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Abstract

This work investigates the scattering coefficients for inverse medium scattering problems. It shows
some fundamental properties of the coefficients such as symmetry and tensorial properties. The rela-
tionship between the scattering coefficients and the far-field pattern is also derived. Furthermore, the
sensitivity of the scattering coefficients with respect to changes in the permittivity and permeability
distributions is investigated. In the linearized case, explicit formulas for reconstructing permittivity
and permeability distributions from the scattering coefficients is proposed. They relate the expo-
nentially ill-posed character of the inverse medium scattering problem at a fixed frequency to the
exponential decay of the scattering coefficients. Moreover, they show the stability of the reconstruc-
tion from multifrequency measurements. This provides a new direction for solving inverse medium
scattering problems.
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1 Introduction

In this work we will be concerned with the following transverse magnetic polarized wave scattering
problem

∇ · 1

µ
∇u+ ω2εu = 0 in R2 , (1.1)

where µ, ε > 0 are the respective permittivity and permeability coefficients of the medium. We consider
an inhomogeneous medium Ω contained inside a homogeneous background medium, and assume that Ω
is an open bounded connected domain with a C1,α boundary for some 0 < α < 1. Let ν denote the
outward normal vector at ∂Ω, and µ0, ε0 > 0 be the medium coefficients of the homogeneous background
medium. Suppose that µ, ε ∈ L∞ and µ − µ0 and ε − ε0 are supported in Ω. Moreover, there exist
positive constants µ and ε such that µ(x) ≥ µ and ε(x) ≥ ε in Ω. Under these settings, we can write the
equation (1.1) as follows: 

∇ · 1
µ∇u+ ω2εu = 0 in Ω ,

∆u+ k2
0u = 0 in R2\Ω,

u+ = u− on ∂Ω ,
1
µ0

∂u+

∂ν = 1
µ
∂u−

∂ν on ∂Ω .

(1.2)
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Here and throughout this paper, the superscripts ± indicate the limits from outside and inside of Ω,
respectively, and ∂/∂ν denotes the normal derivative. We shall complement the system (1.2) by the
physical outgoing Sommerfeld radiation condition:

∂

∂r
(u− u0)− ik0(u− u0) = O(|x|− 3

2 ) as |x| → ∞ . (1.3)

where k0 = ω
√
µ0ε0 is the wavenumber and u0 is an incident field, solving the homogeneous Helmholtz

equation (∆ + k2
0)u0 = 0 in Rd. The solution u to the system (1.2) and (1.3) represents the total field

due to the scattering from the inclusion Ω corresponding to the incident field u0.
The notion of scattering coefficients was previously studied for homogeneous electromagnetic inclu-

sions [13] (see also [12]) in order to enhance near-cloaking. The purpose of this paper is twofold. We
first introduce the concept of inhomogeneous scattering coefficients and investigate some of their im-
portant properties and their sensitivity with respect to changes in the physical parameters. Then we
make use of this new concept for solving the inverse medium scattering problem and understanding the
associated fundamental issues of stability and resolution. The inhomogeneous scattering coefficients can
be obtained from the far-field data by a least-squares method [14]. Explicit reconstruction formulas of
the inhomogeneous electromagnetic parameters from the scattering coefficients at a fixed frequency or
at multiple frequencies are derived in the linearized case. These formulas show that the exponentially
ill-posed characteristics of the inverse medium scattering problem at a fixed frequency [4, 21, 24] is due
to the exponential decay of the scattering coefficients. Moreover, they highlight the stability of the
reconstruction from multifrequency measurements shown in [17, 18, 22, 23] since low-order scattering
coefficients can be used to form a highly resolved image from multifrequency measurements. Based on
the decay property of the inhomogeneous scattering coefficients, a resolution analysis analogous to the
one in [7] can be easily derived. The resolving power, i.e., the number of scattering coefficients which can
be stably reconstructed from the far-field measurements, can be expressed in terms of the signal-to-noise
ratio in the far-field measurements. The scattering coefficient based approach introduced in this paper
is a new promising direction for solving the long-standing inverse scattering problem with heterogeneous
inclusions. It could be combined with the continuation method developed in [16, 19] for achieving a good
resolution and stability for the image reconstruction.

For the sake of simplicity, we shall restrict ourselves to the scattering problem in two dimensions, but
all the results and analysis hold true also for three dimensions.

The paper is organized as follows. In section 2 we introduce the notion of inhomogeneous scattering
coefficients. Section 3 provides integral representations of the scattering coefficients and shows their
exponential decay. This property is the root cause of the exponentially ill-posed character of the inverse
medium scattering problem. In section 4 we prove that the scattering coefficients are nothing else but
the Fourier coefficients of the far-field pattern, then derive transformation formulas for the scattering
coefficients under rigid transformations and scaling in section 5. In section 6 we provide a sensitivity
analysis with respect to the electromagnetic parameters for the scattering coefficients. In section 7 we
derive new reconstruction formulas from the scattering coefficients at one frequency and at multiple
frequencies as well. A few concluding remarks are given in section 8. Appendix A is to construct a
Neumann function for the inhomogeneous Helmholtz equation on a bounded domain. Appendices B
and C are to show the existence of some functions used in the derivation of the explicit reconstruction
formulas in the linearized case.

2 Integral representation and scattering coefficients

In this section we define the scattering coefficients of inhomogeneous inclusions. The idea of scattering
coefficients for inclusions with homogeneous permittivity and permeability was initially introduced in [13].
We extend this idea and define such a notion for inhomogeneous inclusions following the idea in [6, 13].
We first derive the fundamental representation of the solution u to the system (1.2)-(1.3). For k0 > 0,
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let Φk0 be the fundamental solution to the Helmholtz operator ∆ + k2
0 in two dimensions satisfying

(∆ + k2
0)Φk0(x) = δ0(x)

subject to the outgoing Sommerfeld radiation condition:

∂

∂r
Φk0 − ik0Φk0 = O(|x|− 3

2 ) as |x| → ∞ .

Then Φk0 is given by

Φk0(x) = − i
4
H

(1)
0 (k0|x|) , (2.1)

where H
(1)
0 is the Hankel function of the first kind of order zero. We can easily deduce from Green’s

formula that if u is the solution to (1.2)-(1.3), then we have for x ∈ R2\Ω that

(u− u0)(x) =

∫
∂Ω

Φk0(x− y)
∂(u− u0)+

∂ν
(y)dσ(y)−

∫
∂Ω

∂Φk0(x− y)

∂νy
(u− u0)+(y)dσ(y)

=

∫
∂Ω

Φk0(x− y)
∂u+

∂ν
(y)dσ(y)−

∫
∂Ω

∂Φk0(x− y)

∂νy
u+(y)dσ(y)

=

∫
∂Ω

(
µ0

µ

)
Φk0(x− y)

∂u−

∂ν
(y)dσ(y)−

∫
∂Ω

∂Φk0(x− y)

∂νy
u−(y)dσ(y) , (2.2)

where the second equality holds since u0 satisfies the homogeneous Helmholtz equation. Let g = 1
µ
∂u−

∂ν .

Then we define the Neumann-to-Dirichlet (NtD) map Λµ,ε: H−
1
2 (∂Ω) → H

1
2 (∂Ω) such that for any

g ∈ H− 1
2 (∂Ω), u = Λµ,εg ∈ H

1
2 (∂Ω) is the trace of the solution to the following system:

∇ · 1

µ
∇u+ ω2εu = 0 in Ω ;

1

µ

∂u

∂ν
= g on ∂Ω . (2.3)

We remark that Λµ0,ε0 is well-defined if ω
√
µ0ε0 is not a Neumann eigenvalue of −∆ on Ω. For general

distributions ε and µ, in order to ensure the well-posedeness of Λµ,ε, one should assume, throughout this
paper, that 0 is not a Neumann eiganvalue of ∇ · (1/µ)∇+ ω2ε in Ω.

With this definition of Λµ,ε, we have Λµ,ε[g] = u− and 1
µ0

Λµ0,ε0 [
∂Φk0
∂ν ] = Φk0 on ∂Ω. We can therefore

rewrite (2.2) as

(u− u0)(x) =

∫
∂Ω

µ0Φk0(x− y)g(y)dσ(y)−
∫
∂Ω

µ0Λ−1
µ0,ε0 [Φk0 ](x− y)Λµ,ε[g](y)dσ(y) .

One can check that Λµ,ε is self-adjoint under the duality pair 〈·, ·〉
H−

1
2 ,H

1
2

on ∂Ω. So, we can further

write

(u− u0)(x) = µ0

∫
∂Ω

Φk0(x− y)Λ−1
µ0,ε0(Λµ0,ε0 − Λµ,ε)[g](y)dσ(y) , x ∈ Rd\Ω. (2.4)

We now use Graf’s addition formula [27] to derive a representation of u − u0 for |x| > R, assuming
that Ω ⊂ BR(0) for some R > 0. For the fundamental solution (2.1), we recall the Graf’s addition formula
for |x| > |y|:

H
(1)
0 (k0|x− y|) =

∑
n∈Z

H(1)
n (k0|x|)einθxJn(k0|y|)e−inθy , (2.5)

where x is in polar coordinate (|x|, θx), and the same for y. Now we define

(u0)m(y) := Jm(k0|y|)eimθy , (2.6)
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and let um to be the total field corresponding to the incident field (u0)m, namely the solution to (1.2)-(1.3)
with the incident field u0 replaced by (u0)m. If we write

gm :=
1

µ

∂u−m
∂ν

, (2.7)

then for any incident field u0 admitting the expansion

u0(y) =
∑
m∈Z

amJm(k0|y|)eimθy , (2.8)

we have

g =
1

µ

∂u−

∂ν
=
∑
m∈Z

amgm . (2.9)

Noting that Ω ⊂ BR(0), and putting (2.5) and (2.9) into (2.4), we derive the following representation:

(u− u0)(x)

= − iµ0

4

∑
m,n∈Z

∫
∂Ω

amH
(1)
n (k0|x|)Jn(k0|y|)ein(θx−θy)Λ−1

µ0,ε0(Λµ0,ε0 − Λµ,ε)[gm](y)dσ(y) (2.10)

for |x| > R. This motivates us to introduce the following definition.

Definition 2.1. The scattering coefficients {Wnm}m,n∈Z at frequency ω of the inhomogeneous scatterer
Ω with the permittivity and permeability distributions ε, µ are defined by

Wnm = Wnm[ε, µ, ω,Ω] := µ0

∫
∂Ω

Jn(k0|y|)e−inθyΛ−1
µ0,ε0(Λµ0,ε0 − Λµ,ε)[gm](y)dσ(y). (2.11)

With this definition and the derivations above, we immediately come to the following representation
theorem from (2.10).

Theorem 2.2. Assume that Ω ⊂ BR(0) for some R > 0. Then for an incident field of the form
u0(y) =

∑
m∈Z amJm(k0|y|)eimθy , the total field u (i.e., the solution of (1.2)-(1.3)) has the following

representation:

(u− u0)(x) = − i
4

∑
m,n

amH
(1)
n (k0|x|)einθxWnm for |x| > R . (2.12)

3 Representation and decay property of scattering coefficients

In this section we would like to represent the scattering coefficients using layer potentials and study
their decay properties. In order to do this, we first introduce the Neumann function of the Helmholtz
equation and the single and double layer potentials.

