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MATHEMATICAL ANALYSIS OF ELECTROMAGNETIC
PLASMONIC METASURFACES*

HABIB AMMARIf, BOWEN LI¥, AND JUN ZOU?

Abstract. We study the anomalous electromagnetic scattering in the homogenization regime,
by a subwavelength thin layer consisting of periodically distributed plasmonic nanoparticles on a
perfectly conducting plane. By using quasi-periodic layer potential techniques, we derive the asymp-
totic expansion of the electromagnetic field away from the thin layer and quantitatively analyze the
field enhancement induced by the excitation of the mixed collective plasmonic resonances, which can
be characterized by the spectra of two types of periodic Neumann—Poincaré operators. Based on
the asymptotic behavior of the scattered field in the macroscopic scale, characterize the reflection
scattering matrix for the thin layer and demonstrate that the optical effect of this metasurface can be
effectively approximated by a Leontovich impedance boundary condition, which is uniformly valid no
matter whether the incident frequency is near the resonant range. The quantitative approximation
clearly shows the blow-up of the field energy and the conversion of the field polarization when the
resonance occurs, resulting in a significant change of the reflection property of the conducting plane.
These results confirm essential physical changes of electromagnetic metasurface at resonances math-
ematically, whose occurrence was verified earlier for the acoustic case and the transverse magnetic
case.
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1. Introduction. The study of the electromagnetic scattering by a thin layer
composed of periodic subwavelength resonators that can strongly interact with the
incident wave has received considerable attention recently for the possibilities of re-
alizing the full control of the reflected and transmitted waves [20, 49, 50, 30]. Such
thin layers of composite material, usually referred to as the ultrathin metasurfaces
in the physical and engineering literature, have a macroscopic effect on the scattered
wave although the layer thickness, or the size of cell structure, is negligible with re-
spect to the operating wavelength [26, 27, 35, 34, 16, 39, 40]. We refer the readers to
[48] for a systematic review of the electromagnetic metasurfaces and their potential
applications. Great effort has also been made recently by the mathematical com-
munity to develop a universal theory for a better understanding of the mechanism
underlying the metasurfaces. It turns out that these anomalous scattering phenom-
ena typically have a close relation with the multiscale nature of the subwavelength cell
structures and the excitation of various resonances. A systematic study was carried
out in [38, 39, 40, 41, 37] to understand the electromagnetic scattering by the per-
fectly conducting slab patterned with the subwavelength narrow slits under varying
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regimes and periodic patterns. It was shown in [43] that the scattering effect of a
novel metasurface made of periodically corrugated cylindrical waveguides can be ap-
proximated by smooth cylindrical waveguides with an effective metamaterial surface
impedance.

In this work, we consider the full set of Maxwell’s equations and investigate the
electromagnetic scattering from an array of periodically distributed subwavelength
plasmonic nanoparticles mounted on a perfectly conducting plane in the homoge-
nization regime where the period of the microstructure is of the same order as the
characteristic size of the nanoparticles but is much smaller than the incident wave-
length. Plasmonic nanoparticles such as gold and silver have unique optical capabil-
ities of confining charge density oscillations (localized surface plasmons) and hence
are popular and ideal choices for the subwavelength resonators in the electromagnetic
setting [44]. We shall see that even a thin layer of the plasmonic nanoparticles can
significantly influence the wave propagation pattern and our mathematical findings
may theoretically verify the possibility of the ultrathin electromagnetic plasmonic
metasurface.

It has been shown in [5] that at the quasi-static limit, a single nanoparticle can
exhibit the plasmonic resonances at some specific frequencies that are essentially re-
lated to the spectra of the Neumann—Poincaré operators. We refer to [5, 12, 10] for
a complete mathematical analysis of the plasmonic nanoparticles. In our case where
the nanoparticles are periodically distributed in the homogenization regime, we shall
prove that the anomalous electromagnetic scattering can result from the occurrence
of the mixed and collective plasmonic resonances, which are very different from the
case of a single plasmonic nanoparticle in free space. It is worth mentioning that
if the thin layer is made of normal dielectric materials with biperiodic conducting
inclusions covering a cylindrical body, a Leontovich boundary condition was derived
in [1] to approximate the effect of the layer. Such grating problems and boundary
layer effects have been extensively studied by matched asymptotic expansion tech-
niques; see, e.g., [15, 3, 2, 4, 24, 25]. Nevertheless, as we shall characterize, the
cell problem here is nearly singular at some frequencies if the nanoparticles are plas-
monic. In this case, the standard homogenization is not applicable and the effective
reflection coefficient (matrix) for the thin layer may blow up. Therefore, we must
seek new analytical tools for deriving the exact blow-up order and mathematically
justifying the validity of the approximation of the Leontovich-type boundary condi-
tions at the resonance frequencies. In the present work, we use the layer potential
techniques to study the reflection properties of electromagnetic plasmonic metasur-
faces and to provide a rigorous homogenization theory for our singular subwavelength
diffraction grating, which is more general than the framework recently proposed in
[11] for the Helmholtz equation. A similar technique was used in [6] to illustrate the
superabsorption of acoustic waves with bubble metascreens experimentally observed
in [36].

For our purpose, we shall introduce two quasi-periodic Green’s tensors for Max-
well’s equations with the vanishing tangential components and the vanishing normal
components on the planar interface, respectively, which further allow us to define the
corresponding quasi-periodic layer potentials. It turns out that both types of op-
erators with different boundary conditions are necessary for our new representation
formula of the scattered electric field (cf. (4.1)). We then perform the asymptotic
analysis and analyze the spectral properties of the leading-order potentials that can
be written as the sum of the periodic layer potentials and remainder terms depending
on the incident angle (incident direction). We shall prove that these incident angle-
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dependent remainder terms actually have no essential effect on the spectral structures
of the involved operators and the associated resolvents, compared to the unperturbed
periodic ones. This fact is crucial for the subsequent analysis for the blow-up of the
field and the technical calculations for approximating the scattered wave. The main
idea behind the calculations is that we first separate the propagative part and the
evanescent part of the scattered wave and then use the asymptotic analysis and the
various algebraic relations to compute the approximation of the propagative scattered
wave. All these facts make our arguments and calculations significantly different from
the scalar case [11, 6] and the single-particle case [5, 12].

We would like to stress that the assumption of the perfectly conducting half-
space is not physical in the range of visible and near-infrared frequencies. In practice,
a plasmonic metasurface typically consists of a thin subwavelength metallic grating
mounted on a dielectric substrate [33]. We will elaborate in section5 on how to
apply our newly developed mathematical framework to generalize the main results
obtained to the more realistic case of the penetrable half-space. Moreover, our results
and analysis in this work also apply to other important physical settings where the
involved physical scales, namely, the distances between multiple thin layers of plas-
monic nanoparticles, the incident wavelength, sizes of nanoparticles, and the period
of the lattice, are of very different orders of magnitude, such as

size of particle < period <« distance ~ wavelength or

size of particle < period ~ distance < wavelength.

Another important assumption that needs to be pointed out is that in our following
analysis, we consider the possibility of plasmonic nanoparticles possessing negative
permeability and showing a magnetic response. But in fact the natural metallic
(plasmonic) nanoparticle is generally nonmagnetic at optical frequencies. The recent
developments of the material science and the mathematical homogenization have made
it possible to design and manufacture the double negative composite medium and
produce artificial magnetism from dielectric structures [47, 31, 21, 17], although there
is still a distance to reach the nanoscale. For the sake of mathematical generality and
completeness, instead of only considering the negative electric permittivity, we allow
both permittivity and permeability to take the negative values.

The paper is organized as follows. In the next section, we describe our model
mathematically and introduce some notation and definitions. In section3, we in-
troduce the quasi-periodic layer potentials and derive the corresponding asymptotic
expansions, and then recall some basic results concerning the Neumann—Poincaré op-
erators and establish the resolvent estimates for the leading-order potentials. Section 4
is the main contribution of this work, devoted to the calculation of the far-field as-
ymptotic expansion of the scattered wave and a boundary condition approximation
under the excitation of plasmons. We shall end this work with some concluding and
extension remarks.

2. Problem descriptions and preliminaries. This section is devoted to the
basic setup and the mathematical formulation of the electromagnetic scattering prob-
lem. We shall write (z/,23) for x = (z1,79,23) € R® with 2/ = (21,22) € R?
and z3 € R, and I' := {z € R3|z3 = 0} for the reflective plane, and R} := {x €
R3| 4 23 > 0} for the upper and lower half-spaces. We denote by (e, ez, e3) the
usual Cartesian basis of R®. For a multi-index o € N3, we write x® = z{*z522$?
and 9% = 91105205 with 9; = 8/0z;. We shall always use B € R3 to denote a

C?-smooth bounded domain with a connected boundary and a characteristic size of
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(a) Array of nanoparticles (b) Cell structure

Fic. 1. Periodically distributed plasmonic nanoparticles D and the associated cell structure.

order one and use D := §B to describe a single nanoparticle. We denote by D the
collection of plasmonic nanoparticles periodically distributed along the lattice A%,

A = {Ré el R6 =nida; + nodas, n; € Z} s

in which aj, a are linearly independent vectors lying on I" with |a;| ~ |as| ~ 1. Then
we can write D = (Jgscps (D +R?); see Figure 1(a). For convenience, we shall simply
denote A' by A, and then we can see D = |Jgcp 6(B + R). We now define the cells
¥, Qin I and in Ri by

11
2—{36F;a—61al+0232, ¢ € (272>}, Q=% x(0,00),

respectively. We further assume that B is contained in  with a distance of order
one from the reflective plane T' (see Figure 1(b)), and the dimensionless quantity ¢ is
much less than one, since we are interested in the homogenization regime. For any
X € 0B, we have x = 6x € 9D. Then for a function ¢(x) defined on 9D, its pull
back ¢(X) := ¢(0X) = p(x) is defined on 0B. This convention is adopted throughout
this work. In particular, if we denote by v(x) the exterior normal vector of 9D, then
its pull back 7(X) is the normal vector of 9B. But we may also simply write v for a
normal vector without specifying its definition domain when no confusion is caused.
For the sake of exposition, we often refer to x, B, and 2 as the reference variable,
reference domain, and reference cell, respectively.

The explicit formulas for the electric permittivity €.(w) and the magnetic perme-
ability u.(w) of the nanoparticle may be available in terms of the Drude model and
the Kramers—Kronig relations [5, 10, 44]. However, in this work, we generally assume
that both u. and e, are complex numbers with Jmu., Jme, > 0 and may depend on
the frequency w of the incident wave. We denote the permittivity and permeability
of the background medium by ¢ and p and further assume them to be the constant
one after an appropriate scaling. Then the wave numbers k.(w) for the nanoparticle
and k for the background are given by

ke(w) = wy/ec(w)pe(w) and k = wi/ep = w.

