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EDGE ELEMENT METHOD FOR OPTIMAL CONTROL OF
STATIONARY MAXWELL SYSTEM WITH GAUSS LAW∗
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Abstract. A novel edge element method is proposed for the optimal control of the stationary
Maxwell system with a nonvanishing charge density. The proposed approach does not involve the
usual saddle-point formulation and features a positive definite structure in the associated equality
constraints, for which optimal preconditioners are available in combination with conjugate gradient
iteration. Our main results include error estimates and strong convergence for both the optimal edge
element solution and the associated discrete Gauss laws. In particular, our analysis helps improve
significantly the convergence rate established by Ciarlet, Wu, and Zou [SIAM J. Numer. Anal., 52
(2014), pp. 779–807] for the edge element method for the stationary Maxwell system. Numerical
experiments are presented to verify the theoretical results.
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1. Introduction. This work shall examine an edge element approximation and
the analysis of the following optimal control problem:

(P) min
1
2

∫
Ω
ε|E −Ed|2 dx+

κ

2

∫
Ω
ε|u|2 dx,

subject to the stationary Maxwell equations with a nonvanishing charge density
curl (µ−1curlE) = εu in Ω,

div (εE) = ρ in Ω,

E × n = 0 on Γ,

(1)

and to the Gauss law for the applied current source

div (εu) = 0 in Ω.(2)

The precise mathematical assumptions on the data involved in (P) will be specified
in section 2.

Several mathematical and numerical studies on electromagnetic optimal control
problems can be found in the literature. However, they were mainly focused on
the cases where the stationary system (1) was replaced by the corresponding time-
dependent system [2, 15, 20, 21, 29] or the curl-curl-elliptic system [11, 26, 27]; namely,
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2788 IRWIN YOUSEPT AND JUN ZOU

either a time derivative term ∂E/∂t or a zero-order term is added in the first equa-
tion of (1). In these cases, the divergence law, i.e., the second equation in (1), can
be automatically ensured at the discrete level from the first equation of (1) when
edge element methods are used for discretization. Thus, only two symmetric and
positive definite systems (corresponding to (1) and its adjoint system) need to be
solved in the discrete optimality conditions. However, the situation will be much
trickier and more difficult when the stationary system (1) is considered instead of the
corresponding time-dependent system or the curl-curl-elliptic system. Not much has
been studied for this stationary optimal control problem except the recent work [28],
where the optimal control (P), constrained with the stationary state system (1) for
ρ ≡ 0, ε ≡ 1, and a nonlinear magnetic permeability µ = µ(x, |curlE|), was inves-
tigated both mathematically and numerically. In this case, as most approximations
do for the stationary state system (1), a Lagrange multiplier ∇p is included in the
left-hand side of the first equation so that (1) becomes a saddle-point system. A
mixed finite element method was proposed in [28] for this saddle-point system using
the lowest-order edge elements of Nédélec’s first family and the continuous piecewise
linear elements to approximate E and p, respectively. The error estimates of the
proposed finite element method were also established. These mathematical and nu-
merical results obtained in [28] are naturally valid for the stationary optimal control
problem (P) with the linear state system (1). We note that two (resp., linearized)
indefinite saddle-point systems (corresponding to (1) and its adjoint system) need to
be solved at each iteration (resp., each inner iteration) when an iterative method is
applied for solving the discretized version of (P) (resp., (P) constrained with (1) with
a nonlinear magnetic permeability µ = µ(x, |curlE|)). This is an essential difference
between the minimization (P) constrained with the stationary state system (1) and
its time-dependent version or the curl-curl-elliptic version. It is much more difficult
to solve the resulting indefinite saddle-point systems than the similar symmetric and
positive definite systems, for which efficient and nearly optimal preconditioners are
available such as the multigrid and Hiptmair–Xu preconditioners [8, 10] or the overlap-
ping and nonoverlapping domain decomposition preconditioners [13, 22]. One of the
most popular methods for solving such discrete indefinite saddle-point systems is the
preconditioned inexact Uzawa iterative methods, but they converge in a reasonable
rate only when two efficient preconditioners are available for the curl-curl system and
the corresponding Schur complement system (see [12, 13] and the references therein).
But this is usually quite difficult to realize in most applications.

There is another fundamental issue that needs our full attention when we solve the
optimal control problem (P) numerically. We see that both the continuous optimal
solutions E and u satisfy the Gauss law (see (1) and (2)). It is physically and
mathematically important whether the finite element methods used could guarantee
the global strong convergence of the Gauss law for the discrete optimal solutions.
This is still an open question for all existing finite element approximations of optimal
control problems governed by both stationary and nonstationary Maxwell systems.

This work is mainly motivated by two numerical challenges we have discussed
above. In order to treat these two numerical difficulties, a novel edge element method
was proposed recently for solving the stationary Maxwell equations (1) in [7] (for the
case ρ = 0) and in [5] (for the general charge density). In contrast to most existing edge
element schemes (see, e.g., [4, 6, 9, 18]), the new method does not involve any saddle-
point structure. Instead, it requires only the resolution of a symmetric and positive
definite system, which can be solved by efficient and nearly optimal preconditioners,
including [8, 10, 13, 22]. More importantly, the new edge element method ensures
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OPTIMAL CONTROL OF STATIONARY MAXWELL SYSTEM 2789

the optimal convergence rate [5, 7] and strong convergence of the Gauss law in some
proper norm [5]. It is natural to ask whether the edge element method [5, 7] with all
its advantages can be extended and transferred to the optimal control problem (P).
This is exactly the main objective of the current work.

On the basis of our earlier work in [5, 28], we therefore aim at developing an
efficient finite element method for the optimal control problem (P) without a saddle-
point structure so that the strong convergence of the Gauss law can be ensured for
the discrete optimal solutions. We now describe our basic strategy to realize this aim.
In order to drop both Gauss laws for the state E and the control u in (1)–(2), we
introduce two additional terms γεE and γε∇χ with a parameter γ > 0 in (1), where
χ ∈ H1

0 (Ω) is the unique solution of the variational equation:

(3) (ε∇χ,∇ψ)L2(Ω) = −(ρ, ψ)L2(Ω) ∀ψ ∈ H1
0 (Ω).

This leads to the following family of optimal control problems that we consider:

(Pγ)


min

1
2

∫
Ω
ε|E −Ed|2 dx+

κ

2

∫
Ω
ε|u|2 dx,

s.t. curl (µ−1curlE) + γεE = ε(u + γ∇χ) in Ω,
E × n = 0 on Γ.

Hereafter, we discretize the state E and the control u in (Pγ) by the lowest-order edge
elements of Nédélec’s first family and consider γ as a function depending on the mesh
size. Based on this concept, we propose the following finite element approximation:

(Ph)


min

Eh,uh∈NDh

1
2

∫
Ω
ε|Eh −Ed|2 dx+

κ

2

∫
Ω
ε|uh|2 dx,

s.t. (µ−1curlEh, curlvh)L2(Ω) + γ(h)(εEh,vh)L2(Ω)

= (ε(uh + γ(h)∇χh),vh)L2(Ω) ∀vh ∈NDh,

where NDh denotes the space of lowest-order edge elements of Nédélec’s first family
[19] with vanishing tangential traces. Furthermore, χh is an appropriate continuous
piecewise linear approximation of χ. The precise mathematical formulation for (Ph)
will be presented in section 4.

The proposed finite element approach (Ph) turns out to be very efficient, and there
are three main reasons for this, as we shall demonstrate later, where the second and
third ones present two important novel features in numerical solutions of the optimal
control problem (P). First, the method ensures strong convergence of (Ph) towards
(P) with optimal convergence rate (Theorem 4.10). Second, it guarantees strong con-
vergence of all Gauss laws involved, including the discrete optimal control, the discrete
optimal state, and the discrete adjoint state (Theorem 4.7). More importantly, the
equality constraint in (Ph) features a positive definite structure; i.e., no saddle-point
structure appears in (Ph). This makes the resulting numerical method much more
favorable than the existing mixed finite element methods, especially when the state
Maxwell system (1) involves a nonlinear magnetic permeability µ = µ(x, |curlE|) as
considered in [28], where two linearized indefinite saddle-point systems need to be
solved at each inner iteration when an iterative algorithm is applied for the optimal
control problem. In addition, there is another novel feature in our new formulation
and method, which will be seen clearly in our subsequent numerical analysis: The use
of weighting coefficients ε and γε, respectively, in the objective functionals and the
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2790 IRWIN YOUSEPT AND JUN ZOU

state equations for (Pγ) and (Ph) is crucial for the optimal convergence of the resulting
finite element method. This seems to be the first indication of the essential impact of
the coefficients in the mathematical and numerical studies of electromagnetic optimal
control problems governed by Maxwell systems.