Let Nµ,ε(x, y) be the fundamental solution to the problem (2.3), i.e., for each fixed z ∈ Ω, Nµ,ε(·, z)
is the solution to

∇ · 1

µ
∇Nµ,ε(·, z) + ω2εNµ,ε(·, z) = −δz(·) in Ω ;

1

µ

∂

∂ν
Nµ,ε(·, z) = 0 on ∂Ω . (3.1)

Let Nµ,ε[g](x) :=
∫
∂Ω
Nµ,ε(x, y)g(y)dσ(y) for x ∈ Ω. Then we can see that Nµ,ε[g](x) is the solution to

(2.3), and that

Λµ,ε[g](x) = Nµ,ε[g](x) , x ∈ ∂Ω, (3.2)
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by noting the relation (cf. [10])
1

µ

∂

∂ν
Nµ,ε[g] = g on ∂Ω .

Let Sk0 [φ] and Dk0 [φ] be the following single and double layer potentials on ∂Ω:

Sk0 [φ](x) =

∫
∂Ω

Φk0(x− y)φ(y)dσ(y) , x ∈ R2, (3.3)

and

Dk0 [φ](x) =

∫
∂Ω

∂Φk0
∂νy

(x− y)φ(y)dσ(y), x ∈ R2 \ ∂Ω . (3.4)

Then the layer potentials Sk0 and Dk0 satisfy the following jump conditions:

∂

∂ν
(Sk0 [φ])

±
= (±1

2
I +K∗k0,Ω)[φ] , (Dk0 [φ])

±
= (∓1

2
I +Kk0,Ω)[φ] , (3.5)

where Kk0,Ω is the boundary integral operator defined by

Kk0,Ω[φ](x) =

∫
∂Ω

∂Φk0
∂νy

(x− y)φ(y)dσ(y)

and K∗k0,Ω is the L2 adjoint of Kk0,Ω with L2 being equipped with the real inner product. Note that
1
2I + K∗k0,Ω is invertible if k2

0 is not a Dirichlet eigenvalue of −∆ on Ω; see [9, 10]. From (2.4) and the
transmission conditions (1.2), we can see that the solution u to (1.2)-(1.3) can be represented as

u(x) = u0(x) + µ0Sk0 [φ] for x ∈ Rd\Ω ; u(x) = Nµ,ε[ψ] for x ∈ Ω (3.6)

for some density pair (φ, ψ) ∈ L2(∂Ω)× L2(∂Ω) which satisfies

u0 = Λµ,ε[ψ]− µ0Sk0 [φ] and
1

µ0

∂u0

∂ν
= −(

1

2
I +K∗k0,Ω)[φ] + ψ on ∂Ω .

If we define

A :=

(
−µ0Sk0 Λµ,ε

−( 1
2I +K∗k0,Ω) I

)
, (3.7)

then we can write (φ, ψ) as the solution to the following equation

A

(
φ
ψ

)
=

(
u0

1
µ0

∂u0

∂ν

)
, (3.8)

and show the following result.

Lemma 3.1. The operator A : L2(∂Ω)× L2(∂Ω)→ L2(∂Ω)× L2(∂Ω) is invertible.

Proof. Let (φ, ψ) ∈ L2(∂Ω)× L2(∂Ω) be such that A

(
φ
ψ

)
= 0. Let u be defined by

u =

{
Nµ,ε[ψ] in Ω,
µ0Sk0 [φ] in Rd\Ω.

From the jump conditions {
µ0Sk0 [φ] = Nµ,ε[ψ] on ∂Ω,
µ0( 1

2I +K∗k0,Ω) = ∂
∂νNµ,ε[ψ] = µ0ψ on ∂Ω,
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one can see that u satisfies the Helmholtz equation (1.1) together with the outgoing Sommerfeld radiation
condition:

∂

∂r
u− ik0u = O(|x|− 3

2 ) as |x| → ∞ . (3.9)

Uniqueness of a solution to (1.1) subject to the Sommerfeld radiation condition (3.9) shows that u = 0
in Rd. Then, since k2

0 is not a Dirichlet eigenvalue of −∆ on Ω, we have φ = 0, hence ψ = 0 as well. This
shows the injectivity of A.

Next, since 1
µ0

Φk0(|x − y|) and Nµ,ε(x, y) have the same singularity type (i.e., of logarithmic type)

as |x− y| → 0 [11] (see Appendix A) and K∗k0,Ω is a compact operator on L2(∂Ω), it follows that A is a

compact perturbation of the invertible operator on L2(∂Ω)× L2(∂Ω) which is given by(
−µ0Sk0 µ0Sk0
− 1

2I I

)
.

Therefore, Fredholm alternative holds and injectivity of A shows its invertibility.

We define (φm, ψm) as the pair of solution to the above equation (3.8) corresponding to the incident
field u0(y) = (u0)m(y) := Jm(k0|y|)eimθy defined as in (2.6), then Wnm can be simply expressed as

Wnm = µ0

∫
∂Ω

Jn(k0|y|)e−inθyφm(y)dσ(y) = µ0〈(u0)n, φm〉L2(∂Ω) . (3.10)

Using this expression, we can derive the decay property of scattering coefficients. Again from the fact
that the functions 1

µ0
Φk0(|x−y|) and Nµ,ε(x, y) have the same logarithmic type singularity as |x−y| → 0

[11], we obtain from (3.8) that

||φm||L2(∂Ω) + ||ψm||L2(∂Ω) ≤ C(||(u0)m||L2(∂Ω) + || ∂
∂ν

(u0)m||L2(∂Ω)). (3.11)

Using the asymptotic behavior of the Bessel function Jm [2],

Jm(t)

/
1√

2π|m|

(
et

2|m|

)|m|
→ 1 (3.12)

as m→∞, we have

||(u0)n||L2(∂Ω) ≤
C
|n|
1

|n||n|
and ||φm||L2(∂Ω) ≤

C
|m|
2

|m||m|

for some constants C1 and C2. Therefore, we deduce from (3.10) that

|Wnm| = |µ0〈(u0)m, φm〉L2(∂Ω)| ≤ ||(u0)n||L2(∂Ω)||φm||L2(∂Ω) ≤
C |m|+|n|

|m||m||n||n|

for some constant C, leading to the following theorem.

Theorem 3.2. There exists a constant C depending on (µ, ε, ω) such that

|Wnm| ≤
C |m|+|n|

|m||m||n||n|
for all n,m ∈ Z . (3.13)
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4 Far-field pattern

In this section we shall derive the far-field pattern of the scattered field in terms of the scattering
coefficients.

We consider the incident field u0 as a plane wave of the form u0 = eik0ξ·x with ξ being on the unit
circle. We recall the Fourier mode (u0)m(y) := Jm(k0|y|)eimθy in (2.6), and the solution pair (φm, ψm)
to (3.8) corresponding to the incident field (u0)m. Then by the well-known Jacobi-Anger decomposition,
we have the following decomposition of the plane wave in terms of (u0)m:

u0 = eik0ξ·x =
∑
m∈Z

eim(π2−θξ)Jm(k0|x|)eimθx =
∑
m∈Z

eim(π2−θξ)(u0)m , (4.1)

where ξ = (cos θξ, sin θξ) and x = |x|(cos θx, sin θx).
Let (φ, ψ) be the solution pair to (3.8) corresponding to the incident field u0 = eik0ξ·x, then using

(4.1) and the principle of superposition we have

φ =
∑
m∈Z

eim(π2−θξ)φm and ψ =
∑
m∈Z

eim(π2−θξ)ψm . (4.2)

Then we can derive the far-field pattern in terms of the scattering coefficients. In fact, using (3.6),
together with the following well-known asymptotic expansion of Φk0(x− y):

Φk0(x− y) = e−i
π
4

√
2

πk0|x|
eik0(|x|−|y| cos(θx−θy)) +O(|x|− 3

2 ) as |x| → ∞ . (4.3)

and the Jacobi-Anger identity:

e−ik0|y| cos(θx−θy) =
∑
n

Jn(k0|y|)e−in(θy+π
2 )einθx , (4.4)

we deduce the following representation

u(x)− eik0ξ·x = −ie−iπ4 µ0e
ik0|x|√

8πk0|x|

∑
m,n∈Z

i(m−n)e−imθξeinθx
∫
∂Ω

Jn(k0|y|)e−inθyφm(y)dσ(y) +O(|x|− 3
2 ) .

Comparing this with the representation of Wnm in (3.10), we infer that

u(x)− eik0ξ·x = −ie−iπ4 µ0e
ik0|x|√

8πk0|x|

∑
m,n∈Z

i(m−n)e−imθξeinθxWnm +O(|x|− 3
2 ) . (4.5)

This motivates us with the following definition of the far-field pattern.

Definition 4.1. For the total field u satisfying (1.2)-(1.3) with the incident field u0(x) = eik0ξ·x, the
far-field pattern A∞[ε, µ, ω](θξ, θx) can be defined by

u(x)− eik0ξ·x = −ie−iπ4 µ0e
ik0|x|√

8πk0|x|
A∞[ε, µ, ω](θξ, θx) +O(|x|− 3

2 ) as |x| → ∞ . (4.6)

By comparing (4.6) with (4.5) we come to the following theorem.

Theorem 4.2. Let θξ and θx be respectively the incident and the scattered direction. Then the far-field
pattern A∞[ε, µ, ω](θξ, θx) defined by (4.6) can be expressed in the explicit form:

A∞[ε, µ, ω](θξ, θx) =
∑
m,n∈Z

i(m−n)e−imθξeinθxWnm[ε, µ, ω]. (4.7)

It is easy to see that the bounds in (3.13) ensure the converges of the above series uniformly with
respect to θξ and θx, so A∞[ε, µ, ω] is well-defined. Moreover, one can see that reconstructing the
scattering coefficients from the far-field pattern is an exponentially ill-posed problem if the measurements
of A∞ are corrupted with noise.
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5 Transformation rules and properties of scattering coefficients

In this section, we derive more properties, including some transformation rules for the scattering
coefficients. To do so, we first represent the scattering coefficients in terms of an exterior NtD map. For
any g ∈ H− 1

2 (∂Ω), the action of the exterior NtD map Λeµ0,ε0 : H−
1
2 (∂Ω) → H

1
2 (∂Ω) is defined by the

trace u = Λeµ0,ε0g ∈ H
1
2 (∂Ω) of the solution u to the system:

1
µ0

∆u+ ε0ω
2u = 0 in Rd\Ω ,

1
µ0

∂u
∂ν = g on ∂Ω ,

∂
∂ru− ik0u = O(|x|− 3

2 ) as |x| → ∞ .

(5.1)

With the help of the exterior NtD map Λeµ0,ε0 , we can derive some new representation of the scattering
coefficients.

