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Abstract. In this paper, we propose a nonoverlapping domain decomposition method for solving
the three-dimensional Maxwell equations, based on the edge element discretization. For the Schur
complement system on the interface, we construct an efficient preconditioner by introducing two
special coarse subspaces defined on the nonoverlapping subdomains. It is shown that the condition
number of the preconditioned system grows only polylogarithmically with the ratio between the
subdomain diameter and the finite element mesh size but possibly depends on the jumps of the
coefficients.
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1. Introduction. In the numerical solution of the Maxwell equations, one needs
to repeatedly solve the following system [9], [12], [17], [21], [28], [30]:

∇×(α∇×u) + βu = f in Ω,(1.1)

where Ω is an open polyhedral domain in R3 and the coefficients α(x) and β(x) are
two positive bounded functions in Ω. Among various boundary conditions for (1.1),
we shall consider the perfect conductor condition

u × n = 0 on ∂Ω,(1.2)

where n is the unit outward normal vector on ∂Ω.
Both the nodal and edge finite element methods have been widely used for solv-

ing the system (1.1)–(1.2); see, for example, [5], [10], [11], [12], [22], [24]. However,
the algebraic systems arising from the discretization by the edge element methods
are very different from the ones arising from the discretization by the standard nodal
finite element methods. So the nonoverlapping domain decomposition theory for the
nodal element systems, which has been well developed for second order elliptic prob-
lems in the past two decades (see the survey articles [13] [33]), does not work for the
edge element systems in general, especially in three dimensions. During the last five
years, there has been a rapidly growing interest in domain decomposition methods
(DDMs) for solving the system (1.1)–(1.2). Some substructuring DDMs were studied
for two-dimensional Maxwell equations in [29], [30] and for a different three dimen-
sional model problem in [31]. Overlapping Schwarz methods were investigated in
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[15], [28], [16] for three-dimensional Maxwell equations. As far as the nonoverlapping
DDMs are concerned, very few works can be found in the literature. A nonoverlap-
ping DDM with two subdomains was proposed in [3] for Maxwell equations in three
dimensions. The current work represents some initial efforts in the construction of
efficient nonoverlapping DDMs for the case with general multiple subdomains. As we
shall see, not only the construction of the coarse subspaces but also the estimates of
the condition numbers of the preconditioned systems for the three-dimensional case
with multiple nonoverlapping subdomains are much more difficult and tricky than in
the two-dimensional case or the three-dimensional case with overlapping subdomains.

In this paper, we will propose an efficient preconditioner for the Schur comple-
ment system arising from the nonoverlapping DDM based on the edge element dis-
cretization. For the analysis of our new method, some important inequalities will be
established for discrete functions in edge element spaces. We believe these inequalities
should also be useful to the future developments in the field. It will be shown that the
resulting preconditioned system has a nearly optimal condition number; namely, the
condition number grows only polylogarithmically with the ratio between the subdo-
main diameter and the finite element mesh size. Unlike the optimal nonoverlapping
domain decomposition preconditioners for elliptic problems [13], [25], [33], we are still
unable to conclude whether the condition number of the preconditioned system gen-
erated by our nonoverlapping DDM is independent of the jumps of the coefficients.
This is an important problem that we are currently working on.

The paper is arranged as follows. The edge element discretization of the system
(1.1)–(1.2) and some basic formulae and definitions will be described in section 2.
The construction of nonoverlapping domain decomposition preconditioners and the
main results of the paper are discussed in section 3. Section 4 presents some auxiliary
lemmas, which are needed in section 5 to deal with the technical difficulties in the
estimates of the condition numbers.

2. Domain decompositions and discretizations. This section is devoted to
the introduction of the nonoverlapping domain decomposition and the weak form
and the edge element discretization of the system (1.1)–(1.2) as well as some discrete
operators.

Domain decomposition. We decompose the physical domain Ω intoN nonover-
lapping tetrahedral subdomains {Ωi}Ni , with each Ωi of size d (see [7], [33]). The faces
and vertices of the subdomains are always denoted by f and v, while the common
(open) face of the subdomains Ωi and Ωj are denoted by Γij , and the union of all
such common faces is denoted by Γ, i.e., Γ = ∪Γ̄ij . Γ will be called the interface. By
Γi we denote the intersection of Γ with the boundary of the subdomain Ωi. So we
have Γi = ∂Ωi if Ωi is an interior subdomain of Ω.

Finite element triangulation. Further, we divide each subdomain Ωi into
smaller tetrahedral elements of size h so that elements from the neighboring two
subdomains have an intersection which is either empty or a single nodal point or an
edge or a face on the interface Γ. The resulting triangulation of the domain Ω is
denoted by Th, which is assumed to be quasi-uniform (cf. [33]), while the set of edges
and the set of nodes in Th are denoted by Eh and Nh, respectively.

Weak formulation. The primary goal of this paper is to construct an efficient
nonoverlapping DDM for solving the discrete system arising from the edge element
discretization of (1.1). For this, we first introduce its weak form and then the edge
element discretization of the weak form. Let H(curl; Ω) be the Sobolev space con-
sisting of all square integrable functions whose curl’s are also square integrable in Ω,
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and let H0(curl; Ω) be a subspace of H(curl; Ω) with all functions whose tangential
components vanish on ∂Ω, i.e., v × n = 0 on ∂Ω for all v ∈ H0(curl; Ω). Then, by
integration by parts, one derives immediately the variational problem associated with
the system (1.1)–(1.2).

Find u ∈ H0(curl; Ω) such that

A(u,v) = (f ,v) ∀v ∈ H0(curl; Ω),(2.1)

where A(·, ·) is a bilinear form given by

A(u,v) = (α∇× u,∇× v) + (βu,v), u,v ∈ H(curl; Ω).

Here and in what follows, (·, ·) denotes the scalar product in L2(Ω) or L2(Ω)3.
Edge element discretization. The Nédélec edge element space, of the lowest

order, is a subspace of piecewise linear polynomials defined on Th (cf. [14] and [23]):

Vh(Ω) =
{

v ∈ H0(curl; Ω); v |K∈ R(K) ∀K ∈ Th
}
,

where R(K) is a subset of all linear polynomials on the element K of the form

R(K) =
{

a + b × x; a,b ∈ R3, x ∈ K
}
.

It is known [14], [23] that the tangential components of any edge element function
v of Vh(Ω) are continuous on all edges of every element in the triangulation Th, and
v is uniquely determined by its moments on edges of Th:{

λe(v) =

∫
e

v · teds; e ∈ Eh
}
,

where te denotes the unit vector on the edge e. Let {Le; e ∈ Eh} be the edge element
basis functions of Vh(Ω) satisfying

λe′(Le) =

{
1 if e′ = e ,
0 if e′ 
= e ;

then the edge element basis function Le associated with the edge e has the represen-
tation

Le = ce (λ
e
1∇λe2 − λe2∇λe1) ,(2.2)

where ce is a constant independent of h, and λe1 and λe2 are two barycentric basis
functions at the two endpoints of e. Furthermore, each function v of Vh(Ω) can be
expressed as

v(x) =
∑
e∈Eh

λe(v)Le(x), x ∈ Ω .

With the above notation, the edge element approximation to the variational prob-
lem (2.1) can be formulated as follows: Find uh ∈ Vh(Ω) such that

A(uh,vh) = (f ,vh) ∀vh ∈ Vh(Ω),(2.3)
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where Ah(·, ·) is a bilinear form given by

Ah(uh,vh) =

N∑
i=1

Ai(uh,vh)

with each Ai(·, ·) defined only on the subdomain Ωi:

Ai(u,v) = (α∇× u,∇× v)Ωi + (β u,v)Ωi , i = 1, 2, . . . , N.

Some edge element subspaces. In section 3, we will formulate our DDM for
solving the edge element system (2.3). Before doing so, we need to introduce more
notation, subspaces, and discrete operation tools.

We will often use G to represent a subset of Γ, which may be the entire interface
Γ or the local interface Γi or a face f of Γi. The notation e, with e ⊂ G, always
means that e is an edge of Th and lies on G. By restricting Vh(Ω) on G, we generate
a subspace of L2(G)3:

Vh(G) =
{
ψ ∈ L2(G)3; ψ = v × n on G for some v ∈ Vh(Ω)

}
.

By Vh(Ωi) we denote the restriction of Vh(Ω) on the subdomain Ωi. The following
two local subspaces of Vh(Ωi) and Vh(f) will be important to our subsequent analysis:

V 0
h (Ωi) =

{
v ∈ Vh(Ωi); v × n = 0 on Γi

}
,

V 0
h (f) =

{
Φ = v × n ∈ Vh(f); λe(v) = 0 ∀ e ⊂ ∂f ∩ Eh

}
.

Discrete operators. We will often use the natural restriction operator from
Vh(Γ) onto Vh(G), denoted by IG, and the natural zero extension operator from Vh(G)
into L2(Γ)3, denoted by ItG. By definition it is clear that for a face f, Itfv ∈ Vh(Γ) if
and only if v ∈ V 0

h (f), and IG and ItG satisfy

〈IGΨ,Φ〉G = 〈Ψ, ItGΦ〉 ∀Ψ ∈ Vh(Γ), Φ ∈ Vh(G),

where 〈·, ·〉G stands for the L2-inner product in L2(G) or L2(G)3, and the subscript
G will be dropped when G = Γ. Also, we shall write Ii = IΓi and Itij = ItΓij

.

For any face f of Ωi, we use fb to denote the union of all Th-induced (closed)
triangles on f which have at least one edge lying on ∂f and f∂ to denote the open set
f\fb.

