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Superresolution in Recovering Embedded Electromagnetic Sources in High
Contrast Media\ast 

Habib Ammari\dagger , Bowen Li\ddagger , and Jun Zou\ddagger 

Abstract. The purpose of this work is to provide a rigorous mathematical analysis of the expected superresolu-
tion phenomenon in the time-reversal imaging of electromagnetic (EM) radiating sources embedded
in a high contrast medium. It is known that the resolution limit is essentially determined by the
sharpness of the imaginary part of the EM Green's tensor for the associated background. We first
establish the close connection between the resolution and the material parameters and the resol-
vent of the electric integral operator, via the Lippmann--Schwinger representation formula. We
then present an insightful characterization of the spectral structure of the integral operator for a
general bounded domain and derive the pole-pencil decomposition of its resolvent in the high con-
trast regime. For the special case of a spherical domain, we provide some quantitative asymptotic
behavior of the eigenvalues and eigenfunctions. These mathematical findings shall enable us to pro-
vide a concise and rigorous illustration of the superresolution in the EM source reconstruction in
high contrast media. Some numerical examples are also presented to verify our main theoretical
results.
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1. Introduction. In this work, we study the potential superresolution phenomenon when
using the time-reversal imaging method to reconstruct the electromagnetic (EM) sources em-
bedded in general media with high refractive indices. Among the various imaging algorithms,
the time-reversal approach is one of the simplest and most direct. Its principle is to exploit the
reciprocity of wave propagation. Intuitively, we retrace the path of the wave observed in the
far field backward in chronology to find the location of its generating source [38, 37, 19, 20].
For a far-field imaging system using the time-reversal method, we know from the Helmholtz--
Kirchhoff integral that its resolution is limited by the imaginary part of the Green's function
of the wave equations associated with the background medium [12, 13]. It is connected with
the so-called Abbe diffraction limit (half of the operating wavelength) via the concept of full
width at half maximum [4, 8]. In a more precise way, the sharper the imaginary part of the
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1468 HABIB AMMARI, BOWEN LI, AND JUN ZOU

Green's function, the smaller the full width at its half maximum and the smaller the scale the
imaging system can resolve.

Over the past several decades, intensive efforts have been made to explore the potential
of breaking the diffraction limit twofold: generating better raw images and recovering the
finer details of raw images by postimaging processes. In this work, our discussion shall be
restricted to the first procedure, that is, how to physically improve the resolution by obtaining
better a priori information. The Abbe diffraction limit actually results from the fact that
the information about subwavelength details of the profile is carried out by the evanescent
components of the scattered field that is basically unmeasurable in the far field [15, 16] (see also
Proposition 3.18). To break the resolution barrier, we may need to capture the subwavelength
information. It has been demonstrated in many different settings that using resonant media is
a promising and feasible choice, e.g., the plasmonic nanoparticles [10, 11, 3], the bubbly media
[5, 4], the Helmholtz resonators [12], and the high contrast media [7, 13, 2]. Under specific
circumstances, these resonant media can excite the resonances and serve as an amplifier that
increases the strength of the subwavelength information of the sources encoded in the measured
data. In general, they are mathematically equivalent to eigenvalue problems [13, 5, 10]. It
was demonstrated in [10] that the surface plasmon resonance can be treated as an eigenvalue
problem of the Neumann--Poincar\'e operator, which was further used to analyze the imaginary
part of the Green's function and the possibility of achieving the superresolution by using
plasmonic nanoparticles. For the bubbly media, it was shown in [4] that the superfocusing
of acoustic waves can be obtained at frequencies near the Minnaert resonance. The inverse
source problem was investigated in [13] for the Helmholtz equation and the superresolution
was explained based on the resonance expansion of the Green's function associated with the
medium with respect to the generalized eigenfunctions of the Riesz potentialKk

D (cf. (2.1)). As
a complement to the work [13], the imaging of the target of high contrast was studied in [2] for
the Helmholtz system and the experimentally observed superresolution was illustrated via the
concept of scattering coefficients. In this work, we consider the three-dimensional EM wave
governed by the full Maxwell equations, and, with the help of an electric integral operator T k

D,
a solid mathematical foundation is provided for the expected superresolution phenomenon in
the time-reversal reconstruction of EM sources embedded in a high contrast medium. We also
develop some analytical tools very different from the acoustic cases to discuss several critical
issues that were not covered in [13, 2].

