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Abstract. This paper studies the solvability and stability of a generalized saddle-point system
in finite- and infinite-dimensional spaces. Sharp solvability conditions and stability estimates are
derived.
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1. Introduction. We shall consider the solvability and stability of the following
saddle-point system: Find (u, p) ∈ V ×Q such that

a(u, v) + b1(v, p) = f(v) ∀v ∈ V,(1.1)

b2(u, q)− c(p, q) = g(q) ∀q ∈ Q,(1.2)

where a, b1, b2, and c are bounded bilinear forms and where f and g are bounded
linear functionals on V and Q, respectively. The system (1.1)–(1.2) seems to be one of
the most generalized saddle-point systems investigated in the literature. The case of
bilinear forms c = 0 and b1 = b2 has been extensively studied [1, 3, 4, 7, 5, 9, 10]. Also,
considerable research has been done on the system with b1 = b2 and c �= 0 [4, 11, 14],
while the well-posedness for the system with c = 0 but b1 �= b2 was established in
[13] and [2]. However, to our knowledge there have been no investigations into the
solvability and stability for the most general form of system (1.1)–(1.2) with b1 �= b2
and c �= 0.

The aim of this paper is to establish the solvability and stability conditions for
the generalized saddle-point system (1.1)–(1.2). The existence and uniqueness of
the solutions to the system are shown under some standard conditions, and stability
estimates of the solutions are derived in terms of the given data.

The system (1.1)–(1.2) arises in, for example, mixed variational formulations of
some boundary value problems. The first of such examples is the following general
non–self-adjoint elliptic problem:

−∇ · (α(x)∇p+ b(x) p) + γ(x) p = µ(x), x ∈ Ω,(1.3)

where Ω is a bounded domain in Rd (d = 2, 3) with boundary ∂Ω, the solution p
is assumed to take the boundary value ω(x) on ∂Ω, and α(x), b(x), γ(x), and µ(x)
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are given functions with appropriate smoothness [6]. By introducing the new variable
u = −(α∇p + b p), and letting α̃(x) = α(x)−1 and b̃(x) = α̃(x)b(x), we have that
the weak form of (1.3) is then described by system (1.1)–(1.2) (see [6]), with two
spaces V = {u ∈ L2(Ω)d; divv ∈ L2(Ω)} and Q = L2(Ω), and two linear functionals
f(v) = −〈ω,v · n〉 and g(q) = −(µ, q), while the bilinear forms are given by

a(u,v) = (α̃u,v) , b1(v, p) = −(divv, p) + (b̃ p,v) ,

c(p, q) = (γ p, q) , b2(u, q) = −(divu, q) ,

where (·, ·) and 〈·, ·〉 denote the scalar products in L2(Ω) (or L2(Ω)d) and L2(∂Ω),
respectively.

A second example comes from some exterior electromagnetic interface problems
[12, 13]. The weak formulations of such problems also take the form (1.1)–(1.2) if one
introduces a Lagrange multiplier variable u for the current density ∇φ, where φ is
the potential function [12, 13], and introduces another Lagrange multiplier variable ξ
for the boundary value of φ on the boundary of the physical domain Ω.

2. Preliminaries. In this section, we introduce some existing saddle-point
theory. Let V and Q be two finite- or infinite-dimensional Hilbert spaces equipped
with the inner products (·, ·)V and (·, ·)Q, and the induced norms ‖ · ‖V and ‖ · ‖Q,
respectively. Let a(v, w), b1(v, q), and b2(v, q) be bilinear forms on V ×V , V ×Q, and
V × Q, respectively, which are bounded; i.e., there are positive constants ‖a‖, ‖b1‖,
and ‖b2‖ such that

|a(v, w)| ≤ ‖a‖‖v‖V ‖w‖V ∀v, w ∈ V,(2.1)

|b1(v, q)| ≤ ‖b1‖‖v‖V ‖q‖Q ∀v ∈ V, q ∈ Q,(2.2)

|b2(v, q)| ≤ ‖b2‖‖v‖V ‖q‖Q ∀v ∈ V, q ∈ Q.(2.3)

Associated with the three bilinear forms are three linear operators A ∈ L(V, V ), B1,
B2 ∈ L(V,Q) defined by

a(v, w) = (Av,w)V ∀ v ∈ V, w ∈ V,
b1(v, q) = (B1v, q)Q = (v,Bt

1q)V ∀ v ∈ V, q ∈ Q,
b2(v, q) = (B2v, q)Q = (v,Bt

2q)V ∀ v ∈ V, q ∈ Q.