By definition, for any Φ ∈ Vh(Γi), there exists a v ∈ Vh(Ωi) such that Φ = v × n
on Γi. So Φ has the representation of the form

Φ(x) =
∑
e⊂Γi

λe(v)(Le × n)(x), x ∈ Γi.(2.4)

For any open face f on Γi, we define an operator I0
f∂

: Vh(Γi) → ItfV
0
h (f) by

(I0
f∂

Φ)(x) =
∑
e⊂f∂

λe(v)(Le × n)(x), x ∈ Γi,(2.5)
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and an operator I0
fb

by

(I0
fb
Φ)(x) =

∑
e⊂fb

λe(v) Itf(Le × n)(x), x ∈ Γi.

Some nodal element spaces. From time to time, we shall also need some
nodal element spaces in the analyses—for example, the continuous piecewise linear
finite element space Zh(Ω) of H1

0 (Ω), its restriction Zh(Γ) on Γ and Zh(Ωi) on any
subdomain Ωi, and the restriction Zh(Γi) of Zh(Ωi) on the local interface Γi and
Zh(f) on a face f.

The operator Itf : Zh(f) → L2(Γ) is defined similarly to Itf.
For a subset G of Γi, we introduce a “local” subspace

Z0
h(G) = {v ∈ Zh(Γi); v = 0 at all nodes on Γi\G}.

For any open face f ⊂ Γi, we will use I
0
f : Zh(Γi) → Z0

h(f) and I0∂f : Zh(Γi) → Z0
h(∂f)

to denote the natural restriction operators (see [33]).
curl- and harmonic extension operators. The next two extension operators

will play an important role in the subsequent analysis. The first is the discrete curl-
extension operator Ri

h : Vh(Γi) → Vh(Ωi) defined as follows: For any Φ ∈ Vh(Γi),
Ri
hΦ ∈ Vh(Ωi) satisfies Ri

hΦ× n = Φ on Γi and solves

Ai(R
i
hΦ,vh) = 0 ∀vh ∈ V 0

h (Ωi).

The second is the discrete harmonic extension operator Rih : Zh(Γi) → Zh(Ωi) defined
as follows: For any vh ∈ Zh(Γi), Rihvh ∈ Zh(Ωi) satisfies Rihvh = vh on Ωi and

(∇Rihvh,∇wh) = 0 ∀wh ∈ Zh(Ωi) ∩H1
0 (Ωi) .

3. Nonoverlapping DDMs. In this section, we propose a nonoverlapping DDM
for solving the edge element system (2.3). The notation 〈·, ·〉Γi

and (·, ·)Ωi
shall be

used for the scalar products in L2(Γi) and L
2(Ωi), respectively.

3.1. The interface equation. For the solution uh to the system (2.3), we write
uhi = uh|Ωi

. It follows from (2.3) that

Ai(uhi,vh) = (f ,vh)Ωi ∀vh ∈ V 0
h (Ωi).(3.1)

This indicates that if the tangential components uhi×ni are known on Γi the “local”
unknown uhi can be obtained by solving the local equation (3.1).

Next, we will establish an equation for the interface quantity Φ = uh × n on Γ.
To do so, we introduce a “local” interface operator Si : Vh(Γi) → Vh(Γi)

∗ by

〈SiΦi,Ψi〉Γi = Ai(R
i
hΦi,R

i
hΨi) ∀Ψi,Φi ∈ Vh(Γi).

Using the obvious decomposition

uhi = u0
hi + Ri

h(uhi × ni)

with u0
hi ∈ V 0

h (Ωi), solving (3.1), (2.3) reduces to the interface equation (cf. [27])

N∑
i=1

〈SiIiΦ, IiΨ〉Γi =

N∑
i=1

(f ,Ri
hIiΨ)Ωi ∀Ψ ∈ Vh(Γ).(3.2)
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Let g ∈ Vh(Γ)∗ be defined by

〈g,Ψ〉Γ =

N∑
i=1

(f ,Ri
hIiΨ)Ωi

∀Ψ ∈ Vh(Γ),

and let S =
∑N
i=1 ItiSiIi; then (3.2) may be written as

〈SΦ,Ψ〉 = 〈g,Ψ〉 ∀Ψ ∈ Vh(Γ).(3.3)

With Φ = uh ×n available on Γ, the solution of (2.3) can be obtained by solving one
subproblem, (3.1), on each subdomain Ωi. Therefore, the solution of (2.3) reduces
to the one of the interface problem (3.3). However, it is very expensive to solve this
interface equation directly. Instead, we will construct an efficient preconditioner for
S; then (3.3) can be solved by the preconditioned CG method.

3.2. Preconditioners for the interface operator S. We now start to con-
struct a preconditioner for S. As usual, a good preconditioner should involve both
local solvers and global coarse solvers.

First, the local solvers can be constructed on each local face Γij . For each Γij ,
we define a “local” operator Sij : V

0
h (Γij) → V 0

h (Γij)
∗ by

〈SijΦij ,Ψij〉Γij
= Ai(R

i
hI
t
ijΦij ,R

i
hI
t
ijΨij) +Aj(R

j
hI
t
ijΦij ,R

j
hI
t
ijΨij)

∀Φij ,Ψij ∈ V 0
h (Γij),

and S−1
ij will be our desired local solvers. The construction of the global coarse solvers

is much more tricky and technical. Before doing this, we would like to illustrate our
main idea about the construction. The essential difficulty in the construction of a
coarse solver lies in two facts: (1) The edge element space Vh(Ω), different from
the nodal element space, is not a subspace of H1(Ω)3; (2) for any vh ∈ Vh(Ω), its
tangential components are continuous on all cross-edges, namely, the edges which are
shared by more than two fine elements (tangential components make no sense at the
cross-points in two dimensions), but the moments on the cross-edges are not sufficient
to determine the values of the tangential trace vh×n on these edges. As one will see,
we have the Helmholtz decomposition

Vh(Ω) = gradZh(Ω) + Ṽh(Ω),

where Ṽh(Ω) corresponds to the divergence-free part and is closely related to the
space H1(Ω)3. Thus it seems necessary to construct two coarse subspaces and coarse
solvers, corresponding to the curl-free and divergence-free subspaces ∇Zh(Ω) and
Ṽh(Ω), respectively.

For the construction of the coarse subspaces, we introduce some more notation
below. For any subdomain Ωi, by Wi we denote the set of the edges of Ωi, which
belong to at least two other local interfaces Γj , j 
= i. On each Wi, we define the
discrete L2-scalar product

〈ϕ,ψ〉h,Wi = h
∑

x∈Nh∩Wi

ϕ(x)ψ(x) ∀ϕ,ψ ∈ Zh(Γi) ;

the corresponding norm is denoted by ‖ · ‖h,Wi . Let

∆i =
⋃

f⊂Γi

fb, i = 1, . . . , N.
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We introduce a norm ‖ · ‖∗,∆i that is induced from the following inner product in
L2(∆i)

3:

〈v × n,w × n〉∗,∆i
=
∑
K⊂∆i

〈v × n,w × n〉∂K ∀v × n,w × n ∈ Vh(Γi),

where the summation is over all triangles K in ∆i.
For any given subset G of Ω and function ϕ in L2(G), we use γ

G
(ϕ) for the

average value of ϕ on G. Similarly, for a vector v = (v1, v2, v3) in L2(G)3, we use
ΥG(v) for the constant vector with three average values γ

G
(v1), γG

(v2), and γG
(v3)

as its components.
Now we define two discrete operators in Zh(Γ) and Vh(Γ) which will generate two

coarse subspaces. For any ϕ ∈ Zh(Γ), we define π0ϕ ∈ Zh(Γ) by

π0ϕ(x) =

{
ϕ(x) for x ∈ Wi ∩Nh (i = 1, . . . , N),
γ

∂f(ϕ) for x ∈ f ∩Nh (f ⊂ Γ).
(3.4)

Similarly, for each v × n ∈ Vh(Γ), we define Π0v × n ∈ Vh(Γ) such that

λe(Π0v) =

{
λe(v) for e ⊂ ∆i ∪ Ωi (i = 1, . . . , N),
λe(Υ∂f(v)) for e ⊂ f∂ (f ⊂ Γ).

Note that although Π0v involves the degrees of freedom inside Ωi, Π0v × n is deter-
mined on Γ uniquely by the moments λe(v) for all e ⊂ Γ. Thus Π0v×n ∈ Vh(Γ) can
also be defined directly by

Π0v × n =

{
v × n on ∆i (i = 1, . . . , N),
Υ∂f(v × n) on f∂ (f ⊂ Γ),

where we have used the fact that the normal vector n is constant on any face f ⊂ Γ
and

Υ∂f(v)× n|f = Υ∂f(v × n).

Now, we can define the two coarse subspaces:

V 01
h (Γ) =

{
Φ0 ∈ Vh(Γ); IiΦ0 = grad(Ri0Iiπ0ϕ)× n on Γi for some ϕ ∈ Zh(Γ)

}
,

V 02
h (Γ) =

{
v0 × n ∈ Vh(Γ); v0 = Π0v for some v × n ∈ Vh(Γ)

}
.

The operator Ri0 used in V 01
h (Γ) is the zero extension into the interior of Ωi; namely,

for any vh ∈ Zh(Γi), Ri0vh ∈ Zh(Ωi) takes the same values as vh on Γi and vanishes
at all interior nodes of Ωi. We can define two coarse solvers S0k : V 0k

h (Γ) → V 0k
h (Γ)∗,

k = 1, 2, associated with these coarse subspaces. For any Φ0,Ψ0 ∈ V 01
h (Γ), there exist

ϕ, ψ ∈ Zh(Γ) such that on Γi,

IiΦ0 = grad(Ri0Iiπ0ϕ)× n, IiΨ0 = grad(Ri0Iiπ0ψ)× n .