We are now ready to formulate the scattering problem of our interest as follows:
V x E =ikupH in R3\0D,

V x H = —ikepFE in Ri\&D,

[vxEl=[vxH]=0 ondD,

e3x E=0 onI,

(2.1)
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where E— E* and H — H satisfy certain outgoing radiation conditions, ep := Xg2 \D+
gexp and pp = XR3\D + feXD with XRI\D and xp being the standard characteristic
functions. Throughout the work, we use [-] := |- — |+ to denote the jump across the
interface 9D and the subscripts & to denote the limits taken from outside and inside
D, respectively. The incident plane wave (E?, H') is given by
Ei — peikdx _ p*ez'kd*~x7 HZ —d x peikd'x —d* x p*eikd*~x’

where d is the unit incident direction with d3 < 0 and p is the polarization vector.
Here and in what follows we often use the superscript * to denote the reflection of a
vector with respect to T, e.g., d* = (d’, —d3) is the reflection of d. But the notation
* may have other meanings on different occasions, so we will illustrate the actual
meaning of * whenever it may cause confusion. Denote by k = kd and k* = kd*
the wave vector and its reflection, respectively. We are interested in finding a quasi-
periodic solution (F, H) to the system (2.1), that is,

E(x+R%) =e*R E(x), H(x+R) =e*R H(x).

Hence we have the usual Rayleigh—Bloch expansion for the scattered field in the
domain above the layer of nanoparticles. As in [6], we impose the outgoing radiation
condition on the solutions to the system (2.1) by assuming that all the modes in the
Rayleigh—Bloch expansion are either decaying exponentially or propagating along the
xg-direction. Under the subwavelength assumption, the period of the lattice is of
order 0 and the scattered wave consists of only a single propagative mode in the far
field:

. T ! .
EF'" =F—FE'~ pTeZk @ oiksrs g x3 — oo (for some polarization vector p”).

One of the main tasks of this work is to determine the structure of p” (cf. (4.59)).
The remaining part of this section is devoted to introducing more notation and
definitions and recalling some basic results concerning the surface differential opera-
tors and function spaces that are frequently used in the paper. For s € R, we denote
by H*(0B) and H#%(90B) the usual Sobolev space of order s of scalar functions and
tangential vector fields on OB, respectively, and denote by H§(OB) the zero mean
subspace of H*(0B). Also, the Sobolev spaces H*(B) and Hj (2\B) are needed,
as well as the trace operator v : H%(B) — H* Y/2(9B) for s > 1/2. We intro-
duce the surface gradient Vyp and the surface vector curl (written as curlyg) in the
standard way [46], which map H'/2(9B) to H;l/Z(aB). Their corresponding adjoint
operators are the surface divergence Vyp- and the surface scalar curl, i.e., curlyg:

HY*(0B) — H~Y/2(dB). And it holds in H~'/2(9B) that
(2.2) ker(Vap) = ker(curlpp) = R.

The Laplace-Beltrami operator Agp := Vyp - Vo = —curlchJrlaB shall also be
used. For a vector field v € H . 1 2((9B), we will often need its tangential component
r(u) == v x u. It is easy to check by using the definition and duality relations that
each of the following identities holds for a suitable function ¢:

(2.3) ctfrlaBgo = —r(Vapy), curlpspp =—Vap:(ry),
(2.4) Vo -curlygpp =0, curlppVapp = 0.
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Moreover, we introduce the spaces H(curl, B), Hj,(curl, Q\B), H(div,B), and
Hioo(div, Q\B) of (locally) square integrable vector fields with (locally) square in-
tegrable curl and divergence, respectively. We will frequently use the normal trace
Yn(u) = u-v|sp, the tangential trace v (u) := v X u|pp, and the tangential component
trace m(u) := (v X u) X v|gp for appropriately smooth vector fields w. Indeed, 7, Y+,
and 7; can be extended to linear continuous mappings from H(div, B) to H='/?(dB),

H(curl, B) to H;l/g (div,9B), and H(curl, B) to H;I/Q(curl, 0B), respectively, where

Hy* (div, 0B) = {ee Hy*(0B); Vop - ¢ € H3(0B)} |

H;?(curl,0B) = {ga € H;%((’)B); curlppp € H*%({)B)} .

It is known that HT_1/2(cur1, O0B) can be identified with the dual space of HT_l/2

(div, 0B) with the duality pairing (¢, ¢) := faB ¥ - pdo for smooth vector fields v, ¢
(cf.[45, 18]). For f € H'(B), we have

(2.5) Vapyo(f) =m(Vf).
Similarly, it holds for u € H(curl, B) that

(2.6) curlppme(u) = 1 (V x ).

For our subsequent analysis, the Helmholtz decomposition of H,. 1/2 (div, OB) is useful

(cf. [18)):
(2.7) Hy? (div,0B) = Vo HE (0B) ® cutlop HE (9B) .

In this work, we denote by ® the tensor product operation of two vectors, i.e.,
given two vectors a € R” and b € R™, a®b is an n x m matrix given by (a®b);; =
a;b;, and let vector operators act on matrices column by column. For any two Banach
spaces X and Y, we write by £(X,Y) the set of all linear continuous mappings from X
to Y, or simply by £(X) if Y = X. We write ||-|| , for the norm defined on the space
X and x«(-,-)x for the natural duality pairing between X and its dual space X*.
However, we may simply write ||-|| and (-,-) without specifying the subscripts when
no confusion is caused. We will not identify the dual spaces of Hilbert spaces with
themselves, instead we always regard them as the subspaces of distributions. Hence
all the adjoint operators in this work are introduced by their natural duality pairings.
We end this section by introducing the expression z < y, which means z < Cy for
some generic constant C. If z 2 y and ¢ < y holds simultaneously, then we write
TRy

3. Layer potential techniques. Before considering the scattering problem, we
introduce in this section the quasi-periodic layer potentials and present some analy-
sis tools. We shall first define the quasi-periodic Green’s tensors satisfying certain
boundary conditions and derive their asymptotic expansions with respect to . Then
we study the associated layer potentials, as well as their asymptotics. After that, we
turn our attention to the spectral properties of the leading-order potentials and the
resolvent estimates of the Neumann—Poincaré-type operators. These results will be
fundamental for the far-field asymptotics and approximation error estimate conducted
in section 4.
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3.1. Quasi-periodic Green’s tensors and basic properties. Following the
notation in [6], we start with the scalar quasi-periodic Green’s function G]; with
respect to the lattice A, which is the solution to

(3.1) (A+E)GE(x) =Y e or(x) = e* Rop(x), ke C with Imk >0,
ReA ReA

and satisfies a certain outgoing condition. In the distribution sense, G:ﬁ is well-defined
and given by

(3.2) GY(x) =) " BGMx,R),
ReA
where GF(x,y) 1= —Z;k'::;" is the fundamental solution to the Helmholtz operator

A+k? in the free space. We further define G; (x,y) :== G;(x—y). For our interested
subwavelength diffraction grating problem, we consider the quasi-periodic Green’s
function G;s (x) with respect to the lattice A°. With the help of the reference variable
X, we easily observe the following useful scaling property:

a7 1 ; / ~
(3.3) i)=Y | e R Gh(x, RY) = 52 NG ER),
RIEAS ReA
that is,
1 ~

Let A* be the reciprocal lattice of A (cf.[42]) and 7 be the volume of the unit cell ¥ of
A. Then the explicit formula of G¥ in the homogenization regime, i.e., [k| < 7 ~ 1,
is available in [6, Lemma 3.2].

THEOREM 3.1. Let k € C be the complex wave number with Jmk > 0. Suppose
that |k| is small enough; then the quasi-periodic Green’s function G; has the following
representation:

(3.5)

G (x) = ik @' ~ikalasl _ L 3 1/ : HE+k) 2! =TT —Relaal
27—k3 TEEA*\{O} |£+k| _k

where \/z is viewed as an analytic function defined by /z = |z|'/?e'®8%/2 for » €
C\{—it,t > 0}. In particular, when k =0, it holds that

0y |3l 1 1 e el fas|
(3.6) Gy(x) = 5. " 3. Z me e .
£eA*\{0}

We readily observe from the representation formula (3.6) the symmetry property
of GY:
#

(3.7) Gy (+a', £a3) = Gy (2, x3) .

A direct application of Taylor’s expansion gives us the asymptotics of G‘;ﬁk in terms
of ¢§:
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(3.8) G = 551 + Cop(x) + Y (58)" G ()

We remark that each term G, x in the expansion (3.8) can be computed explicitly
(cf. [6] for more details). In particular, for the leading-order term, we have

/

kslag| — K -a" 1 T e el K -x

3.9 G = - i [€]-]z3] :GO _ ]

(3.9) Gox(x) oo 5 > ae e % (x) S
geA~\{0}

Recalling from the definition of G‘;ﬁk that

(A+52k2 Gtsk Z eztsk' ' X
ReA

we obtain, by substituting the expansion (3.8) into the above formula,

Z’ = nipn
AGo 4(x) + ok (AGL#(X) + 20137) + ;5 K" (AGy 4 (%) + Gn2,4(x))

_Zaﬂknz (id’ - x) L) sr(x),

ReA
which implies (with notation G_1 » = ﬁ)
(3.10)
AGo4(x)= Y Or(x), and AGy, 4(x) + Gpop(x)= Y wh( ) forn>1.
ReA ReA ’

The quasi-periodic Green’s functions with Dirichlet and Neumann boundary con-
ditions are defined by

(3.11)
Ge(x,y) = Gh(x—y) - Gh(x —y"), GR(xy)=GE(x-y)+Gh(x-y"),

respectively. Then it directly follows from (3.8) that

(3.12) Gl y) = D (Ok)"Gre/m(x,y),
n=-—1
where G, /m(X,y) are given by
(3.13) Grem(X,y) i=Grp(x—y) FGrp(x—y") forn>-1.

In particular, G_1. = 0 and G_1 ., = i/(d37). For ease of exposition, here and
in what follows, we use the subscript e/m to include two cases, e.g., (3.12) actually
represents two equations, obtained by replacing e/m by e and m, respectively, in
(3.12). Similarly, we shall also use m/e frequently. We note that dg(z’ —y’) = 0 holds
for all R # 0 and x,y € B, and then obtain from (3.10) and the definition of Ghe/m
(3.13) that

(3.14)
AC:O,e/m(xa y) = 50(X - Y) and AC7v’rz,e/1‘11(xv Y) + Gn—Z,e/m(Xv Y) =0 forn > 1.
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The above recurrence relations shall be used in the calculations for the asymptotic
expansions of layer potential operators. According to the reciprocity (3.7) of the
periodic Green’s function, we have

Gm(x,¥) = G (v, %).

Combining the above observation with (3.9) and (3.13), we readily see the reciprocity
does not hold for Gy, (x,y) anymore since

Ko~ y)

yalt —
(3.15) Gom(x%,y) = G (%) far

)

while G (x,y) still satisfies the reciprocity due to
(3.16) Goe(x,y) = GI(x,y)

Another important difference between G2¥ and G°% worth mentioning is that there is
a singularity O(671) for G%% as 6 goes to 0 (cf. (3.8) and (3.11)). This fact, together
with the nonsymmetry of Go 1, (x,y), makes some of our subsequent analysis technical

and difficult. We finally introduce the conjugate kernels G‘Qe /m of Goe/m»
(317) éo,e(xa Y) = GO,e(yv X) = Gg(x7 y) )

. k(! — o
(3.18) Gom(x,¥) = Gom(y,x) = G(x,y) + & =)

k‘3T ’

for our later use, by setting é07e/m(x,y) = Goe/m(y,X)-
We are now ready to introduce the electromagnetic Green’s tensors:

1
(319) Gg/m(xa y) = (1 + kava) H}:/m(x, Y) ’

where the matrix-valued functions Hi‘/m are given by

(320) H]c(/m(x7Y) = |:C;o1;/me17 Gle(/meQ’ Gﬁl/ee:))] (X, y) .
It is easy to check that GIQ‘/m solve Maxwell’s equations,

Vi X Vi X G(l:/m(x,y) - szé‘/m(x,y) =— Z eik/'RéR(x —-y)ls,
ReA

and satisfy the boundary conditions,
e; x GE(x,y) =0 and e3 - Gk (x,y) =0 forxeT, yeR3,

respectively. As a direct consequence of (3.12), we have the asymptotic expansions of

Hgl/‘m:
(3.21) I (xy) = D (6k) "I, c/m(X,y).
n=—1

Then we readily see, from the above formula and the definition of G}S‘/m in (3.19), the
following expansion:
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o0

1
(322) Gg?m(xv y) = %G—l,e/m(x, Y) + Z((sk)nGn,e/m(Xa Y) ’

n=0
where G, o/m(X,y) are given by
Gn,e/m<xa Y) = Hn,e/m(xa Y) + vxvx . Hn+2,e/m(x7 y) .