The contributions of this work are threefold. First, we derive the Lippmann--Schwinger
equation to reveal the relations between the medium (shape and refractive indices) and its
associated EM Green's tensor (cf. (2.10)), of which the explicit formula is not available. It
is worth emphasizing that this derivation is not as trivial and standard as one might think,
and, in fact, our arguments and analysis are very different from the ones in [13] for the
Helmholtz equation and are much more involved. The main difficulty in our case arises from
the strong singularity of the EM Green's tensor so the standard approach (see, e.g., [21, 13])
that works for the functions with L2-regularity is not applicable. To deal with this problem,
we deliberately choose a smooth cutoff function to separate the singular part from the Green's
tensor G so that the remaining regular part can be represented by the Lippmann--Schwinger
equation. Since the singular term is explicitly constructed, our decomposition (see Theorems
2.1 and 2.2) may also have potential applications in the numerical computation of G. Second,D
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SUPERRESOLUTION IN RECOVERING EM SOURCES 1469

as we shall demonstrate, the mechanism underlying the superresolution in resonant media
is closely related to the spectral analysis of T k

D, which is still far from being complete. For
the case of the electric permittivity being smooth enough on the whole space, the integral
operator involved in the Lippmann--Schwinger equation is compact and well-studied [21, 22].
When the material coefficients have jumps across the medium interfaces, the integral operator
is not compact and its spectral study is largely open. In [24], the authors investigated the
essential spectrum of the integral operators arising from the EM scattering on the Lipschitz
domain in two dimensions and gave a relatively complete characterization in various cases,
which extended their earlier results in [22, 23], where only the smooth domain was considered.
We refer readers to [36, 18] for the numerical study of the spectrum of EM volume integral
operators. To explore the spectral properties of the integral operator T k

D in three dimensions,
we first show that all the eigenvalues of T k

D, except  - 1, of which the corresponding eigenspace
consists of the nonradiating sources, lie in the upper-half plane of \BbbC ; see Proposition 3.2.
Then, by using the Helmholtz decomposition of L2-vector fields, we obtain a characterization
of the essential spectrum of T k

D in a more concise and constructive manner than the existing
ones [23, 24]. Combining the characterization with the analytic Fredholm theory, we further
characterize its eigenvalues of finite type and give the relation among these eigenvalues, the
eigenvalues (point spectrum), and the essential spectrum in Theorem 3.7. To the best of
our knowledge, it is the first time that the relations between the various types of spectra
of T k

D are clearly characterized in the literature. These results, along with the fundamental
properties of Riesz projections, allow us to write the pole-pencil decomposition of the resolvent
of T k

D. After that, we present more quantitative results for the case of a spherical domain.
We rigorously establish the asymptotic forms of the eigenvalues of the integral operator and
prove that these complex eigenvalues are rapidly tending to the real axis in Theorem 3.17. We
also observe that along these eigenvalue sequences, there is a localization phenomenon for the
associated eigenfunctions [30, 34], with a mathematical illustration provided in Theorem 3.19.
In Appendix B, we provide another possible perspective to investigate the spectral properties
of T k

D by regarding it as a quasi-Hermitian operator.
Our third contribution is that by applying the pole-pencil decomposition to the Lippmann--

Schwinger representation of the Green's tensor, we write the resonance expansion (eigenfunc-
tion expansion) for the imaginary part of the Green's tensor and find that both eigenvalues
and eigenfunctions are responsible for the superresolution in the reconstruction of the EM
embedded sources in the high contrast setting. Precisely, the localized eigenfunctions are
highly oscillating and can encode the subwavelength information of the sources. Such infor-
mation is further amplified when the high contrast approaches some resonant values and then
is back-propagated to reconstruct the subwavelength details of the sources.

The remainder of this work is organized as follows. In section 2, we first give a brief review
of the resolution of the time-reversal method for the inverse source problem and then derive
the Lippmann--Schwinger representation of the EM Green's tensor. In section 3, we investigate
the spectral structure of the involved volume integral operator on a general domain (cf. (2.2))
and obtain the pole-pencil decomposition of its resolvent near the small regular value. We then
proceed to provide more quantitative analysis of spectral properties for the spherical domain.
With these mathematical findings, we provide a full explanation for the superresolution in
high contrast media in section 4. In addition, we will present the numerical evidences in theD
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1470 HABIB AMMARI, BOWEN LI, AND JUN ZOU

case of a spherical region to validate our main theoretical results. Some details and other
useful and interesting results are given in Appendices A, B, and C.