Then S01 is defined by

〈S01Φ0,Ψ0〉 = [1 + log(d/h)]

N∑
i=1

〈π0ϕ− γWi
(π0ϕ), π0ψ − γWi

(π0ψ)〉h,Wi .
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Similarly, for any Φ0,Ψ0 ∈ V 02
h (Γ), there exist v ,w ∈ Vh(Ω) such that on Γi,

IiΦ0 = Π0v × n, IiΨ0 = Π0w × n.

Then S02 is defined by

〈S02Φ0,Ψ0〉 = [1 + log(d/h)]

N∑
i=1

〈Φ0 −Υ∆i(v)× n,Ψ0 −Υ∆i(w)× n〉∗,∆i

+ d2〈Φ0,Ψ0〉∗,∆i
.

Hereafter, Υ∆i
(v) is the constant vector satisfying

‖Φ0 −Υ∆i
(v)× n‖2

∗,∆i
= min
C

∆i
∈R3

‖Φ0 − C∆i
× n‖2

∗,∆i
,

which can be viewed as some average of Φ0 on ∆i. And the average is well defined.
Finally, the preconditioner for the interface operator S can be defined as follows:

M−1 = S−1
01 + S−1

02 +
∑
Γij

ItijS
−1
ij Iij .(3.5)

For this preconditioner, we have the following theorem.
Theorem 3.1. The condition number of the preconditioned system can be esti-

mated by

cond(M−1S) ≤ C[1 + log(d/h)]3.(3.6)

Remark 3.1. A simple algorithm to implement the coarse solver S01 can be found
in [33]. By the minimum property of the average Υ∆i(Φ0), we can also derive a
simple algorithm for implementing the coarse solver S02, which is similar to the one
in [33]. Note that one may also use the inner product h−1〈·, ·〉∆i

in the definition
of S02 instead of the inner product 〈·, ·〉∗,∆i . Furthermore, one may use the discrete
L2(∆i)

3-inner product

〈〈v × n,w × n〉〉h,∆i
=
∑
e⊂∆i

λe(v)λe(w) ∀v × n,w × n ∈ Vh(Γi),

to define the coarse solver S02, but we do not know yet how to verify the existence of
the corresponding average.

Remark 3.2. The “local” operator Sij may be replaced by any other spectrally
equivalent operator, for example, the operator defined by

〈SiijΦij ,Ψij〉Γij
= Ai(R

i
hI
t
ijΦij ,R

i
hI
t
ijΨij) ∀Ψij ∈ V 0

h (Γij).

Siij is easier to implement than Sij , but it loses the symmetry with respect to the face
Γij .

Remark 3.3. Based on our current analysis in section 5, the constant C in the
condition number estimate (3.6) may have a factor γmax/γmin related to the coeffi-
cients in (1.1), where γmax is the supremum of β(x) and α2(x) over Ω̄, and γmin is the
infimum of β(x) and α2(x) over Ω̄. It is possible to improve such dependence on the
coefficients if a more localized and sharper analysis can be found.
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Remark 3.4. The nodal element coarse interpolant π0 is widely used in nonover-
lapping DDMs for second order elliptic problems [13], [33]. The new edge element
coarse interpolant Π0 is very similar to π0 but with some essential differences. For a
H1(Ω)3 vector-valued function v, there is no trace on the wirebasket set Wi, and the
coarse interpolants π0v and Π0v make no sense. However, it is known that π0 is stable
in the nodal element space Zh(Γi) [13], [33]. Likewise, we shall show in section 4 that
Π0 is stable in the edge element space Vh(Γi), with the stability constants growing
only polylogarithmically with d/h. This explains somewhat why we can achieve a
logarithmical bound (3.6) on the condition number.

4. Some auxiliary lemmas. As we shall see, the estimate (3.6) of the condition
number cond(M−1S) for the preconditioned system is rather technical. This section
presents some basic properties of Sobolev spaces and auxiliary lemmas, which are
needed to deal with the technical difficulties in the estimate of the condition number.
The proofs will be provided in the appendix. The constant C will be used often
in what follows for the generic constant that may take different values at different
occasions.

4.1. The scaled norms. A large part of the condition number estimate will be
carried out on the subdomains, for which we need some scaled norms. For the space
H1(Ωi)

3, we define a scaled norm by

‖v‖1,Ωi
= (|v|21,Ωi

+ d−2‖v‖2
0,Ωi

)
1
2 ∀v ∈ H1(Ωi)

3,

while for the space H(curl; Ωi), the restriction of H0(curl; Ω) on the subdomain Ωi,

and the interface space H− 1
2 (Γi), we define their scaled norms by

‖v‖curl;Ωi
=
(
‖curl v‖2

0,Ωi
+ d−2‖v‖2

0,Ωi

) 1
2 ∀v ∈ H(curl; Ωi) ,

‖λ‖− 1
2 ,Γi

= sup
v∈H 1

2 (Γi)

|〈λ, v〉Γi |
‖v‖ 1

2 ,Γi

∀λ ∈ H− 1
2 (Γi),

where

‖v‖ 1
2 ,Γi

= (|v|21
2 ,Γi

+ d−1‖v‖2
0,Γi

)
1
2 .

For any Φ ∈ Vh(Γi), we use divτΦ to denote the tangential divergence of Φ; see

[2] and [3] for the definition of divτΦ. It is known that divτΦ ∈ H− 1
2 (Γi), so it makes

sense to define the norm

‖Φ‖XΓi
= d−1‖Φ‖− 1

2 ,Γi
+ ‖divτΦ‖− 1

2 ,Γi
.

The next two estimates on this norm ‖ · ‖XΓi
can be found in [3].

Lemma 4.1. The discrete curl-extension Ri
hΦ ∈ Vh(Ωi) satisfies

‖RihΦ‖curl;Ωi ≤ C‖Φ‖XΓi
.(4.1)

Lemma 4.2. Let u ∈ Vh(Ωi), which satisfies u × n = Φ on Γi. Then

‖Φ‖XΓi
≤ C‖u‖curl;Ωi

.(4.2)
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4.2. Estimates with the norm ‖ · ‖1/2,Γi
and the edge element inter-

polant. The results in Lemma 4.3 can be found in [7] and [33].
Lemma 4.3. For any ϕ ∈ Zh(Γ), we have
C |π0ϕ|21

2 ,Γi
≤ [1 + log(d/h)]‖ϕ− γWi

(ϕ)‖2
h,Wi

≤ C[1 + log(d/h)]2|ϕ|21
2 ,Γi

(4.3)

and for any face f ⊂ Γi,

‖I0f(ϕ− π0ϕ)‖2
1
2 ,Γi

≤ C[1 + log(d/h)]2|ϕ|21
2 ,Γi

.(4.4)

Now we define an interpolation operator rh associated with the space Vh(Ω). For
any appropriately smooth v, rhv ∈ Vh(Ω) is a function in Vh(Ω) which has the same
moments on the edges of Th as v, namely,∫

e

rhv · teds =
∫
e

v · teds ∀v ∈ H1(Ω) and e ∈ Eh.

The interpolant rhv is well defined on each element K for all v lying in the space{
w ∈ Lp(K)3; curl v ∈ Lp(K)3 and v × n ∈ Lp(∂K)3

}
with p > 2; see Lemma 4.7 in [4]. From this we immediately know that rhv is well
defined for all v in H1(Ω)3 whose curl is in Lp(K)3.

The following three lemmas present some estimates on the interpolation operator
rh. The proof of the first lemma below is quite similar to the proofs of Lemma 4.7 in
[4] and Lemma 3.2 in [12], and details can be found in [20].

Lemma 4.4. Let w ∈ H1(Ωi)
3 and its interpolant rhw be well defined in Vh(Ωi).

Also, we assume that curl w = curl vh for some vh ∈ Vh(Ωi). Then
‖rhw − w‖0,Ωi ≤ Ch(|w|21,Ωi

+ ‖curl vh‖2
0,Ωi

)
1
2 .(4.5)

Lemma 4.5. Under the same assumptions as in Lemma 4.4, for any face f of Γi
we have

‖(rhw)× n‖∗,fb
≤ C[1 + log(d/h)]

1
2 (‖w‖2

1,Ωi
+ ‖curl vh‖2

0,Ωi
)

1
2 .(4.6)

Lemma 4.6. Under the same assumptions as in Lemma 4.4, for any face f of Γi
we have

d−2‖rhw −Υ∂f(rhw)‖2
0,Ωi

≤ C[1 + log(d/h)]|(|w|21,Ωi
+ ‖curl vh‖2

0,Ωi
),(4.7)

d−2‖w −Υ∂f(rhw)‖0,Ωi
≤ C[1 + log(d/h)]|(|w|21,Ωi

+ ‖curl vh‖2
0,Ωi

).(4.8)

4.3. Some estimates with the norm‖ · ‖XΓi
.

Lemma 4.7. Let w and vh be the same as specified in Lemma 4.4, and Φ =
rhw × n on Γi. Then for any face f ⊂ Γi we have

‖I0
f∂

Φ‖XΓi
≤ C[1 + log(d/h)](‖Φ‖XΓi

+ ‖w‖1,Ωi + ‖curl vh‖0,Ωi).(4.9)

Lemma 4.8. Let Φ = v × n ∈ Vh(Γi) on Γi, and

I0
∆i

Φ(x) =
∑
e⊂∆i

λe(v)(Le × ni)(x), x ∈ Γi.