We end this subsection with some basic but very useful observations:

0 0 o 0
Gk=_—_2GKi=1,2 — Gk=_-_~Gk

8:&- N 8yi e(Z ’ )7 8.%3 © 8y3 m?

9 gx — aG‘r;(z':l,z), O ge 9 G¥,

dx; ™y
which lead to the following reciprocity:

(323) (VX X H]c(/m(x7y))T = vy X H;/c(xv y) .

Jxz ™ 0ys3

Here the superscript T' denotes the transport of a matrix.

3.2. Integral operators and their asymptotics. With the help of the Green’s
tensors introduced in the last subsection, we define the following vector layer potentials
with the density ¢ on 0B [29, 22]:

1
2

A;}_’C/m : Hy. % (div,0B) — H(curl, B) or Hj,.(curl, Q\B),
p— AR o mlel(x) = [ T, (5, y)e(y)do ;
OB
M oy Hy ? (div,0B) — Hy * (div, 9B),

o M nlel) = [ vl) x Vix Ty ()l o
L5 ot Hy ® (div,0B) — Hy ? (div,dB),
P L o] (%) = v(x)
x (K2AL ol + VK ol Vo - (%))
Further, we define the single layer potential,

SE e/m H™2(0B) — H?(dB),
o S el (%) = /8 G y)ely)d.

the double layer potential,
K% o) s H2(0B) — H(9B),

0
pr— Iclg,e/m[@} (X) = / TGg/III(X7 Y)<P(Y)d0’,
oB OlVy
and the Neumann—Poincaré operator,
" 1 1
Ke/m: H 2(0B) — H™2(0B),
0

o — Ko mlel(x) = G (%, y)p(y)do .

OB an
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These integral operators will be used for the integral formulation of the scattering
problem (2.1) and the further mathematical analysis of the integral formulation in
section 4. It follows from the definitions that Sg,e and S}%,m satisfy the Dirichlet and

Neumann boundary conditions on the reflective plane I', respectively, while .Alg)e and
Alf;,m satisfy the boundary conditions:

es x A Jo](x) =0, e3- A [¢](x) =0 onT.
When k = 0, we omit the subscript B in all the potentials defined above for simplicity,

e.g., we write S m fOr S Bre/m’ We emphasize that all of the above definitions depend

on the lattice A and the domain B in the unit cell Q. For the scaled lattice A° and

the domain D, the associated operators can be defined similarly.

It can be shown that V x AB o/m defines a bounded linear operator from H . 1/2
(div, &B) into H (curl, B) or H(curl, Q\B) (cf. [22]). Since Ge/m( x)—G*(x) is a smooth
function defined in €2, the trace formulas related to .AB o/m follow directly from the

standard results [7, Lemma 2.96],

(324) (VX V><"43 e/m)'i *:F +MB ,e/m>
(3.25) (VX V xVxA¥ o/m)|E £1]§7e/m.
Moreover, it holds for Sg o/m that

0 .
(3.26) (ay S§ C/m> |+ =+5 +’C11; e/m

Recalling the asymptotic expansions (3.12) and (3.21), we may define the potentials
Ape/m and Sy, ¢/m associated with Tl ¢/ and Gy e /m, respectively, and K, ¢/, and
S /m 85 well. Then we can directly see that the following expansions hold for any

density ¢ on dD:

oo

(3.27) A o /mlPl(x) = 0AR/mPIX) = D 5T Ay o/m[P)(X)
n=—1
(3.28) S o/mlP](¥) = 08 ml@IX) = D 0" E"Sp e /m[F)(X)
and
ICD e/m Zénknlcne/m[sz]( ) ICII()*e/m Z(snknlcne/m ( )

Furthermore, by the above asymptotic expansions, arguments sumlar to the ones for
[12, Lemmas 3.1-3.2] yield the following two lemmas.

LEMMA 3.2. For ¢ € Hp 1/2(d1v oD), /\/lD e/m[gi)] has the following asymptotic
expansion:

(3.29) M e/l @1(0%) = MFe)alB1(R) = D (0k)" M em[d] (%),

where

My o/mldI(®) = /a ) % Ve X Ty (& F)0F)e . 0> 0.

has an uniform bound in L(H 1/2(d1V 0B)). Moreover, M, o/m s analytic in é.
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LEMMA 3.3. For ¢ € H;l/g(div,GD), £k e/m[gb] has the asymptotic expansion:

LY e /ml@1(6%) = L5 /1 [0](6%) = Z:l M (K™ = k) Lo m[B](R)

where

En,e/m[(g] (i) =vX An—Q,e/m[Qb](i) +vX vsn,e/m[vaB : ¢](>~() .
In particular, it holds that

£MM®=—%;®xAgﬁww6®w

+ U)XV [ G1e(X,5)Vos - $(F)do,
OB

L1uld)) =~ @ x [ (7.0)" Vo - 9F)de

+vE) xV [ Gim(X §)Von - 6(F)do.
oB
Moreover, Ly, ¢/m has an uniform bound in E(H;l/2 (div,0B)), and L%, o/m i analytic
ind.

*

o/m for the leading-order

For the sake of simplicity, we write Mc/m, Ke/m, and K
terms in the asymptotic expansions of MéBke /o IC5Bke /o and ICéBk’ejm, respectively. We
emphasize that we only need the surface divergence of density 5 to evaluate L1 ¢/m [(E],
which immediately implies

- 1
curlpp Hy (0B) C H C ker(Ly ¢/m) ,

where H denotes the divergence-free space:
_1
(3.30) H={p e Hy ' (div,0B); Vo ¢ =0} .

This observation shall be used repeatedly in section 4 to simplify our calculation. For a
better understanding of the terms involved in the expansions, we present the following
lemma.

LEMMA 3.4. For any 5 € H;l/Q(div, 0B), it holds that

(i) VoB - Lype/ml®] = Vap - (v X Ay_2.e/m)[@] for n > 1, in particular, Vop -

El,e/m[qS] =0; _ _ _
(11) VaB : Mn,e/m[(;ﬂ = 7]C:L7e/m[v83 . ¢] — v An—Q,e/m[Qﬂ fOT n > 1; while fOT
n =20,

Vos  Memld] = =K% )/m[Vos - 3]

Proof. We first note that VS, c/m[Vap ¢] € H(curl, B). Then by the formulas
(2.3) and (2.6), we see that Vap - (v X VS, c/m[Vap - ¢]) = 0, which, along with
Lemma 3.3, yields the property (i). To show the second property, again by (2.3) and
(2.6), we obtain

VBB . Mn,e/m[%] = VBB . (V X ﬂ-t(v X An,e/m))[gﬂ
= curlopm(V X Ay o/m)[@] = 1 (V X V X Ay o/m) (6]

= _K:,e/m[vaB . d)] - V(i) . ‘An72,e/m[¢] 5 n > 1.
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We should be more careful to deal with the case n = 0 due to the jump formulas (3.24)
and (3.26). A calculation similar to the one presented above gives us Vg ~Mc/m[¢] =
K;‘/m[VaB - Bl |
Before we move on to the next subsection on the spectral analysis, we further
investgate the leading-order terms and prepare some tools for later use. By the
formulas (3.15) and (3.16), we find that K is identical to K¢* with the adjoint
operator given by K. = KY. Nevertheless, K}, can only be identified with K%*

Ho_l/2 (0B). We remark that ICp, here is not the adjoint operator of K. Indeed, the
adjoint operators of K, and Iy, are defined by

(3

)= [ Gonby)ede and Kilel6) = [ ST Gonxy)ely)do
0B aB OVx

for smooth functions ¢, respectively; see formulas (3.17) and (3.18) for the definition
of Gge/m- To find the adjoint operator of M,/y,, we introduce the conjugate matrix-

valued function II, /m Of T/,
He/m(xa}’) = [GO,e/melv G’O,e/me% Go,m/ee3] (X, Y)a
and the associated layer potential Me Jms

Mojmlil(x) = /8 V) X Vi Tl (k.33

which is a bounded linear operator from H. _y 2(div, 0B) to Hp 1 2(div, 0B). Then,
the adjoint operator of M, /n,, denoted by Me/ , is given by

(3.32) M= rMm/er : H;%(curl, 0B) — H;% (curl,0B).

e/m

To see this fact, by a standard density argument, it suffices to verify it on the smooth
function space. Indeed, using (3.23) and Fubini’s theorem, we have

(W, Mejml] /8 ) /8 ) ) X Vs X (e /m(x, y)6(y))do(y)do (x)
- / / (Ve % Toyun(x, )T ($(x) X (%)) - $(y)dor(y)dor ()
OB JOB

= / (Vy X M ey, %)) ($(x) % v(x)) - ¢(y)do(x)do(y)
OB JOB
= <TMm/eT["/1]a ¢>

for smooth functions ¥ and ¢. Similarly, we can get the adjoint operator ./\/le m

Tl/Z(curl7 0B) — Hp, 1/2(curl, 0B) of Me/m:

(3.33) M

e/m

=1 Myl -
Recall that we have proven in Lemma 3.4 that it holds that

(3.34) Vob  Memlel = =K% mlVos - o] = =K [Vos - ¢]
/ /
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where we have utilized the fact that Vgp - ¢ is from the space H,, (8B) on which
Ke/m and IC ., are identical to each other. By exactly the same arguments, we obtain

(3.35) Vo - Memlp] = —K2/mlVon - 0] = =Ko [Vos - ¢].

Furthermore, taking the adjoint on the both sides of (3.35) and using (3.33) allow us
to see

(3.36) M jecutlyp = curlopk?),,

3.3. Spectral analysis of integral operators. In this subsection, we are going
to consider the spectral properties of Neumann—Poincaré-type operators, which is
essential for the subsequent analysis for the singular behavior of the scattered field.

Let us start with the analysis for the periodic Neumann—Poincaré operators. Con-
sidering the single layer potential S°, | it is easy to observe that Sg/m : H'/2(0B) —

e/m’

H'/?(9B) is self-adjoint, i.e., (1), Se/m[¢]> (S, /m[w] ¢), and the Calder6n identity

e

(3.37) S Ko = K/nSe/m

holds in H~1/ 2(0B). Nevertheless, since 89 is generally neither injective nor invertible
on H-Y2(9B), the standard symmetrization technique (cf.[7, 9, 11]) via Calderén
identity (3.37) cannot be applied directly to symmetrize the operator K9,.