Our strategy to prove error estimates for (Ph) is based on the use of the solution
operator of a discrete mixed variational problem (see section 4.2) in combination with
various optimal control and finite element techniques. Here, for the proposed finite
element method (Ph), we are able to prove the convergence rate of γ(h) +hs for some
exponent s ∈ (0.5, 1], depending on the regularity of the optimal solution to (P). In
particular, this result (see Corollary 4.12) significantly improves the recently obtained
convergence rate of

√
γ(h) + hs for the edge element approximation of the stationary

Maxwell system (1) with a nonvanishing charge density in [5].
We remark that one drawback of our proposed method lies in the stronger as-

sumption on the desired electric field Ed. We may notice that the mathematical and
numerical analysis of the optimal control system (P) requires only Ed ∈ L2(Ω) (see,
e.g., [28]). But we need the additional assumption div (εEd) = ρ ∈ L2(Ω) for our
analyses in this work. This condition appears to be reasonable from the physical
point of view, as it is in agreement with the Gauss law about electricity (see Remark
2.3). Nonetheless, the condition may not hold if noisy data are allowed in the desired
electric field Ed.

The rest of this paper is organized as follows. In next section, we introduce
our notation and general assumptions for (P), including some preliminary results.
Section 3 is devoted to the mathematical analysis for (P) and (Pγ), including the
strong convergence of (Pγ) towards (P) with a reasonable convergence rate. In section
4, we analyze the finite element approximation (Ph). Our main results include the
strong convergence of the finite element solution with optimal convergence rate and
the strong convergence of the Gauss law in the discrete optimal state, the discrete
optimal adjoint state, and the optimal discrete control.

2. Preliminaries. We start by introducing our notation and general assump-
tions for (P). Throughout this work, unless it is specified explicitly, we shall use
c to denote a generic positive constant, which is independent of the mesh size, the
triangulation, and the quantities/fields of interest. For a given Hilbert space V , we
use the notation ‖ · ‖V and (·, ·)V for a standard norm and a standard inner product
in V . The Euclidean norm in R3 is denoted by | · |. Furthermore, if V is contin-
uously embedded in another normed function space Y , we write V ↪→ Y . We use
a bold typeface to indicate a three-dimensional vector-valued function or a Hilbert
space of three-dimensional vector-valued functions. In our analysis, we mainly use
the following Hilbert spaces:

H(div) =
{
q ∈ L2(Ω)

∣∣ div q ∈ L2(Ω)
}
,

H0(div) =
{
q ∈H(div)

∣∣ q · n = 0 on Γ
}
,

H(div=0) =
{
q ∈H(div)

∣∣ div q = 0 in Ω
}
,

H(curl) =
{
q ∈ L2(Ω)

∣∣ curl q ∈ L2(Ω)},
H0(curl) =

{
q ∈H(curl)

∣∣ q × n = 0 on Γ
}
,

where the div - and curl -operators as well as the tangential and normal traces are
understood in the sense of distributions. The state space associated with (P) is given
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OPTIMAL CONTROL OF STATIONARY MAXWELL SYSTEM 2791

by the Hilbert space

V :=
{
q ∈H0(curl)

∣∣ εq ∈H(div)
}
,

endowed with the inner product

(v,w)V := (v,w)H(curl) + (div (εv),div (εw))L2(Ω) ∀v,w ∈ V

and the norm ‖ · ‖V = (·, ·)1/2
V . Furthermore, the control space associated with (P) is

given by the Hilbert space

U :=
{
u ∈ L2(Ω)

∣∣ εu ∈H(div=0)
}
,

endowed with the inner product (·, ·)U = (·, ·)L2(Ω) and the norm ‖ · ‖U = (·, ·)1/2
L2(Ω).

Remark 2.1. It follows from the definition that

U =
{
u ∈ L2(Ω)

∣∣ εu ∈H(div=0)
}

=
{
u ∈ L2(Ω)

∣∣ (εu,∇φ)L2(Ω) = 0 ∀φ ∈ H1
0 (Ω)

}
.

Therefore, as proposed in [28], an ε-divergence-free control u ∈ U can be realized by
including the variational equality

(εu,∇φ)L2(Ω) = 0 ∀φ ∈ H1
0 (Ω)

as an explicit control constraint of (P) in place of (2). But this control constraint is
naturally eliminated in (Pγ); see Remark 3.3.

Assumption 2.2 (general assumptions for (P)). We assume that Ω ⊂ R3 is a
bounded domain with a connected Lipschitz boundary Γ. The electric permittivity
ε : Ω→ R and the magnetic permeability µ : Ω→ R are of class L∞(Ω) and satisfy

(4) 0 < µ ≤ µ(x) ≤ µ a.e. in Ω and 0 < ε ≤ ε(x) ≤ ε a.e. in Ω

for some positive real constants µ < µ and ε < ε. Moreover, κ > 0 denotes the control
cost constant, and the desired electric field Ed ∈ L2(Ω) satisfies the Gauss law:

(5) div (εEd) = ρ in Ω ⇐⇒ (εEd,∇ψ)L2(Ω) = −(ρ, ψ)L2(Ω) ∀ψ ∈ H1
0 (Ω),

where ρ ∈ L2(Ω) is the charge density.

Remark 2.3. In this work, Ω represents a large holdall domain that may contain
different materials including conductors and inductors. We refer the reader to [24]
for low-frequency electromagnetic optimal control problems with multiply connected
conductors.

We note that (5) arises from the Gauss law about electricity. As Ed is the desired
electric field, Dd := εEd is then the desired electric displacement field. According to
the Gauss law about electricity, the divergence of the electric displacement field yields
the free electric charge density, namely (5).

We notice that, since the boundary Γ is connected, there exists a constant ĉ > 0,
depending only on Ω, such that

(6) ‖E‖L2(Ω) ≤ ĉ
(
‖curlE‖L2(Ω) + ‖div (εE)‖L2(Ω)

)
∀E ∈ V .

The inequality (6) follows from a classical indirect argument by using the compactness
of the embedding V ↪→ L2(Ω) [25] and the fact that

{y ∈ V | curly = 0,div (εy) = 0} = {0},
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2792 IRWIN YOUSEPT AND JUN ZOU

which holds due to the connectedness of Γ (see, e.g., [1]). Also, the Ladyzhenskaya–
Babuška–Brezzi (LBB) condition

(7) sup
0 6=E∈H0(curl)

|(εE,∇ψ)L2(Ω)|
‖E‖H(curl)

≥
(ε∇ψ,∇ψ)L2(Ω)

‖∇ψ‖H(curl)
≥ c‖ψ‖H1

0 (Ω) ∀ψ ∈ H1
0 (Ω)

is satisfied with a constant c > 0 depending only on ε and Ω. In fact, since ∇H1
0 (Ω) ⊂

H0(curl) and curl∇ ≡ 0, we may insert E = ∇ψ in (7) to get the LBB condition.

3. Mathematical analysis. We consider a mixed variational formulation for
the stationary Maxwell equations (1): For a given u ∈ U , find E ∈ V such that

(8)

{
(µ−1curlE, curlv)L2(Ω) = (εu,v)L2(Ω) ∀v ∈H0(curl),

(εE,∇ψ)L2(Ω) = −(ρ, ψ)L2(Ω) ∀ψ ∈ H1
0 (Ω).

It is standard to verify that, for every u ∈ U , the mixed variational formulation (8)
admits a unique solution E ∈ V . This follows from a well-known theory for mixed
variational problems (see [3]) together with the Poincaré–Friedrichs-type inequality
(6) and the LBB condition (7). Next, we introduce the solution operator associated
with (8) as

G : U → V , u 7→ E,

that assigns to every control u ∈ U the unique solution E ∈ V of the mixed variational
formulation (8). The solution operator G : U → V is bounded and affine linear such
that it is infinitely Fréchet differentiable. Its Fréchet derivative at z ∈ U in the
direction u ∈ U is given by G′(z)u = Ez, where Ez ∈ V is the solution of the
following mixed variational equations:

(9)

{
(µ−1curlEz, curlv)L2(Ω) = (εu,v)L2(Ω) ∀v ∈H0(curl),

(εEz,∇ψ)L2(Ω) = 0 ∀ψ ∈ H1
0 (Ω).