Clearly, the three constants in (2.1)–(2.3) can be taken as

‖a‖ = ‖A‖L(V,V ), ‖b1‖ = ‖B1‖L(V,Q), ‖b2‖ = ‖B2‖L(V,Q).

We first consider the saddle-point problem

a(u, v) + b1(v, p) = (f, v)V ∀ v ∈ V,
b2(u, q) = (g, q)Q ∀ q ∈ Q.(2.4)

This system is equivalent to the following operator equation (or matrix equation in
finite dimensions):

Au+Bt
1p = f, B2u = g.(2.5)

Let Ui = Ker(Bi), i = 1, 2. Then we have the following results on system (2.4)
(cf. [13, 2]).
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Theorem 2.1. In addition to assumptions (2.1)–(2.3), we assume that

sup
w∈U1

a(v, w)

‖w‖V ≥ α‖v‖V ∀ v ∈ U2,(2.6)

sup
v∈U2

a(v, w) > 0 ∀w ∈ U1, w �= 0,(2.7)

sup
v∈V

bi(v, q)

‖v‖V ≥ βi ‖q‖Q ∀ q ∈ Q (i = 1, 2)(2.8)

hold for some constants α, β1, β2 > 0. Then for any f ∈ V and g ∈ Q, there exists a
unique solution (u, p) ∈ V × Q to system (2.4), and the following stability estimates
hold:

‖u‖V ≤ β−1
2 (1 + α−1‖a‖)‖g‖Q + α−1‖f‖V ,(2.9)

‖p‖Q ≤ β−1
1 (‖f‖V + ‖a‖‖u‖V ).(2.10)

Theorem 2.1 generalizes the standard saddle-point theory (b1 = b2) [1, 3]. Equa-
tion (2.8) is the so-called inf-sup condition, which plays an important role in the entire
saddle-point theory. We refer to [4, 7] and the references therein for more details.

To apply the saddle-point theory for the compressible Stokes equations, Kellogg
and Liu [11] introduced another abstract framework; see also [4]. Let c(p, q) be a
bounded and weakly coercive bilinear form on Q × Q; i.e., there exist a positive
constant ‖c‖ and a constant γ (possibly negative1) such that

|c(p, q)| ≤ ‖c‖‖p‖Q‖q‖Q ∀p, q ∈ Q,(2.11)

c(q, q) ≥ −γ‖q‖2
Q ∀q ∈ Q .(2.12)

Further, define the operator C ∈ L(Q,Q) by

c(p, q) = (Cp, q)Q ∀p, q ∈ Q .(2.13)

Let b(v, q) be a bilinear form on V ×Q satisfying

sup
v∈V

b(v, q)

‖v‖V ≥ β ‖q‖Q ∀ q ∈ Q ,(2.14)

|b(v, q)| ≤ ‖b‖‖v‖V ‖q‖Q ∀v ∈ V, q ∈ Q(2.15)

for some positive constants β and ‖b‖. Then for the saddle-point problem

a(u, v) + b(v, p) = (f, v)V ∀ v ∈ V,
b(u, q)− c(p, q) = (g, q)Q ∀ q ∈ Q,(2.16)

which is equivalent to the operator equation (or matrix equation)

Au+Btp = f, Bu− Cp = g ,(2.17)

we have (cf. [11, 4]) the following.