Before proceeding to remedy the aforementioned difficulty, we sketch the proof of
the claim that S is injective on H~'/2(9B), while S is injective only on H(;l/z (0B)
and the dimension of the kernel of SO in H~/2(9B) is at most one (under the
assumption that OB is connected), for the sake of completeness. Some technical
estimates shall also be useful in section 4. For this, we first observe the far-field
behavior of Sg/m[(b] from (3.6), i.e., it holds for ¢ € H~'/2(9B) and large enough z3
that

(338) Sl =coom(@) + Y ﬂ L e jm(@)eiE™ keS|
£eA\{0}

where ¢¢ o/ for & € A*\{0} are linear functionals on H~1/2(9B), and in particular
the coefficients cg o(¢) and co m(¢) are given by

(3.39) we(@) == [ uo)doly). (o) = Zo.1).

T

Then, by using integration by parts, we have

082, (4]
e/m
/EXW,L)WS‘S/ |dx— /qs e/m da—i—/EX{L}aV .Sg/m[qb]do,

which, combined with (3.38) and (3.39), implies that, by letting L tend to infinity,

(3.40) / |VS[¢] =— [ ¢-S%¢ldo >0
oB

holds for all ¢ € H=/2(dB). If 8 is replaced by S in the above formula, then (3.40)

holds only for ¢ € Hal/z(aB) We further see from (3.40) that if S?

o/m|¢] vanishes,

then VSg/m[gb] must be zero, which yields that ¢ is also zero by the jump formula
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(3.26). Hence we can conclude that SO is injective on H~'/2(0B) and SY, is injective
only on H, 1 2(83). As a consequence of the fact that the orthogonal complement of
Hgl/Q (0B) in H=/?(9B) is a one-dimensional space, we know that the dimension of
the kernel of SO in H~1/2(0B) is at most one.

A standard approach [7] to overcome the difficulty that SY may not be invertible
on H~Y2(dB) is to consider the bounded operator Ae/m H=2(dB)xC — H2(dB)x
C defined by

Ae/m((rba a’) = (Sg/m[(yb] + a, <¢’ 1>) )

which can be shown to have a bounded inverse. In fact, since the Fredholm index is
stable under the compact perturbation and Sg m 18 @ Fredholm operator with index
zero, we can conclude that the operator Ay, is also Fredholm with index zero. Hence
it suffices to prove the injectivity of A/, to establish its invertibility, which follows
from exactly the same proof as the one for [8, Theorem 2.26]; see also [32, 13]. Then we
can prove that S? o/m 18 invertible if and only if Se/m[gag/m] # 0 (cf. [13]), where cpe/m is

the eigenfunction of IC * associated with the eigenvalue 3, satisfying (<p0/ , 1y = —1.
We define

SO [w] o {Sg/mW] if <w’ >:
e/m -

1 if ¥ = Lpe/m.

Then S°

e/m

identity

is a bijection from H~/2(dB) to H'/?(0B), and the generalized Calderén

S

O,
C/m’Ce/m ’C

e/m c/m

holds. This allows us to define two new inner products (equivalent to the original
one) on H~/2(dB):

(& V)nz,, = — (9, Sepmlt]) -

We denote by ’H* o the space H -1/ 2(0B) equipped with these two new inner products,
respectively. T hen we can symmetrize IC -, as follows.

LEMMA 3.5. For a C?-smooth bounded domain B with a connected boundary, we
have as follows:

(1) K%* “is compact and self-adjoint on the Hilbert space H*

e/m e/m"*
(ii) Suppose that {(\ e/m, gai/m)}j>0 are the eigenpairs of ICC/m with )\e/m =1 and
normalized eigenfunctions: ||g0e/m||7-[:/m = 1; then )\j/m €(—3, i forj>0

with )\e/m — 0 as 7 — o0.
(iii) {goj/ }izo forms a complete orthogonal basis on H7, with 1y, = Hp /., @
{neg

{@j/ Fizo-
(iv) The following spectral decomposition holds:

" u € C}, where H; o/m 18 the zero mean subspace of HZ/m spanned by

(3.41) KO0 = SN (6,6 m)w/ G for ¢ € He
j=0 e/m
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Similarly, we can define the inner products on H'/2(9B) by
S0 -1
7< (Sg/m) W)], ¢)>

and denote by Hc/p, the Hilbert space H 1/2 (0B) equipped with these two inner prod-
ucts, respectively, both of which are equivalent to the original space. Note that Sg m

is a unitary operator from M, to He/m, hence {g’g/m

i1}i>0 forms an orthonormal

[pil}izo

basis on H, /. We remark that Sg/m[goj}, j >0, are also the eigenfunctions of ICg/m.
We are now ready to consider the leading-order terms K} /m and Ky, in the

expansions of ICgf’e*/m and IC‘SBlfe /o which can be regarded as the corrections of ICg‘/:n

and ICS m due to the incident direction d. In fact, recalling the definitions of K¢/,
and K7 and using formulas (3.15) and (3.16), we obtain

1
(3.42) Ke=K%, Kul¢] =K + @W V1),
3.43 Kt = K0 (el = k0~ LV

(' ) e e ) m[¢]_ m d37’ <¢a>

Hence the spectral structure of K can be completely characterized by Lemma 3.5. In
the following, we shall only pay attention to the operator ¥ . It turns out that the
spectra of ICf, has nothing to do with the incident angle (or d) although there are
remaining items in (3.42) and (3.43) involving d.

We next introduce some standard notation and present several spectral results.
For a compact operator K, we denote by o(K) its spectrum set and by (A — K)~*
its resolvent operator with A € C\o(K) being the regular values. For a point p and a
set F' in the complex plane C, we define their distance by d(p, F') := infsecr [p — q| .

THEOREM 3.6. The operators K}, and K%* have the same spectra. For \; €
o(K:)\{0}, we further have dimker(\; — K7) = dimker()\; — K%*).

Proof. It is known that K} is a compact operator with the adjoint operator
Kum; see (3.31). Tt then follows from Gauss’s lemma (cf. [28, Proposition 3.19]) that
Kwm[1] = 1/2 holds, which implies that 1/2 is also an eigenvalue of K* . Combining
this with the fact that K, = K%* on Hy */*(0B), we have o(K%*) C o(K?,). Suppose

A € o(K5,)\{0,1/2} and that ¢ is the associated eigenfunction; then we obtain, by
using Ky, [1] = 1/2, that

1
0= / (= K)ldldo = (A= 3) [ ada,
OB 2/ Jon

which further yields ¢ € H51/2(03). We thus have o(K%*) = o(K)) and the desired
result follows. |

We next consider the spectral decomposition of £, and Ky, and the corresponding
resolvent estimates. Suppose that ¢ € H} has the following decomposition with
respect to the orthonormal basis {¢;};>0 given by the eigensystem {(A;, ¢;)};5, of
KO -

(3.44) = (& i)y ©5-
)=0

J
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Here we have omitted the superscript m of (A, @) for simplicity. By writing the

Fourier coefficients (¢, ;)3 as $(j) and using Lemma 3.5, Theorem 3.6, and the
formula (3.43), we can derive

K] = B0Vl + 32 6005 = 900) 0 + ZM) +3 66

(3.45) Zw )i + (0 wa

Where the constants {LJ ., are obtained by applying the decomposition (3.44) to
d37— <9007 1>

d v 0
" dar ———(¢0,1) = Z Ljpy -
PROPOSITION 3.7. For the operators ICe/m, the following resolvent estimates hold:
[0kl 5V vy, £ e H-don)
; o(K:m) 2 .
o Hom Ao (K)) /

Proof. The resolvent estimate for K} follows directly from the fact that K is a
compact self-adjoint operator on H}. For K%, considering the equation (AT —Kf))[¢] =
f, we obtain from (3.45) that

oo

Z()‘_)‘) ZLJSDJ Zf

Jj=0

For A ¢ o(K%*), () can be uniquely determined by

v s o fG) 60y fG) (0 |
$(0) = _%f(O), o) = Y —/\_/\j+(A_Aj)(A_% for j>1
Using the above formulas, we then derive

11l (1) _ g, i

|
1Dl S v+ p S -
Ao (K)o (KN g = 5] T (L o (k7))
For convenience, we shall define 9)(j) := (@/},ggl[gpj])ﬂm for ¢ € Hy,. Then we can
write the following decomposition:

o0

(3.46) U= (j)Shles]-

Jj=0

Again we have omitted the superscript m of ()\;-n, <p§n) for simplicity. Using the above
decomposition and arguments similar to the ones for the above proposition, we can
obtain the resolvent estimate of K /p,.

PROPOSITION 3.8. For the operators K¢/, the following resolvent estimates hold:

llgll .
Po/m A€ C\o(Keym), g€ H?(OB).

| = Kepm)” o S A (KD])

]
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Proof. We only prove the estimate for K,. It follows from the formulas (3.42)
and (3.46) that

Knlv]= D _9()AiSnles] d?,LT (=d" V', 3)0z,9(5)
j=0 j=0
=D Bi)NShle] = > ().
j=0 j=1

Considering the equation (Al — K;y)[¢)] = g and using (3.46), we have
O~ A)EOSlp] + 3 i) = 30) + 3 5l
n=1 n=1

For A ¢ o(K2), 1)(n) can be uniquely determined by

(oo}

Il
QQ(

=1

<.

)\ - % n=1
1 — g(n)
= ( O — n
Then we can obtain the desired estimate:
HQHHm llgl Hom ||g||7-tm
191154, + S 0

S 0o (K5)) T Ao RN A= 1 S (o (K8))

The above spectral results suggest to us that in most cases, there 1s no need to

distinguish between K./, and ICe > 8BS well as between K} o/m and K% /m, since they

have the same spectrum and have the same resolvent estimates. We are now in a
position to study the spectral structure of the compact operator M, /m (see [22, p.

208], and also [12, Lemma 2.3], for the compactness). For each u € H;l/z (div,0B),
we recall the Helmholtz decomposition (2.7) to write it as

(3.47) u = Vapu® + curlypu®

with two functions u™ € Hg/Q(aB) and u® € HS/Q(OB). We shall adopt this nota-
tion throughout this work and may not always specify the subspaces Hg/ 2 (0B) and
Hé/ 2 (0B) when we use u® and w®. By utilizing the invertibility of the Laplace—
Beltrami operator Agp : H3/2(6B) — H_1/2(8B) and the i;werbe mapping theorem,
3/2 Hl /2

we obtain an isomorphism between H,. 12 (div,0B) and H| via the decom-

position (3.47), which further induces an equivalent norm on HT (dlv7 0B):

(1) (2)
191,13 e om = 18950 -1 o, + 19713 )

THEOREM 3.9. The spectra U(Me/m) and J(Mg/m) of the operators Mg/m and
M /m are given by

(3.48) 0 (Mejm) = 0(M),) = ( o(Kem) UJo (’C?njen \{ B %’ %}
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0
e/m

is similar and even simpler. Denote by F,/n, the set in the right-hand side of (3.48).
Define

Proof. We shall only consider the spectrum of M/, as the analysis for M

o 0, 2 o 0,%
Ué/m = Fe/m ﬂJ(ICm/C), Oc/m ‘= Fe/m\cr(ICm/c) .
Since M/, is a compact operator, it suffices to consider the equation, for a given
A € C\{0},
(3.49) (Al = Me/m)[0] =0,

1

and prove that the above equation has nontrivial solutions if and only if A € o, /m

U Ug/m. By the decomposition (3.47), we can write

¢ = Vopd" + curlopd® .