We have

‖I0
∆i

Φ‖XΓi
≤ C[1 + log(d/h)]

1
2 ‖Φ‖∗,∆i .(4.10)

Lemma 4.9. Assume that v ∈ Vh(Ω) and f ⊂ Γk. Then

‖I0
f∂

(Υ∂f(Π0v)× n)‖2
XΓk

≤ C[1 + log(d/h)]‖(Π0v)× n‖2
∗,fb

.(4.11)
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5. The estimate of condition number. This section is devoted to the esti-
mate (3.6) of the condition number of the preconditioned system M−1S. The estima-
tion will be done by using the following additive Schwarz framework [26], [32], whose
proof is standard (cf. [18] and [27]).

Lemma 5.1. Assume that the following two conditions hold:
(i) For any Φ ∈ Vh(Γ) there is a decomposition Φ = Φ01 + Φ02 +

∑
i<j I

t
ijΦij ,

with Φ0k ∈ V 0k
h (Γ) (k = 1, 2) and Φij ∈ V 0

h (Γij), such that

〈S01Φ01,Φ01〉+ 〈S02Φ02,Φ02〉+
∑
i<j

〈SijΦij ,Φij〉Γij ≤ C1〈SΦ,Φ〉;(5.1)

(ii) For any Ψ0k ∈ V 0k
h (Γ) (k = 1, 2) and Ψij ∈ V 0

h (Γij), we have〈
S


∑
i<j

ItijΨij +Ψ01 +Ψ02


 , ∑

i<j

ItijΨij +Ψ01 +Ψ02

〉
(5.2)

≤ C2



∑
i<j

〈SijΨij ,Ψij〉Γij + 〈S01Ψ01,Ψ01〉+ 〈S02Ψ02,Ψ02〉

 .

Then we have cond(M−1S) ≤ C1C2.
The rest of this section applies Lemma 5.1 to show Theorem 3.1, the main result

of this paper. First, we construct the important decomposition required in the lemma.
For this, we will make use of the so-called regular decomposition instead of the usual
L2(Ω)-orthogonal Helmholtz decomposition [14].

For any v ∈ H0(curl; Ω), there exist some w ∈ H1
0 (Ω)

3 and p ∈ H1
0 (Ω) such that

the following regular decomposition holds (cf. [6], [16]):

v = ∇p+ w(5.3)

with the estimates

‖w‖0,Ω + ‖p‖1,Ω ≤ C ‖v‖0,Ω , |v|1,Ω ≤ C‖curl v‖0,Ω .(5.4)

We remark that the use of Helmholtz-type or regular decompositions is a fundamental
technique for the analysis of preconditioners for H(curl; Ω)- and H(div; Ω)-elliptic
problems [1], [15], [17], [16], [28].

Now, for any Φ ∈ Vh(Γ), we define a vh ∈ Vh(Ω) such that vh = Ri
hIiΦ in

each subdomain Ωi. By the regular decomposition (5.3), there exist p ∈ H1
0 (Ω) and

w ∈ H1
0 (Ω)

3 such that

vh = grad p+ w .(5.5)

As w ∈ H1
0 (Ω)

3 and curl w = curl vh , so rhw is well defined (see subsection 4.2).
This, with (5.5), implies

vh = rhgrad p+ rhw .

By Lemma 5.10 in [14], there exists a function ph ∈ Zh(Ω) such that

vh = grad ph + rhw = gradph + wh(5.6)
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with wh = rhw ∈ Vh(Ω). By (5.5) and (5.6), we know

curl wh = curl w = curl vh.(5.7)

Now we are ready to show Theorem 3.1 using Lemma 5.1. We divide the proof
into four steps.

Step 1. Establish a suitable decomposition for Φ ∈ Vh(Γ). For ease of notation,
we introduce p0h ∈ Zh(Ω) and Φ01 by

p0h = RihIiπ0(ph|Γ) in Ωi, i = 1, . . . , N,

Φ01(x) = (grad (p0h|Ωi)× n)(x), x ∈ Γi, i = 1, 2, . . . , N.

By direct checking, we can also write

Φ01(x) = (grad (p̃0h|Ωi
)× n)(x), x ∈ Γi,

with p̃0h = Ri0Iiπ0(ph|Γ). So we know Φ01(x) ∈ V 01
h (Γ). Next, we choose w02 =

Π0wh ∈ Vh(Ω) and let

Φ02 = (w02 × n)|Γ ∈ V 02
h (Γ).

Define Φij ∈ Vh(Γij) by
Φij = Iij((grad ph + wh)× n)− Iij(Φ01 +Φ02)

= Iij(grad (ph − p0h)× n) + Iij(wh × n − Φ02)
= Iij(grad (ph − p0h)× n) + Iij((wh − w02)× n).

Noting the fact that p0h − ph vanishes on the wirebasket set Wi, we can easily verify
that λe(grad (ph − p0h)) = 0 for any e ∈ Eh ∩Wi. Also, we have λe(wh − w02) = 0
for any face e on ∆i. Thus Φij ∈ V 0

h (Γij), and the following decomposition holds:

Φ = Φ01 +Φ02 +
∑
Γij

ItijΦij .(5.8)

Step 2. Prove the estimate∑
Γij

〈SijΦij ,Φij〉Γij ≤ C[1 + log(d/h)]3〈SΦ,Φ〉.(5.9)

For any face Γij of Γi, we define

piij = RihI
t
ij [(ph − p0h)|Γij ] ∈ Zh(Ωi),

wi
ij = Ri

hI
t
ij [((wh − w02)× n)|Γij ] ∈ Vh(Ωi),

viij = grad piij + wi
ij ∈ Vh(Ωi).

Using the fact that

Ri
hI
t
ijΦij × n = ItijΦij = viij × n on Γi,

we obtain by the minimum curl-energy property of the discrete curl-extension that

Ai(R
i
hI
t
ijΦij ,R

i
hI
t
ijΦij) ≤ Ai(v

i
ij ,v

i
ij) = ‖α 1

2 curl wi
ij‖2

0,Ωi
+ ‖β 1

2 viij‖2
0,Ωi

(5.10)

≤ C(‖grad piij‖2
0,Ωi

+ ‖wi
ij‖2

curl,Ωi
).
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As p0h = π0(ph|Γ) on Γ, we have

Itij [(ph − p0h)|Γij ] = I0ij(ph|Γ − π0(ph|Γ)).

Thus, using (4.4) and the trace theorem, we obtain

‖grad piij‖2
0,Ωi

= |piij |21,Ωi
≤ C|Itij [(ph − p0h)|Γij ]|21

2 ,Γi
(5.11)

≤ C[1 + log(d/h)]2|ph|21
2 ,Γi

≤ C[1 + log(d/h)]2|ph|21,Ωi
.

We next estimate wi
ij . For each (open) common face f = Γij shared by Ωi and Ωj , it

follows from the definition of Π0 that

λe(wh − w02) =

{
0 if e ⊂ fb,

λe(wh −Υ∂f(wh)) if e ⊂ f∂ .

Then we derive by using (5.7) and Lemmas 4.1 and 4.7 that

‖wi
ij‖2

curl,Ωi
≤ C‖Itij [((wh − w02)× n)|Γij ]‖2

XΓi
(5.12)

= C‖I0
f∂

[(wh −Υ∂Γij (wh))× n]‖2
XΓi

≤ C[1 + log(d/h)]2(‖(wh −Υ∂Γij
(wh))× n‖2

XΓi

+‖w −Υ∂Γij (wh)‖2
1,Ωi

+ ‖curl vh‖2
0,Ωi

).

On the other hand, for the term (wh − Υ∂Γij (wh)) × n we have by Lemma 4.2 and
(5.5) that

‖(wh −Υ∂Γij (wh))× n‖2
XΓi

≤ C‖wh −Υ∂Γij
(wh)‖2

curl;Ωi

= C(‖curl wh‖2
0;Ωi

+ d−2‖wh −Υ∂Γij (wh)‖2
0;Ωi

)

= C(‖curl vh‖2
0;Ωi

+ d−2‖wh −Υ∂Γij (wh)‖2
0;Ωi

).

Combining this with (5.12) and using Lemma 4.6 give

‖wi
ij‖2

curl,Ωi
≤ C[1 + log(d/h)]3(|w|21,Ωi

+ ‖curl vh‖2
0,Ωi

).

With this estimate, (5.10), and (5.11), we come to

Ai(R
i
hI
t
ijΦij ,R

i
hI
t
ijΦij) ≤ C[1+log(d/h)]3(|ph|21,Ωi

+|w|21,Ωi
+‖curl vh‖2

0,Ωi
).(5.13)

Similarly, we have

Aj(R
j
hI
t
ijΦij ,R

j
hI
t
ijΦij) ≤ C[1 + log(d/h)]3(|ph|21,Ωj

+ |w|21,Ωj
+ ‖curl vh‖2

0,Ωj
).

So we have proved

〈SijΦij ,Φij〉Γij
≤ C[1 + log(d/h)]3(|ph|21,Ωi

+ |ph|21,Ωj
+ |w|21,Ωi

+|w|21,Ωj
+ ‖curl vh‖2

0,Ωi
+ ‖curl vh‖2

0,Ωj
),
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or

∑
Γij

〈SijΦij ,Φij〉Γij ≤ C[1 + log(d/h)]3
N∑
i=1

(|ph|21,Ωi
+ |w|21,Ωi

+ ‖curl vh‖2
0,Ωi

)(5.14)

= C[1 + log(d/h)]3

(
|ph|21,Ω + |w|21,Ω

+

N∑
i=1

‖curl vh‖2
0,Ωi

)
.