Lemma 5.1. Let (u0)n and the scattering coefficients Wnm be defined as in (2.6) and (2.11), respectively,
and let Λµ,ε and Λeµ0,ε0 be the interior and exterior NtD maps. Then the scattering coefficients Wnm can
be expressed as

Wnm = 〈(u0)n,Aµ,ε(u0)m〉L2(∂Ω) for all n,m ∈ Z , (5.2)

where the operator Aµ,ε is given by

Aµ,ε := µ0Λ−1
µ0,ε0 (Λµ0,ε0 − Λµ,ε)

(
Λµ,ε − Λeµ0,ε0

)−1 (
Λµ0,ε0 − Λeµ0,ε0

)
Λ−1
µ0,ε0 . (5.3)

Proof. For a given incident field u0, let (φ, ψ) ∈ L2(∂Ω) × L2(∂Ω) be the density pair that solves (3.8).
Then it follows from the jump conditions of the layer potentials in (3.5) that

ψ = φ+ (−1

2
I +K∗k0,Ω)[φ] +

1

µ0

∂u0

∂ν
= φ+

∂

∂ν
(Sk0 [φ])

−
+

1

µ0

∂u0

∂ν
, (5.4)

ψ = (
1

2
I +K∗k0,Ω)[φ] +

1

µ0

∂u0

∂ν
=

∂

∂ν
(Sk0 [φ])

+
+

1

µ0

∂u0

∂ν
. (5.5)

By directly applying the interior and exterior NtD operators to (5.4) and (5.5), we obtain
Λeµ0,ε0 [ψ] = µ0Sk0 [φ] + 1

µ0
Λeµ0,ε0

[
∂u0

∂ν

]
,

Λµ0,ε0 [ψ] = Λµ0,ε0 [φ] + µ0Sk0 [φ] + u0 ,

Λµ,ε[ψ] = u0 + µ0Sk0 [φ] ,

which combines to give{
(Λµ,ε − Λeµ0,ε0)[ψ] = 1

µ0
(Λµ0,ε0 − Λeµ0,ε0)

[
∂u0

∂ν

]
= (Λµ0,ε0 − Λeµ0,ε0)Λ−1

µ0,ε0 [u0] ,

(Λµ0,ε0 − Λµ,ε)[ψ] = Λµ0,ε0 [φ] .
(5.6)

Substituting the first equation in (5.6) into the second, we readily get

φ = Λ−1
µ0,ε0(Λµ0,ε0 − Λµ,ε)[ψ] = Λ−1

µ0,ε0(Λµ0,ε0 − Λµ,ε)(Λµ,ε − Λeµ0,ε0)−1(Λµ0,ε0 − Λeµ0,ε0)Λ−1
µ0,ε0 [u0] .

In particular, if (φm, ψm) ∈ L2(∂Ω)×L2(∂Ω) be the density pair that satisfies (3.8) corresponding to the
incident field u0(y) = (u0)m(y) := Jm(k0|y|)eimθy as in (2.6), then φm satisfies

φm = Λ−1
µ0,ε0(Λµ0,ε0 − Λµ,ε)(Λµ,ε − Λeµ0,ε0)−1(Λµ0,ε0 − Λeµ0,ε0)Λ−1

µ0,ε0 [(u0)m] =
1

µ0
Aµ,ε(u0)m . (5.7)

Substituting (5.7) into (3.10), we conclude that

Wnm = µ0〈(u0)n, φm〉L2(∂Ω) = 〈(u0)n,Aµ,ε(u0)m〉L2(∂Ω) .
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With the representations (3.10) and (5.2), we can derive some special transformation rules for the
scattering coefficients. Since some of these results are the well-known properties of the scattering ampli-
tude via Lax-Phillips in disguise, in here we only present a rough sketch of the proof. For a more detailed
argument, one may refer to [5]. Although these transformation rules are consistent with the properties of
the scattering amplitude, they are presented from a different perspective, and reflect the very fact that
the concept of scattering coefficients is an appropriate geometric entity for scatterer description.

Corollary 5.2. The scattering coefficients {Wnm}n,m∈Z in (2.11) meet the following transformation
rules:

1. Wnm[ε, µ, ω,Ω] = Wmn[ε, µ, ω,Ω];

2. Wnm[ε, µ, ω, eiθΩ] = ei(m−n)θWnm[ε, µ, ω,Ω] for all θ ∈ [0, 2π];

3. Wnm[ε, µ, ω, sΩ] = Wnm[ε, µ, sω,Ω] for all s > 0;

4. Wnm[ε, µ, ω,Ω + z] =
∑
l,l∈Z (u0)p(z)(u0)l(z)Wn−p,m−l[ε, µ, ω,Ω] for all z ∈ R2,

where we identify the spaces before and after translation, rotation and scaling by the natural isomorphism,
e.g., Hs(∂Ω) ∼= Hs(eiθ∂Ω).

Proof. We start with the first result in Corollary 5.2. From representation (5.2) of Wnm, it suffices to
show that the operator Aµ,ε defined in (5.3) is self-adjoint. To do this, we utilize the following identity
for any operators A, B, C such that A− C and B − C are invertible:

(A− C)−1 − (B − C)−1 = (A− C)−1(B −A)(B − C)−1 = (B − C)−1(B −A)(A− C)−1 . (5.8)

Using this we can write

(Λµ0,ε0 − Λeµ0,ε0)−1 − (Λµ,ε − Λeµ0,ε0)−1 = (Λµ,ε − Λeµ0,ε0)−1(Λµ,ε − Λµ0,ε0)(Λµ0,ε0 − Λeµ0,ε0)−1. (5.9)

Substituting (5.9) into (5.3), we get

Aµ,ε
= µ0Λ−1

µ0,ε0(Λµ0,ε0 − Λµ,ε)Λ
−1
µ0,ε0 + µ0Λ−1

µ0,ε0(Λµ,ε − Λµ0,ε0)(Λµ,ε − Λeµ0,ε0)−1(Λµ,ε − Λµ0,ε0)Λ−1
µ0,ε0 .

Now the self-adjointness of Aµ,ε is a consequence of the self-adjointness of Λµ0,ε0 , Λµ,ε and Λeµ0,ε0 .
To see the second result in Corollary 5.2, we consider the change of coordinates from (|y|, θy) to

(|ỹ|, θ̃y), with θ̃y + θ = θy and |ỹ| = |y|. It follows from definition (2.6) that (u0)m(y) = (u0)m(ỹ)eimθ.
With such a change of variable, we immediately obtain that the density pair (ψm, φm) satisfying (3.8)
with incident field u0(y) = (u0)m(y) and electromagnetic parameters µ(y) and ε(y) actually has the form

(ψm(y), φm(y)) = (φ̃m(ỹ), φ̃m(ỹ))eimθ, where (ψ̃m, φ̃m) satisfies (3.8) with incident field (u0)m(ỹ) and
parameters µ(ỹ), ε(ỹ). Then a direct substitution of expressions (u0)m and φm into (3.10) and a change
of variable immediately prove the second result in Corollary 5.2.

The derivation of the third result is similar to the second, except that we now consider the change
of coordinates from (|y|, θy) to (|ỹ|, θ̃y), with θ̃y = θy and s|ỹ| = |y|. Then (u0)m(y) = (u0)m(sỹ) and
that (ψm, φm) satisfying (3.8) with incident field u0(y) = (u0)m(y) and parameters µ(y) and ε(y) is given

by (ψm(y), φm(y)) = (ψ̃m(sỹ), φ̃m(sỹ))/s with (ψ̃m, φ̃m) satisfying (3.8) with incident field (u0)m(ỹ) and
parameters µ(ỹ), ε(ỹ). Now the desired third result in Corollary 5.2 follows from the straightforward
substitution of expressions (u0)m and φm into (3.10) and the chain rule.

Finally we come to derive the last relation in Corollary 5.2. To do so, we consider the change of
coordinates from (|y|, θy) to (|ỹ|, θ̃y) that has point z as the origin. Then the definition of (u0)m in (2.6)
and the Graf’s addition formula (2.5) allow us to write

(u0)m = Jm(k0|y|)eimθy =
∑
a∈Z

Ja(k0|z|)eimθzJm−a(k0|ỹ|)ei(m−a)θ̃y .
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By the linearity of operator A in (3.7), the density pair (ψm, φm) satisfying (3.8) with the incident field

u0(y) = (u0)m(y) can be expressed in the form (ψm, φm) =
∑
a∈Z Ja(k0|z|)eimθz (ψ̃m−a(ỹ), φ̃m−a(ỹ)),

where (ψ̃m, φ̃m) satisfies (3.8) with the incident field (u0)m(ỹ). Then the last result in Corollary 5.2
follows readily from a direct substitution of the representations (u0)m and φm into (3.10).

We end this section with one more representation of Wnm.

Lemma 5.3. Let (u0)m be defined as in (2.6) and um be the solution to (1.1)-(1.3) with the incident field
(u0)m. Then the scattering coefficients in (2.11) admits the following representation for any n,m ∈ Z:

Wnm = ω2µ0

∫
Ω

(ε0(y)− ε(y)) (u0)n(y)um(y)dσ(y) + µ0

∫
Ω

(
1

µ(y)
− 1

µ0(y)

)
∇(u0)n(y)∇um(y)dσ(y) .

Proof. Let (ψm, φm) be the density pair (ψm, φm) that satisfies (3.8) with the incident field u0(y) =
(u0)m(y). Then it follows directly from (3.10), (3.5) and (3.8) that

Wnm = µ0

∫
∂Ω

(u0)n(y)

(
ψm(y)− 1

µ0

∂(u0)m
∂ν

(y)

)
dσ(y)− µ0

∫
∂Ω

(u0)n(y)
∂ (Sk0 [φm])

−

∂ν
(y)dσ(y) .

Using Green’s identity and (3.8), we can further derive

Wnm = µ0

∫
∂Ω

(u0)n(y)

(
ψm(y)− 1

µ0

∂(u0)m
∂ν

(y)

)
dσ(y)− µ0

∫
∂Ω

∂(u0)n
∂ν

(y)Sk0 [φm](y)dσ(y)

= µ0

∫
∂Ω

(u0)n(y)ψm(y)dσ(y)−
∫
∂Ω

∂(u0)n
∂ν

(y)Λµ,ε[ψm](y)dσ(y) .

Now the desired representation of Wnm follows from (3.6) and (3.2), the comparison of (5.6) with (2.11)
and (3.10), and the Green’s identity:

Wnm = µ0

∫
∂Ω

(u0)n(y)
1

µ

∂u−m
∂ν

dσ(y)−
∫
∂Ω

∂(u0)n
∂ν

(y)um(y)dσ(y)

= ω2µ0

∫
Ω

(ε0 − ε) (u0)n(y)um(y)dσ(y) + µ0

∫
Ω

(
1

µ
− 1

µ0

)
∇(u0)n(y)∇um(y)dσ(y).

6 Sensitivity analysis

In this section, we shall investigate the sensitivity of the scattering coefficients with respect to the
changes in the permittivity and permeability distributions. This will provide us with perturbation formu-
las for evaluating the gradients that are needed in numerical minimization algorithms for reconstructing
the permittivity and permeability distributions.