Employing the solution operator, we may reformulate the optimal control problem
(P) as a minimization problem in Hilbert spaces:

(P) min
u∈U

f(u) :=
1
2

∫
Ω
ε|G(u)−Ed|2 dx+

κ

2

∫
Ω
ε|u|2 dx.

By classical arguments (see [16, 23]), the minimization problem (P) admits a unique
solution u ∈ U , and its necessary and sufficient optimality condition is given by

(10) f ′(u)u = 0 ∀u ∈ U .

Theorem 3.1. A control u ∈ U with the associated electric field E ∈ V is the
(unique) optimal solution of (P) if and only if there exists a unique p ∈ V such that
the triple (u,E,p) satisfies

(11a)

{
(µ−1curlE, curlv)L2(Ω) = (εu,v)L2(Ω) ∀v ∈H0(curl),

(εE,∇ψ)L2(Ω) = −(ρ, ψ)L2(Ω) ∀ψ ∈ H1
0 (Ω),

(11b)

{
(µ−1curlp, curlv)L2(Ω) = (ε(E −Ed),v)L2(Ω) ∀v ∈H0(curl),

(εp,∇ψ)L2(Ω) = 0 ∀ψ ∈ H1
0 (Ω),

(11c) u = −κ−1p.
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Proof. The existence of a unique solution p ∈ V of the mixed variational problem
(11b) follows from [3] along with (5), (6), and (7). Inserting v = G′(u)u with u ∈ U
in (11b) yields

(12) (µ−1curlp, curl (G′(u)u))L2(Ω) = (ε(E −Ed),G′(u)u)L2(Ω) ∀u ∈ U .

We also know that G′(u)u satisfies (9), with z = u and Ez = G′(u)u, and hence
inserting v = p in (9) gives

(13) (µ−1curl (G′(u)u), curlp)L2(Ω) = (εu,p)L2(Ω) ∀u ∈ U .

From (11b), (12), and (13), we come to the conclusion that

f ′(u)u = (ε(E −Ed),G′(u)u)L2(Ω) + κ(εu,u)L2(Ω)

= (ε(p + κu),u)L2(Ω) ∀u ∈ U .

Thus, the necessary and sufficient optimality condition (10) is nothing but

(14) (ε(p + κu),u)L2(Ω) = 0 ∀u ∈ U .

Now, the second variational equality in (11b) implies εp ∈H(div=0). This regularity
property implies that p + κu ∈ U . Then we can insert u = p + κu in (14) to obtain

(ε(p + κu),p + κu)L2(Ω) = 0 ⇐⇒ u = −κ−1p.

This completes the proof.

In what follows, we shall denote by u ∈ U the unique optimal solution of (P)
with the corresponding optimal electric field E ∈ V and the adjoint state p ∈ V ∩U
satisfying (11). Thanks to (11c), we can see that the optimal control enjoys the
regularity property

(15) u ∈ V ∩U .

3.1. Sensitivity analysis of (Pγ). This section is devoted to the sensitivity
analysis of (Pγ), namely, to establish an error estimate depending on the parameter
γ. First, we note that the variational formulation for the associated state equation in
(Pγ) is given by

(16) (µ−1curlEγ , curlv)L2(Ω) + γ(εEγ ,v)L2(Ω) = (ε(u + γ∇χ),v)L2(Ω) ∀v ∈H0(curl).

By the Lax–Milgram lemma, the variational equality (16) admits for every u ∈ L2(Ω)
a unique solution Eγ ∈H0(curl). We denote the corresponding solution operator by

Gγ : L2(Ω)→H0(curl), u 7→ Eγ .

Some elementary properties of this operator are listed below for later use.

Lemma 3.2. The solution operator Gγ : L2(Ω) → H0(curl) satisfies Gγ(0) =
∇χ and div (εGγ(u)) = ρ for all u ∈ U and all γ > 0.

Proof. Let γ > 0. Since curl∇ ≡ 0, we can easily see that

(µ−1curl (∇χ), curlv)L2(Ω) +γ(ε∇χ,v)L2(Ω) = (ε(0+γ∇χ),v)L2(Ω) ∀v ∈H0(curl),

which implies Gγ(0) = ∇χ by the definition of Gγ . Now, for any u ∈ U , we insert
v = ∇ψ with ψ ∈ H1

0 (Ω) in (16) and use (3) to see that Eγ := Gγ(u) satisfies

γ(εEγ ,∇ψ)L2(Ω) = (ε(u + γ∇χ),∇ψ)L2(Ω) = −γ(ρ, ψ)L2(Ω) ∀ψ ∈ H1
0 (Ω).(17)
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2794 IRWIN YOUSEPT AND JUN ZOU

Similarly to (P), we reformulate (Pγ) as a minimization problem in Hilbert spaces:

(Pγ) min
u∈L2(Ω)

fγ(u) :=
1
2

∫
Ω
ε|Gγ(u)−Ed|2 dx+

κ

2

∫
Ω
ε|u|2 dx.

Remark 3.3. We emphasize that the formulation (Pγ) removes the original diver-
gence constraint on the control u as the control space of (Pγ) is now given by L2(Ω)
instead of U as in (P). Nonetheless, we will see later that the optimal control of
(Pγ) belongs to U . Similarly to (P), (Pγ) admits a unique optimal solution, with its
necessary and sufficient optimality conditions described as in the following theorem,
whose proof is basically analogous to that of Theorem 3.1.

Theorem 3.4. Let γ > 0. A control uγ ∈ L2(Ω) with the associated electric field
E
γ ∈H0(curl) is the (unique) optimal solution of (Pγ) if and only if there exists a

unique pγ ∈H0(curl) such that the triple (uγ ,E
γ
,pγ) satisfies

(µ−1curlE
γ
, curlv)L2(Ω) + γ(εE

γ
,v)L2(Ω) = (ε(uγ + γ∇χ),v)L2(Ω)

∀v ∈H0(curl),
(18a)

(µ−1curlpγ , curlv)L2(Ω) + γ(εpγ ,v)L2(Ω) = (ε(E
γ −Ed),v)L2(Ω)

∀v ∈H0(curl),
(18b)

(18c) uγ = −κ−1pγ .

An important consequence of the optimality system for (Pγ) is the following
structural property for the optimal triple (uγ ,E

γ
,pγ) of (Pγ).

Proposition 3.5. For every γ > 0, let (uγ ,E
γ
,pγ) ∈ L2(Ω) × H0(curl) ×

H0(curl) be the optimal triple of (Pγ) satisfying (18). Then it holds that

(19) uγ ∈ V ∩U , E
γ ∈ V , div (εE

γ
) = ρ, pγ ∈ V ∩U .

Proof. For a fixed γ > 0, inserting v = ∇ψ with ψ ∈ H1
0 (Ω) in (18a) yields

(20)

γ(εE
γ
,∇ψ)L2(Ω) = (ε(uγ + γ∇χ),∇ψ)L2(Ω)

= (ε(−κ−1pγ + γ∇χ),∇ψ)L2(Ω)

= −κ−1(εpγ ,∇ψ)L2(Ω) − γ(ρ, ψ)L2(Ω) ∀ψ ∈ H1
0 (Ω),

where we have used (18c) and (3). Analogously, setting v = ∇ψ with ψ ∈ H1
0 (Ω) in

(18b) implies that

(21)
γ(εpγ ,∇ψ)L2(Ω) = (ε(E

γ −Ed),∇ψ)L2(Ω)

=︸︷︷︸
(5)

(εE
γ
,∇ψ)L2(Ω) + (ρ, ψ)L2(Ω) ∀ψ ∈ H1

0 (Ω).

From (20) and (21), it follows that

(γ2 + κ−1)(εpγ ,∇ψ)L2(Ω) = 0 ∀ψ ∈ H1
0 (Ω).

In other words, div (εpγ) = 0, so pγ ∈ V ∩ U . Then it follows from (18c) that
uγ ∈ V ∩U . Consequently, in view of Lemma 3.2, we obtain that

E
γ ∈ V and div (εE

γ
) = ρ.

This completes the proof.
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In what follows, for every γ > 0, let (uγ ,E
γ
,pγ) ∈ (V ∩U)×V ×(V ∩U) denote

the optimal triple of (Pγ) satisfying (18).

Theorem 3.6. There exists a constant c > 0, independent of γ, such that

‖uγ − u‖H(curl) + ‖Eγ −E‖H(curl) + ‖pγ − p‖H(curl) ≤ cγ ∀ γ > 0 .

Proof. As uγ is the optimal solution of (Pγ), it follows that

fγ(uγ) ≤ fγ(0) =︸︷︷︸
Lemma 3.2

1
2

∫
Ω
ε|∇χ−Ed|2 dx ∀γ > 0.