To prove (5.9), it suffices to show

|ph|21,Ω + |w|21,Ω ≤ C(‖vh‖2
0,Ω + ‖curl vh‖2

0,Ω),(5.15)

as this, with (5.14), implies

∑
Γij

〈SijΦij ,Φij〉Γij ≤ C[1 + log(d/h)]3
N∑
i=1

(‖curl vh‖2
0,Ωi

+ ‖vh‖2
0,Ωi

)

≤ C[1 + log(d/h)]3
N∑
i=1

Ai(R
i
hIiΦ,R

i
hIiΦ).

Next we show (5.15). It follows from (5.4) and (5.7) that

|w|21,Ω ≤ C‖curl w‖2
0,Ω = C‖curl vh‖2

0,Ω .(5.16)

However, by Lemma 4.4 and (5.4) we obtain that

‖rhw‖2
0,Ω ≤ C (h2 ‖curl vh‖2

0,Ω + h2 |w|21,Ω + ‖w‖2
0,Ω) ≤ C ‖curl vh‖2

0,Ω.

Inequality (5.15) is then a consequence of this estimate, (5.16), and the triangle in-
equality

‖∇ph‖0,Ω ≤ ‖vh‖0,Ω + ‖rhw‖0,Ω .

Step 3. Derive the estimate

〈S01Φ01,Φ01〉+ 〈S02Φ02,Φ02〉 ≤ C[1 + log(d/h)]2〈SΦ,Φ〉.(5.17)

It follows from the definitions of S01 and Φ01 that

〈S01Φ01,Φ01〉 = [1 + log(d/h)]

N∑
i=1

‖p0h − γ∆ip
0
h‖2
h,∆i

.

Thus, by (4.3) and the trace theorem, we have

〈S01Φ01,Φ01〉 ≤ C[1 + log(d/h)]2
N∑
i=1

|ph|21
2 ,Γi

(5.18)

≤ C[1 + log(d/h)]2
N∑
i=1

|ph|21,Ωi
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≤ C[1 + log(d/h)]2|ph|21,Ω.
By the definitions of S02 and Φ02, we know

〈S02Φ02,Φ02〉 = [1+log(d/h)]

N∑
i=1

(‖(wh−Υ∆i(wh))×n‖2
∗,∆i

+d2‖wh×n‖2
∗,∆i

).(5.19)

From the definition of Υ∆i(wh), we have

‖(wh −Υ∆i
(wh))× n‖2

∗,∆i
≤ ‖(wh −ΥΓi

(w))× n‖2
∗,∆i

.

This, with Lemma 4.5 and the Poincaré inequality, gives

‖(wh −Υ∆i(wh))× n‖2
∗,∆i

≤
∑
f⊂Γi

‖(wh −ΥΓi
(w))× n‖2

∗,fb
(5.20)

≤ C[1 + log(d/h)](‖w −ΥΓi
(w)‖2

1,Ωi

+‖curl (vh −ΥΓi
(w))‖2

0,Ωi
)

≤ [1 + log(d/h)](|w|21,Ωi
+ ‖curl vh‖2

0,Ωi
).

The other terms in (5.19) are estimated by Lemma 4.5 and (5.5) as follows:

d2‖wh × n‖2
∗,∆i

= d2
∑
f⊂Γi

‖wh × n‖2
∗,fb

≤ Cd2[1 + log(d/h)](‖w‖2
1,Ωi

+ ‖curl vh‖2
0,Ωi

)

= C[1 + log(d/h)](d2|w|21,Ωi
+ ‖w‖2

0,Ωi
+ d2‖curl vh‖2

0,Ωi
)

≤ C[1 + log(d/h)](|w|21,Ωi
+ ‖vh‖2

0,Ωi
+ ‖curl vh‖2

0,Ωi
).

So we have proved by (5.19) that

〈S02Φ02,Φ02〉 ≤ C[1 + log(d/h)]2(|w|21,Ω + ‖vh‖2
0,Ω + ‖curl vh‖2

0,Ω),

which, together with (5.18), yields

〈S01Φ01,Φ01〉+ 〈S02Φ02,Φ02〉
≤ C[1 + log(d/h)]2(|ph|21,Ω + |w|21,Ω + ‖vh‖2

0,Ω + ‖curl vh‖2
0,Ω)

≤ C[1 + log(d/h)]2(|ph|21,Ω + |curl w|21,Ω + ‖vh‖2
0,Ω + ‖curl vh‖2

0,Ω)

≤ C[1 + log(d/h)]2(|ph|21,Ω + ‖vh‖2
0,Ω + ‖curl vh‖2

0,Ω)

≤ C[1 + log(d/h)]2(‖vh‖2
0,Ω + ‖curl vh‖2

0,Ω)

≤ C[1 + log(d/h)]2〈SΦ,Φ〉.
The estimates (5.9) and (5.17) indicate that the constant C1 in (5.1) can be

bounded by C[1 + log(d/h)]3.
Step 4. Estimate the constant C2 in (5.2). It is easy to see that

Ik


∑

Γij

ItijΨij +Ψ01 +Ψ02


 =

∑
Γij⊂Γk

ItijΦij + IkΨ01 + IkΨ02.
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Hence

(5.21)〈
S


∑

Γij

ItijΨij +Ψ01 +Ψ02


 , ∑

Γij

ItijΨij +Ψ01 +Ψ02

〉

≤ C

N∑
k=1



∑

Γij⊂Γk

〈SkItijΨij , ItijΦij〉Γk
+ 〈SkIkΨ01, IkΨ01〉Γk

+ 〈SkIkΨ02, IkΨ02〉Γk




≤C
N∑
k=1



∑

Γij⊂Γk

〈SijΨij ,Ψij〉Γij+Ak(R
k
hIkΨ01,R

k
hIkΨ01)+Ak(R

k
hIkΨ02,R

k
hIkΨ02)


 .

As each face Γij is shared only by two subdomains Ωi and Ωj , we have

N∑
k=1

∑
Γij⊂Γk

〈SijΨij ,Ψij〉Γij ≤ C
∑
Γij

〈SijΨij ,Ψij〉Γij .(5.22)

Note that Ψ01 ∈ V 01
h (Γ) can be written as

IkΨ01 = grad(RkhIkπ0ψ)× n on Γk

for some ψ ∈ Zh(Γ), so we have

Ak(R
k
hIkΨ01,R

k
hIkΨ01) ≤ Ak(grad(RkhIkπ0ψ),grad(RkhIkπ0ψ))

= |β 1
2RkhIkπ0ψ|21,Ωk

≤ C|π0ψ|21
2 ,Γk

.

Then it follows from (4.3) that

Ak(R
k
hIkΨ01,R

k
hIkΨ01) ≤ C[1 + log(d/h)]‖π0ψ − γWk

(π0ψ)‖2
h,Wk

.

This, with the definition of S01, shows

N∑
k=1

Ak(R
k
hIkΨ01,R

k
hIkΨ01) ≤ C〈S01Ψ01,Ψ01〉.(5.23)

We next estimate the last term in (5.21). We can write Ψ02 ∈ V 02
h (Γ) as follows:

IkΨ02 = Π0v × n = [Π0v −Υ∆k
(Π0v)]× n +Υ∆k

(Π0v)× n on Γi

for some v ∈ Vh(Γ). Then, by the triangle inequality, we obtain

Ak(R
k
hIkΨ02,R

k
hIkΨ02)

≤ 2Ak(R
k
hIk[Π0v −Υ∆k

(Π0v)]× n,Rk
hIk[Π0v −Υ∆k

(Π0v)× n])
+Ak(R

k
hIk[Υ∆k

(Π0v)× n],Rk
hIk[Υ∆k

(Π0v)× n])).

Furthermore, using Lemma 4.1 and the minimum curl-energy property of the discrete
curl-extension, we obtain (note that Υ∆k

(Π0v) is a constant vector)

Ak(R
k
hIkΨ02,R

k
hIkΨ02)

≤ C(‖[Π0v −ΥWk
(Π0v)]× n‖2

XΓi
+Ak(Υ∆k

(Π0v),Υ∆k
(Π0v)))

= C(‖[Π0v −Υ∆k
(Π0v)]× n‖2

XΓk
+ ‖Υ∆k

(Π0v)‖2
0,Ωk

),(5.24)
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where the last term can be estimated using the Hölder inequality and direct compu-
tation:

(5.25)

‖Υ∆k
(Π0v)‖2

0,Ωk
= d3|Υ∆k

(Π0v)|2 ≤ Cd2‖Υ∆k
(Π0v)‖2

∗,∆k
≤ Cd2‖(Π0v)× n‖2

∗,∆k
.

Next, we show that the first term in (5.28) has the following bound:

‖[Π0v−Υ∆k
(Π0v)]×n‖2

XΓk
≤ C[1+ log(d/h)]‖[Π0v−Υ∆k

(Π0v)]×n‖2
∗,∆k

.(5.26)

For this, it suffices to prove

‖(Π0v)× n‖2
XΓk

≤ C[1 + log(d/h)]‖(Π0v)× n‖2
∗,∆k

∀v ∈ Vh(Ω).(5.27)

To see this, using the relation

Ik[(Π0v)× n] = I0
∆k

(Π0v × n) +
∑

f⊂Γk

I0
f∂

(Υ∂f(Π0v)× n),

we have

‖(Π0v)× n‖2
XΓk

≤ C


‖I0

∆i
(Π0v × n)‖2

XΓk
+
∑

f⊂Γk

‖I0
f∂

(Υ∂f(Π0v)× n)‖2
XΓk


 .