We shall use some standard notations for the Sobolev spaces (see [33]) throughout this
work. For a vector x \in \BbbR 3, we denote its transport by xt and its polar form by (| x| , \^x) with
\^x := x/| x| \in S2, where S2 is the two-dimensional unit sphere in \BbbR 3. We denote the inner
product and outer product for two vector u, v \in \BbbR 3 by ut \cdot v and u \times v, respectively. We
also need the tensor product operation \otimes of two vectors, i.e., given two vectors u \in \BbbR n and
v \in \BbbR m, u\otimes v is a n\times m matrix given by (u\otimes v)ij = uivj . And we always let vector operators
act on matrices column by column. For a Banach space X and its topological dual X \prime , we
introduce the dual pairing \langle l, x\rangle X := l(x). We use \oplus \bot to denote the orthogonal sum in a
Hilbert space, while the direct sum in a Banach space is denoted by \oplus .

2. Resolution of imaging EM embedded sources. In this section, we shall first introduce
the time-reversal reconstruction of EM sources embedded in a high contrast medium and then
review its resolution analysis. The main purpose of this section is to work out the explicit
relation between the resolution limit and the contrast between the refractive indices of the
dielectric inclusion and its surrounding medium.

Let us start with the introduction of some notation, definitions, and conventions in this
work. We consider a dielectric inclusion D embedded in the free space \BbbR 3, where D is a
bounded connected open set with a smooth boundary \partial D and the exterior unit normal vector
\nu . We assume the refractive index n(x) \in L\infty (\BbbR 3) of the form

n(x) = 1 + \tau \chi D(x) ,

where \tau \gg 1 is a positive real constant and \chi D is the characteristic function of D. Let k
and k\tau := k

\surd 
1 + \tau be the wave numbers in the free space and in the medium D, respectively.

Then we introduce the fundamental solution of the differential operator  - (\Delta + k2) in \BbbR 3:

g(x, y, k) := eik| x - y| 

4\pi | x - y| , k \geq 0. We define the Riesz potential Kk
D,

(2.1) Kk
D[\varphi ] =

\int 
D
g(x, y, k)\varphi (y)dy for \varphi \in L2(D,\BbbR 3) ,

which is a bounded linear operator from L2(D,\BbbR 3) to H2
loc(\BbbR 3,\BbbR 3). This further allows us to

introduce the electric volume integral operator T k
D,

(2.2) T k
D[\varphi ] = (k2 +\nabla div)Kk

D[\varphi ] \in Hloc(curl,\BbbR 3) for \varphi \in L2(D,\BbbR 3) ,

which satisfies

\nabla \times \nabla \times T k
D[\varphi ] - k2T k

D[\varphi ] = k2\varphi \chi D in \BbbR 3(2.3)

in the variational sense, together with the outgoing radiation condition:

(2.4) | x| 
\Bigl( 
\nabla \times T k

D[\varphi ](x)\times \^x - ikT k
D[\varphi ](x)

\Bigr) 
\rightarrow 0 as | x| \rightarrow \infty .
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SUPERRESOLUTION IN RECOVERING EM SOURCES 1471

We say that an L2-vector field E solving the homogeneous Maxwell equations is radiating if
it satisfies the radiation condition (2.4) in the far field, and of which we define the far-field
pattern E\infty (\^x) \in L2

T (S
2) by the asymptotic form:

(2.5) E(x) =
eik| x| 

| x| 
E\infty (\^x) +O

\biggl( 
1

| x| 2

\biggr) 
as | x| \rightarrow \infty .

The following surface integral operators are also needed:

\scrS k
\partial D[\varphi ] =

\int 
\partial D

g(x, y, k)\varphi ((y)d\sigma (y), \scrK k,\ast 
\partial D[\varphi ] =

\int 
\partial D

\partial 

\partial \nu x
g(x, y, k)\varphi ((y)d\sigma (y) for \varphi \in H - 1

2 (\partial D) .

(2.6)

We recall the normal trace formula for the gradient of \scrS k
\partial D:

(2.7) \gamma n

\Bigl( 
\nabla \scrS k

\partial D[\varphi ]
\Bigr) 
=

\biggl( 
1

2
+\scrK k,\ast 

\partial D

\biggr) 
[\varphi ](x) , x \in \partial D ,

where \gamma n[\varphi ] = \nu t \cdot \varphi is the normal trace mapping which is well-defined on the space H(div, D).
For the case where the density function \varphi in \scrS k

\partial D is the tangent vector fields from

H
 - 1/2
T (div, \partial D), we denote the operator by \scrA k

\partial D instead in order to avoid any confusion.
When k = 0, we omit the superscript k in the above definitions for simplicity, e.g., we write
\scrS \partial D for \scrS 0

\partial D. We are now ready to state the inverse source problem of our interest in this work
and analyze the resolution of the time-reversal reconstruction of the EM embedded sources.