This implies the existence of a constant c > 0, independent of γ > 0, such that

(22) ‖Eγ‖2L2(Ω) + ‖uγ‖2L2(Ω) ≤ c ∀γ > 0.

Then (22), along with (18c), implies that {uγ}γ>0, {E
γ}γ>0, and {pγ}γ>0 are all

bounded in L2(Ω).
Setting v = pγ−p in (18a) and (11a), respectively, then subtracting the resulting

equalities, we infer that

(µ−1curl (E
γ −E), curl (pγ − p))L2(Ω) + γ(εE

γ
,pγ − p)L2(Ω)

= (ε(uγ + γ∇χ− u),pγ − p)L2(Ω)

=︸︷︷︸
(11c)−(18c)

−κ−1‖ε1/2 (pγ − p) ‖2L2(Ω) + γ(ε∇χ,pγ − p)L2(Ω).
(23)

Similarly, setting v = E
γ −E in (18b) and (11b), respectively, then subtracting the

resulting equations yields that

(µ−1curl (pγ − p), curl (E
γ −E))L2(Ω) + γ(εpγ ,E

γ −E)L2(Ω)

= ‖ε1/2(E
γ −E)‖2L2(Ω) ∀γ > 0.

(24)

In view of (23) and (24), we obtain

‖ε1/2(Eγ −E)‖2
L2(Ω) + κ−1‖ε1/2 (pγ − p) ‖2

L2(Ω)

= γ
(
(εpγ ,Eγ −E)L2(Ω) + (ε(∇χ−E

γ),pγ − p)L2(Ω)
)

≤ γ
(
‖ε1/2pγ‖L2(Ω) + ‖ε1/2(∇χ−E

γ)‖L2(Ω)
)(
‖ε1/2(Eγ −E)‖L2(Ω) + ‖ε1/2 (pγ − p) ‖L2(Ω)

)
.

From the above estimate and the boundedness of {Eγ}γ>0 and {pγ}γ>0 in L2(Ω), it
follows that

‖Eγ −E‖L2(Ω) + ‖pγ − p‖L2(Ω) ≤ cγ ∀γ > 0.

Then making use of (11c) and (33c), we have

(25) ‖uγ − u‖L2(Ω) + ‖Eγ −E‖L2(Ω) + ‖pγ − p‖L2(Ω) ≤ cγ ∀γ > 0.

Now, inserting v = E
γ − E in (18a) and (11a), respectively, then subtracting the

resulting equations, we obtain that

‖µ−1/2curl (E
γ −E)‖2L2(Ω)

= γ(ε(∇χ−E
γ
),E

γ −E)L2(Ω) + (ε(uγ − u),E
γ −E)L2(Ω)

≤ γε‖∇χ−E
γ‖L2(Ω)‖E

γ −E‖L2(Ω) + ε‖uγ − u‖L2(Ω)‖E
γ −E‖L2(Ω) ∀γ > 0.

(26)
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2796 IRWIN YOUSEPT AND JUN ZOU

Analogously, we insert v = pγ − p in (18b) and (11b) to obtain

(µ−1curlpγ , curlpγ − p)L2(Ω) + γ(εpγ ,pγ − p)L2(Ω) = (ε(E
γ −Ed),pγ − p)L2(Ω)

and
(µ−1curlp, curlpγ − p)L2(Ω) = (ε(E −Ed),pγ − p)L2(Ω).

Then, subtracting these two identities yields

‖µ−1/2curl (pγ − p)‖2L2(Ω)

=− γ(εpγ ,pγ − p)L2(Ω) + (ε(E
γ −E),pγ − p)L2(Ω)

≤ γε‖pγ‖L2(Ω)‖p
γ − pγ‖L2(Ω) + ε‖Eγ −E

γ‖L2(Ω)‖p
γ − pγ‖L2(Ω).

(27)

Now the desired estimate in Theorem 3.6 is a direct consequence of (25)–(27).

4. Finite element method. This section is devoted to the analysis of the finite
element approximation (Ph) we proposed in the introduction. From now on, the
domain Ω ⊂ R3 is additionally assumed to be Lipschitz polyhedral. We consider a
family {Th}h>0 of triangulations of Ω consisting of tetrahedral elements T such that

Ω =
⋃
T∈Th

T.

For every element T ∈ Th, we denote by hT the diameter of T , by ρT the diameter of
the largest ball contained in T , and by h the maximal diameter of all elements, i.e.,
h := max{hT | T ∈ Th}. We assume {Th}h>0 is quasi-uniform, i.e., there exist two
positive constants % and ϑ such that

hT
ρT
≤ % and

h

hT
≤ ϑ ∀T ∈ Th, ∀h > 0.

Let us denote the space of lowest-order edge elements of Nédélec’s first family [19]
with vanishing tangential traces and the space of continuous piecewise linear elements
with vanishing traces by

NDh :=
{
Eh ∈H0(curl)

∣∣ Eh|T = aT + bT × x with aT , bT ∈ R3 ∀T ∈ Th
}
,

Θh :=
{
φh ∈ H1

0 (Ω)
∣∣ φh|T = aT · x+ bT with aT ∈ R3, bT ∈ R ∀T ∈ Th

}
.

By the well-known discrete de Rham diagram (cf. [18, p. 150]), we know that

(28) ∇Θh ⊂NDh.

In what follows, we consider the parameter γ as a function of the mesh size of the
discretization; i.e., γ = γ(h). This function is supposed to be bounded; i.e., there
exists a constant c > 0, independent of h > 0, such that

(29) 0 < γ(h) ≤ c ∀h > 0.

Now we introduce the finite element solution χh ∈ Θh of (3):

(ε∇χh,∇ψh)L2(Ω) = −(ρ, ψh)L2(Ω) ∀ψh ∈ Θh.(30)

Then we shall consider the following finite element approximation of (16).
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For every given u ∈ L2(Ω), find Eh ∈ NDh such that, for all vh ∈ NDh, it
holds that

(µ−1curlEh, curlvh)L2(Ω) + γ(h)(εEh,vh)L2(Ω) = (ε(u + γ(h)∇χh),vh)L2(Ω).(31)

We denote the (discrete) solution operator associated with (31) by

Gh : L2(Ω)→NDh, u 7→ Eh,

that assigns to every u ∈ L2(Ω) the unique solution Eh ∈NDh of (31). For later use,
we introduce the subspace X

(ε)
h of NDh consisting of all discrete ε-divergence-free

edge element functions:

(32) X
(ε)
h :=

{
uh ∈NDh

∣∣ (εuh,∇ψh)L2(Ω) = 0 ∀ψh ∈ Θh

}
.

Then, making use of this subspace, we can drive a discrete counterpart of Lemma 3.2.

Lemma 4.1. For every h > 0, the operator Gh : L2(Ω)→NDh satisfies Gh(0) =
∇χh and (εGh(uh),∇φh)L2(Ω) = −(ρ, φh)L2(Ω) for all uh ∈X

(ε)
h and φh ∈ Θh.

Proof. For h > 0, we can easily see by using curl∇ ≡ 0 that

(µ−1curl (∇χh), curlvh)L2(Ω) + γ(h)(ε∇χh,vh)L2(Ω) = γ(h)(ε∇χh,vh)L2(Ω)

= (ε(0 + γ(h)∇χh),vh)L2(Ω) ∀vh ∈NDh,

which implies Gh(0) = ∇χh by using the definition of Gh and the fact that ∇Θh ⊂
NDh. Now, inserting vh = ∇ψh with ψh ∈ Θh in (31), we see that Eh := Gh(uh)
for every uh ∈X

(ε)
h satisfies

γ(h)(εEh,∇ψh)L2(Ω) = (ε(uh+γ(h)∇χh),∇ψh)L2(Ω) = −γ(h)(ρ, ψh)L2(Ω) ∀ψh ∈ Θh,

where the last equality holds due to uh ∈X
(ε)
h and (30).

Now, by introducing the objective functional

fh : L2(Ω)→ R, fh(u) :=
1
2

∫
Ω
ε|Gh(u)−Ed|2 dx+

κ

2

∫
Ω
ε|u|2 dx,

we propose the finite element approximation for (Pγ) as follows:

(Ph) min
uh∈NDh

fh(uh).

4.1. Convergence analysis for (Ph). For the convergence and error estimates
of the finite element approximation (Ph), we first present its necessary and sufficient
optimality condition, whose proof is analogous to that of Theorem 3.1.