For nonzero A € ag/m, we first note from (3.36) that
(3.50) (M — Meym)[eurlopd®] = Aeurlopp® — curlypKd,  [60)],

which directly implies that (), chlang(z)) is an eigenpair of M.y, if ¢ is an eigen-
function of IC?H Je associated with A. If A € og/m, we readily obtain, by using the
surface divergence for (3.49), that

(3.51)
Vo - (AT = Mepm) [6] = (M +K2%,) [Von - 6] = (AT + K25, ) [Boo®] = 0.

Since the eigenfunction of —ICS?;H associated with A € o2 /m has mean value zero and

App is an isomorphism from HS’/Q (0B) to Ho_l/Q(GB), we have that there exists a
nonconstant function ¢ satisfying (3.51). We then reduce (3.49) via (3.50) to

Aeutlypd® — curlypKd, o [62] = —(A] — Me/)[Vopd™] -

Taking the surface curl on both sides of the above equation, we then find that it is
solvable, by the invertibility of Agp and A\ — ngl = Hence, there exists a nontrivial ¢
satisfying (3.49) for A € ag/m. We next consider the last case: A € C\ (U;/m U ag/m).
By the invertibility of AI + ICS’;H on Hy 1/2 (0B), it is easy to derive that ¢ must be

chlan/)("‘) for some ¢®. Then the reduced equation from (3.50) reads
(M~ Kpye)l0®] = C

by the fact that Agp is invertible, where C' is some constant. Without loss of gener-
ality, we consider two cases: C' =1 or 0. If A = 1/2, we must have C = 0 in order to
guarantee the existence of ¢ due to the Fredholm alternative. In this case, we have
¢ = curlppg® = 0. If A % 1/2, we can find a constant C’ such that

(M =K,/ )[6” +C'1=0,

which yields ¢ is a constant. Hence, if A € C\(c,,,, J0Z,,), we can conclude ¢ = 0.
The proof is complete. 0



ANALYSIS OF ELECTROMAGNETIC METASURFACES ot

4. Approximation of the scattered wave.

4.1. Integral formulation and asymptotic analysis. With the help of the
analytical tools and results established in the previous section, in this subsection, we
shall first reformulate the system (2.1) as a boundary integral equation and then build
up a norm estimate of the associated solution operator, from which we can predict
the occurrence of the resonance phenomenon. To do so, we take advantage of the
vector potential .Alfj’e /m given in section 3.2 and assume that the electric field solution

to (2.1) has the following ansatz:

(1) 5 E 4V x AS 0]+ V x V x A 9], xeR*\D,
' eV x A% 6]+ V x V x A% [],  xeD.

It can be directly checked that the field E given above solves Maxwell’s equations in
both D and Ri\’D and satisfies the perfectly conducting boundary condition on T'.
Then by the jump formula (3.24), the original scattering problem can be equivalently
written as a boundary integral equation on 0D:
c k. k. 3
= 2—"—1 + McMD,m - Mll%,m ‘CD,C - ‘CIB,e o v x k"
¥ ikv x H'|

L, =L B (ee + DI + k2 (M5, — MY )

By setting x = dX, we obtain the integral equation defined on OB

¢ V(X) x E
(4.2) Wsp |~|=| _ .
P ikv(X) x H*
where the block coefficient matrix is given by
O Y - B )
5B =
ﬁlrff,s - 'C?n,a K25 + Ec/\/lisfzek,é - MéBk,e)

By Lemmas 3.2 and 3.3, we have the asymptotic expansion of Wjs p:

Ws.B = Z 0" Wh,B,

n=0
where
W et 4 (pe — )M (ke — k)L1o
0,B — )
(kc - k)ﬁl,m k2%1 + k2(€c - 1)Me
and
(k? - kn)Mn m (k?—H - kn+1)/~:n+1 e
WhB = ' ' forn>1.
- [(kgﬂ Y Lo K2(eck? — K Mo

We now investigate the invertibility of the leading-order operator Wy g. We
introduce two contrast parameters A\, (w) and Ao (w):

o 1+Uc(w) _
)‘u(w) = ma Ae(w) =

The main result of this subsection is given as follows.

14+ e.(w)
2(1 —eg.(w)) ”
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THEOREM 4.1. Suppose A, (w), Ac(w) ¢ 0(Meym); then Wo p is invertible with
the estimate:

) 1
(4.3) HWO’}?H Soa

where the two constants d, and d. are defined by
d, = min {d (/\M,J(ICQ)) ,d (/\E, U(IC?H))} ,
d*

o2

= min {d (A~ (K5)) . d (re, ~o(KD7)) )

Proof. Without loss of generality, we assume p. # 1, . # 1 (the analysis for
these two cases would be direct and simple) and consider the system

¢ (1 - Uc)f
Wo,B =
( (I—ec)g
for given f,g € H 1 2(div, 0B), which is equivalent to the following two equations:

(4.4)

()\#I — Mm) [(b} + ke = kﬁl,e[w] = fa he =k

1— K2(1— <)

L1m[d] + N — M) )] =g.

Similarly to the proof of Theorem 4.1, we shall reduce (4.4) to some easily solvable
subproblems by using the Helmholtz decomposition. To do so, we take the surface
divergence on both sides of two equations in (4.4) and then use the formula (3.34) to
obtain

(4.5) A+ K9 ) Vop -0 =Vap - f, (A+K2*)[Vor ¢]=Vor-g,
which, along with the fact that Vg -u = Aggu™® for any u € HT_l/Z(diV, 0B), yields
5 = Agh ( + KU (Bosf®) 0 = Agh (e + K99 (Rog™)

Then it directly follows from Proposition 3.7 that

1805
A0~ (%)

18089 13

Ainpd®|l.,. < T
8050 |3 S d(Ae, —a (K27))

s 120sY Pl <

We next solve the second component ¢®. For this purpose, we use the formula
(3.36) and write the first equation in (4.4) as

A — My) [eurlppd®] = cutlop (A — K2) [¢2)]

= f o Ifc - k,ﬁl,e[w] - ()‘#I - Mm) [VBB¢(1)] '

Then taking the surface scalar curl on both sides of the equation and using Proposi-
tion 3.8 give us

1, 12089l
+
oo (k) d(No (kD)) - d (A = (K2))
[Aopf Ml

i (Ao (K2)) - d (Aws = (KE7))

16113, S
He d(
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Similarly, we can compute @ and derive the estimate

o < 197, [PAVyzy [PV
16 g, < ¥ o
d(AE,a(iCOm)) d()\,“—a(lcn; )) ~d(Ag,a(IC31))
180592y
d(Ae, o (K&)) - d(Ae. (kD))
In view of all the above arguments, we actually have obtained the unique solvability

of the system (4.4) and the desired estimate (4.3). d

Remark 4.2. If we restrict the operator Wy g on the space H x H (see (3.30) for
the definition of HI), then Wy p shall have a diagonal form:

_|_

Bt T+ (pe — )M, 0
Wo.B = [ 2 .

0 k2et L] + k2(e. — 1)M?

Furthermore, Wy p is an isomorphism on H x H with the estimate HW(;zlaH < 1/d, if
Ay Ae ¢ cr(/\/le/m).

By the recurrence relation (3.14) and the elliptic regularity, we conclude that
Wh,p are uniformly bounded with respect to n. Then the uniform operator conver-
gence follows:

lim Wy g =Wy 3.
52% 5,B 0,B

Therefore, there exists a §o > 0 such that the following equivalence holds for § < dq:
[wis] =~ o]

Combining the above estimate with Theorem4.1, we directly observe that at some
specified frequencies (characterized by the spectra of M,/,), the solution operator
Wy 4 can blow up with the order (dyd:)™", which indicates the existence of reso-
nances.

4.2. Approximate scattered field. We are now in a position to approximate
the scattered field with a certain order. In view of the complexities and technicalities
of the detailed computations and relevant estimates, we split this section into three
parts to make it more readable. The main result of this section is given in Theorem 4.7.

4.2.1. Approximate kernels and densities. Motivated by the well-known
two-scale asymptotic expansion method in the standard homogenization theory [4],
we shall first separate the propagative component from the scattered wave in the
macroscopic scale. For this purpose, we observe from (3.5) that the quasi-periodic
Green’s function Gé‘/m consists of a propagating mode,

ik’ (2’ —y')—iks|z3—ys| + i ik’ (x' —y')—iks|z3+ys|

2’7’]€3 € 27']€3 € ’
k k

Ge/m - Gp,e/m'

can be defined in the same way as Hif/m in (3.20), by replacing

(4.6) G;e/m (x,y) =

and an exponentially decaying mode, G¥ Then the matrices

e,e/m =
k k
Hp)e/m and He,e/m
Gé‘/m with G;e/m and Glcf}e/m.

Alé,e/m[(b] = A‘;,e/m[¢] +A¥_[¢], where

e,e/m

We can further decompose the operator Alé)e /m [¢] as
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Ap e/m[(b] = /8B Hlpf,e/m(x7y)¢(y)do’7 Ae e/m[¢] = /33 chf,e/m(x’ y)¢(y)d0

We now define the propagative part and the evanescent part of the scattered wave in
the reference space by

(4.7) Ep(®X) =V x A, [9](%) + %v x V x AT [](X),

L9 XV x A[J](R),

(43) L) = V x A%, [0)R) + 5

for densities 5 and @Z satisfying the system (4.2), respectively. We may see from the

definition of Gk m that the structure of the evanescent wave is much more com-

plicated than the one of the propagative part. Fortunately, we only care about the
far-field behavior of the scattered wave, where the effect of the evanescent part can be
ignored. Indeed, we have the following approximation estimate, whose proof is given
in Appendix A.

LEMMA 4.3. Let L € RY be a constant such that |x3| < L for all x € D. Then
for small enough §, there exists some positive constant ¢ independent of § such that

sup : E"(x) — E; (%)‘ =0 (5_16_%> .

x€R2 X (L,+o00

To further derive an approximation of the propagative scattered wave ET,

need to approximate the propagative kernel Hgk /m and the two densities 1/) ¢5 We
consider the approximation of the mtegral kernel first, for which we define two linear

operators A? c/m[‘;] and Ap o/m, 0[¢] for ¢ € HT_l/Q(dlv, OB):

Ap c/m[$} (SE) = /6B[ge/mela Je/m€2, gm/eeB](y)g(y)da )
Ap e/m, 0[5](§) =e lék xAp c/m[g} (SE) )
where ge/m(¥) is given by

_ ~ _ - d/ Y
Y3 _ ¢ + Y _
T Tok3 dsT

We can see that ¢k %

the fact that

ge/m(y) are good approximations of G‘Sk t/m (cf. (4.6)), by noting
ie— 0Ky 7 d*-y

= O 6 .

2T5k3 27’51433 + 2d37’ + ( )

Then by a direct estimate, we arrive at the following result.

LEMMA 4.4. Let L be the same constant as in Lemma4.3. Then for small enough
5, w3 > L, and ¢, € Hy."*(div,0B), it holds that

[ (A%, — A%, 0) 18]G + 5|V x ¥ x (A% — 4 ) [51| )

52 {‘ 5 . }
H, 2 (div,0B)

H;%(div,aB)—i_ Hw‘
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To proceed with our approxmlatlon we deﬁ~ne the Green’s tensor G2¥(X) associ-
ated with the propagative mode g2 ( ) = ek X

(4.9) G (%) = XX + 55 V29K (%) = (I -d" @ d*)g)(X) -

(5%2
We remark that the matrix I-d*®d* is the projection on the orthogonal complement
of the linear space spanned by d*. With the help of (4.9), we readily have that

V X Ap m 0[5] V GékAgkm[g] ) V XV x Ap e, 0[777;} = (ak)2G£kAg§[$] )
which, together with (4.7) and Lemma4.4, results in the asymptotic estimate:
o 5k A8k 7] 26k 46k [ 7] 2
(4.10) E) =V x GE AL [0] + 0GR A o] + O(57) .