1It is clear from (2.11) that the weak coerciveness (2.12) is always satisfied for any γ ≥ ‖c‖, but
we are interested only in the case with γ < ‖c‖.
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Theorem 2.2. Assume that for some constant α > 0,

a(v, v) ≥ α‖v‖2
V ∀ v ∈ V,(2.18)

and conditions (2.1), (2.11)–(2.15) are satisfied. Then for any f ∈ V and g ∈ Q, there
exists a unique solution (u, p) ∈ V × Q to system (2.16) if γ < α‖a‖−2β2, and the
following stability estimates hold:

‖p‖Q ≤ α−1‖b‖‖f‖V + ‖g‖Q
α‖a‖−2β2 − γ , ‖u‖V ≤ α−1(‖f‖V + ‖b‖‖p‖Q).(2.19)

Finite-dimensional case. Let us briefly discuss the equivalent forms of the
inf-sup condition and other conditions used in Theorems 2.1 and 2.2 when V and Q
are finite dimensional. Without loss of generality, we consider V = Rn and Q = Rm

(n ≥ m), and both spaces are equipped with the standard Euclidean norms ‖ · ‖2 and
inner products (·, ·), with no distinction between the notation of the norms and inner
products of Rn and Rm.

First, we claim that the inf-sup conditions (2.8) are equivalent to the conditions
rank(B1) = rank(B2) = m. To see this, we write

sup
v∈V

b1(v, q)

‖v‖V = sup
v∈Rn

(v,Bt
1q)

‖v‖2
= ‖Bt

1q‖2,

so (2.8) with i = 1 is the same as the condition

‖Bt
1q‖2 ≥ β1 ‖q‖2 ∀ q ∈ Rm,

or rank(B1) = m. Similar derivations lead to the fact that (2.8) with i = 2 is
equivalent to the condition rank(B2)= m.

Second, one can directly check that conditions (2.18) and (2.12) amount to

λmin

(
A+At

2

)
≥ α, λmin

(
C + Ct

2

)
≥ −γ,

respectively (cf. [8]).
Finally, we analyze conditions (2.6)–(2.7). Let rank(Bi) = mi ≤ m, i = 1, 2;

then we know that dim(Ui) = dim(Ker(Bi)) = n −mi. Let Ni be the n × (n −mi)
matrix formed by an orthonormal basis of Ker(Bi). To rewrite condition (2.6), for
any w ∈ U1 and v ∈ U2, let w = N1x and v = N2y with x ∈ Rn−m1 and y ∈ Rn−m2 ;
then

sup
w∈U1

a(v, w)

‖w‖V = sup
x∈Rn−m1

(AN2y,N1x)

‖N1x‖2
= sup

x∈Rn−m1

(NT
1 AN2y, x)

‖x‖2
= ‖NT

1 AN2y‖2 ,

so (2.6) is equivalent to the condition

‖NT
1 AN2y‖2 ≥ α ‖y‖2 ∀ y ∈ Rn−m2 ,

or rank(NT
1 AN2) = n−m2. Similarly, we can rewrite condition (2.7) as

sup
v∈U2

a(v, w) = sup
y∈Rn−m2

(AN2y,N1x) = sup
y∈Rn−m2

(y,NT
2 A

TN1x).

This indicates that (2.7) is equivalent to the condition

NT
2 A

TN1x �= 0 ∀x �= 0,

or rank(NT
2 A

TN1) = n−m1.
One can further conclude from the above that rank(B1) = m1 = m2 = rank(B2)

if both conditions (2.6) and (2.7) are satisfied.
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3. Main results. This paper is concerned with the following generalized saddle-
point problem: Find (u, p) ∈ V ×Q such that

a(u, v) + b1(v, p) = (f, v)V ∀v ∈ V,
b2(u, q)− c(p, q) = (g, q)Q ∀q ∈ Q.(3.1)

The system can be written in the operator or matrix form

Au+Bt
1 p = f, B2u− Cp = g.(3.2)

Obviously, problem (3.1) covers systems (2.4) and (2.16) as two special cases.
In this section, we present two results on the solvability and stability for system

(3.1) under two sets of different conditions: the first result requires that only one of the
bilinear forms b1(v, q) and b2(v, q) satisfy the inf-sup condition; the second does not
assume the weak coerciveness (2.12) for the bilinear form c(p, q) with γ < α‖a‖−2β2.