Theorem 4.2. Let h > 0. A function uh ∈ NDh is the (unique) optimal solu-
tion of (Ph) if and only if there exists a unique pn ∈ NDh such that the following
holds for all vh ∈NDh:

(µ−1curlEh, curlvh)L2(Ω) + γ(h)(εEh,vh)L2(Ω) = (ε(uh + γ(h)∇χh),vh)L2(Ω) ,(33a)

(µ−1curlph, curlvh)L2(Ω) + γ(h)(εph,vh)L2(Ω) = (ε(Eh −Ed),vh)L2(Ω),(33b)

(33c) uh = −κ−1ph.
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2798 IRWIN YOUSEPT AND JUN ZOU

Based on the optimality system (33) and Lemma 4.1, we obtain a discrete coun-
terpart of Proposition 3.5. This result is essential to our convergence analysis.

Proposition 4.3. For every h > 0, let X
(ε)
h be the space as defined in (32), and

let uh,Eh,ph ∈ NDh be the optimal triple of (Ph) satisfying (33). Then it holds
that

(34) uh,ph ∈X
(ε)
h and (εEh,∇ψh)L2(Ω) = −(ρ, ψh)L2(Ω) ∀ψh ∈ Θh,∀h > 0.

Proof. Thanks to (28), we may insert vh = ∇ψh with ψh ∈ Θh in (33a) and use
(33c) and (30) to obtain

γ(h)(εEh,∇ψh)L2(Ω) = (ε(uh + γ(h)∇χh),∇ψh)L2(Ω)

= −κ−1(εph,∇ψh)L2(Ω) + γ(h)(ε∇χh,∇ψh)L2(Ω)

= −κ−1(εph,∇ψh)L2(Ω) − γ(h)(ρ, ψh)L2(Ω) ∀ψh ∈ Θh.

(35)

Similarly, inserting vh = ∇ψh with ψh ∈ Θh in (33b) yields

γ(h)(εph,∇ψh)L2(Ω) = (ε(Eh −Ed),∇ψh)L2(Ω)

= (εEh,∇ψh)L2(Ω) + (ρ, ψh)L2(Ω) ∀ψh ∈ Θh,
(36)

where we have used (5). Then we infer from (35) and (36) that

γ(h)2(εph,∇ψh)L2(Ω) = γ(h)
(
(εEh,∇ψh)L2(Ω) + (ρ, ψh)L2(Ω)

)
= −κ−1(εph,∇ψh)L2(Ω) ∀ψh ∈ Θh,

from which it follows that (γ(h)2 + κ−1)(εph,∇ψh)L2(Ω) = 0 for all ψh ∈ Θh. Thus,
we come to the desired conclusion that

ph ∈X
(ε)
h =⇒︸︷︷︸

(33c)

uh ∈X
(ε)
h

=⇒︸︷︷︸
Lemma 4.1

(εEh,∇ψh)L2(Ω) = −(ρ, ψh)L2(Ω) ∀ψh ∈ Θh.

The upcoming lemma states the discrete compactness property for X
(ε)
h . The

discrete compactness property for Nédélec’s edge elements in the case ε ≡ 1 goes back
to Kikuchi [14].

Lemma 4.4. Let {zh}h>0 be a uniformly bounded sequence in H0(curl) satisfying
zh ∈ X

(ε)
h for all h > 0. Then, there exists a subsequence {zhn}∞n=1 ⊂ {zh}h>0 with

hn → 0 as n→∞ such that

zhn → z strongly in L2(Ω) as n→∞,
curl zhn ⇀ curl z weakly in L2(Ω) as n→∞

for some z ∈H0(curl) ∩U , i.e., div (εz) = 0 in Ω.

Proof. The assertion is well known (see, e.g., [18]). We provide the proof only for
the convenience of the reader. In view of the discrete Helmholtz decomposition, for
every h > 0, there exists a unique pair (y1

h, θ
1
h) ∈X

(1)
h ×Θh such that

(37) zh = y1
h +∇θ1

h.
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Due to the uniform boundedness {zh}h>0 ⊂ H0(curl), the sequence {y1
h}h>0 is

uniformly bounded in H0(curl). Thus, employing the discrete compactness property
[14] for ε ≡ 1, we find a subsequence {y1

hn
}∞n=1 ⊂ {y1

h}h>0 with hn → 0 as n → ∞
such that

y1
hn → y1 strongly in L2(Ω) as n→∞,

curly1
hn ⇀ curly1 weakly in L2(Ω) as n→∞

(38)

for some y1 ∈ H0(curl) ∩H(div=0). Now, making use of the classical Helmholtz
decomposition, there exists a unique pair (yε, θε) ∈H0(curl)∩U ×H1

0 (Ω) such that

(39) y1 = yε +∇θε.

We now show that zhn → yε strongly in L2(Ω) as n → ∞. Since yε ∈ U and
zhn ∈X

(ε)
hn

holds for all n ∈ N,

(40) (ε(zhn − yε),∇φhn)L2(Ω) = 0 ∀φhn ∈ Θhn , ∀n ∈ N.

From (37), (39), and (40), we obtain that

(ε(zhn−yε),zhn−yε)L2(Ω) = (ε(zhn−yε),y1
hn
−y1+∇θε−∇φhn)L2(Ω) ∀φhn ∈ Θhn , ∀n ∈ N,

and so

ε‖zhn − yε‖L2(Ω) ≤ ε‖y1
hn − y1‖L2(Ω) + ε‖∇θε −∇φhn‖L2(Ω) ∀φhn ∈ Θhn , ∀n ∈ N.

Now employing (38) and the fact that {Θhn}∞n=1 is dense in H1
0 (Ω), the above in-

equality implies the strong convergence zhn → yε in L2(Ω) as n→∞.

In what follows, for every h > 0, we shall denote by (uh,Eh,ph) ∈ X
(ε)
h ×

NDh ×X
(ε)
h the optimal triple of (Ph) satisfying (33). Let us now prove the strong

convergence of (uh,Eh,ph) to (u,E,p) as h→ 0 in the following theorem.

Theorem 4.5. Suppose that limh→0 γ(h) = 0. Then,

lim
h→0
‖uh − u‖H(curl) = lim

h→0
‖Eh −E‖H(curl) = lim

h→0
‖ph − p‖H(curl) = 0.

Proof. For every h > 0, the fact that uh is the unique solution of (Ph) yields

fh(uh) ≤ fh(0) =︸︷︷︸
Lemma 4.1

1
2
‖ε1/2(∇χh −Ed)‖2L2(Ω) ∀h > 0.

Therefore, in view of (30), there exists a constant c > 0, independent of h, such that

(41) ‖Eh‖L2(Ω) + ‖uh‖L2(Ω) ≤ c ∀h > 0 =⇒︸︷︷︸
(33c)

‖ph‖L2(Ω) ≤ c ∀h > 0.

Now, setting vh = Eh in (33a) and vh = ph in (33b) and then employing (41) and
(29), we obtain

(42) ‖curlEh‖L2(Ω) ≤ c and ‖curlph‖L2(Ω) ≤ c ∀h > 0.
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From (41) and (42), we conclude that the sequences {uh}h>0, {Eh}h>0, and{ph}h>0
are all uniformly bounded in H0(curl). Therefore, there exists a subsequence
{(uhn ,Ehn ,phn)}∞n=1 ⊂ {(uh,Eh,ph)}h>0 with hn → 0 as n→∞ such that

(43)


uhn ⇀ ũ weakly in H0(curl) as n→∞,
Ehn ⇀ Ẽ weakly in H0(curl) as n→∞,
phn ⇀ p̃ weakly in H0(curl) as n→∞

for some ũ, Ẽ, p̃ ∈ H0(curl). From (33c), we know uhn = −κ−1phn for all n ∈ N.
Thus, (43) implies that

(44) ũ = −κ−1p̃.

Now, we denote by Ih : C∞0 (Ω) → Θh the nodal interpolation operator corre-
sponding to the finite element space Θh. By virtue of Proposition 4.3, it holds for
every ψ ∈ C∞0 (Ω) that

(45)


(εuhn ,∇Ihnψ)L2(Ω) = 0 ∀n ∈ N,
(εphn ,∇Ihnψ)L2(Ω) = 0 ∀n ∈ N,
(εEhn ,∇Ihnψ)L2(Ω) = −(ρ, Ihψ)L2(Ω) ∀n ∈ N.

Then, passing to the limit n→∞ in (45), we obtain from (43) that

(εũ,∇ψ)L2(Ω) = (εp̃,∇ψ)L2(Ω) = 0 and (εẼ,∇ψ)L2(Ω) = −(ρ, ψ)L2(Ω) ∀ψ ∈ C∞0 (Ω).