We next work out the leading-order terms of the densities qNS and zz For this,
using the Taylor expansion of the incident wave,

( )XEZ 5‘ﬁ| )xxﬁaﬂEl()
Lkl/(X Z Lku (X) x XPOPHI(0)|
we can have
IBI ~ IBI ~

(4.11) = Z S s, Z ar
by setting

o] . [ v(® xXPE(0)
(4.12) Wa. L'/;J &)= L’ky(sa) x XP9P H'(0)

We should note from (4.12) that ¢z and v still depend on ¢. Indeed, recalling the

expansion
oo

Ws.B = Z 0"Wh. =W — W, B,

n=0

we can expand W(;_}B, by the Neumann series in terms of 4,

(4.13) Wih = =Wy sWen) " Wop = 6" W sWes)" Wo i -

n=0
when §/(d,d}) is small enough. It then follows that

(4.14) Gp=> g, va=3 s,

j=0 j=0
We would like to emphasize that 5,37]- and {/;ﬁ,j are not simply determined by

v(X) x X808 E(0)
ikv(X) x xP9PH(0)

)

(W s Wr.BY Wy b [

since W, p still depends on 4. A more careful but direct calculation (expanding
W, g in (4.13) and combining the terms of order O(¢™)) is needed to determine
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the coefficients of the terms of order O(6™) in the Neumann expansion (4.13). We
shall write ¢ with |5| = 1 below as ¢; ¢ with j = 1,2,3 for simplicity. Then the
expansions (4.11) and (4.14) give us

(4.15)
3 3
¢= 50,0 + 550,1 +4 Z 53‘,0 +0(5%), 4= ?:/;0,0 + 51’/;0,1 + 52 {/;j,o +0(8%).
j=1 j=1

We remark that the error terms are measured in the space Hp. 1/ 2(div, 0B).
Substituting the expansion (4.15) into the approximate scattered field (4.10), we
readily obtain

ey — ok i+ 0kd -y =\ _/ U3
El®) =V xG (/8 . (¢,0) do— | Ddsesdo

B BT
Ts [~ N\ 1 Okd' - ~
+ 6k2Gk (/ —% (¢', o) do +/ Z+7_§k3y¢3e3d0'> + 08
OB OB

; 3 .
_ sk v Y Py t d-y (% t
—VxG’ (Tkg /83 (6.1 +z;¢j,0, 0) d0+/33 a (%0, 0) do
p

[ ) o)
=~

2k _@ T ! d-y (~
4 ok2GY (/33 . (%60, 0) da+/8B o (wo,o)gegda

(4.16) + = (120,1)3 e3 + 23: (Jj,o)g e3d0> +0(6%),

Tk3 Jon

where the superscript ¢t denotes the transport of a vector.

4.2.2. Computing the leading-order densities. This subsection is devoted
to finding the explicit formulas for the leading-order densities in (4.15), which is
necessary in order to further compute each term in (4.16). For this purpose, we first
see from (4.12) that the zero-order terms ¢z, and 1g0 in (4.14) satisfy the equation

5&0] & = l V(%) x KPP B (0)

(4.17) Wo.B LZB,O ikv(X) x xP0P H'(0)

which has been well studied in the proof of Theorem 4.1, where we can directly observe
the solution:

)

~ _ X) x XPOPEY(0
(1.18) pa = O = M) (0 )
~ B _1 (iv(X) x XPOPH(0)
(4.19) Yp0 = (Ae — Me) ( (=) +93) -
Here fg and gg are defined by
k— ke ~ k— ke ~
fp = 1_ Mcﬁl,e[d),ﬁ,o} 9B = m[&,m[‘ﬁﬁ,o] :
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In particular, by the representation formulas (4.18) and (4.19), for 8 = 0, we know,

from the facts that Vg - (v x E(0)) = 0 and Vg - (v x H(0)) = 0, that g0 and 0,0
are divergence-free. Further, by matching the terms of order 0(5) in both sides of

(4.12), we have that the first-order terms (;50 1 and 1/)0 1 can be completely determined
by the equation (once ¢0 o and 1/}0 o are solved)

Wos ["5 Wi [‘f’] o,
0,1 0,0
which can also be written componentwise as
(4.20)
. — k . 2 _ 1.2 -
(A — Mun)[o,1] + T [P0l + 1= Nch,m[%,o} +9 ™ Ls,e[th0,0] =0
(4.21)
ke —k ~ k2 — k? ~
m"h mlb0,1] + (Ae = Me)[o1] + mﬁzm[%,o]
ecke —
+ 1_¢ Mlc[¢00]_0

Nevertheles&7 it is not an easy task to fully solve the above equations. Fortunately,
by the Green’s formula

(4.22) 3(F)do = - / Vo5 - 6(3)do
OB OB

it suffices to find the surface divergence of 5071 and 1;0,1 to compute (4.16). For this,
we take the surface divergence on both sides of (4.20) and (4.21) to deduce that

(4.23) (o K)o - o] = 2 f (V% Acfio))
420 O+ KD Van o) = (¥ X Anfonal)

by using Lemma 3.4. To facilitate our further computations, we follow the ideas of
[5, Lemma 5.5] and introduce the following two harmonic systems with appropriate
interface conditions:

Au=0 in Q,

(v-Vu)|- = (v Vu)|+ on 0B,
(4.25) pe(v x Vu)|— — (v x Vu)|1 = v x E(0) on 0B,

U — U 1S exponentially decaying as r3 — 00,

u=0 on X,

u satisfies the periodic boundary condition on OQ\X,
and

Av=0 in Q,

(v-Vu)|l- = (v -Vv)|4 on 0B,
(4.26) gc(v x Vo)|— — (v x V)|4 = v x H(0) on 9B,

v is exponentially decaying as x3 — 00,

a% =0 on X,

v satisfies the periodic boundary condition on OQ\X,
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where us, is a complex constant. The solutions to the above two systems shall be
denoted by u® and u”, respectively, which may not necessarily be unique but have
uniquely determined gradients. With these auxiliary systems, we can prove the fol-
lowing results.

LEMMA 4.5. For V x Aw[¢o.0] and ¥V x Ac[to.o], it holds that

(4.27)
. VS (A = K8) T v EV(0)] in M\B,
Vu =V x A [¢o.0] = 11 e ' L 0 0. —1 ; ‘
IEZ(O) + mvs@ ()\P« — ICe’ ) [1/ . EZ(O)] m B»
and

(4.28)

N w80 (A, — K%) ! [v- Hi(0) in Q\B,

Vul =V x Ao o] = e EC,) ( - )1 ]_1 4 _
w H0) + g VS (A = K3)  [v- HY(0)] in B.

The above lemma enables us to represent the quantities V x A, [1;070] and V x

Am [qzo,o] involved in (4.23) and (4.24) in terms of the gradients of scalar potentials.
Its proof is rather technical and included in Appendix B. Combining Lemma 4.5 with
the formulas (4.23) and (4.24), we see

(4.29)

- 1 (k2 — k2 Oub
Vog - d0,1 = (Au +K%¥) 1(

1—pe Ov

~ - k2 — k2 Ouc
), Vop o1 = (Ae + KI) 1( < u)

k2(1—e.) Ov

To calculate the approximate field E‘; in (4.16), we still need to find the quanti-

ties [, $j70d0 and [, §j5070d0 and the similar quantities associated with 1. The
corresponding result is summarized in the following lemma, whose proof is given in
Appendix C.

LEMMA 4.6. The following identities hold:

o~ . _0ut _
@30) [ Gidoa@)de = [Ble; x B'(0) + (1= e, x | 55 @do.
o~ ) , _ouh
@) [ Gio@)e = £lBle, x H(0)+ (1 =ce; x | 55 @)do
(4.32) $50(F)do = e; x P E(0)|B| + (1 — ) / VS [Vos - 610] (7)d5
OB B
(4.33) Bi0(F)do = Le; x OHI(0)|B| + (1 - <) / VS [Vos - $10] (7)d5
oB k B

4.2.3. Computation of the approximate scattered wave. We are now well
prepared to compute each term in (4.16) and prove our main result: Theorem4.7.
Recalling our conventional notation d = (d’, d3) for a vector d € R3, we shall identify
the two-dimensional vector d’ with (d’,0) € R? below for ease of exposition. We start
with a direct consequence of Lemma4.6:
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1 o~ i ; gc—1 _oul _
@34~ [ oo =~ Bles x 1'(0) + “—tes x [ §TLF)ao.

/. "'/ - . 1— h
(4.35) / d Y Jo0(¥)do = — |B|d x H(0) + ECd’x/ yai(y)da,
9 k d 8B 81/

B Tds Tk3 Td3
and
d- 7 d x E0)|B]  d _oue _
4. = - 1 — )y — )
@ase) [ g = S L [ 1y G )o

We remark that it is unnecessary for us to consider faB %50’0@)(10 since only its
third component is needed in (4.16), which is known to be zero by the formula (4.30).
It is easy to check that

3
(4.37) > e x ¥E'(0) = ikH'(0) and Ze] x & H'(0) = —ikE*(0)

j=1

hold. It then follows from the formulas (4.5) and (4.17) that

3 3

~ . Vog - v(X) x ;07 E4(0)
> Vo dio=> (\ut+kY ( ! )
= 0B ¥5,0 _:1( n )

1- He
3 X V() - (e; x DEN0))
; >\ * ICO ( fe — 1 >

K e+ K)o ).

(4.38)

Using (4.37) and (4.38), we can obtain the summation of (4.32) over j:
HZ( )‘B| / 0, % 0, % 1
TkS/aBZqﬁjoda— rdy g | VS (A + K35 [v-HY(0)] do

( )‘B| 1 / ~ 71 0,% 0,%\ —1 Lt
LGP [ 5 (g i) k) 0] a0
_H'(0)|B|

(4.39) d + ng(,ulcfl) AB§(AH+K?A*)*1 [I/-Hi(O)] do .