This, together with Lemmas 4.8 and 4.9, yields (5.27).
Finally, we obtain using (5.24), (5.25), and (5.26) that

Ak(R
k
hIkΨ02,R

k
hIkΨ02) ≤ C([1 + log(d/h)]‖[v −Υ∆k

(v)]× n‖2
∗,∆k

+ d2‖v × n‖2
∗,∆k

),

which implies

N∑
k=1

Ak(R
k
hIkΨ02,R

k
hIkΨ02) ≤ C〈S02Ψ02,Ψ02〉.

This estimate with (5.22)–(5.23) indicates that the constant C2 in (5.2) is bounded
by a constant independent of h and d.

6. Appendix. This appendix provides the technical proofs for the auxiliary lem-
mas in Section 4.

6.1. Proofs of Lemmas 4.5 and 4.6. In this subsection we shall prove Lem-
mata 4.5 and 4.6. For this, we first give some auxiliary results. The first lemma can
be found in [7], [33].

Lemma 6.1. Let vh ∈ Zh(Γi). Then, for any f ⊂ Γi, we have

‖vh‖0,∂f ≤ C[1 + log(d/h)]
1
2 ‖vh‖ 1

2 ,Γi
,(6.1)

‖I0fvh‖ 1
2 ,Γi

≤ C[1 + log(d/h)]‖vh‖ 1
2 ,Γi

,(6.2)

|I0∂fvh| 12 ,f ≤ C[1 + log(d/h)]
1
2 ‖vh‖ 1

2 ,Γi
.(6.3)

Lemma 6.2. Assume that vh ∈ Zh(Ωi)3. Then, for any face f of Γi we have

d−2‖vh −Υ∂f(vh)‖2
0,Ωi

≤ C[1 + log(d/h)]|vh|21,Ωi
.(6.4)
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Proof. Since Υ∂f(·) is invariant with constant vectors, we have

d−2‖vh −Υ∂f(vh)‖2
0,Ωi

= d−2‖vh −Υf(vh)−Υ∂f(vh −Υf(vh))‖2
0,Ωi

≤ 2d−2(‖vh −Υf(vh)‖2
0,Ωi

+ ‖Υ∂f(vh −Υf(vh))‖2
0,Ωi

).(6.5)

It can be verified, by the Hölder inequality, that

‖Υ∂f(vh −Υf(vh))‖2
0,Ωi

≤ Cd3|Υ∂f(vh −Υf(vh))|2 ≤ Cd2‖vh −Υf(vh)‖2
0,∂f.

This, together with (6.1) and the trace theorem, yields

d−2‖Υ∂f(vh −Υf(vh))‖2
0,Ωi

≤ C[1 + log(d/h)]‖vh −Υf(vh)‖2
1
2 ,Γi

≤ C[1 + log(d/h)]‖vh −Υf(vh)‖2
1,Ωi

.

Now (6.4) follows from this, (6.5), and the Friedrich’s inequality.
For any face f of Γi, we define a quantity (not a norm) on fb as follows:

‖v‖∗,fb
=


 ∑
K∈fb

‖v‖2
0,∂K




1
2

∀v ∈ Zh(Γi)3 or v ∈ Vh(Γi).

Lemma 6.3. Assume that vh ∈ Zh(Γi)3. Then

‖vh‖∗,fb
≤ C[1 + log(d/h)]

1
2 ‖vh‖ 1

2 ,Γi
.(6.6)

Proof. Consider a triangle K ∈ fb, and let e be one of its edges lying on ∂f. Then
we have

‖vh‖2
0,∂K ≤ 2(‖vh −Υe(vh)‖2

0,∂K + ‖Υe(vh)‖2
0,∂K).(6.7)

By the Poincaré inequality we obtain

h−1‖vh −Υe(vh)‖2
0,∂K ≤ h−2‖vh −Υe(vh)‖2

0,K ≤ C|vh|21,K .

Thus

‖vh −Υe(vh)‖2
0,∂K ≤ Ch|vh|21,K .(6.8)

On the other hand, it can be verified directly that

‖Υe(vh)‖2
0,∂K ≤ Ch|Υe(vh)|2 ≤ C‖vh‖2

0,e.

Substituting this and (6.8) into (6.7) and then summing over all the edges e on K
yield

‖vh‖2
0,∂K ≤ C(h|vh|21,f + ‖vh‖2

0,∂f) ≤ C(|vh|21/2,f + ‖vh‖2
0,∂f).

Now, (6.6) follows from (6.1).
Proof of Lemma 4.5. Let Ph: L

2(Ωi)
3 → Zh(Ωi)

3 be the L2-projection operator,
which is known to have the following Hs-stability (with 0 ≤ s ≤ 1) and estimate [8]:

‖Phw‖s,Ωi ≤ C‖w‖s,Ωi , ‖w − Phw‖0,Ωi ≤ C h |w|1,Ωi .(6.9)
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It is easy to verify that

‖(rhw)× n‖∗,fb
≤ C‖rhw‖2

∗,fb
≤ C

∑
e⊂fb

(‖Phw‖2
0,e + ‖rhw − Phw‖2

0,e).(6.10)

Let Ke ∈ Th be an element in Ωi with e being one of its edges, and {λi}4
i=1 the

barycentric basis functions at the four vertices of Ke, λ1, and λ2, correspond to two
end-points of e. By the expression (2.2) of the edge element basis functions, it is easy
to verify that (rhw − Phw) can be written, in the element Ke, as

rhw − Phw =

(
4∑
i=1

aiλi ,

4∑
i=1

biλi ,

4∑
i=1

ciλi

)T
,

where ai, bi, and ci (i = 1, 2, 3, 4) are constants which may depend on h. By the
standard scaling argument, we obtain

‖rhw − Phw‖2
0,Ke

≥ C̄h3
4∑
i=1

(a2
i + b

2
i + c

2
i ) ,

‖rhw − Phw‖2
0,e ≤ C̃h

2∑
i=1

(a2
i + b

2
i + c

2
i ).

This implies

‖rhw − Phw‖2
0,e ≤ Ch−2‖rhw − Phw‖2

0,Ke
,

and so we have∑
e⊂fb

‖rhw−Phw‖2
0,e≤Ch−2

∑
e⊂fb

‖rhw−Phw‖2
0,Ke

≤ Ch−2‖rhw−Phw‖2
0,Ωi

.(6.11)

This with (6.10) leads to

‖rhw‖2
∗,fb

≤ C(‖Phw‖2
∗,fb

+ h−2‖rhw − Phw‖2
0,Ωi

).(6.12)

On the other hand, by (6.6), the trace theorem, and (6.9), we obtain

‖Phw‖∗,fb
≤ C[1 + log(d/h)]

1
2 ‖Phw‖ 1

2 ,Γi
(6.13)

≤ C[1 + log(d/h)]
1
2 ‖Phw‖1,Ωi

≤ C[1 + log(d/h)]
1
2 ‖w‖1,Ωi ,

while by the triangle inequality, (4.5), and (6.9), we deduce

h−1‖rhw − Phw‖0,Ωi ≤ h−1(‖rhw − w‖0,Ωi + ‖Phw − w‖0,Ωi)(6.14)

≤ C(|w|21,Ωi
+ ‖curl vh‖2

0,Ωi
)

1
2 .

Now, (4.6) follows readily from (6.12)–(6.14).
Proof of Lemma 4.6. We can write

rhw −Υ∂f(rhw) = (rhw − Phw) + (Phw −Υ∂f(Phw)) + Υ∂f(Phw − rhw);
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then, by the triangle inequality,

‖rhw −Υ∂f(rhw)‖2
0,Ωi

≤ 3(‖Phw −Υ∂f(Phw)‖2
0,Ωi

(6.15)

+‖rhw − Phw‖2
0,Ωi

+ ‖Υ∂f(Phw − rhw)‖2
0,Ωi

).

Using (6.4) and (6.9), we know

(6.16)

‖Phw−Υ∂f(Phw)‖2
0,Ωi

≤Cd2[1+log(d/h)]|Phw|21,Ωi
≤ Cd2[1+log(d/h)]|w|21,Ωi

.

On the other hand, by the definition of Υ∂f, one can verify directly that

‖Υ∂f(Phw − rhw)‖2
0,Ωi

≤ Cd3|Υ∂f(Phw − rhw)|2 ≤ C d2‖Phw − rhw‖2
0,fb

.

This with (6.11) gives

‖Υ∂f(Phw − rhw)‖2
0,Ωi

≤ Cd2h−2 ‖rhw − Phw‖2
0,Ωi

,

and so we obtain by (6.14) that

‖rhw − Phw‖2
0,Ωi

+ ‖Υ∂f(Phw − rhw)‖2
0,Ωi

≤ C(1 + d2h−2)‖rhw − Phw‖2
0,Ωi

≤ C(h2 + d2)(|w|21,Ωi
+ ‖curl vh‖2

0,Ωi
).

Now (4.7) follows from this, (6.15), and (6.16).
Finally, the relation

w −Υ∂f(rhw) = (w − rhw) + (rhw −Υ∂f(rhw)),

with (4.7) and Lemma 4.4, leads to (4.8) directly.

6.2. Proofs of Lemmas 4.7, 4.8, and 4.9. The proofs of these lemmas are
rather technical, and we will start with some auxiliary results.