Consider the following forward source problem associated with the medium D:

(2.8)

\Biggl\{ 
\nabla \times \nabla \times E(x) - k2n(x)E(x) = f(x) , x \in \BbbR 3 ,

E satisfies the outgoing radiation condition (2.4) ,

where f \in L2(D,\BbbR 3) is the electric radiating source in the sense that E has a nontrivial
far field pattern [1]. The corresponding inverse source problem is aimed at reconstructing the
source f by using the electric field data E\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}(x) collected on the far-field measurement surface
\partial B(0, \^R), where the radius \^R is large enough and B(0, \^R) contains D. In the distribution
sense, the measured data E\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}(x) on \partial B(0, \^R) can be written as

(2.9) E\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}(x) =

\int 
D
G(x, y, k)f(y)dy , x \in \partial B(0, \^R) ,

where G(x, y, k) is the Green's tensor of Maxwell's equations for the inhomogeneous back-
ground, defined by

(2.10) \nabla \times \nabla \times G(x, y, k) - k2n(x)G(x, y, k) = \delta (x - y)\BbbI , x \in \BbbR 3 , y \in \BbbR 3\setminus \partial D ,

such that each column of G satisfies the outgoing radiation condition (2.4). Here, \BbbI is the
3\times 3 identity matrix. The existence of G can be rigorously justified by the boundary integral
equations (cf. (2.16)--(2.17)). In our following representation, G(x, y, k) will usually occurD
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1472 HABIB AMMARI, BOWEN LI, AND JUN ZOU

with a unit polarization vector p \in S2, i.e., G(x, y, k)p, physically denoting the electric field
generated by the point dipole source \delta (x - y)p located at y, and we will not give descriptions
for the other similar notation if there is no ambiguity.

To reemit the measured field E\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}(x) in (2.9) back to the source, we multiply it by G
(phase conjugation is the frequency domain counterpart of time reversal), which immediately
leads us to the imaging functional:

(2.11) I(z) =

\int 
\partial B(0, \^R)

G(z, x, k)E\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}(x)d\sigma (x) ,

where z is any sampling point taken from the sampling region \Omega which is a bounded domain
satisfying D \subset \Omega \subset B(0, R). The resolution of the above imaging functional is a standard
consequence of the following corollary of the well-known Helmholtz--Kirchhoff identity [20, 31]:
for any p, q \in S2,
(2.12)

k

\int 
\partial B(0, \^R)

(G(\xi , x, k)q)t \cdot G(\xi , z, k)pd\sigma (\xi ) = qt \cdot \frakI mG(x, z, k)p+O

\biggl( 
1

\^R

\biggr) 
\forall x, z \in \Omega \setminus \partial D .

To see this, we substitute (2.9) into (2.11) and then readily obtain from (2.12) that for an
arbitrary probing direction q \in S2, it holds that

qt \cdot I(z) =
\int 
\partial B(0, \^R)

qt \cdot G(z, x, k)E\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}(x)d\sigma (x)

=

\int 
D

\int 
\partial B(0, \^R)

qt \cdot G(z, x, k)G(x, y, k)f(y)d\sigma (x)dy

=
1

k

\int 
D
qt \cdot \frakI mG(z, y, k)f(y)dy +O

\biggl( 
1

\^R

\biggr) 
,

where we have used the reciprocity of the Green's tensor: G(x, y, k)t = G(y, x, k). Thus, we
have that I(z) can be approximated by

\^I(z) =
1

k

\int 
D
\frakI mG(z, y, k)f(y)dy , z \in \Omega ,

when \^R tends to infinity. To investigate the properties of \^I, it suffices to consider the imaginary
part of the Green's tensor (with a polarization vector p),

\frakI mG(z, z0, k)p , z0 \in D , p \in S2 ,

which is proportional to the raw image I(z) of the point dipole source f(y) = \delta z0(y)p asymp-
totically. It is worth emphasizing that \frakI mG, unlike the acoustic case, is anisotropic in the
sense that qt \cdot \frakI mGp may present different features for different probing directions q \in S2

and polarization directions p \in S2 and hence yields a direction dependent diffraction barrier.
But we can still expect a better resolution in the image of f obtained from the approximate
functional \^I(z) if \frakI mG(z, z0, k)p exhibits subwavelength peaks.D
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SUPERRESOLUTION IN RECOVERING EM SOURCES 1473