3.1. Well-posedness with either b1(v, q) or b2(v, q) satisfying the inf-
sup condition. The main results of this section are summarized in the following
theorem.

Theorem 3.1. The same assumptions as in Theorem 2.2 are made but with
b(v, q) replaced by b1(v, q) here. Then for any f ∈ V and g ∈ Q, there exists a unique
solution (u, p) ∈ V ×Q to the saddle-point problem (3.1) (or (3.2)) as long as

δ1 =
α−1‖b1‖‖b1 − b2‖
α‖a‖−2β2

1 − γ < 1 ,(3.3)

where ‖b1−b2‖ = ‖B1−B2‖L(V,Q). Further, the solution admits the stability estimates

‖u‖V ≤ 1

1− δ1 ‖ũ‖V , ‖p‖Q ≤ ‖p̃‖Q +
‖b1 − b2‖

(α‖a‖−2β2
1 − γ)(1− δ1)‖ũ‖V ,(3.4)

where (ũ, p̃) solves (2.16) with b replaced by b1, and thus has the bounds

‖p̃‖Q ≤ α−1‖b1‖‖f‖V + ‖g‖Q
α‖a‖−2β2

1 − γ , ‖ũ‖V ≤ α−1(‖f‖V + ‖b1‖‖p̃‖Q).

Proof. We choose u0 = 0 ∈ Q and determine a sequence {(un, pn)} by

Aun+1 +Bt
1p

n+1 = f,(3.5)

B1u
n+1 − Cpn+1 = g + (B1 −B2)u

n,(3.6)

for n = 0, 1, 2, . . . . The sequence {(un, pn)} is well defined by Theorem 2.2. Subtract-
ing (3.5)–(3.6) from (3.5)–(3.6) with n replaced by n− 1, it follows that

A(un+1 − un) +Bt
1(p

n+1 − pn) = 0,
B1(u

n+1 − un)− C(pn+1 − pn) = (B1 −B2)(u
n − un−1).

(3.7)

Now applying estimates (2.19) to (3.7), we have

‖un+1 − un‖V ≤ α−1‖b1‖‖pn+1 − pn‖Q,(3.8)

‖pn+1 − pn‖Q ≤ ‖b1 − b2‖
α‖a‖−2β2

1 − γ ‖u
n − un−1‖V ,(3.9)
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which implies for n ≥ 1 that

‖un+1 − un‖V ≤ δ1‖un − un−1‖V ≤ δn1 ‖u1‖V ;(3.10)

that is, for any nonnegative integers m > n,

‖um − un‖V ≤
m−1∑
i=n

‖ui+1 − ui‖V ≤
(

m−1∑
i=n

δi1

)
‖u1‖V

≤ δn1
1− δ1 ‖u

1‖V .(3.11)

This means {un} is a Cauchy sequence, and there exists a u ∈ V such that

un → u in V.(3.12)

On the other hand, it follows from (3.9) and (3.10) that

‖pn+1 − pn‖Q ≤ ‖b1 − b2‖
α‖a‖−2β2

1 − γ δ
n−1
1 ‖u1‖V ,

which implies that

‖pm − pn‖Q ≤ ‖b1 − b2‖
α‖a‖−2β2

1 − γ
δn−1
1

1− δ1 ‖u
1‖V .(3.13)

Hence {pn} also is a Cauchy sequence, and there exists a p ∈ Q such that

pn → p in Q.(3.14)

Letting n tend to infinity in (3.5)–(3.6), we know that (u, p) ∈ V ×Q solves (3.2).
We next verify the uniqueness of problem (3.2). Assume that there are two

solutions (u1, p1), (u2, p2) ∈ V ×Q to the system. It is easy to see that the difference
between the two solutions satisfies

A(u1 − u2) +B
t
1(p1 − p2) = 0,

B1(u1 − u2)− C(p1 − p2) = (B1 −B2)(u1 − u2).
(3.15)

Using the same technique for deriving estimate (3.10), we have

‖u1 − u2‖V ≤ δ1‖u1 − u2‖V ,

which shows u1 = u2 since δ1 < 1. Equality p1 = p2 follows immediately by applying
estimate (2.19) to (3.15).