A similar calculation gives us the summation of (4.33) over j:

74 i 7L 0 0\~ 1 i
p— /aBz%oda kgE(0)|B| TkS/Bvse (Ae + K297 [v- EY(0)] do

(4.40) = %Ei(0)|3| + m/jj (Ae + lcg’*)*1 [v-E"0)] do,

by using (4.37) and the fact that

(4.41) ZvaB V0= ()\ + K9 v EY0)].
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Moreover, recalling (4.29) and the Green’s formula (4.22), we have

i ~ 1 k? — k2 —1 OuM
4.42 — do = — y O, d
(4.42) Tk3 aBQSO’lOr Tk3/ yl—,uc (P + K) 8u( y)do,

i ~ 1 k2 — k2 —1 Ou®
4.4 - do=——— | y—e 8 (\ 4 KO ¥)do .
@a) [ dndr = [ R (k) @

We have now computed all the terms involved in (4.16). It is worth mentioning
that we shall only need the first two components of the vector identities (4.34), (4.36),
(4.39), and (4.42), as well as the third component of the identities (4.35), (4.40),
and (4.43), to compute the approximate scattered wave. Before we apply all the
expressions to (4.16), we make some further observations to simplify our subsequent
calculations. We first consider the nonintegral terms in (4.34), (4.36), and (4.39) and

find

B Bld' x E* ) :

v x g (THOIBL 1B X BN | pagan (1 pie. s pri(o)
Td3 Td3 kTt

2|B j .
=V x Gk <—||e3 X p) + 0k2Gox (—];|B|e3 X H1(0)>
T T

— 71‘61@@G§k(—d3p*) + 0K2GK <I;_|B|e3 X Hi(O))

——25k| |G5k( 3d*) =0,

where we have used the definition of Go* (4.9) and a simple identity: —H?(0) + d’ x
E(0) = 2d3(p2, —p1,0). In addition, we note that d’ x H*(0) + E*(0) = 0. Therefore,
the nonintegral terms in (4.35) and (4.40) can also be cancelled. Moreover, for any
vector a € R3, we can check from (4.9) that

(4.44) V x G%*a = idkG’kd* x a, V x G*d* x a = —idkGS*a

and the vector identities:

(4.45) d* xa' = —dzes xa+ (d xa)zez, (d xa)=d* x (azes).
Now, recalling (4.34) and (4.35) and using (4.44) and (4.45), we can deduce

1— _ou _ouh
2ok ’ _
ORPGI*— 0 ((d / Vo da) es — dses x/ Vo da)
1—c¢ _oul
_ 20k C 3%
= OK*G—d x(/ Y5 do>

_ik(ec — 1) Sk / _oul
= TV x G9 Wda .

Similarly, we can derive, by means of (4.44) and (4.45), that

1-— _ou® ) ou®
ok He 3y 26k Sl
V x G, s d x(/ 8Vdcr) es = 0k“G) v (/aBy(uc 1) By >3e3.

Combining these observations above and substituting the expressions into (4.16), we

can write the approximate scattered wave EI’; as a sum of the electric dipole and the
magnetic dipole:
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(4.46) El(X) = V x GI*X)I,, + 0k*G(X) (Je)zes + O(62)

where J,,, and J. are defined by

T = Tikg . yk*(ec — 1)88—“;% - Tikg aBi (A + K%~ klz__:fa;:da
(4.47)  + ﬁ/@y (A +/cg;*)’1 [v-H'(0)] do,

Jo = :73 aB(uc - 1)?%75 do — Tikg /83 kf(gl_kjc)y (Ae + zcgv*)*l a;:da
(4.48)  + Tkg(li_gc)/aBy (Ae +1cg’*)‘1 [v-EY0)] do.

Next, we compute the above two dipoles, J, and J., respectively. For J,,, noting
the relation

k? — k2 1—ecpt
2ee—1 Oy 4 2 " e _ 20 O 4 = EcHe
Fo(ee = 1)+ K") + T " (& )</\”+Km +(ec—1)(1—uc)>

(4.49) =k (ec — D)(=X +K),

we add the first two terms in (4.47) to obtain

ik? ouh
4. — 1V (= . 0,% 0,%\—1 )
(4.50) e R L

To proceed, by applying Lemma 4.5 and the jump formula (3.26) for k = 0, we have
(4.51)

8uh 7 i 7 1 % )\ —1 i
a]/—kECV-H(O)+]%C(1_<€C)<—2+>\E—/\E+’C& >(A5—/C§;) [v-H'(0)]

_ Lm0

k(e — 1) i 5 (A —K%) T [v - H0)] .

k(1 —e.)
Then it follows from (4.50) that

(4.52)
Tk3 Jom
- M/ F(Ae + K% O + Ko7
Td3 oB
ik(ec — 1)
+ T

h
(e = DF(-Ae + K5 + K5 7 0o
i
k(ec — 1)

/ F(— e + K% O + K57
OB

v H'(0)do

(3

m(xs —Ku) "~ v HY(0)] do

1 ~ *\ — @
= [ SO A K [ B 0)
Ta3 JoB

1

e - 1) /83 YO +Kw) " v HY(0)] do

Combining the above results with the relation

1 . 1
l—e. 1—pec

(4.53) W =1

)
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we arrive at the desired expression:
1

(4.54) Jo=— [ YO +KY) ' [v - H(0)] do.
Td3 JoB

We now compute J.. Similarly to the results (4.49) and (4.51), we have

k2 _ k2
(4.55) (e — (A + K2%) + m = (A + KO (e — 1)
and
aue_iy. ; 1 0,% _ K01, . B
by = B0 s (g KO~ K2 - B (O)
1 i 1 sk —1 7
(4.56) = - v B (0) + mw - K25 [v- EN0)].

Applying these two expressions and (4.53) yields

(4.57) Jo=— | FO-+K2) " [v- E(0)] do.

Tk3 Jop
Finally, by substituting (4.57) and (4.54) into (4.46) and using the relation (4.44), we
come to the main result of this section, where the estimate of the remainder term (cf.
(4.58)) follows from the Neumann expansion (4.13) and the expression (4.15), as well
as Theorem 4.1, Remark 4.2, and the fact that 5070, 1’/;070 € H.

THEOREM 4.7. Let L be the same constant as in Lemma 4.3 and let GX(x) be the
propagative kernel defined by (I — d* @ d*)e’® *. When 5= 0/(dyd%) is sufficiently
small, for x with 3 > L, the scattered electric field E™ = E — E* has the following
pointwise asymptotic expression as 6 — 0:

(4.58) E"(x) = 6kGX(x) (id* x I’ + k(Je)ses) + O (f?) :

which is uniformly valid with respect to the incident frequency. Here Jo and Jy, are
given by (4.57) and (4.54), respectively, and the parameters d, and d. are given in
Theorem 4.1.

Remark 4.8. In our analysis, we assume that D is simply connected with a con-
nected boundary for simplicity. Nevertheless, our arguments and results are actually
very general and apply to the quite complicated geometry of the microstructure D
of the thin layer, e.g., a domain with a hole or an open set with multiple connected
components. In particular, Theorem 4.7 holds for the strongly coupled multilayer
case, i.e., there are multiple layers of close-to-touching nanoparticles; see Figure 2.

We clearly see from the above theorem that the anomalous electromagnetic scat-
tering results from the occurrence of the mixed collective plasmonic resonances. To
make the statement more precise, let us define the electric and magnetic polarization
tensors:

) - [

F(h + K0\ pdor, Mm()\M,B):/ T\ + K20 [v]do .
OB

OB

By the definition of GX(x) in Theorem 4.7, and with the help of projections e3 ® e
and I — ez ® e3 and the relations

FE'(0) = —2e3®e3p*, H'(0)=—2(I—e3®e3)d* x p*,
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— Layer 2
| €2, 2
__’Layer 1
‘ o
— Substrate

€o:llo

Fia. 2. A generalized and physical configuration (cell structure Q) [33].

we can reformulate (4.58) in a concise form,
E"(x) = 6k(I — d* @ d*)e™ *(id* x I/, + k(J.)ses) + O(5?)

2idk -
(4.59) = 200 ik x o 4 O(62),
Td3

where the reflection scattering matrix & is given by
X = (]I —-d* ® d*) (d* X (]I —e3® e3)Mm()\H, B)(H —e3® eg)d*
xI—e3® egMe()\E,B)eg, ® 93) .

We remark that % should be regarded as a linear mapping defined on the two-
dimensional subspace of R? orthogonal to the vector d*, although it is a three by
three matrix. Moreover, the matrix £ essentially chacterizes the polarization conver-
sion of the metasurface.

In the traditional optical systems, the scattering effect of such a subwavelength
rough surface is almost negligible so that & plays a limited role in the far-field be-
havior of the reflected wave. However, due to the possible large negative permittivity
and permeability of the plasmonic nanoparticles (as we have explained in the intro-
duction, it is only an ideal assumption since the metallic nanoparticles typically do
not possess the negative permeability at optical frequencies), A, and A. can approach
the spectrum of —K%* and —K2* such that the elements in the tensors M. ()., B)
and My, (A, B) may blow up with an enhancement order 1/d}. Therefore, following
[5, 12, 10], we may define the collective plasmonic resonances by the frequencies w
satisfying

d(Ae(w), —K2*) < 1 or d(\,(w), —K%*) < 1.

It is worth emphasizing that these frequencies generally are very different from the
single-particle case. Physically, these periodically distributed plasmonic nanoparti-
cles can resonate as a whole so that a nanoscale thin layer can significantly affect
the wave propagation at the macroscale. We refer readers to [11] for some numerical
evidence on collective plasmonic resonances. If the collective plasmonic resonances
are excited, the effect of the reflection scattering matrix & can overcome the small
size parameter § and become visible, giving the possibility of achieving a desired
far-field pattern. Nevertheless, our electromagnetic plasmonic metasurface, as all
the nano-optic devices, still faces many fundamental limits. Actually, following [14],
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we may decompose E"(x) into two plane waves with orthogonal polarizations: one
with the polarization vector p* and the other with the polarization vector orthogonal
to p*. We may further introduce the reflection coefficients and polarization con-
version coefficients to measure the functionalities of the metasurface as in [14], and
then analyze their bounds and fundamental relations via the holomorphic functional
calculus [10].

4.3. Equivalent impedance boundary condition. The final goal of this work
is to present an impedance boundary condition approximation for the plasmonic meta-
surface. For this, we first recall the surface scalar curl and the surface vector curl on

the plane surface I' = OR2, which have the explicit forms curlpu = % — % for
5 xXr1 )
a vector function u = (uy,usg,0) and curlpy = (%, —53—;’1,0) for a scalar function

v. We start with the simple but more realistic case: the plasmonic nanoparticles are
nonmagnetic, i.e., g, = 1. In this case, Theorem 4.7 indicates that in the far field, the
total electric field can be approximated by

E° = E' 4 0k’GX(J,)se3.

Introduce

1
Be = —7/ yzs(Ae + Kg’*)_l[vg]da.
OB

T

Then, by applying the formula (4.9) and the fact e3 x E*|r = 0, a simple calculation
gives us

ez X E5|[‘ = —5/{283 X d*dg(-]e)z;eikd/'ml
= 10k2p3es x d*ﬂceikd"I'
= 6e™" %" (ikdy, —ikdy,0) Be2ps -

Hence we can derive that when §/(d,d%) — 0, it holds that
5 - i - iy siBe = 5v/ 2
e3 x E°|p = dBecurlres - E'|p = §Becurlpgcurlp(H )lr = 670urlpcurlp(H )r +0(6%)

by noting that curlp(H®)'|r = —ikes - E'|r. The above formula further yields the
equivalent (Leontovich) impedance boundary condition,

(4.60) es x BO|p = 5%c1¥ﬂrcuﬂp(m)/\r,

which can help us to approximate the far-field effect of the thin layer of the plas-
monic nanoparticles, up to a second-order term. Moreover, we emphasize that the
approximation is uniformly valid with respect to the incident frequency.

We now consider the magnetic plasmonic nanoparticles, i.e., u. has the possibility
of taking negative values, and introduce a two by two matrix:

T

1
Dy = 7/ y (A + K%V ]do
oB
According to Theorem 4.7, the total electric field can be approximated by

E° = E' 4 6kGX(x)(id* x I’ + k(J.)zes) .
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In a manner similar to the nonmagnetic case, we can find that
7 -
es X E‘S\F = 6%CUYIFCUTIF<H6)/‘F - ik:(SDm(Hé)'|p +0(6%)

with the help of the following observation:

i0kes x (GXd* x J1) |r = idkes x (d* x J0) e |p = —ikd Dy (H'' |1 .

m
It then follows that we can use the effective (Leontovich) impedance boundary
condition

(4.61) es x E|p = 5%c6rlpcuﬂp(ﬂ5)’|p — ikd Dy (H®) |1

to approximate the effect of the thin layer in the macroscopic scale, up to the second
order term. Again, this approximation is uniformly valid with respect to the incident
frequency and no matter whether the resonance is excited or not.