Consequently, since C∞0 (Ω) ⊂ H1
0 (Ω) is dense, we come to the conclusion that

(46)


(εũ,∇ψ)L2(Ω) = 0 ∀ψ ∈ H1

0 (Ω),
(εp̃,∇ψ)L2(Ω) = 0 ∀ψ ∈ H1

0 (Ω),
(εẼ,∇ψ)L2(Ω) = −(ρ, ψ)L2(Ω) ∀ψ ∈ H1

0 (Ω).

Next, let N h : C∞
0 (Ω)→NDh denote the curl-conforming Nédélec interpolation

operator corresponding to the finite element space NDh. According to (33a), we
have for every v ∈ C∞

0 (Ω) that

(47)
(µ−1curlEhn , curlN hnv)L2(Ω) + γ(hn)(εEhn ,N hnv)L2(Ω)

= (ε(uhn + γ(hn)∇χhn),N hnv)L2(Ω) ∀n ∈ N.

Passing to the limit n→∞ in (47), we obtain from (43) and limn→∞ γ(hn) = 0 that

(µ−1curl Ẽ, curlv)L2(Ω) = (εũ,v)L2(Ω) ∀v ∈ C∞
0 (Ω).

Therefore, as C∞
0 (Ω) ⊂H0(curl) is dense, it follows that

(48) (µ−1curl Ẽ, curlv)L2(Ω) = (εũ,v)L2(Ω) ∀v ∈H0(curl).

Analogously, we deduce from (33b), (43), and limn→∞ γ(hn) = 0 that

(49) (µ−1curl p̃, curlv)L2(Ω) = (ε(Ẽ −Ed),v)L2(Ω) ∀v ∈H0(curl).

We can see from (44), (46), and (48)–(49) that the weak limit (ũ, Ẽ, p̃) satisfies
the necessary and sufficient optimality condition for (P), and consequently

(ũ, Ẽ, p̃) = (u,E,p).
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OPTIMAL CONTROL OF STATIONARY MAXWELL SYSTEM 2801

In particular, the weak limit is independent of the subsequence {(uhn ,Ehn ,phn}
∞
n=1,

and consequently (43) holds for the whole sequence, i.e.,

(50)


uh ⇀ u weakly in H0(curl) as h→ 0,
Eh ⇀ E weakly in H0(curl) as h→ 0,
ph ⇀ p weakly in H0(curl) as h→ 0.

Now, making use of Lemma 4.4, we obtain from Proposition 4.3 and (50) that

(51)
{

uh → u strongly in L2(Ω) as h→ 0,
ph → p strongly in L2(Ω) as h→ 0.

Setting vh = v = ph in (33b) and (11b) yields

(µ−1curl (ph − p), curlph)L2(Ω) + γ(h)(εph,ph)L2(Ω) = (ε(Eh −E),ph)L2(Ω),

from which it follows that

‖µ−1/2curl (ph − p)‖2L2(Ω) = −γ(h)(εph,ph)L2(Ω) + (ε(Eh −E),ph)L2(Ω)

− (µ−1curl (ph − p), curlp)L2(Ω).

Then, passing to the limit h→ 0, (50), (51), and limh→0 γ(h) = 0 imply

lim
h→0
‖curl (ph − p)‖L2(Ω) = 0.

Together with (51), this strong convergence yields

(52) lim
h→0
‖ph − p‖H(curl) = 0 =⇒︸︷︷︸

(33c)

lim
h→0
‖uh − u‖H(curl) = 0.

It remains now to prove the strong convergence of {Eh}h>0 in H0(curl). First, we
verify the strong convergence in L2(Ω) by inserting vh = v = Eh in (33b) and (11b):

(µ−1curl (ph − p), curlEh)L2(Ω) + γ(h)(εph,Eh)L2(Ω) = (ε(Eh −E),Eh)L2(Ω),

from which it follows that

‖ε1/2(Eh −E)‖2L2(Ω) =(µ−1curl (ph − p), curlEh)L2(Ω)

+ γ(h)(εph,Eh)L2(Ω) − (ε(Eh −E),E)L2(Ω).
(53)

Then, passing to the limit h→ 0 in (53), we obtain from (50), (52), and limh→0 γ(h) =
0 that

(54) lim
h→0
‖Eh −E‖L2(Ω) = 0.

Similarly, by setting vh = v = Eh in (33a) and (11a), we deduce from (50), (52), and
limh→0 γ(h) = 0 that

(55) lim
h→0
‖curl (Eh −E)‖L2(Ω) = 0.

From (54)–(55), we come to the conclusion that limh→0 ‖Eh −E‖H(curl) = 0.
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2802 IRWIN YOUSEPT AND JUN ZOU

4.2. Error estimates. We first show that the newly proposed finite element
approximation (Ph) ensures the global strong convergence of all three Gauss laws for
the discrete optimal control, state, and adjoint state uh, Eh, and ph, which satisfy the
optimality system (33). We recall that, using the fact that Ω is Lipschitz polyhedral,
there is a constant δ ∈ (0.5, 1] such that [1]

(56) H0(curl) ∩H(div) ↪→Hδ(Ω) and H(curl) ∩H0(div) ↪→Hδ(Ω).

The results in the following lemma were verified in [5, Lemma 3.9].

Lemma 4.6. Suppose that ε ∈ W 1,∞(Ω) and s ∈ (0.5, 1]. Then, there exists a
constant c > 0, independent of h and zh, such that

‖div (εzh)‖H−s(Ω) ≤ chs+δ−1‖curl zh‖L2(Ω)

for all h > 0 and all zh ∈X
(ε)
h . Moreover, the solution χh ∈ Θh of (30) satisfies

‖div (ε∇χh)− ρ‖H−s(Ω) ≤ chs+δ−1‖ρ‖Hδ−1(Ω) ∀h > 0.

Theorem 4.7. Suppose that ε ∈ W 1,∞(Ω), and s ∈ (0.5, 1]. Then, there exists a
positive constant c, independent of h, uh, Eh, and ph, such that for all h > 0,

‖div(εuh)‖H−s(Ω) + ‖div(εph)‖H−s(Ω) + ‖div(εEh)− ρ‖H−s(Ω) ≤ chs+δ−1.

Proof. From Proposition 4.3, we know that uh,ph ∈ X
(ε)
h for all h > 0. There-

fore, Lemma 4.6 together with the uniform boundedness of {uh}h>0 and {ph}h>0 in
H0(curl) (see Theorem 4.5) implies

(57) ‖div (εuh)‖H−s(Ω) + ‖div (εph)‖H−s(Ω) ≤ chs+δ−1 ∀h > 0.

Making use again of Proposition 4.3 along with (30), we have that

(εEh,∇ψh)L2(Ω) = −(ρ, ψh)L2(Ω) = (ε∇χh,∇ψh)L2(Ω) ∀ψ ∈ Θh,

from which it follows that

(ε(Eh −∇χh),∇ψh)L2(Ω) = 0 ∀ψ ∈ Θh =⇒ Eh −∇χh ∈X
(ε)
h ∀h > 0.

Then using Lemma 4.6 we can derive

‖div (εEh)− ρ‖H−s(Ω) ≤ ‖div (ε(Eh −∇χh))‖H−s(Ω) + ‖div (ε∇χh)− ρ‖H−s(Ω)

≤ chs+δ−1(‖curlEh‖L2(Ω) + ‖ρ‖Hδ−1(Ω)) ∀h > 0.

(58)

Therefore, since {Eh}h>0 is uniformly bounded in H0(curl), the desired assertion
follows from (57)–(58).

As our main goal, we will derive next the error estimates for the optimal control,
state, and adjoint state of the proposed edge element method (Ph). To do so, we
introduce the following discrete mixed variational problem.

For a given E ∈H0(curl), find the solution Eh = Φh(E) ∈NDh to

(59)

{
(µ−1curlEh, curlvh)L2(Ω) = (µ−1curlE, curlvh)L2(Ω) ∀vh ∈NDh,

(εEh,∇ψh)L2(Ω) = (εE,∇ψh) ∀ψh ∈ Θh.
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It is standard to verify that, for every E ∈ H0(curl), the mixed discrete variational
problem (59) admits a unique solution ΦhE := Eh ∈NDh for all h > 0, satisfying

(60) ‖ΦhE −E‖H(curl) ≤ c
(

inf
vh∈NDh

‖vh −E‖H(curl)

)
∀E ∈H0(curl).