Finally, we derive the stability estimates. As u0 = 0, we see that (u1, p1) solves
(2.16) with b replaced by b1; thus (u

1, p1) satisfies estimates (2.19). Taking n = 1 in
(3.11) and letting m go to infinity, we obtain the first estimate in (3.4). Similarly,
taking n = 1 in (3.13) leads to the second estimate in (3.4).

Sharpness of the condition on δ1 in (3.3). Below, we give a simple example
to show that condition δ1 < 1 is a sharp condition guaranteeing the unique solvability
of system (3.2). For this, consider V = Rn, Q = Rm, where n ≥ m. We choose
A = In, C = Im, and B2 = −B1 with B1 ∈ Rm×n such that rank(B1) = m. It is easy
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to see that δ1 = 2σ2
max(B1)/(1 + σ

2
min(B1)), where σmin(B1) is the minimal singular

value of B1. Then δ1 < 1 means that

2σ2
max(B1) < 1 + σ2

min(B1),(3.16)

which implies σmax(B1) < 1. It is also easy to show that problem (3.2) is uniquely
solvable if and only if the matrix (Im − B1B

t
1) is nonsingular. Hence, σmax(B1) < 1

is indeed a sufficient condition for the unique solvability of (3.2).
On the other hand, for any δ1 ≥ 1, choose the m × n matrices B1 and B2 as

follows:

−B2 = B1 =

(
1 0 0
0 δ1Im−1 0

)
.

Then the matrix (Im −B1B
t
1) is singular, and so (3.2) is not uniquely solvable.

Remark 3.1. In most applications, the constants γ in (2.12) are negative. Then
the condition γ ≤ α‖a‖−2β2

1 required in Theorems 2.2 and 3.1 is automatically satis-
fied.

Remark 3.2. In Theorem 3.1, only b1(v, q), not b2(v, q), is required to satisfy the
inf-sup condition. Similar results hold when b2(v, q) satisfies the inf-sup condition but
b1(v, q) does not.

3.2. Well-posedness not assuming condition (2.12) for any γ < ‖c‖.
The main results of this section are summarized in the following theorem.

Theorem 3.2. If we make the same assumptions as in Theorem 2.1, then for
any f ∈ V and g ∈ Q, there exists a unique solution (u, p) ∈ V ×Q to the saddle-point
problem (3.1) as long as

δ2 := β−1
1 β−1

2 ‖a‖(1 + α−1‖a‖)‖c‖ < 1.(3.17)

Further, the following stability estimates hold:

‖p‖Q ≤ 1

1− δ2 ‖p̃‖Q, ‖u‖V ≤ ‖ũ‖V +
β2(1 + α

−1‖a‖)‖c‖
1− δ2 ‖p̃‖Q,(3.18)

where (ũ, p̃) is the solution to (2.4) and thus has the bounds

‖ũ‖V ≤ β−1
2 (1 + α−1‖a‖)‖g‖Q + α−1‖f‖V , ‖p̃‖Q ≤ β−1

1 (‖f‖V + ‖a‖‖ũ‖V ).
Proof. We first prove the existence of the solution to system (3.2), which is

equivalent to (3.1). Choose p0 = 0 ∈ Q, then determine a sequence {(un, pn)} by

Aun+1 +Bt
1p

n+1 = f,(3.19)

B2u
n+1 = g + Cpn(3.20)

for n = 0, 1, 2, . . . . By Theorem 2.1, {(un, pn)} is well defined. From (3.19)–(3.20) we
have

A(un+1 − un) +Bt
1(p

n+1 − pn) = 0,(3.21)

B2(u
n+1 − un) = C(pn − pn−1).(3.22)

Applying estimates (2.9)–(2.10) to this system, we obtain

‖un+1 − un‖V ≤ β−1
2 (1 + α−1‖a‖)‖c‖‖pn − pn−1‖Q,(3.23)