5. Concluding remarks and extensions. In this work, we have studied the
scattering effect of the periodically distributed plasmonic nanoparticles in the homog-
enization regime. For the subwavelength structures of such patterns, the reflection
scattering matrix (cf. (4.59)) and the Leontovich impedance boundary condition (cf.
(4.61)) have been derived for the approximation of the scattered field in both magnetic
and nonmagnetic cases. A similar problem setting was considered in [25, 24, 23], where
the thin layer was made of dielectric particles and the standard variational approach
applies. However, the variational framework breaks down in the resonant case, hence
we have adopted the layer potential theories instead in this work to analyze the sin-
gularity and prove the uniform validation of the boundary condition approximations.
Our results provide a relatively complete picture of the mechanism of the electromag-
netic plasmonic metasurfaces and can be easily modified to cope with other regimes
and boundary conditions. Therefore, this work may be viewed as a generalization of
the standard homogenization theory to the resonant periodic microstructures. And
our theoretical analysis and findings may help design a metasurface that can resonate
at some specific dense set of frequencies to further realize the broadband wave mod-
ulation. In addition, it is also a very interesting and challenging topic to understand
how to reconstruct the fine structures of thin layers in terms of the scattered field
under the resonance.

Our analysis and results can also be easily extended to several physical and real-
istic regimes and applications, although we only consider the homogenization regime
in this work since it is the most interesting and important case where the collective
resonance can happen. First, our approach can be directly applied to other important
regimes:

size of particle <« period ~ wavelength, or size of particle < period < wavelength.

However, we may not expect the collective plasmonic resonances in the above two
configurations, since the particles are essentially well separated though they are dis-
tributed in a certain pattern. In these two cases, the scattering field will be locally
dominated by the resonance modes excited by the nearest single nanoparticle. In
view of this fact, the thin layers under these regimes may not have the capability
to realize the control of the electromagnetic wave in the macroscopic scale. Second,
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in this work, we have only considered the unrealistic perfectly conducting boundary
conditions on the bottom surface I'. Nevertheless, by replacing the Green’s tensors
defined in section 3 by the ones satisfying other appropriate boundary conditions,
we can naturally modify the corresponding analysis and deal with the more physical
case where the particles are periodically distributed on a supporting substrate; see
Figure 2. Third, as we have pointed out in Remark 4.8, our results remain the same
for the multiple close-to-touching thin layers. The generalization to the well-separated
multilayer case

size of particle ~ period < distance between two layers ~ wavelength ~ 1

is also direct since the scattering effect of each layer can be considered independently
due to the weak interactions between the arrays. More precisely, suppose that we
have the approximate scattered waves E7,..., E] associated with n thin layers; then
each approximate wave can be determined by Theorem 4.7. The total approximate
scattered wave Ey,, for such a multilayer structure could be written as Ey,, = E7 +
-+ E].

With these design flexibilities and extension remarks, our theoretical findings may
shed light on the mathematical understanding of electromagnetic plasmonic metasur-
faces and their related optimal design problems.

Appendix A. Proof of Lemma 4.3. By the scaling property (3.27) of A%, o/m>
we have
1 ~
sV XV x AK[W)(%) .

We next estimate the two terms in (A.1). To do so, for large enough I3, we separate
the variables of the kernel Hgl; /m involved in the definition of A%, :

e,e/m”

(A1) E"(%) - Ep(%) = E{(%) = V x A, [0](%) +

~ ~ 1 ~
(AQ) Hgf(c/m(xv y) = _E Z ng( )ﬂ-gkc/m(y)a
gea\{o}

where pgk(i) is given by

~ 1 ; AV~ 112 _ §k 2 (= —h)
(A.3) pX(X) = QHEFIR )& —/[E+0KP=(3k) (Fa—h)
' VIE+ 012 — (0k)?

Here, h is a constant satisfying |Z3| < h < 'L with x € B and Lrs e/m(y) is naturally

introduced by the formulas (A.2) and (A.3). We also note that Hgke/m
matrix and all of its diagonal entries are smooth functions.
Then, for the first term in (A.1), we can write

is a diagonal

(A4) Vx A [P(X) = [V xIIX (X, 5)0(¥)dy .
OB

where

(A.5) VI (XY =—o Y. VpE) xn.().
T ¢eAm\{0}

For p‘gk(i), we can see the existence of a positive constant ¢ such that the following
estimate holds for all £ € A*\{0} and uniformly with respect to all small enough §:



ANALYSIS OF ELECTROMAGNETIC METASURFACES 793
ok (3 —cle|@s—h
|3j/)g (X)’ < e clEl@s—h)

Applying the above estimate and the trace inequality, we derive

H™ 2(0B)

3
|| VoG x s @)oo )] £ e E oy Nl

3
- h - h)
ST g, D NE sy S 7

-1 )
H™ 2(dB)

where we have used the uniform boundedness of ||(7Tgf“m)j | 1 (B) with respect to § €
A*\{0}. Now it follows easily from the above estimate and the formulas (A.4) and
(A.5) that

V x AR AR < e T,y o
Similarly, we can establish the desired pointwise estimate of the second term in (A.1),
and then the error estimate in Lemma 4.3 follows.

Appendix B. Proof of Lemma 4.5. We consider only the system (4.25) and
show the formula (4.27). The proof of (4.28) is similar. We shall first prove that the
right-hand side of (4.27) and V x A%, [50,0] are both the gradients of some solutions to
(4.25) and then demonstrate that the gradients of the solutions to (4.25) are unique.
For this purpose, recalling the far-field behavior of S2[¢] (cf. (3.38) and (3.39)), we
can verify that the function

u(i) — ﬁ ‘9 (/\“ B ’CO’*)il [V ’ El(o)] (x) in Q\B,
LEOF+ S0 (Ve — K0 7 v E(0)] (%) in B

satisfies the boundary conditions and the far-field condition in (4.25) and indeed
solves (4.25). Furthermore, it is easy to check that the right-hand side of (4.27) is the
gradient of u. ~

Next, we show that V x A2 [¢g 0] can also be written as a gradient of some solution
0 (4.25). In fact, by the continuity of its normal trace and the jump formula of its
tangential trace (cf. (3.24) with k = 0), we find

v-V x Aﬂl[{so,o]} =0, {,u (1/ x V x A?“[(EO’OD} =v x EY(0).
However, noticing that Vg - 50,0 =0, we get
V x V x A% [do.o] = VS2[Vas - doo] =0 in Q\IB,
which implies (cf. [45, Theorem 3.37])
(B.1) V x A% [doo] = Vp for some p € H'(B) or HE (R3\B).
Moreover, we can assume that p = 0 on I' by noting the fact that ez x V x A% [qgo,o] =

e3 x Vp =0 on I'. To see that p is indeed a solution to (4.25), it remains to show
that p, up to a constant, satisfies



794 HABIB AMMARI, BOWEN LI, AND JUN ZOU

(i) p is periodic with respect to A.
(ii) there exists a complex constant ¢, such that p — ¢, decays exponentially as
T3 — 00.
For the above two claims, let us first define the translation operator T; : L? .
L7 .(R3) associated with a; (i = 1, 2):

loc

(RY) —

Tiu(x',x3) = u(x’ + a;, x3).

We note that 7; commutes with the gradient, namely, 7;V = VT;, in the distribution
sense. Since T;Vp = Vp by (B.1), we have V(T;p — p) = 0, which implies that there
exist two constants C; and Cy such that T;p = p+C; in Q\B. We now choose vectors
b; such that a; - b; = §;; and define an auxiliary function p = p — (C1by + Ca2bg) - 2.
Then we can directly check that p is periodic with respect to A, i.e.,

ﬁ(x/ + ai,xg) = p(l’l + a;, {E3) — (Clbl + Czbg) . (iL'/ + az-) = ﬁ(xl,.’bg) .

In the case of far fields, noting that Ap = 0, we can expand p by Fourier series
(cf. [19]),

(B.2) p= Z pee€® lElEs - po e .
EeA™

It is easy to see from the formulas (3.38) and (3.39) that V x A% [5070] decays expo-
nentially as 3 — oco. Recalling (B.1) and (B.2) and the definition of p, we can show
that C; = 0 and Cy = 0, by matching the far-field modes of Vp and V x A% [(;070].
Hence we can conclude p = p, and our two claims follow.

Finally, we prove Vu and Vp defined above can be uniquely determined by the
system (4.25). For doing so, it suffices to show that the gradient of any solution u¢
to (4.25) is zero in Q\OB if we replace the jump data v x E*(0) in (4.25) by 0. Then
the jump condition p.(v x Vu®)|- = (v x Vu®)|4, together with the formula (2.5),
implies that

Vo [(pu)| - — (pu®)|+] =0,

equivalently, (uu®)|- = (pu®)|+ + C for some constant C. Without loss of generality,
we assume C' = 0; otherwise we may consider u¢ — #Q xB- By integration by parts and
interface conditions, we get )

(B.3) /vauﬂ?(i)di ~0.

If Repe > 0, or if Rep, < 0 and TJmpu, # 0, we can deduce Vu® =0 in B and Vu® =0
in Q\B. For the case pic <0 (A, ¢ o(K2*)), we can consider it as a limiting case of
w~+in as n — 0, and then the same argument as the proof of [32, Theorem 3.1] helps
us to complete the proof.

Appendix C. Proof of Lemma 4.6. We shall only show how to compute the
quantities involving 1), as the same can be done for the terms related to ¢. To do
so, we first consider [, ¥*4p,0(¥)do for [a| < 1. Using the formula (4.19) and the
decomposition for any proper f,

f= (1—85) (Ag—Me+;+Me) [f],



ANALYSIS OF ELECTROMAGNETIC METASURFACES 795

we can compute
| 5 tna@ir = [ 5(12) (h = Moot g+ 00 [i0] G

iv(y) x yPoPH?
) (M

+/6B§O‘(1 —5C>V x V x AC{JB,O}dO—
— é/Bv X (yayﬁaﬁm(o))dy +(1—e) /{)B y“gpdo

+(1-e) /B v x (yav x A, [{/?ﬁ’o})dy.

In particular, we get for |a| =1, |8| = 0 that

/ gj’lF/;()yodO' = %ej X Hl(O)|B| =+ (]. — EC)/ V x (ﬂjv X Ae |:{E0,0:|) dy,
OB B

where we have used the Stokes’s theorem and the fact that gg = 0 for 8 = 0. Then
formula (4.31) follows directly from the relation

V x (ﬂjv X Ae [Jﬁ,oD =e; x Vx A Wo,o} +Vs! [VaB ‘Jj,o]

and the formula

/B V x Ao [J0,0} dy = /BB(V x Ae)|- [{/;0,0} do
/88 <; +Me> [120,0} do = —/‘93 yVos - (; +Me> [Jo,o}dff
= */aBy (; ’C:> [V{)B ‘&0,0}610:0,

where we have used (4.22) again. For |a| = 0, || = 1, we note that

/ gagdo =0 for |8 =1,
oB

then a similar derivation leads to (4.33).
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