Lemma 6.4. For any Φ ∈ Vh(Γi), we have

‖Φ‖0,Γi ≤ Ch−
1
2 ‖Φ‖− 1

2 ,Γi
, ‖I0

fb
Φ‖0,f ≤ Ch

1
2 ‖Φ‖∗,fb

.(6.17)

Proof. The first estimate was proved in [3]. We prove only the second inequality
in (6.17). For any Φ ∈ Vh(Γi), we can write Φ = v × n on Γi for some v ∈ Vh(Ωi).
Using the definitions of I0

fb
, we deduce

‖I0
fb
Φ‖2

0,f ≤ C
∑
e⊂fb

λ2
e(v)‖Le × ni‖2

0,f.(6.18)

It follows by (2.2) that ‖Le × n‖2
0,f ≤ C. This, together with (6.18), yields

‖I0
fb
Φ‖2

0,f ≤ C
∑
e⊂fb

λ2
e(v).

Now we need only to prove

λ2
e(v) ≤ Ch‖Φ‖2

0,e ∀ e ⊂ fb ⊂ Γi.(6.19)
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Noting the fact that v = (v · n)n + n × v × n on f, for any e ⊂ f we have

v|f · te = (n × v × n)|f · te.

Thus (6.19) comes readily from the following:

λ2
e(v) =

∣∣∣∣
∫
e

v · teds
∣∣∣∣
2

≤
∫
e

|n×v×n|2ds
∫
e

|te|2ds ≤ Ch

∫
e

|n×v|2ds.(6.20)

Lemma 6.5. Let Φ ∈ Vh(Γi), and let I0
f∂

Φ be defined as in (2.5). Then

‖I0
f∂

Φ‖− 1
2 ,Γi

≤ C([1 + log(d/h)]‖Φ‖− 1
2 ,Γi

+ h
1
2 ‖Φ‖∗,fb

).(6.21)

Proof. The proof is similar to that of Lemma 6 in [19]. However, for the reader’s
convenience, we still give a complete proof below.

For any v∈H1/2(Γi)
3, let vh∈Zh(Γi)3 be the L2(Γi)-projection of v. Then

|〈I0
f∂

Φ,v〉Γi
| ≤ |〈I0

f∂
Φ,v − vh〉Γi

|+ |〈I0
f∂

Φ,vh〉Γi
|.(6.22)

It is known that

‖vh − v‖0,Γi≤Ch
1
2 ‖v‖ 1

2 ,Γi
, ‖vh‖ 1

2 ,Γi
≤C‖v‖ 1

2 ,Γi
.(6.23)

This, together with (6.17), leads to

|〈I0
f∂

Φ,v − vh〉Γi | ≤ ‖I0
f∂

Φ‖0,Γi ‖v − vh‖0,Γi(6.24)

≤ Ch1/2‖Φ‖0,Γi
‖v‖ 1

2 ,Γi
≤ C‖Φ‖− 1

2 ,Γi
‖v‖ 1

2 ,Γi
.

On the other hand, from the definitions of the operators I0
f∂

and I0
fb
, we have I0

f∂
Φ =

Φ− I0
fb
Φ on f. Then

|〈I0
f∂

Φ,vh〉Γi
| = |〈I0

f∂
Φ,vh〉f| ≤ |〈Φ,vh〉f|+ |〈I0

fb
Φ,vh〉f|.(6.25)

It follows from (6.17) that

|〈I0
fb
Φ,vh〉f| ≤ ‖I0

fb
Φ‖0,f ‖vh‖0,f ≤ Ch

1
2 ‖Φ‖∗,fb

‖vh‖ 1
2 ,Γi

.(6.26)

For the term 〈Φ,vh〉f in (6.25), we use the simple decomposition

vh(x) = I0fvh(x) + I0∂fvh(x) ∀x ∈ f(6.27)

to derive (note that I0fvh(x) = 0 on Γi\f)

|〈Φ,vh〉f| ≤ |〈Φ, I0fvh〉f|+ |〈Φ, I0∂fvh〉f|
≤ |〈Φ, I0fvh〉Γi |+ ‖Φ‖0,f ‖I0∂fvh‖0,f
≤ ‖Φ‖− 1

2 ,Γi
‖I0fvh‖ 1

2 ,Γi
+ Ch

1
2 ‖Φ‖0,Γi ‖vh‖0,∂f,

where a direct computation is used to bound the term ‖I0∂fvh‖0,f by h1/2‖vh‖0,∂f
using the discrete L2-norm. This with (6.17), (6.2), and (6.1) yields

|〈Φ,vh〉f| ≤ C[1 + log(d/h)]‖Φ‖− 1
2 ,Γi

‖vh‖ 1
2 ,Γi

.
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Substituting it and (6.26) into (6.25) yields

|〈I0
f∂

Φ,vh〉f| ≤ C([1 + log(d/h)]‖Φ‖− 1
2 ,Γi

+ h
1
2 ‖Φ‖∗,fb

)‖vh‖ 1
2 ,Γi

,

which, along with (6.22) and (6.24), leads to

|〈I0
f∂

Φ,v〉Γi | ≤ C([1 + log(d/h)]‖Φ‖− 1
2 ,Γi

+ h
1
2 ‖Φ‖∗,fb

)‖v‖ 1
2 ,Γi

.

Now (6.21) follows directly from the definition of the norm ‖ · ‖−1/2,Γi
.

Next, we are going to prove Lemma 6.10 on the estimate of ‖divτ (I0
fΦ)‖− 1

2 ,Γi
for

all Φ ∈ Vh(Γi). To do so, we have to present some auxiliary results first (Lemmas 6.6–
6.9).

Lemma 6.6. Let ϕ ∈ L2(Γi) be piecewise constant with respect to the Th-induced
triangulation Th,i on Γi. Then

‖ϕ‖0,Γi
≤ Ch−

1
2 ‖ϕ‖− 1

2 ,Γi
.(6.28)

Proof. By definition,

‖ϕ‖− 1
2 ,Γi

= sup
ψ∈H1/2(Γi)

|〈ϕ,ψ〉Γi |
‖ψ‖ 1

2 ,Γi

.

The inequality (6.28) then follows if we can construct a function ψ0 ∈ H 1
2 (Γi) such

that

|〈ϕ,ψ0〉Γi | ≥ C‖ϕ‖0,Γi
‖ψ0‖0,Γi , ‖ψ0‖ 1

2 ,Γi
≤ Ch−

1
2 ‖ψ0‖0,Γi .(6.29)

To construct the function ψ0 for each triangle K ∈ Th,i and lying on Γi, with OK
being its barycenter, we refine K by connecting OK with three vertices of K. Let aK
denote the (constant) value of ϕ on the triangle K, and let ψ0 be a piecewise linear
function on K with respect to this subdivision such that ψ0 equals aK at OK and
vanishes on the edges of K. It is clear that such a function ψ0 is in H1/2(Γi). As ψ0

is piecewise linear on the entire boundary Γi with respect to the subdivision of Th,
the second inequality in (6.29) follows directly from the inverse inequality. Moreover,
by the equivalent discrete L2-norms we have

‖ψ0‖2
0,Γi

≤ Ch2
∑

K∈Th,i

|aK |2.(6.30)

Let SK be the area of the triangle K. We have

|〈ϕ,ψ0〉Γi | =
∣∣∣∣∣∣
∑

K∈Th,i

〈ϕ,ψ0〉K

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑

K∈Th,i

aK〈1, ψ0〉K

∣∣∣∣∣∣
=

1

3

∣∣∣∣∣∣
∑

K∈Th,i

a2
K
SK

∣∣∣∣∣∣ ≥ Ch2
∑

K∈Th,i

|a2
K
|.

Now the first inequality of (6.29) follows readily from this and (6.30).
The next lemma can be shown similarly as Lemma 6.5 by using Lemma 6.6.
Lemma 6.7. Let ϕ be the same as in Lemma 6.6; then

‖Itf(ϕ|f)‖− 1
2 ,Γi

≤ C[1 + log(d/h)]‖ϕ‖− 1
2 ,Γi

.(6.31)
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For the proof, we introduce some new functions. For any Φ = v×n ∈ Vh(Γi) and
any face f ⊂ Γi, we define a function in L2(Γi) as follows:

ϕfb
(x) =

∑
e⊂fb

λe(v)(ni · curl Le)(x), x ∈ f̄; ϕfb
(x) = 0, x ∈ Γi\f̄,(6.32)

where {Le; e ∈ Eh} are the edge element basis functions defined in (2.2). One can
see that ϕfb

is piecewise constant on Γi, and it vanishes everywhere except in those

triangles which are in f and have a vertex on ∂f at least. We now present two
estimates for ϕfb

(x) below.