‖pn+1 − pn‖Q ≤ β−1
1 ‖a‖‖un+1 − un‖V ,(3.24)
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which implies for n ≥ 1,

‖pn+1 − pn‖Q ≤ δ2‖pn − pn−1‖Q ≤ δn2 ‖p1‖Q.(3.25)

Therefore, for any nonnegative integer m > n,

‖pm − pn‖Q ≤
m−1∑
i=n

‖pi+1 − pi‖Q ≤
(

m−1∑
i=n

δi2

)
‖p1‖Q

≤ δn2
1− δ2 ‖p

1‖Q.(3.26)

That is, {pn} is a Cauchy sequence, and there exists a p ∈ Q such that

pn → p in Q.(3.27)

On the other hand, it follows from (3.23) and (3.25) that

‖un+1 − un‖V ≤ β−1
2 (1 + α−1‖a‖)‖c‖δn−1

2 ‖p1‖Q,

which implies that for any integer m > n,

‖um − un‖V ≤ β−1
2 (1 + α−1‖a‖)‖c‖ δ

n−1
2

1− δ2 ‖p
1‖Q.(3.28)

Hence {un} is also a Cauchy sequence, and there exists a u ∈ V such that

un → u in V.(3.29)

Letting n tend to infinity in (3.19)–(3.20), we see that (u, p) ∈ V × Q solves (3.2).
The uniqueness of the solution can be shown using an argument similar to the one
used in Theorem 3.1.

It remains to give stability estimates (3.18). As p0 = 0, we see from (3.19)–(3.20)
that (u1, p1) solves systems (2.4)–(2.5). Then taking n = 1 in the estimate (3.26)
gives

‖pm‖Q ≤ 1

1− δ2 ‖p
1‖Q,

which leads to the first estimate in (3.18) by letting m tend to infinity with the help
of estimates (2.9)–(2.10) for (u1, p1). In the same manner, taking n = 1 in (3.28) leads
to the second estimate in (3.18).

Sharpness of the condition on δ2 in (3.17). Next, we give some simple
examples to show that condition (3.17) is a sharp condition guaranteeing the unique
solvability of system (3.2). Clearly, in the finite-dimensional case, we have

δ2 = β−1
1 β−1

2 ‖A‖2(1 + α
−1‖A‖2)‖C‖2.(3.30)

Our first example shows that system (3.2) may not necessarily be uniquely solvable
if δ2 = 1. For this, consider V = R3 equipped with the Euclidean norm, Q = R1 in
(3.1) or (3.2). Then we choose B1 = (1, 0, 0), B2 = (k, 0, 0), C = −1, with k a nonzero
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constant to be determined later. For the matrix A, we take the following symmetric
form with ε > 0:

A =


 a11 a12 ε
a12 ε 0
ε 0 ε


 .

One can easily verify that conditions (2.6)–(2.7) hold with α = ε, β1 = 1, and β2 = |k|.
The next steps are intended to construct the matrix A and constant k such that

δ2 = 1, but system (3.2) is not uniquely solvable. That is,

|k| = a(1 + ε−1a), a = ‖A‖2,(3.31)

and

det

(
A Bt

1

B2 −C
)

= detA− kε2 = 0.(3.32)

To do this construction, we want to be able to choose the matrix A with three eigen-
values a, a1, and −a1, respectively, with a1 > 0. In this case, we obtain from (3.31)
and (3.32) that

aa2
1 = |detA| = |k|ε2 = a(1 + ε−1a)ε2,(3.33)

which gives

a1 =
√
ε2 + aε.(3.34)

As a = ‖A‖2, we must have a1 ≤ a, i.e.,

ε2 + aε ≤ a2.(3.35)

On the other hand, the characteristic equation of A is

λ3 − d1λ
2 + d2λ− detA = 0,

with d1 = a11 + 2ε and d2 = 2a11ε− a2
12. Then by the Vita theorem we know that

a+ a1 + (−a1) = a11 + 2ε,(3.36)

aa1 + a(−a1) + (−a2
1) = 2a11ε− a2

12.(3.37)