We study a perturbation of Wnm for n,m ∈ Z with respect to a change of (µ, ε). More specifically,
we consider the difference W δ

nm −Wnm between

W δ
nm := Wnm

[
εδ, µδ, ω,Ω

]
and Wnm := Wnm[ ε, µ, ω,Ω] (6.1)

in terms of the differences εδ − ε and 1/µδ − 1/µ, where (µ, ε) and (µδ, εδ) are two different sets of
electromagnetic parameters. In the subsequent analysis, we shall often write

ε̂ :=

{
||εδ − ε||2L∞(Ω) +

∣∣∣∣∣∣∣∣ 1

µδ
− 1

µ

∣∣∣∣∣∣∣∣2
L∞(Ω)

}1/2

. (6.2)

We first note that if ε̂ is small enough, then the NtD map Λµδ,εδ is well defined provided that Λµ,ε is well
defined. This follows from the theory of collectively compact operators; see [15, 10].

Next we show the following expression for the difference W δ
nm −Wnm.
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Lemma 6.1. For all n,m ∈ Z, the difference W δ
nm −Wnm can be represented in terms of the interior

and exterior NtD maps Λµ,ε and Λeµ0,ε0 as follows:

W δ
nm −Wnm = µ0

∫
∂Ω

ψn(y)
(
Λµ,ε − Λµδ,εδ

)
[ψδm](y)dσ(y) , (6.3)

where ψn and ψδm are given by

ψn =
(
Λµ,ε − Λeµ0,ε0

)−1 (
Λµ0,ε0 − Λeµ0,ε0

)
Λ−1
µ0,ε0(u0)n , (6.4)

ψδm =
(
Λµδ,εδ − Λeµ0,ε0

)−1 (
Λµ0,ε0 − Λeµ0,ε0

)
Λ−1
µ0,ε0(u0)m . (6.5)

Proof. Using the identity (5.8) we can write

(Λµδ,εδ − Λeµ0,ε0)−1 − (Λµ,ε − Λeµ0,ε0)−1 = (Λµ,ε − Λeµ0,ε0)−1(Λµ,ε − Λµδ,εδ)(Λµδ,εδ − Λeµ0,ε0)−1 , (6.6)

which enables us to derive(
Λµ0,ε0 − Λµδ,εδ

) (
Λµδ,εδ − Λeµ0,ε0

)−1 − (Λµ0,ε0 − Λµ,ε)
(
Λµ,ε − Λeµ0,ε0

)−1

=
(
Λµ,ε − Λµδ,εδ

) (
Λµδ,εδ − Λeµ0,ε0

)−1
+ (Λµ0,ε0 − Λµ,ε)

[(
Λµδ,εδ − Λeµ0,ε0

)−1 −
(
Λµ,ε − Λeµ0,ε0

)−1
]

=
[
I + (Λµ0,ε0 − Λµ,ε) (Λµ,ε − Λeµ0,ε0)−1

]
(Λµ,ε − Λµδ,εδ)(Λµδ,εδ − Λeµ0,ε0)−1

=
(
Λµ0,ε0 − Λeµ0,ε0

)
(Λµ,ε − Λeµ0,ε0)−1(Λµ,ε − Λµδ,εδ)(Λµδ,εδ − Λeµ0,ε0)−1 . (6.7)

It follows directly from (6.7) and definition (5.3) for the operators Aµ,ε and Aµδ,εδ that

Aµδ,εδ −Aµ,ε

= µ0Λ−1
µ0,ε0

{(
Λµ0,ε0 − Λµδ,εδ

)(
Λµδ,εδ − Λeµ0,ε0

)−1
− (Λµ0,ε0 − Λµ,ε)

(
Λµ,ε − Λeµ0,ε0

)−1
}(

Λµ0,ε0 − Λeµ0,ε0

)
Λ−1
µ0,ε0

= µ0Λ−1
µ0,ε0

(
Λµ0,ε0 − Λeµ0,ε0

)
(Λµ,ε − Λeµ0,ε0

)−1(Λµ,ε − Λµδ,εδ )(Λµδ,εδ − Λeµ0,ε0
)−1

(
Λµ0,ε0 − Λeµ0,ε0

)
Λ−1
µ0,ε0

.

Now identity (6.3) is a consequence of the above relation and the representation (5.2) for Wnm and W δ
nm,

W δ
nm −Wnm = 〈(u0)n,

(
Aµδ,εδ −Aµ,ε

)
(u0)m〉L2(∂Ω) = 〈ψn,

(
Λµ,ε − Λµδ,εδ

)
[ψδm]〉L2(∂Ω) ,

where 〈, 〉 denotes the complex inner product on L2(∂Ω).

The following identity will be useful for the subsequent analysis.

Lemma 6.2. For the solutions ui (i = 1, 2) to the two systems

∇ ·
(

1

µi
∇ui

)
+ ω2εiui = 0 in Ω ;

1

µi

∂ui
∂ν

= g on ∂Ω , (6.8)

the following identity holds ∫
∂Ω

g (Λµ2,ε2 − Λµ1,ε1) [g]dσ

=
1

2

∫
Ω

(
1

µ1
− 1

µ2

)(
−|∇(u1 − u2)|2 + |∇u1|2 + |∇u2|2

)
−1

2
ω2

∫
Ω

(ε1 − ε2)
(
−|u1 − u2|2 + |u1|2 + |u2|2

)
dx . (6.9)
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Proof. It follows easily from (6.8) and integration by parts that∫
∂Ω

g(Λµ1,ε1)[g] dσ =

∫
Ω

(
1

µ1
|∇u1|2 − ω2ε1|u1|2

)
dx , (6.10)∫

∂Ω

g(Λµ2,ε2)[g] dσ =

∫
Ω

(
1

µ1
∇u1 · ∇u2 − ω2ε1u1u2

)
dx , (6.11)∫

∂Ω

g(Λµ2,ε2)[g] dσ =

∫
Ω

(
1

µ2
|∇u2|2 − ω2ε2|u2|2

)
dx , (6.12)∫

∂Ω

1

µ1

∂u2

∂ν
u2 dσ =

∫
Ω

(
1

µ1
|∇u2|2 − ω2ε1|u2|2

)
dx . (6.13)

Combining (6.10)-(6.13) yields∫
Ω

1

µ1
|∇(u2 − u1)|2dx− ω2

∫
Ω

ε1|u2 − u1|2dx+

∫
Ω

(
1

µ2
− 1

µ1

)
|∇u2|2dx− ω2

∫
Ω

(ε2 − ε1) |u2|2dx

=

∫
∂Ω

g(Λµ1,ε1)[g] dσ − 2

∫
∂Ω

g(Λµ2,ε2)[g] dσ +

∫
∂Ω

1

µ1

∂u2

∂ν
u2 dσ +

∫
∂Ω

g(Λµ2,ε2)[g] dσ −
∫
∂Ω

1

µ1

∂u2

∂ν
u2 dσ

=

∫
∂Ω

g (Λµ1,ε1 − Λµ2,ε2) [g] dσ ,

which gives the identity∫
Ω

1

µ1
|∇(u2 − u1)|2dx− ω2

∫
Ω

ε1|u2 − u1|2dx+

∫
Ω

(
1

µ2
− 1

µ1

)
|∇u2|2dx− ω2

∫
Ω

(ε2 − ε1) |u2|2dx

=

∫
∂Ω

g (Λµ1,ε1 − Λµ2,ε2) [g] dσ . (6.14)

Swapping u1 and u2 in the above identity implies∫
Ω

1

µ2
|∇(u1 − u2)|2dx− ω2

∫
Ω

ε2|u1 − u2|2dx+

∫
Ω

(
1

µ1
− 1

µ2

)
|∇u1|2dx− ω2

∫
Ω

(ε1 − ε2) |u1|2dx

=

∫
∂Ω

g (Λµ2,ε2 − Λµ1,ε1) [g] dσ . (6.15)

Now (6.9) follows by subtracting (6.14) from (6.15).

By the same arguments as those in [1] (see also [8]), we can derive the following estimate.

Lemma 6.3. The difference between the interior NtD maps Λµ,ε and Λµδ,εδ can be represented in terms
of the differences between two sets of electromagnetic parameters (µ, ε) and (µδ, εδ):

||Λµδ,εδ − Λµ,ε|| ≤ C
(
||εδ − ε||L∞(Ω) +

∣∣∣∣∣∣∣∣ 1

µδ
− 1

µ

∣∣∣∣∣∣∣∣
L∞(Ω)

)
. (6.16)

Now we can further our analysis on the difference W δ
nm −Wnm in terms of εδ − ε and 1/µδ − 1/µ

using (6.3) and (6.16). Recalling ψn and ψδm from (6.4) and (6.5), we can define the solutions um, u
γ
m, u

δ
n

and uδγn to the following four systems:

∇ · 1

µ
∇um + εω2um = 0 in Ω ;

1

µ

∂

∂ν
um = ψm on ∂Ω ; (6.17)

∇ · 1

µδ
∇uγm + εδω2uγm = 0 in Ω ;

1

µδ
∂

∂ν
uγm = ψm on ∂Ω ; (6.18)

∇ · 1

µ
∇uδγn + εω2uδγn = 0 in Ω ;

1

µ

∂

∂ν
uδγn = ψδn on ∂Ω ; (6.19)

∇ · 1

µδ
∇uδn + εδω2uδn = 0 in Ω ;

1

µδ
∂

∂ν
uδn = ψδn on ∂Ω . (6.20)
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Noting from (3.6) that ψn and ψδm are the density functions in the Neumann potential along ∂Ω with
coefficients (µ, ε) and (µδ, εδ) respectively, the solutions um and uδn solve (1.1)-(1.3) with coefficients (µ, ε)
and (µδ, εδ) and the incident field (u0)m and (u0)n defined as in (2.6). For convenience, we introduce a
bilinear form:

B(p, q) :=

∫
∂Ω

p
(
Λµ,ε − Λµδ,εδ

)
[q]dσ ∀ p, q ∈ H− 1

2 (∂Ω) . (6.21)

Then (6.9) gives us an explicit expression of B(g, g) for g ∈ H− 1
2 (∂Ω). By (6.3), the difference W δ

nm−Wnm

can be split using the bilinear form B as

W δ
nm −Wnm = µ0B(ψm, ψ

δ
n)

=
µ0

2

[
B(ψm + ψδn, ψm + ψδn)−B(ψm, ψm)−B(ψδn, ψ

δ
n)
]

+
iµ0

2

[
B(ψm + iψδn, ψm + iψδn)−B(ψm, ψm)−B(ψδn, ψ

δ
n)
]

:=
µ0

2
(I) +

iµ0

2
(II) , (6.22)

where (I) and (II) are given by

(I) := B(ψm + ψδn, ψm + ψδn)−B(ψm, ψm)−B(ψδn, ψ
δ
n) , (6.23)

(II) := B(ψm + iψδn, ψm + iψδn)−B(ψm, ψm)−B(ψδn, ψ
δ
n) . (6.24)

By direct calculations, we get the following expression of the term (I):

(I) = B(ψm + ψδn, ψm + ψδn)−B(ψm, ψm)−B(ψδn, ψ
δ
n)

=
1

2

∫
Ω

(
1

µδ
− 1

µ

)(
−|∇(um + uδγn − uγm − uδn)|2 + |∇(um + uδγn )|2 + |∇(uγm + uδn)|2

)
dx

−1

2
ω2

∫
Ω

(
εδ − ε

) (
−|um + uδγn − uγm − uδn|2 + |um + uδγn |2 + |uγm + uδn|2

)
dx

−
[

1

2

∫
Ω

(
1

µδ
− 1

µ

)(
−|∇(um − uγm)|2 + |∇um|2 + |∇uγm|2

)
dx

− 1

2
ω2

∫
Ω

(
εδ − ε

) (
−|um − u2|2 + |um|2 + |uγm|2

)
dx

]
−
[

1

2

∫
Ω

(
1

µδ
− 1

µ

)(
−|∇(uδγn − uδn)|2 + |∇uδγn |2 + |∇uδn|2

)
dx

− 1

2
ω2

∫
Ω

(
εδ − ε

) (
−|uδγn − uδn|2 + |uδγn |2 + |uδn|2

)
dx

]
.