To figure out how the high contrast \tau influences the behavior of the imaginary part of the
Green's tensor, the Lippmann--Schwinger formulation may be adopted, as was suggested in
[13] for the acoustic case. However, it is not a trivial task to derive the Lippmann--Schwinger
equation here as in [13] due to the strong singularity of the current Green's tensor G(x, y, k)
associated with the Maxwell equations for the inhomogeneous background. We observe that
\frakI mGp does not satisfy the outgoing radiation condition (2.4) although it obeys

\nabla \times \nabla \times \frakI mG(x, y, k)p - k2n(x)\frakI mG(x, y, k)p = 0 , x \in \BbbR 3 , y \in \BbbR 3\setminus \partial D .

Thus, we need to to deal directly with G(z, z0, k)p that solves the equation,

(2.13) \nabla \times \nabla \times G(z, z0, k)p - k2n(z)G(z, z0, k)p = \delta z0(z)p , z0 \in D, z \in \BbbR 3 ,

or equivalently,

\nabla \times \nabla \times [G(z, z0, k) - G0(z, z0, k)] p - k2 [G(z, z0, k) - G0(z, z0, k)] p

= k2\tau \chi DG(z, z0, k)p , z0 \in D, z \in \BbbR 3 ,(2.14)

where

(2.15) G0(x, y, k) :=

\biggl( 
\BbbI +

1

k2
\nabla div

\biggr) 
g(x, y, k)\BbbI 

is the Green's tensor of Maxwell equations for the free space with wave number k. By (2.3)
and (2.14), the integral equation for G may be formally formulated as

G(z, z0, k)p - G0(z, z0, k)p = \tau T k
D [G(\cdot , z0, k)p] (z), z \in D .

Nevertheless, there is a strong singularity of G(z, z0, k) near z0 (cf. (2.18)), resulting in the
fact that G(z, z0, k)p /\in L2(D,\BbbR 3) and the evaluation of T k

D [G(\cdot , z0, k)] (z) makes no sense.
To address this issue, we need a priori information on the singularity of Green's tensor

G, which we shall observe from the boundary integral equation for G. With the help of the
integral operator \scrA k

\partial D introduced earlier in this section, we assume that G(x, y, k)p has the
following ansatz: for y \in D,

(2.16) G(x, y, k)p =

\Biggl\{ 
G0(x, y, k\tau )p+\nabla \times \scrA k\tau 

\partial D[\phi ](x) +\nabla \times \nabla \times \scrA k\tau 
\partial D[\psi ](x) , x \in D ,

\nabla \times \scrA k
\partial D[\phi ](x) +\nabla \times \nabla \times \scrA k

\partial D[\psi ](x) , x \in \BbbR 3\setminus \=D ,

and for y \in \BbbR 3\setminus \=D,

(2.17) G(x, y, k)p =

\Biggl\{ 
\nabla \times \scrA k\tau 

\partial D[\phi ](x) +\nabla \times \nabla \times \scrA k\tau 
\partial D[\psi ](x) , x \in D ,

G0(x, y, k)p+\nabla \times \scrA k
\partial D[\phi ](x) +\nabla \times \nabla \times \scrA k

\partial D[\psi ](x) , x \in \BbbR 3\setminus \=D .

The densities \phi , \psi \in H
 - 1/2
T (div, \partial D) in (2.16) and (2.17) can be found by solving a boundary

integral equation built via the trace formulas related to \scrA k
\partial D [9, 6]. By (2.16), we readily see

that near z0 \in D, G(z, z0, k)p has the same singularity as G0(z, z0, k\tau )p in the sense that

(2.18) G(z, z0, k)p - G0(z, z0, k\tau )p \in L2(D,\BbbR 3) .D
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1474 HABIB AMMARI, BOWEN LI, AND JUN ZOU

We are now prepared to derive the Lippmann--Schwinger representation of G in terms of
T k
D and \tau . The key idea here is to split G into a singular term with compact support in D and

a regular remainder and then establish the integral equation for the regular part instead. To
do so, we construct a smooth cutoff function \widetilde \chi z0(z) with a compact support in D satisfying