Lemma 6.8. For any Φ ∈ Vh(Γi) and any face f of Γi, we have

‖ϕfb
‖− 1

2 ,Γi
≤ Ch

1
2 [1 + log(d/h)]

1
2 ‖ϕfb

‖0,f.(6.33)

Proof. For any v ∈ H1/2(Γi), let vh∈Zh(Γi) be the L2(Γi)-projection of v. We
see directly from (6.27), (6.23), and (6.1) that

|〈ϕfb
, v〉Γi

| ≤ |〈ϕfb
, v − vh〉Γi

+ |〈ϕfb
, I0∂fvh〉Γi |+ |〈ϕfb

, I0fvh〉Γi |
≤ Ch

1
2 [1 + log(d/h)]

1
2 ‖ϕfb

‖0,f ‖v‖ 1
2 ,Γi

+ |〈ϕfb
, I0fvh〉f|,

where we have used the fact that ϕfb
= 0 on Γi\f. It remains to show that

|〈ϕfb
, I0fvh〉f| ≤ Ch

1
2 [1 + log(d/h)]

1
2 ‖ϕfb

‖0,f ‖v‖ 1
2 ,Γi

.(6.34)

Let fc denote the union of all triangles that have at least one of their vertices lying
on ∂f. We regroup the triangles in fc such that fc = ∪K, with each K being one
triangle or a union of two triangles and having at least one of its edges lying on ∂f.
Then by the definition of ϕfb

and the Hölder inequality, we have

|〈ϕfb
, I0fvh〉f| = |〈ϕfb

, I0fvh〉fc
| =

∣∣∣∣∣
∑
K

〈ϕfb
, I0fvh〉K

∣∣∣∣∣(6.35)

≤
∑
K

‖ϕfb
‖0,K ‖I0fvh‖0,K .

As each K ∈ fc has an edge lying on ∂f, I0fvh vanishes on the edge. Then by
Friedrich’s inequality we obtain

‖I0fvh‖0,K ≤ Ch
1
2 |I0fvh| 12 ,K .

Plugging this in (6.35) and using the Cauchy–Schwarz inequality, we derive

|〈ϕfb
, I0fvh〉f| ≤ Ch

1
2

{∑
K

‖ϕfb
‖2
0,K

} 1
2
{∑

K

|I0fvh|21
2 ,K

} 1
2

(6.36)

= Ch
1
2 {‖ϕfb

‖2
0,fc

} 1
2 {|I0fvh|21

2 ,fc
} 1

2

≤ Ch
1
2 ‖ϕfb

‖0,f |I0fvh| 12 ,f.

On the other hand, it follows from (6.27) and (6.3) that

|I0fvh| 12 ,f = |vh − I0∂fvh| 12 ,f ≤ |vh| 1
2 ,f + |I0∂fvh| 12 ,f ≤ C[1 + log(d/h)]

1
2 ‖vh‖ 1

2 ,Γi
.
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This, together with (6.36), gives (6.34).
Lemma 6.9. Assume that Φ = v × n ∈ Vh(Γi). Then

‖ϕfb
‖0,f ≤ Ch−

1
2 ‖Φ‖∗,fb

.(6.37)

Proof. We have by the definitions of ϕfb
that

‖ϕfb
‖2
0,f ≤ C

∑
e⊂fb

λ2
e(v)‖ni · curl Le‖2

0,f.(6.38)

It follows from (2.2) that curlLe = ce∇λe1×∇λe2, which gives ‖ni·curl Le‖2
0,f ≤ Ch−2.

Then we derive from (6.38) that

‖ϕfb
‖2
0,f ≤ Ch−2

∑
e⊂fb

λ2
e(v).

This, together with (6.20), gives the desired results.
Lemma 6.10. For any Φ = v × n ∈ Vh(Γi), we have

‖divτ (I0
fΦ)‖− 1

2 ,Γi
≤ C[1+log(d/h)]‖divτΦ‖− 1

2 ,Γi
+C[1+log(d/h)]

1
2 ‖Φ‖∗,fb

.(6.39)

Proof. We use Lemmas 6.7, 6.8, and 6.9 to estimate divτ (I
0
fΦ). By Green’s

formula and the definition of divτΦ, one can verify (cf. [2]) that

divτΦ = divτ (v × n)|Γi
= −(ni · curl v)|Γi

in H− 1
2 (Γi).

Thus divτΦ is a piecewise constant function on Γi. It suffices to prove that

divτ (I
0
f∂

Φ) = Itf(divτΦ|f) + ϕfb
in H− 1

2 (Γi).(6.40)

As divτ (I
0
f∂

Φ) = 0 on Γi\f̄, the inequality (6.40) is valid in Γi\f̄. However, on the
face f̄, we have by (2.4) and (2.5) that

divτΦ =
∑
e⊂f

λe(v)divτ (Le × ni) , divτ (I
0
f∂

Φ) =
∑
e⊂f∂

λe(v)divτ (Le × ni) .

Hence

divτΦ− divτ (I
0
f∂

Φ) =
∑
e⊂fb

λe(v)divτ (Le × ni) on f̄.(6.41)

Noting that (see (2.10) in [2])

divτ (Le × ni)|Γi = −(ni · curl Le)|Γi in H− 1
2 (Γi),

we see that (6.40) holds also on f̄, using (6.41) and (6.32).
The following result can be proved in an analogous way as Lemma 6.6.
Lemma 6.11. For any Φ ∈ Vh(Γi) and any face f of Γi, we have

‖I0
fb
Φ‖− 1

2 ,f ≤ Ch
1
2 [1 + log(d/h)]

1
2 ‖I0

fb
Φ‖0,f.(6.42)

Below, we start to prove Lemmas 4.7, 4.8, and 4.9. Lemma 4.7 is a direct conse-
quence of Lemmas 4.5, 6.5, and 6.10, and it indicates that the norm ‖I0

fΦ‖XΓi
cannot

be bounded only by ‖Φ‖XΓi
(compare to the estimate (6.2)).
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Proof of Lemma 4.8. Using (6.40) and the relations

I0
∆i

Φ =
∑
f⊂Γi

Itf(I
0
fb
Φ)|f, Itf(I

0
fb
Φ)|f = ItfΦ− I0

f∂
Φ

and the facts that ItfΦ)|Γi\f̄ = 0 but (I0
fb
Φ)|Γi\f̄ 
= 0, we can write

divτ (I
0
∆i

Φ) = divτ


∑

f⊂Γi

ItfΦ−
∑
f⊂Γi

I0
fΦ


 = divτ


Φ−

∑
f⊂Γi

I0
f∂

Φ




= divτΦ−
∑
f⊂Γi

divτ (I
0
f∂

Φ) =
∑
f⊂Γi

(Itfdivτ (Φ)|f − divτ (I
0
f∂

Φ))

=
∑
f⊂Γi

ϕfb
.

This leads to

‖I0
∆i

Φ‖− 1
2 ,Γi

≤
∑
f⊂Γi

‖I0
fb
Φ‖− 1

2 ,f , ‖divτ (I0
∆i

Φ)‖− 1
2 ,Γi

≤
∑
f⊂Γi

‖ϕfb
‖− 1

2 ,Γi
.

Using these two estimates, together with Lemmas 6.11 and 6.8, we have

‖I0
∆i

Φ‖XΓi
≤ Ch

1
2 [1 + log(d/h)]

1
2

∑
f⊂Γi

(d−1‖I0
fb
Φ‖0,f + ‖ϕfb

‖0,f).(6.43)

Substituting (6.17) and (6.37) into (6.43), we obtain the desired result.
Proof of Lemma 4.9. By Lemma 6.10 we have

‖divτ [I0
f∂

(Υ∂f(Π0v)× n)]‖2
− 1

2 ,Γk
(6.44)

≤ C([1 + log(d/h)]2‖divτ [Υ∂f(Π0v)× n|Γk
]‖2

− 1
2 ,Γk

+[1 + log(d/h)]‖Υ∂f(Π0v)× n‖2
∗,fb

).

It is easy to see that

‖Υ∂f(Π0v)× nk‖2
∗,fb

= ‖Υ∂f(Π0v)× nk‖2
∗,fb

≤ C‖(Π0v)× n‖2
∗,fb

.(6.45)

Since Υ∂f(Π0v) is a constant vector, we have

divτ (Υ∂f(Π0v)× n|Γk
) = 0 in H− 1

2 (Γk).

Hence

‖divτ (Υ∂f(Π0v)× n|Γk
)‖− 1

2 ,Γk
= 0.

Substituting (6.45) and the above inequality into (6.44) yields

‖divτ [I0
f∂

(Υ∂f(Π0v)× n)]‖2
− 1

2 ,Γk
≤ C[1 + log(d/h)]‖(Π0v)× n‖2

∗,fb
.(6.46)

On the other hand, it follows from Lemmas 6.11 and 6.4 that

d−1‖I0
f∂

(Υ∂f(Π0v)× n)‖− 1
2 ,Γk

= d−1‖I0
f∂

(Υ∂f(Π0v)× n)‖− 1
2 ,f(6.47)

≤ C(d−1‖Υ∂f(Π0v)× n‖− 1
2 ,f + d−1h[1 + log(d/h)]

1
2 ‖Υ∂f(Π0v)× n‖∗,fb

).
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However, for any Ψ ∈ (H
1
2 (f))3, we have

d−1|〈Υ∂f(Π0v)× n,Ψ〉f| ≤ d−1‖Υ∂f(Π0v)× n‖0,f ‖Ψ‖0,f
≤ Cd−

1
2 ‖Υ∂f(Π0v × n)‖0,f ‖Ψ‖ 1

2 ,f

≤ Cd
1
2 |Υ∂f(Π0v × n)| ‖Ψ‖ 1

2 ,f≤ C‖(Π0v)× n‖0,∂f ‖Ψ‖ 1
2 ,f≤ C‖(Π0v)× n‖∗,fb

‖Ψ‖ 1
2 ,f,

which implies

d−1‖Υ∂f(Π0v)× n‖− 1
2 ,f ≤ C‖(Π0v)× n‖∗,fb

.

Plugging this and (6.45) in (6.47) leads to

d−1‖I0
f∂

(Υ∂f(Π0v)× n)‖− 1
2 ,Γk

≤ C[1 + log(d/h)]
1
2 ‖(Π0v)× n‖∗,fb

,

which, together with Lemmas 6.4 and 6.9, gives the desired result.
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