From (6.16), we get

||um − uγm||2H1(Ω) = O(ε̂) and ||uδγn − uδn||2H1(Ω) = O(ε̂) , (6.25)

where ε̂ is defined as in (6.2). Then using (6.25), we further the estimate of the term (I) as follows:

(I) =

∫
Ω

(
1

µδ
− 1

µ

)(
|∇(um + uδn)|2 − |∇um|2 − |∇un|2

)
dx

−ω2

∫
Ω

(
εδ − ε

)(
|um + uδn|2 − |um|2 − |un|2

)
dx+O(ε̂2)

= 2 Re

[∫
Ω

(
1

µδ
− 1

µ

)
∇uδn · ∇um dx− ω2

∫
Ω

(
εδ − ε

)
uδnum dx

]
+O(ε̂2) . (6.26)
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Similarly, we can derive the following estimate for the term (II):

(II) = B(ψm + iψδn, ψm + iψδn)−B(ψm, ψm)−B(ψδn, ψ
δ
n)

= 2 Im

[∫
Ω

(
1

µδ
− 1

µ

)
∇uδn · ∇um dx− ω2

∫
Ω

(
εδ − ε

)
uδnum dx

]
+O(ε̂2) . (6.27)

Substituting (6.26) and (6.27) in (6.22) gives

W δ
nm −Wnm = µ0

∫
Ω

(
1

µδ
− 1

µ

)
∇uδn · ∇um dx− µ0ω

2

∫
Ω

(
εδ − ε

)
uδnum dx+O(ε̂2) . (6.28)

Furthermore, we have from (2.12) that for all m ∈ Z,

um − (u0)m = − i
4

∑
m

H(1)
n (k0|x|)einθxWnm , uδm − (u0)m = − i

4

∑
m

H(1)
n (k0|x|)einθxW δ

nm , (6.29)

subtracting the first one from the second in (6.29) gives

uδm = um −
i

4

∑
m

H(1)
n (k0|x|)einθx

(
W δ
nm −Wnm

)
. (6.30)

Now replacing uδm in (6.28) by (6.30), we arrive at the following theorem.

Theorem 6.4. Assume (µ, ε) and (µδ, εδ) are two different sets of electromagnetic parameters, and Wnm

and W δ
nm are defined as in (6.1). Let ε̂ be defined as in (6.2). For any m ∈ Z, let um be the solution to

(1.1)-(1.3) with the coefficients (µ, ε) and the incident field (u0)m in (2.6). Then the following estimate
holds for any n,m ∈ Z:

W δ
nm −Wnm = µ0

∫
Ω

(
1

µδ
− 1

µ

)
∇un · ∇um − ω2µ0

∫
Ω

(
εδ − ε

)
unum +O(ε̂2) . (6.31)

The above formula provides a sensitivity analysis in terms of electromagnetic parameters (µ, ε) for
arbitrary medium domains Ω. In order to derive reconstruction formulas for µ and ε from the scattering
coefficients, we shall achieve more explicit and detailed sensitivity analysis and representation formulas
for scattering coefficients Wnm when the medium domains are of some special geometry. This is our focus
in the next section.

7 Explicit reconstruction formulas in the linearized case

For a given ε̂ > 0, consider µ, ε such that (||ε − ε0||2L∞(Ω) +
∣∣∣∣µ−1 − µ−1

0

∣∣∣∣2
L∞(Ω)

)1/2 = ε̂. Then it

follows from (5.10) and the definition of (u0)m in (2.6) that

Wnm = µ0

∫
Ω

(
1

µ(y)
− 1

µ0

)
∇(Jn(k0|y|)e−inθy ) · ∇(Jm(k0|y|)eimθy )dy

−ω2µ0

∫
Ω

(ε(y)− ε0) Jn(k0|y|)Jm(k0|y|)ei(m−n)θydy +O(ε̂2) . (7.1)

Now for all n 6= 0, we have by direct computing

∂x1
(Jn(kr)einθ) = (cos θ∂r −

sin θ

r
∂θ)(Jn(kr)einθ)

=
k

2
cos θ(Jn−1(kr)− Jn+1(kr))einθ − in sin θ

r
Jn(kr)einθ , (7.2)

∂x2(Jn(kr)einθ) = (sin θ∂r +
cos θ

r
∂θ)(Jn(kr)einθ)

=
k

2
sin θ(Jn−1(kr)− Jn+1(kr))einθ +

in cos θ

r
Jn(kr)einθ , (7.3)
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which implies the explicit expression for the gradient term in (7.1) for n,m 6= 0:

∇(Jn(k0|y|)e−inθy ) · ∇(Jm(k0|y|)eimθy )

=

[
k2

0

4
(Jn−1(k0|y|)− Jn+1(k0|y|)) (Jm−1(k0|y|)− Jm+1(k0|y|)) +

nm

|y|2 Jn(k0|y|)Jm(k0|y|)
]
ei(m−n)θy .(7.4)

For n = 0, we have J ′0 = −J1 and

∂x1
(J0(kr)) = −k cos θ(J1(kr)) , ∂x2

(J0(kr)) = −k sin θ(J1(kr)) , (7.5)

which yields the following explicit expressions for the gradient term for n = 0 or m = 0:

∇(J0(k0|y|)) · ∇(Jm(k0|y|)eimθy ) =

[
−k

2
0

2
(J1(k0|y|)) (Jm−1(k0|y|)− Jm+1(k0|y|))

]
eimθy , (7.6)

∇(Jn(k0|y|)e−inθy ) · ∇(J0(k0|y|)) =

[
−k

2
0

2
(Jn−1(k0|y|)− Jn+1(k0|y|)) (J1(k0|y|))

]
e−inθy , (7.7)

∇(J0(k0|y|)) · ∇(J0(k0|y|)) = k2
0 (J1(k0|y|))2 . (7.8)

These explicit formulas lead us to the following corollary.

Corollary 7.1. Let (µ, ε) be a pair of electromagnetic parameters in Ω, and ε̂ = (||ε− ε0||2L∞ +
∣∣∣∣µ−1 −

µ−1
0

∣∣∣∣2
L∞

)1/2. Then the scattering coefficients Wnm[ ε, µ, ω,Ω ] admit the following expansions:

Wnm =
µ0k

2
0

4

∫
Ω

(
1

µ(y)
− 1

µ0

)
(Jn−1(k0|y|)− Jn+1(k0|y|)) (Jm−1(k0|y|)− Jm+1(k0|y|)) ei(m−n)θy dy

+µ0nm

∫
Ω

(
1

µ(y)
− 1

µ0

)
1

|y|2
Jn(k0|y|)Jm(k0|y|)ei(m−n)θy dy

−ω2µ0

∫
Ω

(ε(y)− ε0) Jn(k0|y|)Jm(k0|y|)ei(m−n)θydy +O(ε̂2) (for n,m 6= 0) (7.9)

W00 = µ0k
2
0

∫
Ω

(
1

µ(y)
− 1

µ0

)
(J1(k0|y|))2

dy − ω2µ0

∫
Ω

(ε(y)− ε0) (J0(k0|y|))2
dy +O(ε̂2) (7.10)

Wn0 = −µ0k
2
0

2

∫
Ω

(
1

µ(y)
− 1

µ0

)
(Jn−1(k0|y|)− Jn+1(k0|y|)) (J1(k0|y|)) e−inθy dy

−ω2µ0

∫
Ω

(ε(y)− ε0) Jn(k0|y|)J0(k0|y|)e−inθy dy +O(ε̂2) (for n 6= 0) . (7.11)

By means of the asymptotic behavior (3.12) and the estimates in Corollary 7.1, we obtain the following
estimate for all n,m ∈ Z:

|Wnm| ≤
µ2

0ε0ω
2

4

∣∣∣∣∣∣∣∣ 1µ − 1

µ0

∣∣∣∣∣∣∣∣
L∞(Ω)

C |n|+|m|−2

(|n| − 1)
(|n|−1)

(|m| − 1)
(|m|−1)

+µ0

∣∣∣∣∣∣∣∣ 1µ − 1

µ0

∣∣∣∣∣∣∣∣
L∞(Ω)

C |n|+|m|−2

|n||n|−1|m||m|−1
+ ω2µ0||ε− ε0||L∞(Ω)

C |n|+|m|

|n||n||m||m|
+ Cε̂2 . (7.12)

Moreover, by comparing (7.9) with (3.12) for large m and n, we can see that the two integrals with the
term (µ−1 − µ−1

0 ) dominate. This suggests that we may separate the effect of (µ−1 − µ−1
0 ) and ε− ε0 on

Wnm and recover µ and ε alternatively: First use the scattering coefficients Wnm for large m,n to recover
µ, then use the scattering coefficients Wnm for small m,n to recover ε. Furthermore, with the integral
expression (7.9) we may work out each term explicitly for some special domains, e.g., Ω = BR(0). For
simplicity, we will present our detailed derivations and calculations for the special case with µ = µ0 but
ε 6= ε0 in the remainder of this section, though most of the conclusions can be extended to the general
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case with µ 6= µ0 and ε 6= ε0. It is easy to see for the special domain Ω = BR(0) and the special case
with µ = µ0 but ε 6= ε0 that Wnm are simplified to be

Wnm = −ω2µ0

∫ R

0

∫ 2π

0

(ε(y)− ε0) Jn(k0ry)Jm(k0ry)ei(m−n)θyrydrydθy +O(ε̂2) , (7.13)

where y = (ry, θy) is the polar coordinate.