\widetilde \chi z0(z) \equiv 1 on a small ball B(z0, r) \subset D

and define

(2.19) \widetilde g(z, z0, k) := \widetilde \chi z0(z)g(z, z0, k) , z \in \BbbR 3 ,

which helps us to separate the singularity indicated in (2.18) locally. It follows that
\nabla zdivz(\widetilde g(z, z0, k)p) is a distribution on \BbbR 3 with its support and singular support, respectively,
given by the compact set supp(\widetilde \chi z0) and the single point \{ z0\} . We now write G(z, z0, k)p as

(2.20) G(z, z0, k)p = G0(z, z0, k)p - 
\tau 

k2\tau 
\nabla zdivz(\widetilde g(z, z0, k)p) + V (z, z0, k)p , z \in \BbbR 3 ,

where V (\cdot , z0, k)p| D defined by the above formula is an L2-vector field, by (2.18) and (2.19).
Substituting (2.20) back into (2.13), we can find, by a direct computation, that V (z, z0, k)p
satisfies

\nabla \times \nabla \times V (z, z0, k)p - k2n(z)V (z, z0, k)p

= \tau k2\chi D(z)(G0(z, z0, k)p - 
1

k2
\nabla zdivz(\widetilde g(z, z0, k)p)) ,(2.21)

where we have used the fact that G0 is the fundamental solution to the homogeneous Maxwell
equations and a simple but important observation that

k2n(z)
\tau 

k2\tau 
\nabla zdivz(\widetilde g(z, z0, k)p) = \tau \nabla zdivz(\widetilde g(z, z0, k)p) , z \in \BbbR 3 .

The above observation also suggests the reasons why it is necessary to restrict the singularity
in the domain D. Note that the source term in the right-hand side of (2.21) is an L2-vector
field. We define a matrix function

(2.22) \widetilde G(z, z0, k) := G0(z, z0, k) - 
1

k2
\nabla zdivz (\widetilde g(z, z0, k)\BbbI ) , z, z0 \in D .

Then the corresponding Lippmann--Schwinger equation for V p reads as follows:

V (z, z0, k)p = \tau T k
D[ \widetilde G(\cdot , z0, k)p+ V (\cdot , z0, k)p](z) , z \in D .

If 1  - \tau T k
D is invertible (as we shall see in Proposition 3.2, this is always the case for a high

contrast \tau ), we further have

V (z, z0, k)p = (1 - \tau T k
D)

 - 1(\tau T k
D  - 1 + 1)[ \widetilde G(\cdot , z0, k)p](z)

= (1 - \tau T k
D)

 - 1[ \widetilde G(\cdot , z0, k)p](z) - \widetilde G(z, z0, k)p , z \in D .(2.23)
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SUPERRESOLUTION IN RECOVERING EM SOURCES 1475

Then it follows from the decomposition (2.20), the definition of \widetilde G in (2.22), and the relation
k\tau = k

\surd 
1 + \tau that

G(z, z0, k)p = \widetilde G(z, z0, k)p+ \biggl( 1

k2
 - \tau 

k2\tau 

\biggr) 
\nabla zdivz(\widetilde g(z, z0, k)p) + V (z, z0, k)p

= \widetilde G(z, z0, k)p+ 1

k2\tau 
\nabla zdivz(\widetilde g(z, z0, k)p) + V (z, z0, k)p , z, z0 \in D .

Combining this decomposition with (2.23), we arrive at the main result of this section.

Theorem 2.1. The Green's tensor of the Maxwell equations (2.13) with a polarization vector
p \in S2 has the following representation:

(2.24) G(z, z0, k)p =
1

k2\tau 
\nabla zdivz(\widetilde g(z, z0, k)p) + (1 - \tau T k

D)
 - 1[ \widetilde G(z, z0, k)p](z) , z, z0 \in D ,

where \widetilde g and \widetilde G are given by (2.19) and (2.22), respectively.