This follows again from a well-known theory for mixed variational problems (see,
e.g., [18, Theorem 2.45]) by utilizing (6)–(7), the discrete Poincaré–Friedrichs-type
inequality [9, Theorem 4.7],

‖Eh‖L2(Ω) ≤ c‖curlEh‖L2(Ω) ∀Eh ∈X
(ε)
h , ∀h > 0,(61)

and the discrete LBB condition,

(62) sup
0 6=Eh∈NDh

|(εEh,∇ψh)L2(Ω)|
‖Eh‖H(curl)

≥
(ε∇ψh,∇ψh)L2(Ω)

‖∇ψh‖H(curl)
≥ c‖ψh‖H1

0 (Ω) ∀ψh ∈ Θh,

with a constant c > 0 depending only on ε and Ω. Notice that (62) holds due to the
inclusion ∇Θh ⊂ NDh. Now, making use of the operator Φh : H0(curl) → NDh,
we obtain the following important identity for our subsequent analysis.

Lemma 4.8. It holds for all h > 0 that

‖µ−1/2curl (Eh − ΦhE)‖2L2(Ω) + κ−1‖µ−1/2curl (ph − Φhp)‖2L2(Ω)

= γ(h)
[
(ε(∇χh −Eh),Eh − ΦhE)L2(Ω) + κ−1(εph,Φhp− ph)L2(Ω)

]
+ κ−1(ε(Eh − ΦhE),p− Φhp)L2(Ω) + κ−1(ε(ΦhE −E),ph − Φhp)L2(Ω).

Proof. In view of the state equations (18a) and (33a), we have that

(63)
(µ−1curl (Eh −E), curlvh)L2(Ω) + γ(h)(εEh,vh)L2(Ω)

= (ε(uh − u + γ(h)∇χh),vh)L2(Ω) ∀vh ∈NDh.

Making use of the operator Φh and setting vh = Eh − ΦhE in (63), we obtain

‖µ−1/2curl (Eh − ΦhE)‖2L2(Ω) + γ(h)(εEh,Eh − ΦhE)L2(Ω)

= (ε(uh − u + γ(h)∇χh),Eh − ΦhE)L2(Ω)

=︸︷︷︸
(18c)&(33c)

−κ−1(ε(ph − p),Eh − ΦhE)L2(Ω) + γ(h)(ε∇χh,Eh − ΦhE)L2(Ω)

= −κ−1(ε(ph − Φhp),Eh − ΦhE)L2(Ω) + κ−1(ε(p− Φhp),Eh − ΦhE)L2(Ω)

+ γ(h)(ε∇χh,Eh − ΦhE)L2(Ω),

which implies

(64)
‖µ−1/2curl (Eh − ΦhE)‖2L2(Ω) + κ−1(ε(ph − Φhp),Eh − ΦhE)L2(Ω)

= γ(h)(ε(∇χh −Eh),Eh − ΦhE)L2(Ω) + κ−1(ε(p− Φhp),Eh − ΦhE)L2(Ω).

Similarly, we deduce from the adjoint equations (18b) and (33b) that

(65)
(µ−1curl (ph − p), curlvh)L2(Ω) + γ(h)(εph,vh)L2(Ω)

= (ε(Eh −E),vh)L2(Ω) ∀vh ∈NDh.
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Then, making use of the operator Φh and setting vh = ph − Φhp in (65), we derive

‖µ−1/2curl (ph − Φhp)‖2L2(Ω) + γ(h)(εph,ph − Φhp)L2(Ω)

= (ε(Eh −E),ph − Φhp)L2(Ω)

= (ε(Eh − ΦhE),ph − Φhp)L2(Ω) + (ε(ΦhE −E),ph − Φhp)L2(Ω),

which implies

(66)
(ε(Eh − ΦhE),ph − Φhp)L2(Ω) = ‖µ−1/2curl (ph − Φhp)‖2L2(Ω)

+ γ(h)(εph,ph − Φhp)L2(Ω) − (ε(ΦhE −E),ph − Φhp)L2(Ω).

Applying (66) to (64), we come to the desired identity:
(67)

‖µ−1/2curl (Eh − ΦhE)‖2L2(Ω) + κ−1‖µ−1/2curl (ph − Φhp)‖2L2(Ω)

= γ(h)(ε(∇χh −Eh),Eh − ΦhE)L2(Ω) + κ−1(ε(p− Φhp),Eh − ΦhE)L2(Ω)

+ κ−1γ(h)(εph,Φhp− ph)L2(Ω) + κ−1(ε(ΦhE −E),ph − Φhp)L2(Ω).

We now recall a classical error estimate for the curl-conforming Nédélec inter-
polant Nh in the space Hs(curl) := {E ∈Hs(Ω) | curlE ∈Hs(Ω)} [6].

Lemma 4.9. For s ∈ (1/2, 1], there exists a constant c > 0, independent of h and
E, such that for all h > 0,

‖E −NhE‖H(curl) ≤ chs‖E‖Hs(curl) ∀E ∈Hs(curl).(68)

We are now ready to establish our main result.

Theorem 4.10. Suppose that E,p ∈Hs(curl) for some s ∈ (0.5, 1]. Then, there
exists a constant c > 0, independent of h, uh, Eh, and ph, such that

‖Eh −E‖H(curl) + ‖ph − p‖H(curl) + ‖uh − u‖H(curl) ≤ c(γ(h) + hs)

for all h > 0.

Proof. In view of the regularity assumption E,p ∈ Hs(curl) with s ∈ (0.5, 1]
along with (60) and (68), there is a constant c > 0, independent of h, such that

(69) ‖ΦhE −E‖H(curl) + ‖Φhp− p‖H(curl) ≤ chs ∀h > 0.

On the other hand, according to Lemma 4.8, we have the following estimate:

µ−1‖curl (Eh − ΦhE)‖2L2(Ω) + κ−1µ−1‖curl (ph − Φhp)‖2L2(Ω)

≤
(
γ(h)

(
‖ε(∇χh −Eh)‖L2(Ω) + κ−1‖εph‖L2(Ω)

)
+ κ−1‖ε(p− Φhp)‖L2(Ω)

+ κ−1‖ε(E − ΦhE)‖L2(Ω)

)(
‖Eh − ΦhE‖L2(Ω) + ‖ph − Φhp‖L2(Ω)

)
∀h > 0.

Then applying (69) to the above estimate yields

(70)
(‖curl (Eh − ΦhE)‖L2(Ω) + ‖curl (ph − Φhp)‖L2(Ω))

2

≤ c(γ(h) + hs)(‖Eh − ΦhE‖L2(Ω) + ‖ph − Φhp‖L2(Ω)) ∀h > 0.
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Using the definition of Φh and Proposition 4.3, we have for every h > 0 that

(ε(Eh − ΦhE),∇ψh)L2(Ω) = (ε(Eh −E),∇ψh)L2(Ω) = 0 ∀ψh ∈ Θh,

(ε(ph − Φhp),∇ψh)L2(Ω) = (ε(ph − p),∇ψh)L2(Ω) = 0 ∀ψh ∈ Θh.

In other words, it holds that

Eh − ΦhE ∈X
(ε)
h and ph − Φhp ∈X

(ε)
h ∀h > 0,

so it follows from the discrete Poincaré–Friedrichs-type inequality (61) that

(71)
‖Eh − ΦhE‖L2(Ω) + ‖ph − Φhp‖L2(Ω) ≤ c

(
‖curl (Eh − ΦhE)‖L2(Ω)

+ ‖curl (ph − Φhp)‖L2(Ω)
)
∀h > 0.

Applying (71) to (70), we deduce that

(72) ‖curl (Eh − ΦhE)‖L2(Ω) + ‖curl (ph − Φhp)‖L2(Ω) ≤ c(γ(h) + hs) ∀h > 0.

Combining the estimates (71)–(72) along with (69), we finally obtain the estimate

(73) ‖Eh −E‖H(curl) + ‖ph − p‖H(curl) ≤ c(γ(h) + hs) ∀h > 0.

Now the desired estimate follows from this estimate above and the optimality condi-
tions (11c) and (33c).

Remark 4.11. We can easily observe that Theorem 4.10 ensures the optimal con-
vergence rate for our proposed finite element optimal control method (Ph) if we take
γ = O(h). Note that our analysis can help improve the error estimate in [5]. In fact,
by making use of the operator Φh, we are able to significantly improve the convergence
rate of

√
γ(h) + hs achieved in [5] for the edge element approximation of the station-

ary Maxwell system (1) with a nonvanishing charge density. Our improved result is
provided in the following corollary, whose proof is analogous to that of Theorem 4.10.