7.1 Radially symmetric case

In this subsection we derive formulas to recover the electromagnetic parameter ε from the scattering
coefficients Wnm in the case with µ = µ0, but ε 6= ε0 with ε being radially symmetric in Ω = BR(0). We
shall write ε̂ := ||ε− ε0||L∞(Ω), and ε(y) = ε(ry). It is straightforward to see from (7.13) that

Wnm = −2πω2µ0

∫ R

0

(ε(ry)− ε0) [Jn(k0ry)]2rydry +O(ε̂2) for m = n and O(ε̂2) for m 6= n. (7.14)

It follows readily from (7.9), (7.11) and (7.10) that the same conclusion as in (7.14) for m 6= n can be
obtained for the more general case when µ 6= µ0 and ε 6= ε0, provided that both µ and ε are radial
symmetric in Ω = BR(0).

In the later part of this subsection, we shall establish an explicit formula for computing the elec-
tromagnetic parameter ε in terms of the scattering coefficients Wnn(k) := Wnn[ ε, µ, ω(k),Ω ], where
ω(k) = k/

√
ε0µ0 is the frequency depending on k ∈ R+. For the sake of convenience, we define the

following coefficient

H(0)
n :=

∫ ∞
0

Wnn(k)

k
dk . (7.15)

Using the following orthogonality of the Bessel functions {Jn(rk)}r>0 for a given n ∈ Z:∫ ∞
0

Jn(rk)Jn(r′k)k dk =
δ(r − r′)

r
∀ r, r′ > 0 , (7.16)

we obtain from (7.13) and (7.1) that

H(0)
n =

∫ ∞
0

Wnn(k)

k
dk = −2π

ε0

∫ R

0

(ε(ry)− ε0)

(∫ ∞
0

Jn(kry)Jn(kry)kdk

)
rydry +O(ε̂2)

= −2π

ε0

∫ R

0

(ε(ry)− ε0) dry +O(ε̂2) ,

which gives the average of ε(ry)−ε0 along the radial direction. Next, we shall extend the above observation
to obtain more information about ε. This motivates us with the following definition.

Definition 7.2. For n ∈ Z, let Wnn(k) := Wnn[ ε, µ, ω(k),Ω ] be defined as in (2.11) with ω(k) =

k/
√
ε0µ0. For l, n ∈ Z and l ≥ 0, let g

(l)
n (k) be functions such that∫ ∞

0

g(l)
n (k)Jn(kr)Jn(kr)k2 dk = rl−1 ∀ r > 0. (7.17)

Then we define the coefficients H(l)
n by

H(l)
n :=

∫ ∞
0

g(l)
n (k)Wnn(k) dk ∀ l, n ∈ Z, l ≥ 0 . (7.18)
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We will show the existence of functions g
(l)
n satisfying (7.17) and derive their explicit expressions in

Appendix B.

We see from the orthogonality relation (7.16) that g
(0)
n (k) = 1/k. Thus the definition of H(l)

n in
(7.18) is consistent with (7.15) for l = 0. With this definition, we are able to recover the l-th moment of
ε(ry)− ε0 from the scattering coefficients Wnn(k) measured at different wavenumber k but for one fixed
n ∈ Z. Putting (7.13), (7.17) into (7.18), we get

H(l)
n =

∫ ∞
0

g(l)
n (k)Wnn(k) dk = −2π

ε0

∫ R

0

(ε(ry)− ε0)

(∫ ∞
0

g(l)
n (k)Jn(kry)Jn(kry)k2dk

)
rydry +O(ε̂2)

= −2π

ε0

∫ R

0

rly (ε(ry)− ε0) dry +O(ε̂2) .

By this relation, the electromagnetic coefficient ε can be reconstructed explicitly.

Corollary 7.3. Let Ω = BR(0) be the disk of center 0 and radius R. Let (µ, ε) be the pair of electromag-
netic parameters in Ω and (µ0, ε0) be the parameters of the homogeneous background. Assume that the
parameters satisfy µ = µ0 and ε is radially symmetric, i.e., ε(y) = ε(ry), and ε̂ = ||ε− ε0||L∞(Ω). Then

the coefficients H(l)
n defined in (7.18) satisfy the following relationship for l, n ∈ Z and l ≥ 0,

H(l)
n = −2π

ε0

∫ R

0

rly (ε(ry)− ε0) dry +O(ε̂2) . (7.19)

For α ∈ Z, the α-th Fourier coefficient Fry [ε(ry)− ε0] (α) of ε(ry)− ε0 can be written explicitly by

Fry [ε(ry)− ε0] (α) = −2π

ε0

∞∑
l=0

(− 2π
R iα)l

l!
H(l)
n +O(ε̂2) (7.20)

for a fixed n ∈ Z, and the electromagnetic coefficient ε can be explicitly expressed as, for a fixed n ∈ Z,

(ε− ε0)(ry) = −2π

ε0

∞∑
α=−∞

∞∑
l=0

ei
2π
R αry

(− 2π
R iα)l

l!
H(l)
n +O(ε̂2) . (7.21)

We remark that, with (7.21), we are able to reconstruct ε from a set of scattering coefficients
{Wnn(k)|k ∈ R+} for all wavenumbers k but with only a fixed n ∈ Z . Choosing n small yields a

stable reconstruction of ε from far-field patterns at frequencies k ∈ [0, kmax] by approximating H(l)
n with∫ kmax

0
g

(l)
n (k)Wnn(k) dk and truncating the infinite sums in (7.21).

In what follows, we would like to have a brief discussion on how this choice of kmax may affect the
approximate reconstruction of ε. Actually, in view of (4.7), for any given wavenumber k, the scatter-
ing coefficients and the far-field pattern shall provide the same information about the function ε − ε0.
Therefore, in order to understand the effect of the truncation threshold kmax, we would first like to ob-
tain a representation of the far-field pattern in terms of the function ε − ε0. For a given wavenumber
k and ξ ∈ S1, and an incidence field u0 of the form u0 = eikξ·x as in Section 4, we obtain from the
well-known Lippmann-Schwinger equation and the Born approximation [20] the following representation
of the scattered field:

u(x)− eikξ·x = − (ω(k))
2
∫

Ω

(ε(y)− ε0)eikξ·yΦk(|x− y|) dy +O
(
ε̂2
)

(7.22)

where ω(k) = k/
√
ε0µ0 and Φk is the fundamental solution defined as in (2.1) with k0 replaced by k.

Therefore, substituting (4.3) into the above equation and comparing it with (4.6), we directly infer the
following representation of the far-field pattern,

A∞[ε, µ, ω(k)](θξ, θx) = − (ω(k))
2
∫

Ω

(ε(y)− ε0)eik(ξ−x̂)·y dy +O(ε̂2)

= − k2

ε0µ0
[Fy (ε− ε0)] (d ξ,x) +O(ε̂2) , (7.23)
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where x̂ := x/|x| ∈ S1, dξ,x := k (ξ − x̂) ∈ B2k(0), and for any d ∈ R2, the notation [Fy (ε− ε0)] (d)
denotes the Fourier transform of ε− ε0 at d as follows:

[Fy (ε− ε0)] (d) :=

∫
R2

(ε(y)− ε0)eid·y dy =

∫
Ω

(ε(y)− ε0)eid·y dy , ∀d ∈ R2 . (7.24)

Now, from (4.7), the scattering coefficients for a fixed wavenumber k provide the far-field pattern
A∞[ε, µ, ω(k)], which in turn provides the Fourier transform of ε − ε0 for d ∈ B2k(0). Hence we can
see that the larger is the truncation threshold kmax, the more information about the Fourier transform
of ε− ε0 is available, and therefore the better is the resolution of the reconstructed image. But a larger
kmax leads to more computational efforts.

7.2 Angularly symmetric case

In this subsection we would like to recover the electromagnetic parameter ε from the scattering coeffi-
cients Wnm for the special domain Ω = BR(0) and the special case when µ = µ0 and the electromagnetic
coefficient ε only depends on θy, i.e., ε(y) = ε(θy). Directly from (7.13), we have, for n,m ∈ Z,

Wnm = −ω2µ0

(∫ 2π

0

(ε(θy)− ε0) ei(m−n)θydθy

)(∫ R

0

Jn(k0ry)Jm(k0ry)rydry

)
+O(ε̂2)

= −ω2µ0Ck0(m,n)

∫ 2π

0

(ε(θy)− ε0) ei(m−n)θydθy +O(ε̂2) . (7.25)

where Ck0(m,n) is given by

Ck0(m,n) :=

∫ R

0

Jn(k0ry)Jm(k0ry)ry dry , n,m ∈ Z. (7.26)

We can see that for n,m ∈ Z, Ck0(m,n) actually satisfies

Ck0(m,n) :=

∫ R

0

Jn(k0ry)Jm(k0ry)rydry

= Fθ,φ

[
Reik0R(sin θ+sinφ)

ik0 (sin θ + sinφ)
+

eik0R(sin θ+sin(φ))

k2
0 (sin θ + sinφ)

2

]
(n,m) , (7.27)

where Fθ,φ stands for the Fourier coefficient in both arguments θ and φ. Formula (7.27) indicates that
the coefficients Ck0(m,n), m,n ∈ Z, can be approximated via FFT or calculated explicitly. From (7.25),
we can obtain the Fourier coefficients Fθy [ε(θy)− ε0] of ε(θy)− ε0 as follows:

Fθy [ε(θy)− ε0] (n−m) = − Wnm

ω2µ0Ck0(m,n)
+O(ε2) ,

for all n,m ∈ Z. Thus we have the following corollary.

Corollary 7.4. Let Ω = BR(0) and ε̂ := ||ε − ε0||L∞(Ω), and the same assumptions be assumed for
(µ, ε) and (µ0, ε0) as in Corollary 7.3, except that the radial symmetry of ε is now replaced by the angular
symmetry, i.e., ε(y) = ε(θy). Then for all n,m ∈ Z, the scattering coefficients Wnm defined in (2.11)
satisfy the following relationship with the Fourier coefficients of ε(θy)− ε0:

Fθy [ε(θy)− ε0] (n−m) = − Wnm

ω2µ0Ck0(m,n)
+O(ε2) . (7.28)

Let {(nl,ml)}l∈Z ⊂ Z × Z be such that nl −ml = l for all l ∈ Z. Then the electromagnetic coefficient ε
can be explicitly expressed by

(ε− ε0)(θy) = −
∞∑

l=−∞

Wnlml

ω2µ0Ck0(ml, nl)
ei2πlθy +O(ε̂2) . (7.29)
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We can see from (7.29) that in order to recover the electromagnetic coefficient ε in the angular symmetric
case, we only need to know {Wnlml}l∈Z where {(nl,ml)}l∈Z ⊂ Z× Z is such that nl −ml = l for l ∈ Z.
So we do not necessarily require all the scattering coefficients Wnm to recover ε, instead we may choose
{Wnlml}l∈Z of any particular {(nl,ml)}l∈Z, for instance we may fix nl = 0. Truncating the sum in (7.29)
up to N gives a stable reconstruction formula (for the low-frequency part) with an angular resolution
limit depending on N . Higher is N better is the angular resolution. When Wnm are corrupted by noise,
N can be computed as a function of the signal to noise ratio in the measurements.