In the above construction, the definitions of \widetilde g and \widetilde G depend on the position of z0 and the
explicit choice of the cutoff function \widetilde \chi z0(z). If we redefine \widetilde g and \widetilde G in (2.19) and (2.22) as

(2.25) \widetilde g(z, z\prime , k) = \widetilde \chi z0(z)g(z, z
\prime , k), z \in \BbbR 3, z\prime \in B(z0, r) ,

and

(2.26) \widetilde G(z, z\prime , k) = G0(z, z
\prime , k) - 1

k2
\nabla zdivz(\widetilde g(z, z\prime , k)\BbbI ), z \in \BbbR 3, z\prime \in B(z0, r) ,

respectively, and revisit the proof of Theorem 2.1 carefully, we can find the same representation
of G(z, z\prime , k)p as the one in (2.24) for z \in D and z\prime \in B(z0, r) but with \widetilde g and \widetilde G replaced by
the ones in (2.25) and (2.26). More generally, given an arbitrary compact subset D\prime of D, we
may replace the cutoff function \widetilde \chi z0(z) in (2.25) by another smooth cutoff function \widetilde \chi D\prime such
that \widetilde \chi D\prime (z) \equiv 1 on a small neighborhood of D\prime . Then, by a very similar argument as above,
we can derive an improved variant of Theorem 2.1.

Theorem 2.2. Given a compact subset D\prime of D, let \widetilde g be given by (2.25) with \widetilde \chi z0(z) replaced
by the smooth cutoff function \widetilde \chi D\prime (z) associated with D\prime , and let \widetilde G be defined as in (2.26) with
the newly defined \widetilde g. Then the following decomposition of the Green's tensor G(z, z\prime , k) (cf.
(2.10)) holds:

(2.27) G(z, z\prime , k) =
1

k2\tau 
\nabla zdivz(\widetilde g(z, z\prime , k)\BbbI ) + (1 - \tau T k

D)
 - 1[ \widetilde G(\cdot , z\prime , k)](z) , z \in D, z\prime \in D\prime .

We can clearly see from (2.27) (or (2.24)) how the high contrast \tau affects the behavior of
G. In the high contrast regime, i.e., \tau \gg 1, the first term of (2.27) involves the contrast \tau in
an explicit way, and we can find that its imaginary part is of order \tau  - 1 and thereby negligible
since \frakI m\widetilde g(z, z\prime , k) is a sufficiently smooth function. At the same time, the second term in
(2.27) is strongly influenced by the property of operator (\tau  - 1 - T k

D)
 - 1. If there are some poles

of the resolvent of T k
D near \tau  - 1, we may expect that the term (1 - \tau T k

D)
 - 1[ \widetilde G(\cdot , z\prime , k)](z) blows

up and hence \frakI mG exhibits a sharper peak than the one in the homogeneous space. These
observations lead us to the investigations of the spectral structure as well as the resolvent of
T k
D in the next section, which serves as the mathematical preparations for a complete study

of the possibility of achieving the superresolution in high contrast media in section 4.D
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1476 HABIB AMMARI, BOWEN LI, AND JUN ZOU

3. Spectral analysis of the volume integral operator. For a bounded linear operator A
on a complex Banach space, we denote by \sigma (A) its spectrum, by \sigma p(A) its eigenvalues (point
spectrum), and by (\lambda  - A) - 1 the resolvent, which is an analytic operator-valued function
defined on the resolvent set \rho (A) := \BbbC \setminus \sigma (A). We refer to the elements in \rho (A) as the regular
values of A. We have seen in section 2 that the resolution limit in the EM inverse source
problem is closely related to the behavior of the resolvent (\lambda  - T k

D)
 - 1 near the small regular

value \tau  - 1 \ll 1.

3.1. Spectral structure. In this subsection, we are going to first consider the distribution
of eigenvalues of T k

D and then give characterizations of the essential spectrum and eigenvalues
of finite type. (Their definitions will be given after Corollary 3.3.) These results are funda-
mental to the pole-pencil decomposition of the resolvent (\lambda  - T k

D)
 - 1 that shall be derived in

section 3.2. We start with an easily observed but quite important lemma for our later use.

Lemma 3.1. For the integral operator T k
D defined by (2.2), we have 0 /\in \sigma p(T

k
D). Moreover,

the eigenvalue equation (\lambda  - T k
D)[\varphi ] = 0 has nontrivial solutions for some \lambda \in \BbbC (i.e., \lambda \in 

\sigma p(T
k
D)) if and only if the following transmission problem has a nontrivial radiating solution

u \in Hloc(curl,\BbbR 3):

(3.1) \nabla \times \nabla \times u - k2u =
k2

\lambda 
u\chi D in \BbbR 3 .

In this case, the solution u to (3.1), restricted on D, is an eigenfunction of T k
D associated with

\lambda .

Proof. Suppose (\lambda , \varphi ) is the eigenpair of T k
D, i.e., T

k
D[\varphi ] = \lambda \varphi , \varphi \not = 0, which directly yields,

by (2.3),

(3.2) (\nabla \times \nabla \times  - k2)T k
D[\varphi ] = (\nabla \times \nabla \times  - k2)\lambda \varphi = k2\varphi \chi D in \BbbR 3.

