also the conjugate gradient iteration
performs very stably for such an oscillating heat flux, starting with a very bad initial
guess of constant zero everywhere in the space-time domain. Figure 5 presents the
numerical reconstruction using the finite element method (5.8) with L2-regularization
in both space and time for heat fluxes. One finds that the quality of reconstruction
is far from satisfactory compared to the result we have seen in Figure 4 using the
finite element method (6.1); the reconstruction is especially bad near the initial and
terminal time. But interestingly, when we remove the bad reconstruction at a few
initial and terminal time points, the remaining reconstruction seems very satisfactory
again; see Figure 6.

We have also tried to see the effects of the measurement region. When the mea-
surement region is reduced to a smaller subdomain ω = {(x, y); ( 4

5 )2 ≤ x2 + y2 ≤ 1},
the numerical reconstructions are not affected too much; see Figures 7 and 8.

As our second example, we take the exact solutions u(x, y, t) and q(x, y, t) in (1.1)
and (1.4) as the following functions:

u(x, y, t) = sinπt(x cosπy + y sinπx),

q(x, y, t) = 2 sinπt(πxy(cosπx− sinπy) + x cosπy + y sinπx).
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Fig. 7. Method (6.1) used, β = 10−5, iter = 23, error = 5.25 × 10−2.
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Fig. 8. Method (5.8) used, β = 6 × 10−6, iter = 13, plots from the initial 4 and last 5 time
points removed, error = 3.57 × 10−2.

Again, the perturbed data z(x, y, t) = u(x, y, t)+ δ u(x, y, t), with 1% noise pointwise,
is taken to be the measurement data in ω. We first test the case when the measure-
ment region is taken to be ω = {(x, y); ( 3

4 )2 ≤ x2 + y2 ≤ 1}. Figure 9 plots the exact
heat flux q, which appears to be very challenging for numerical reconstruction as it
oscillates widely in both time and space direction. Figure 10 shows the numerically
reconstructed heat flux using the finite element method (6.1) with L2-regularization in
space but H1-regularization in time for heat fluxes. This demonstrates very satisfac-
tory performance of the numerical reconstruction algorithm, especially the stability
and effectiveness of the conjugate gradient iteration, considering that it is such an
oscillating heat flux and that it starts with a very bad initial guess of constant zero
everywhere in the space-time domain. Figure 11 presents the numerical reconstruc-
tion using the finite element method (5.8) with L2-regularization in both space and
time for heat fluxes. Again its quality of reconstruction is not as good as the one
obtained using the finite element method (6.1), and the accuracy is much worse.

When the measurement subregion is reduced to a smaller subdomain ω =
{(x, y); ( 4

5 )2 ≤ x2 + y2 ≤ 1}, again the numerical reconstructions have not been
affected much, as we have seen in the first example.

9. Concluding remarks. The inverse problem of reconstructing profiles of both
time- and space-dependent heat fluxes on an inner boundary of a heat conductive
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Fig. 10. Method (6.1) used, β = 10−9, iter = 30, error = 3.68 × 10−2.
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Fig. 11. Method (5.8) used, β = 4 × 10−8, iter = 29, error = 11.59 × 10−2.

system is investigated. The reconstruction problem is severely ill-posed as it involves
the heat flux profile at the initial time and on the inner boundary. Validation and
effectiveness of two regularization formulations are justified both theoretically and
numerically for the reconstruction, without any constraints enforced on the search
spaces of heat fluxes when appropriate regularizations are selected. Regarding the
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approximation of the regularized nonlinear minimization systems, it is very tricky
and essential to decide how to effectively discretize in both time and space the non-
linear optimizations and the associated parabolic equation and its adjoint so that the
resulting fully discrete schemes converge. Two such discrete approaches are proposed
to approximate two nonlinear minimization formulations: the first uses the backward
Euler scheme in time, while the second requires the Crank–Nicolson scheme, with both
adopting piecewise linear finite elements for space approximation and the trapezoidal
and midpoint rules for discretization of the cost functionals. A novel weighted discrete
projection operator Qh is introduced which possesses both L2- and H1-stability and
L2-optimal error estimate, crucial to the success of convergence analysis of two fully
discrete schemes. The resulting nonlinear finite element minimization systems are
shown to be well suited for the solutions by conjugate gradient method. Numerical
experiments have demonstrated the stability and effectiveness of the reconstruction
algorithms.

There exists little work on numerical reconstruction of both time- and space-
dependent physical profiles, and even less on convergence analysis of numerical recon-
struction methods. As we have seen, the convergence analyses of the fully discrete
schemes are much more difficult and trickier than the cases with only space-dependent
profiles. This paper provides a relatively complete study on reconstruction of both
time- and space-dependent heat fluxes, including well-posedness of the regularized sys-
tems, convergence of fully discrete approximations, numerical algorithms for solving
discrete nonlinear minimizations, and numerical experiments. Most technical tools
should be useful in theoretical and numerical analysis of regularization methods for
other inverse problems.
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