7.3 General case

In this subsection, we try to derive formulas to recover the parameter ε from the set of scattering
coefficients {Wnm(k)|n,m ∈ Z, k ∈ R+}, where Wnm(k) := Wnm[ ε, µ, ω(k),Ω ] is defined in (2.11) with
ω(k) satisfying (7.1) when Ω = BR(0), µ = µ0, without any assumption on the parameter ε. We would
like to combine the ideas in the proofs of (7.21) and (7.29) to get a more general result. Now we start
with a general ε which admits the Fourier expansion:

ε(ry, θy)− ε0 =
∑
α∈Z

Fθy [ε(ry, θy)− ε0] (α)eiαθy , (7.30)

where Fθy [ε(ry, θy)− ε0] (α) is the α-th Fourier coefficient with respect to θy fixing ry. Then we plug the
expansion (7.30) into (7.13) to get

Wnm = −2πω2µ0

∫ R

0

Fθy [ε(ry, θy)− ε0] (n−m)Jn(k0ry)Jm(k0ry)rydry +O(ε̂2) . (7.31)

Following the definition of H(l)
n in (7.18), we define a generalized coefficient H(l)

nm below.

Definition 7.5. For n,m ∈ Z, let Wnm(k) := Wnm[ ε, µ, ω(k),Ω ] be defined as in (2.11) where ω(k) is

defined as in (7.1). For l, n,m ∈ Z and l ≥ 0, let g
(l)
nm(k) be functions such that∫ ∞

0

g(l)
nm(k)Jn(kr)Jm(kr)k2 dk = rl−1 , (7.32)

for any r > 0. Then the coefficients H(l)
nm are defined as, for l, n,m ∈ Z and l ≥ 0,

H(l)
nm :=

∫ ∞
0

g(l)
nm(k)Wnm(k) dk. (7.33)

We refer to Appendix C for the existence of functions g
(l)
nm satisfying (7.32).

With this definition, we are able to recover, for all n,m ∈ Z, the l-th moment of the Fourier coefficients
Fθy [ε(ry, θy)− ε0] (n−m) with respect to ry from the scattering coefficients Wnm(k) measured at different
frequencies k . Actually, we have, putting (7.1), (7.32) and (7.31) into (7.18),

H(l)
nm =

∫ ∞
0

g(l)
nm(k)Wnm(k) dk

= −2π

ε0

∫ R

0

Fθy [ε(ry, θy)− ε0] (n−m)

(∫ ∞
0

g(l)
nm(k)Jn(kry)Jm(kry)k2 dk

)
rydry +O(ε̂2)

= −2π

ε0

∫ R

0

rlyFθy [ε(ry, θy)− ε0] (n−m)dry +O(ε̂2) ,

for all n,m ∈ Z. Therefore, similar to (7.20), we get, for all n,m,α ∈ Z,

Fry,θy [ε(ry, θy)− ε0] (α, n−m) = −2π

ε0

∞∑
l=0

(− 2π
R iα)l

l!
H(l)
nm +O(ε̂2) .
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Fixing a set {(np,mp)}p∈Z ⊂ Z × Z such that np − mp = p for p ∈ Z, we are able to recover ε − ε0

explicitly expressed as

ε− ε0 = −2π

ε0

∞∑
α=−∞

∞∑
p=−∞

∞∑
l=0

ei[lθy+ 2π
R αry]

(− 2π
R iα)l

l!
H(l)
npmp +O(ε̂2) .

Corollary 7.6. Let Ω = BR(0) and ε̂ := ||ε − ε0||L∞(Ω), and the same assumptions be assumed for
(µ, ε) and (µ0, ε0) as in Corollary 7.3, except that the radial symmetry of ε is now replaced by the Fourier

expansion (7.30). Then for l, n,m ∈ Z and l ≥ 0, the coefficients H(l)
nm defined in (7.33) satisfy the

following relationship:

H(l)
nm = −2π

ε0

∫ R

0

rlyFθy [ε(ry, θy)− ε0] (n−m)dry +O(ε̂2) . (7.34)

Moreover, for all n,m,α ∈ Z, the (α, n−m)-th Fourier coefficient of ε− ε0 can be written explicitly by

Fry,θy [ε(ry, θy)− ε0] (α, n−m) = −2π

ε0

∞∑
l=0

(− 2π
R iα)l

l!
H(l)
nm +O(ε̂2) . (7.35)

Let {(np,mp)}p∈Z ⊂ Z× Z be such that np −mp = p for all p ∈ Z, then the electromagnetic coefficient ε
can be explicitly expressed by

(ε− ε0)(ry, θy) = −2π

ε0

∞∑
α=−∞

∞∑
p=−∞

∞∑
l=0

ei[pθy+ 2π
R αry]

(− 2π
R iα)l

l!
H(l)
npmp +O(ε̂2) . (7.36)

We remark that expression (7.36) generalizes (7.21) and (7.29). Moreover, similar to observations in
previous subsections, we can see that in order to recover the electromagnetic coefficient ε, we only need
to know {Wnpmp(k)|p ∈ Z, k ∈ R+} where {(np,mp)}p∈Z ⊂ Z × Z is such that np −mp = p for p ∈ Z.
Therefore, we may choose a particular choice {(np,mp)}p∈Z, for instance we can let np = 0. This tells us
that we are able to recover ε with incomplete data of the scattering coefficients. As pointed out earlier,

we may truncate the series in (7.36) and approximate H(l)
npmp by

∫ kmax

0
g

(l)
npmp(k)Wnpmp(k) dk.

8 Concluding remarks

In this paper we have introduced the concept of scattering coefficients for inverse medium scattering
problems in heterogeneous media, and established important properties (such as symmetry and tensorial
properties) of the scattering coefficients as well as their various representations in terms of the NtD
maps. An important relationship between the scattering coefficients and the far-field pattern is also
derived. Furthermore, the sensitivity of the scattering coefficients with respect to the changes in the
permittivity and permeability distributions is explored, which enables us to derive explicit reconstruction
formulas for the permittivity and permeability parameters in the linearized case. These formulas show on
one hand the stability of the reconstruction from multifrequency measurements, and on the other hand,
the exponential instability of the reconstruction from far-field measurements at a fixed frequency. The
scattering coefficient based approach introduced in this work is a new promising direction for solving
the long-standing inverse scattering problem with heterogeneous inclusions. They can be combined with
some existing methods such as the continuation method [16, 17, 18, 19] to improve the stability and the
resolution of the reconstructed images.

A Construction of the Neumann function

In this section we construct the Neumann function Nµ,ε associated with

−Lu := ∇ · 1

µ
∇u+ ω2εu (A.1)
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in Ω, which is an open connected domain with C2 boundary in Rd for d = 2, 3. We shall also estimate its
singularity. Again, we assume that 0 is not a Neumann eigenvalue of L on Ω.

Some results for the Neumann function and its singularity are known and can be found in [25]. We
shall follow the similar arguments to the ones in [1] and [11], with only a sketch of the proof. A more
detailed analysis can be found in [5].

In order to show the existence of the Neumann function, we first consider the following problem: given
f ∈ C∞c (Ω), find u ∈ H1(Ω) such that

∇ · 1

µ
∇u+ ω2εu = f in Ω ;

1

µ

∂u

∂ν
= 0 on ∂Ω . (A.2)

Let R > 0 such that BR(0) ⊂ Ω. Then by the well-known De Giorgi-Nash-Moser Theorem [26] for the
L∞ coefficient and Sobelov embedding, we have

||u||L∞(BR/2(0)) ≤ C
(
R1− d2 ||u||H1(Ω) +R2||f ||L∞(BR(0))

)
. (A.3)

On the other hand, one can prove using the same argument as in [1] that for any f ∈ C∞c (Ω), there exists
a unique u ∈ H1(Ω) satisfying (A.2) such that

||u||H1(Ω) ≤ C||f ||H1(Ω) . (A.4)

Therefore, combining (A.3) and (A.4), we deduce

||u||L∞(BR/2(0)) ≤ C
(
R1− d2 ||f ||H1(Ω) +R2||f ||L∞(BR(0))

)
. (A.5)

Now consider f ∈ C∞c (Ω) such that the support of f is contained in BR(0) ⊂ Ω for some R. Then
following the argument in [11] and using the following Poincaré-type inequality for all u ∈ H1(Ω) with
∆u ∈ L2(Ω) and ∂u

∂ν = 0:

||u||2H1(Ω) ≤ C|〈Lu, u〉L2(Ω)| . (A.6)

we can directly derive that

||u||H1(Ω) ≤ CR
d+2
2 ||f ||L∞(BR(0)) . (A.7)

Therefore, combining (A.3) and (A.7), we come to

||u||L∞(BR/2(0)) ≤ CR2||f ||L∞(BR(0)) . (A.8)

This inequality is essential for the existence of the Neumann function and its estimates.
Now we are ready to construct a Neumann function for the system (A.1), following the technique in

[11]. Fix a function ϕ ∈ C∞c (B1(0)) and 0 ≤ ϕ ≤ 2 such that
∫
B1(0)

ϕdx = 1. Let y ∈ Ω be fixed. For any

ε > 0, we define

ϕε,y(x) = ε−dϕ

(
x− y
ε

)
. (A.9)

Let Nε(·, y) ∈ H1(Ω) be the ”averaged Neumann function” such that it satisfies (A.2) with f = ϕε,y,
then we immediately have from (A.8) that for all ε ≤ R/2,

||Nε(·, y)||L∞(BR/2(0)) ≤ CR2||ϕε,y||L∞(BR(0)) . (A.10)

This L∞-estimate for Nε(·, y) can be further improved later. It is worth mentioning that, following the
same argument as in [11], we have the following H1-estimate for Nε(·, y) by the Hölder inequality, Sobelov
embedding and (A.6):

||Nε(·, y)||H1(Ω) ≤ Cε
2−d
2 , (A.11)
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as well as the following L1-estimate for Nε(·, y) from (A.8) and the duality argument, that for ε ≤ R
2 and

R ≤ dy,

||Nε(·, y)||L1(BR(0)) ≤ CR2 . (A.12)

Now, we can use De Giorgi-Nash-Moser theorem once again to get the following sharp L∞-estimate for
Nε(·, y) from (A.12) following the routine idea in [11]: for any x, y ∈ Ω satisfying 0 < |x− y| < dy/2 ,

|Nε(x, y)| ≤ C|x− y|2−d ∀ ε < |x− y|
3

. (A.13)

Next, we would like to show the weak convergence of a subsequence of Nε(·, y) in W 1,p(Br(y)) and
H1(Ω\Br(y)). For this purpose, we need to have a uniform bound of Nε(·, y) in such norms with respect
to ε. We shall proceed as in [11]. First for a r ≤ dy/2, we get directly from (A.10) for ε ≥ r/6 that

||∇Nε(·, y)||L2(Ω\Br(y)) ≤ ||∇Nε(·, y)||L2(Ω) ≤ Cr
2−d
2 . (A.14)

For ε < r/6, we wish to control the gradient of Nε(·, y) by Nε(·, y) outside the ball Br(y) and establish
a similar estimate as the Caccioppoli’s inequality inside the ball Br(y). To do so, we introduce a smooth
function η on Rd satisfying

0 ≤ η ≤ 1, |∇η| ≤ 4

r
, η ≡ 1 in Rd\Br(y), η ≡ 0 in B r

2
(y) . (A.15)

Using (A.6), the properties (A.15) and some basic calculations (c.f. [5]), we can deduce

||Nε(·, y)η||2H1(Ω) ≤ C|〈L(Nεη), Nε(·, y)η〉L2(Ω)| ≤ C
∫

Ω

|∇η|2η2dx .