Corollary 4.12. Let f ∈H(div=0) and z ∈H0(curl) denote the unique solu-
tion of

(74)

{
(µ−1curl z, curlv)L2(Ω) = (f ,v)L2(Ω) ∀v ∈H0(curl),

(εz,∇ψ)L2(Ω) = −(ρ, ψ)L2(Ω) ∀ψ ∈ H1
0 (Ω).

Furthermore, for every h > 0, let zh ∈NDh denote the unique solution of

(75)
(µ−1curl zh, curlvh)L2(Ω) + γ(h)(εzh,vh)L2(Ω) = (f + γ(h)ε∇χh,vh)L2(Ω)

∀vh ∈NDh,

where χh ∈ Θh is the solution of

(76) (ε∇χh,∇ψh)L2(Ω) = −(ρ, ψh)L2(Ω) ∀ψh ∈ Θh.

Then, if z ∈Hs(curl) for some s ∈ (0.5, 1], there exists a constant c > 0, independent
of h, z, and zh, such that

‖z − zh‖H(curl) ≤ c(γ(h) + hs‖z‖Hs(curl)) ∀h > 0.
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Proof. Thanks to the regularity assumption z ∈ Hs(curl), we obtain from (60)
and (68) that

(77) ‖z − Φhz‖H(curl) ≤ chs‖z‖Hs(curl) ∀h > 0.

Now, making use of the operator Φh (see (59) for its definition), we infer that

(µ−1curl (zh − Φhz), curlvh)L2(Ω) = (µ−1curl (zh − z), curlvh)L2(Ω)

=︸︷︷︸
(75)&(74)

−γ(h)(εzh,vh)L2(Ω) + (f + εγ(h)∇χh,vh)L2(Ω) − (f ,vh)L2(Ω)

= γ(h)(ε(∇χh − zh),vh)L2(Ω) ∀vh ∈NDh.

Thus, inserting vh = zh − Φhz ∈NDh, we obtain that

(78)

‖µ−1/2curl (zh − Φhz)‖2L2(Ω) = γ(h)(ε(∇χh − zh), zh − Φhz)L2(Ω)

≤ γ(h)‖ε(∇χh − zh)‖L2(Ω)‖zh − Φhz‖L2(Ω)

≤ cγ(h)‖zh − Φhz‖L2(Ω) ∀h > 0.

On the other hand, by the definition of Φh (see (59)) and (74)–(76) we infer that

(ε(zh − Φhz),∇ψh) = (ε(zh − z),∇ψh) = (εzh,∇ψh) + (ρ, ψh)
= (ε∇χh,∇ψh) + (ρ, ψh) = 0 ∀ψh ∈ Θh, ∀h > 0.

Consequently, we have zh − Φhz ∈ X
(ε)
h for all h > 0, so we may apply the discrete

Poincaré–Friedrichs-type inequality (61) to (78) to deduce that

µ−1‖curl (zh − Φhz)‖L2(Ω) ≤ cγ(h) ∀h > 0.

Then, this inequality together with (61) implies

(79) ‖zh − Φhz‖H(curl) ≤ cγ(h) ∀h > 0.

Finally, we obtain from (77) and (79) that

‖zh − z‖H(curl) ≤ ‖zh − Φhz‖H(curl) + ‖z − Φhz‖H(curl)

≤ c(γ(h) + hs‖z‖Hs(curl)) ∀h > 0.

This completes the proof.

Remark 4.13. We know from Theorem 4.10 (cf. Corollary 4.12) that the choice

γ(h) = h

yields the desired optimal error estimate of order O(hs), where the index s ∈ (0.5, 1]
is determined by the regularity of the true solution. We recall that the results in [5]
require the choice γ(h) = h2 for the same optimal estimate O(hs). However, if
h is sufficiently small, then the choice γ(h) = h2 is much smaller than γ(h) = h
and increases the numerical effort considerably because the conditioning of the edge
element system (31) is much worse. For this reason, we suggest choosing γ(h) = h for
the numerical solution of (Ph) to achieve the optimal error estimate with a reduced
computational effort.
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5. Numerical experiments. We present two numerical examples serving as a
numerical illustration of Theorems 4.5 and 4.10.

5.1. Example 1 with a smooth optimal solution. As the first example, we
consider the model optimal control problem (P) that has an analytical and smooth
optimal solution, with the computational domain Ω = (0, 1)3, the parameters µ = ε =
1, ρ = 0, and κ = 1, and the desired state Ed given by

Ed(x) = (4π4 + 1)

sin(πx2) sin(πx3)

0

0

 .

Then by straightforward computations we can verify that the three functions

E(x) =

sin(πx2) sin(πx3)

0

0

 , u(x) = 2π2

sin(πx2) sin(πx3)

0

0

 ,

p(x) = −2π2

sin(πx2) sin(πx3)

0

0


satisfy the sufficient and necessary optimality system (11). Thus, the optimal solu-
tion of (P) is given by u. For all the examples in this section, we have solved the
finite element approximation (Ph) using the open source software FEniCS [17]. The
computational domain Ω was triangulated with a regular mesh of mesh size h, and
the optimality system (33) was solved by MUMPS (MUltifrontal Massively Parallel
sparse direct Solver). As pointed out in Remarks 4.11 and 4.13, in order to guaran-
tee the optimal convergence rate in the finite element solution, we choose γ(h) = h.
Furthermore, we employ the following quantity to compute the approximate order of
convergence:

EOC =
log ‖uh1 − u‖H(curl) − log ‖uh2 − u‖H(curl)

log h1 − log h2

for two consecutive mesh sizes h1 and h2. Table 1 displays the H(curl)-norm error
between the analytical solution u and the finite element solution uh for different
mesh sizes. As we can see from the table, the finite element solution uh converges
to the analytical solution u as h decreases. Moreover, by Theorem 4.10 we know a
convergence rate of s = 1 should be obtained due to the nice regularity properties
u,E,p ∈H1(curl) for this example. This theoretical prediction is confirmed by our
numerical results, as we see EOC approximates s ≈ 1.

5.2. Example 2 with a nonsmooth optimal solution. In this example, we
choose the nonconvex polyhedral computational domain

(80) Ω =
{

(0, 1/4)× (0, 1/2)× (0, 1)
}
\
{

[1/8, 1/4]× [1/8, 1/2]× [0, 1]
}

and the parameters µ = ε = 1, ρ = 0, and κ = 1. For convenience, we now include an
additional shift control in our objective functional:

(P) min
u∈U

1
2

∫
Ω
|G(u)−Ed|2 dx+

1
2

∫
Ω
|u− ud|2 dx.
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Table 1
Convergence history.

h/
√

2 ‖uh − u‖H(curl) EOC

2−2 13.5704 −

2−3 6.94488 0.96644

2−4 3.48798 0.99356

2−5 1.74486 0.99929

Here, the desired state and the shift control are set to be

Ed = G(ud) and ud = G(f),

with f = 103(1, 1, 1)T . We note that, since µ ≡ ε ≡ 1 and ρ ≡ 0, the desired state
and the shift control enjoy the regularity property Ed,ud ∈ Hδ(curl), with δ as in
(56). As Ω is a nonconvex Lipschitz polyhedron, this exponent is strictly less than
one, δ ∈ (0.5, 1). We also point out that the analytical solutions for Ed = G(ud) and
ud = G(f) are unknown. For our numerical experiment, we approximate them by
their finite element approximations with a very fine mesh size h = 2−8

√
2.

By our specific construction, the optimal solution of (P) is exactly given by u =
ud, and all our results in this work can be naturally extended to (P) in the presence
of the shift control ud. Table 2 displays the H(curl)-norm error between the exact
solution u and our finite element solution uh with γ(h) = h. As the mesh size h
decreases, we observe that the optimal solution approaches the exact one. See Figure
1 for the computed optimal electric field with different meshes. Furthermore, by
Theorem 4.10 we know we can only expect a convergence rate δ ∈ (0.5, 1), as the
computational domain (80) features a nonconvex structure in this example. This
theoretical prediction is also reasonably confirmed by our numerical results with δ ≈
0.7.

Table 2
Convergence history.

h/
√

2 ‖uh − u‖H(curl) EOC

2−4 0.153028 -

2−5 0.118692 0.366573

2−6 0.073895 0.683666
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Fig. 1. Computed optimal electric field Eh with mesh size h =
√

2 2−k for k = 4 (left plot),
k = 5 (middle plot), k = 6 (right plot).
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