From (3.36) we get

a11 = a− 2ε.(3.38)

Combining this with (3.34) and (3.37) leads to

a2
12 = 2a11ε+ (ε2 + aε) = 3ε(a− ε).(3.39)

Then if we take

ε ≤ a/2,(3.40)

(3.35) is satisfied, and by (3.39) we may choose

a12 = ±
√
3ε(a− ε).(3.41)
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In summary, for any fixed constant a > 0, we may choose ε ∈ (0, a/2], then compute
a11 and a12 from (3.38) and (3.41), and k from (3.31). Clearly, with the matrix A
constructed above, we have δ2 = 1, ‖A‖2 = a, and |detA| = |k| ε2 (see (3.33)).

Using |detA| = |k| ε2, we have either detA = kε2 or detA = −kε2. If the former
is valid, then (3.32) holds, and system (3.2) is singular; otherwise we should choose
B2 = −kB1. Then (3.32) holds with k replaced by −k, and (3.2) is again singular.

Our second example shows some very interesting results when V = R2 and Q =
R1: system (3.2) is always uniquely solvable when δ2 = 1 but may not be when δ2 > 1.

To see this, we take A = ( a11 a12
a21 a22

), C = −1, B1 = (1, 0), and B2 = (k, k). In this
case, system (3.2) reads as follows:

 a11 a12 1
a21 a22 0
k k 1




 u1

u2

p


 =


 f1
f2
g


 .(3.42)

Clearly, both B1 and B2 satisfy the inf-sup conditions (2.8) with β1 = 1 and β2 =√
2|k|, respectively, and U1 = span{(0, 1)t} and U2 = span{(1,−1)t}. For condition

(2.6), a simple calculation gives

inf
v∈U2

sup
w∈U1

(Av,w)

‖v‖2‖w‖2
=

|a21 − a22|√
2

;(3.43)

thus (2.6) holds with α = |a21 − a22|/
√
2, and we should assume a21 �= a22. The

condition a21 �= a22 also ensures condition (2.7). Furthermore, it follows from the
definition of (3.30) that

√
2|k| = 1

δ2
a(1 + α−1a),(3.44)

where a = ‖A‖2 = σmax(A) stands for the maximal singular value of A. On the
other hand, problem (3.42) is uniquely solvable if and only if its coefficient matrix is
nonsingular, namely,

det


 a11 a12 1
a21 a22 0
k k 1


 = k(a21 − a22) + detA �= 0.(3.45)

Let a1 be the other singular value of A. Then a2 and a2
1 are the two eigenvalues

of AtA, and we have

a2 + a2
1 = tr(AtA), a2a2

1 = |detA|2.(3.46)

Let us first consider any given δ2 > 1. We want to be able to find a constant
k > 0 and a matrix A such that both (3.44) and

k(a21 − a22) + detA = 0(3.47)

hold. That is, it is possible to construct an example of the linear system (3.42), which
is not uniquely solvable.

It follows from (3.43), (3.44), and (3.47) that

|detA| = |k||a21 − a22| =
√
2|k|α =

1

δ2
αa(1 + α−1a) =

1

δ2
a(α+ a).(3.48)
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Combining this with the second equation of (3.46), we see that

a2a2
1 =

(
1

δ2
a(α+ a)

)2

,

or a1 = (a+ α)/δ2. To ensure a = ‖A‖2 we need a1 ≤ a, that is,

a ≥ α

δ2 − 1
.(3.49)

Now we have to check the first equation of (3.46), that is,

a2 + a2
1 = tr(AtA) = a2

11 + a
2
22 + a

2
12 + a

2
21.(3.50)

For simplicity, we take a22 = 0. Then from definition (3.43), we have a21 =
√
2α (or

−√
2α), so the condition a21 �= a22 is fulfilled. Now we take a12 = a21 =

√
2α, and

(3.50) becomes

a2 + a2
1 = a2

11 + 4α2,

which gives

a11 = ±
√
a2 + a2

1 − 4α2

if a ≥ 2α. Therefore, given α > 0, if a satisfies the condition

a ≥ α max
{
2,

1

δ2 − 1

}
,(3.51)

we obtain a suitable matrix A by the above construction.
Hence, for any fixed α > 0, we can choose a > 0 satisfying condition (3.51), and

afterwards choose k from (3.44). Then we can compute A from (3.50)–(3.51). Clearly,
with such a resulting matrix A, we have δ2 = 1, ‖A‖2 = a, and |detA| = |k a21|
(see (3.48)).