From this and the Cauchy-Schwarz’s inequality it follows that

||∇Nε(·, y)||2L2(Ω\Br(y)) ≤ C
(∫

Ω

|∇η|2η2 + |Nε(·, y)|2|∇η|2dx
)
. (A.16)

Now we have, after some basic calculations, from (A.13) and (A.15) that for ε < r
6 ,

||∇Nε(·, y)||2L2(Ω\Br(y)) ≤ C

(∫
Br(y)\B r

2
(y)

|∇η|2η2 + |Nε(·, y)|2|∇η|2dx

)
≤ Cr2−d. (A.17)

Combining (A.14) and (A.17), we have

||∇Nε(·, y)||L2(Ω\Br(y)) ≤ Cr
2−d
2 ∀ r ∈

(
0,
dy
2

)
, ε > 0 . (A.18)

Then for all r ∈ (0, dy), the argument to get the following estimate for the averaged Neumann function
from (A.14) and (A.18) is routine and follows as in [11]:

||Nε(·, y)||
L

2d
d−2 (Ω\Br(y))

+ ||∇Nε(·, y)||L2(Ω\Br(y)) ≤ Cr
2−d
2 , ∀ε > 0 . (A.19)

With this estimate, we can readily derive

||Nε(·, y)||Lp(Br(y)) ≤ Cr2−d+ d
p , ∀ε > 0 , ∀p ∈

[
1,

d

d− 2

)
, (A.20)

||∇Nε(·, y)||Lp(Br(y)) ≤ Cr1−d+ d
p , ∀ε > 0 , ∀p ∈

[
1,

d

d− 1

)
. (A.21)
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Now the same argument as in [11] will ensure the existence of a sequence {εn}∞n=1 going to zero and a
function N(·, y) such that Nεn(·, y) converges to N(·, y) weakly in W 1,p(Br(y)) for 1 < p < d

d−1 and

weakly in H1(Ω\Br(y)) for all r ∈ (0, dy). It is then routine [11] to derive from (A.19) for all r ∈ (0, dy)
that

||N(·, y)||
L

2d
d−2 (Ω\Br(y))

+ ||∇N(·, y)||L2(Ω\Br(y)) ≤ Cr
2−d
2 , (A.22)

and from (A.21) and (A.21) that

||N(·, y)||Lp(Br(y)) ≤ Cr2−d+ d
p , ∀p ∈

[
1,

d

d− 2

)
, (A.23)

||∇N(·, y)||Lp(Br(y)) ≤ Cr1−d+ d
p , ∀p ∈

[
1,

d

d− 1

)
. (A.24)

Our section ends with the following pointwise estimate for N(x, y) by using De Giorgi-Nash-Moser theo-
rem, (A.22) and the same technique as the one for (A.13):

|N(x, y)| ≤ C|x− y|2−d . (A.25)

This gives the estimate of the singularity type as x approaches y.

B Existence of functions g
(l)
n

In this section we wish to show the existence of functions g
(l)
n satisfying (7.17) for all l, n ∈ N and

provide their explicit expressions. From the fact that

[Jn(kr)]2 =
2

π

∫ π/2

0

J2n(2kr sinφ)dφ (B.1)

for all n ∈ N, we substitute (B.1) into (7.17) to get, for all l, n ∈ N, that

2

π

∫ π/2

0

∫ ∞
0

g(l)
n (k)J2n(2kr sinφ)k2 dkdφ = rl−1 ∀ r > 0 , (B.2)

Recall the following orthogonal relationship for Hankel functions∫ ∞
0

J2n(kr)J2n(k′r)r dr =
δ(k − k′)

k′
. (B.3)

for all k, k′ > 0 and n ∈ N,. Now, for l, n ∈ N, consider the Hankel tranform of rl−1 of order 2n at p > 0,

[H2n(rl−1)](p) :=

∫ ∞
0

rl−1J2n(rp)r dr . (B.4)

By a change of variables, we have

[H2n(rl−1)](p) =

∫ ∞
0

rl−1J2n(rp)r dr

=
2

π

∫ π/2

0

∫ ∞
0

g(l)
n (k)

(∫ ∞
0

J2n(2kr sinφ)J2n(rp)r dr

)
k2 dkdφ

=
1

π

∫ ∞
0

∫ φ=π/2

φ=0

kg(l)
n (k)

(∫∞
0
J2n(2kr sinφ)J2n(rp)r dr

)
cosφ

d(2k sinφ) dk

=
1

π

∫ ∞
0

∫ 2k

0

kg(l)
n (k)

(∫∞
0
J2n(rl)J2n(rp)r dr

)√
1− ( l

2k )2
dl dk. (B.5)

23



From orthogonality relation (B.3), we get that from (B.5) that

[H2n(rl−1)](p) =
1

π

∫ ∞
0

χ{p<2k}(k)
kg

(l)
n (k)

p
√

1− ( p2k )2
dk

=
1

pπ

∫ ∞
p
2

k2g
(l)
n (k)√

k2 − (p2 )2
dk . (B.6)

Therefore, for p > 0, we have

−2p [H2n(rl−1)](2p) = − 1

π

∫ ∞
p

k2g
(l)
n (k)√

k2 − p2
dk . (B.7)

Now we recall that the Abel transform of an integrable function f(r) defined on r ∈ (0,∞) is as follows

F (y) := [A(f)](y) := 2

∫ ∞
y

f(r)r√
r2 − y2

dr , y ∈ (0,∞) , (B.8)

whenever the above integral is well-defined. If f(r) = O( 1
r ) as r →∞, then its inverse Abel transform is

well-defined and f satisfies the following

f(r) = [A−1(F )](r) := − 1

π

∫ ∞
r

F ′(y)√
y2 − r2

dy , r ∈ (0,∞) . (B.9)

Comparing (B.9) and (B.7), we can see that, for all l, n ∈ N, the functions

G(l)
n (p) := −2p [H2n(rl−1)](2p) , p ∈ (0,∞) (B.10)

are nothing but the inverse Abel transform of a primitive function of k2g
(l)
n (k). Therefore, applying Abel

transform to both sides of the equation (B.7) and then differentiating with respect to the argument of
the function, we get

∂

∂k

[
A
(
G(l)
n

)]
(k) = k2g(l)

n (k) . (B.11)

Consequently, we have the following explicit expression for g
(l)
n

g(l)
n (k) =

1

k2

∂

∂k

[
A
(
G(l)
n

)]
(k) , k ∈ (0,∞), (B.12)

where G
(l)
n is defined as in (B.10). One can see by direct substitution of (B.12) back into (7.17) that the

functions g
(l)
n defined as (B.12) satisfy equation (7.17). Therefore, we have shown existence of functions

satisfying (7.17).

C Existence of functions g
(l)
nm

In this section we show the existence of functions g
(l)
nm for l, n,m ∈ Z and l ≥ 0 which satisfies (7.32),

namely the integral equation∫ ∞
0

g(l)
nm(k)Jn(kr)Jm(kr)k2 dk = rl−1 ∀ r > 0 . (C.1)

For this purpose, we would like to first investigate the following integral, which will be useful in the
subsequent discussion. For n,m ∈ N and p ∈ C such that m+ n > Re(p) > 0, we consider the following
integral,

Anm(p) :=

∫ ∞
0

Jn(x)Jm(x)x−p dx , p ∈ C , m+ n > Re(p) > 0 . (C.2)
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We observe that the function Anm : {p ∈ C : m + n > Re(p) > 0} → C is a holomorphic function on
the strip {p ∈ C : a < Re(p) < b} for some a, b ∈ R such that a < b. This comes from the fact that for
n,m ∈ N and p ∈ C such that m+ n > Re(p) > 0, the integral Anm(p) defined in (C.2) can be expressed
in the following form,

Anm(p) =

∫ ∞
0

Jm(x)Jn(x)x−p dx =
2−p Γ(p) Γ

(
1+m+n−p

2

)
Γ
(

1+m−n+p
2

)
Γ
(

1−m+n+p
2

)
Γ
(

1+m+n+p
2

)
.

(C.3)

Now given a, b ∈ R and s ∈ C such that a < Re(s) < b, we recall the definition of the Mellin tranform of
an integrable function f(r) defined for r ∈ (0,∞):

[M(f)](s) :=

∫ ∞
0

rs−1f(r)dr , a < Re(s) < b (C.4)

whenever the above integral is well-defined. With a, b ∈ R, we write the function ζa,b as

ζa,b(x) = x−a for 0 < x ≤ 1 , and x−b for 1 < x <∞. (C.5)

We define the linear space µa,b(0,∞) as the space of all infinitely smooth compactly supported complex
valued functions φ ∈ C∞c (0,∞) for which

||φ||k,ζa,b,K := sup
K
|ζa,b(x)xk+1Dk

xφ(x)| (C.6)

is finite for all k ∈ N and for any compact set K b (0,∞). Consider an increasing sequence of compact
sets {Kn b (0,∞)}n∈N such that

⋃
n∈NKn = (0,∞), the countable norms || · ||k,ζa,b,Kn , k, n ∈ N gives a

topology on µa,b(0,∞) such that µa,b(0,∞) becomes a complete locally convex space. We define the dual
of µa,b(0,∞), µ′a,b(0,∞), and equip it with the weak topology. With these definitions at hand, the Mellin
transform can be naturally extended to the space µ′a,b(0,∞), see [3, 28] for more details. We denote the
generalized Mellin transform also as M.

Now from (C.1) and (C.2), we have for all l, n,m ∈ Z with l ≥ 0 and p ∈ C such that Re(p) > l,

[M(1)] (l − p) =

∫ ∞
0

∫ ∞
0

g(l)
nm(k)Jn(kr)Jm(kr)r−pk2 dk dr

=

∫ ∞
0

g(l)
nm(k)

(∫ ∞
r=0

Jn(kr)Jm(kr)(kr)−p d(kr)

)
kp+1 dk

=

∫ ∞
0

g(l)
nm(k)

(∫ ∞
0

Jn(r)Jm(r)r−p dr

)
kp+1 dk

= Anm(p)
[
M(g(l)

nm)
]

(p+ 2) , (C.7)

where Anm(p) is known explicitly as (C.3). Therefore we get, for all l, n,m ∈ Z with l ≥ 0 and p ∈ C
such that Re(p) > l, [

M(g(l)
nm)

]
(p+ 2) =

[M(1)] (l − p)
Anm(p)

, (C.8)

then the existence of g
(l)
nm is ensured by the Mellin inverse transform.
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