As |detA| = |k a21|, we have either detA = −k a21 or detA = k a21. If the
former is valid, then (3.47) holds, and system (3.42) is singular. Otherwise we should
choose B2 = −(k, k); then (3.47) is satisfied with k replaced by −k, and (3.42) is
again singular.

Finally, we consider the case δ2 = 1. To our surprise, this condition guarantees
the unique solvability of (3.42) when V = R2 and Q = R1. This is summarized in the
next proposition.

Proposition 3.3. Let V = R2, Q = R1 and A, B1, and B2 satisfy conditions
(2.6)–(2.8), C �= 0. Then for any f ∈ R2 and g ∈ R1, problem (3.2) is uniquely
solvable.

Proof. Without loss of generality, assume C = −1. We proceed by contradiction.
Assume that there exist A = ( a11 a12

a21 a22
), B1 = (b1, b2), B2 = (c1, c2) such that δ2 = 1;

however, system (3.2) is singular, that is,

det


 a11 a12 b1
a21 a22 b2
c1 c2 1


 = 0.(3.52)
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Clearly, Ker(B1) = span{(−b2, b1)t}, Ker(B2) = span{(−c2, c1)t}, β1 = ‖B1‖2,
β2 = ‖B2‖2, and conditions (2.6)–(2.7) are equivalent to∣∣∣∣(−b2, b1)

(
a11 a12

a21 a22

)( −c2
c1

)∣∣∣∣
‖B1‖2‖B2‖2

=
|detA|

‖B1‖2‖B2‖2
= α > 0,(3.53)

where we have used the fact, thanks to (3.52), that there holds

detA = b2c2a11 − b1c2a21 − b2c1a12 + b1c1a22.

On the other hand, it follows from (3.30) and δ2 = 1 that

‖B1‖2‖B2‖2 = ‖A‖2(1 + α
−1‖A‖2).(3.54)

This with (3.53) implies

|detA| = ‖B1‖2‖B2‖2α = ‖A‖2(‖A‖2 + α).(3.55)

Let σ1 be the smallest singular value of A in comparison with the singular value
a = ‖A‖2; then from (3.46) and (3.55) it follows that

‖A‖2
2σ

2
1 = |detA|2 = ‖A‖2

2(‖A‖2 + α)
2 ,

which gives σ1 = ‖A‖2 + α. This is a contradiction.

Concluding remarks. We have studied the solvability and stability of a gener-
alized saddle-point system in finite- or infinite-dimensional spaces. Sharp solvability
conditions and stability estimates are derived. The results generalize some existing
saddle-point theories in such a natural way that the results here reduce to the existing
ones in the special cases. For example, Theorem 3.1 reduces to Theorem 2.2 when
two bilinear forms b1 and b2 are equal, while Theorem 3.2 reduces to Theorem 2.1
when the bilinear form c(p, q) vanishes.

Theorems 3.1 and 3.2 hold for both finite- and infinite-dimensional Hilbert spaces
V and Q. In the case that V and Q are infinite dimensional, one may further consider
their finite-dimensional approximations Vh and Qh, e.g., by finite element methods,
and establish the error estimates for the approximate solutions of problem (3.1) asso-
ciated with the spaces Vh and Qh. The detailed discussions on the error estimates are
omitted here as they follow naturally from the standard error estimates for systems
(2.4) and (2.16), as done in [13, 4]. For the solvability and stability of the resulting
finite-dimensional system, one of the most important and difficult issues is to appro-
priately choose the pair (Vh, Qh) such that the inf-sup conditions are held with the
constants βi in (2.8) and β in (2.14) independent of the mesh parameter h.
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