We readily see that if \lambda = 0, then \varphi = 0 on D, from which it follows that 0 /\in \sigma p(T
k
D) and \lambda in

(3.2) does not vanish. Since \varphi is the eigenfunction of T k
D with eigenvalue \lambda , we can write the

right-hand side of (3.2) as k2T k
D[\varphi /\lambda ]\chi D and then conclude that T k

D[\varphi ] is a nontrivial solution
of (3.1). Conversely, if u is a nontrivial solution of (3.1), by the uniqueness of a solution to
the Maxwell source problem and (2.3), we have u = T k

D[u/\lambda ], which also implies that u| D is
an eigenfunction of T k

D associated with \lambda .

We denote the interior wave number k
\surd 
1 + \lambda  - 1 in (3.1) by k\lambda . Here and throughout this

work, we consider the principal branch of
\surd 
\cdot with the branch cut given by ( - \infty , 0]. It should

be stressed that (3.1) is defined on the whole space \BbbR 3 and understood in the variational
sense. This fact immediately yields \nabla \times u \in Hloc(curl,\BbbR 3), and hence \nabla \times u \in H1

loc(\BbbR 3,\BbbR 3)
by noting that div(\nabla \times u) = 0 and making use of the embedding theorem (cf. [14, Theorem
2.5]). These facts can also be verified by the integral representation of u, i.e., u = T k

D[u/\lambda ].
We now give the first result of this subsection, concerning an a priori characterization of the
distribution of the eigenvalues and eigenspaces of T k

D; see also [25, Theorem 2.1] for a similar
result. The proof follows from the well-known Rellich's lemma (cf. [21, Theorem 6.10]). We
give it here for completeness and pay a special attention to the ranges of the eigenvalues and
the topology of the domain.D
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Proposition 3.2. For a bounded smooth domain D, we have that if \lambda \in \sigma p(T
k
D)\setminus \{  - 1\} , then

\frakI m\lambda > 0. Suppose that \BbbR 3\setminus \=D is connected. We have that if \lambda =  - 1 is an eigenvalue of T k
D,

then the associated eigenspace must be contained in \nabla H1
0 (D).

Proof. We assume that u \in Hloc(curl,\BbbR 3) is a radiating solution to (3.1), or equivalently,
the following system:

(3.3)

\left\{   
\nabla \times \nabla \times u - k2\lambda u = 0 in D ,
\nabla \times \nabla \times u - k2u = 0 in \BbbR 3\setminus \=D ,
[\nu \times u] = 0, [\nu \times \nabla \times u] = 0 on \partial D ,

where \lambda \not = 0 is a complex number with \frakI m\lambda \leq 0. We shall prove that if \lambda \not =  - 1 (equivalently,
k\lambda \not = 0), u must be zero everywhere; if \lambda =  - 1, then u \in \nabla H1

0 (D), provided that the open set
\BbbR 3\setminus \=D is connected. For this purpose, choose an open ball B(0, R) centered at the origin with
large enough radius R such that \=D \subset B(0, R), and multiply both sides of the second equation
in the system (3.3) by the test function \=u. Then a direct integration by parts on B(0, R)\setminus \=D
gives us

0 =

\int 
B(0,R)\setminus \=D

\nabla \times \nabla \times u \cdot \=u - k2u \cdot \=udx

=

\int 
B(0,R)\setminus \=D

| \nabla \times u| 2  - k2| u| 2dx+

\int 
\partial B(0,R)

\^x\times \nabla \times u \cdot \=ud\sigma (x) - 
\int 
\partial D

\nu \times \nabla \times u \cdot \=ud\sigma (x)

=

\int 
B(0,R)\setminus \=D

| \nabla \times u| 2  - k2| u| 2dx - ik

\int 
\partial B(0,R)

| u| 2d\sigma (x) +O

\biggl( 
1

R

\biggr) 
 - 
\int 
\partial D

\nu \times \nabla \times u \cdot \=ud\sigma (x) ,

(3.4)

where we have used the radiation condition (2.4) and the fact that \nabla \times u \in H1
loc(\BbbR 3,\BbbR 3). By

taking the imaginary parts of both sides of (3.4) and letting R tends to infinity, we have

(3.5) \frakI m

\int 
\partial D

\nu \times \nabla \times u \cdot \=ud\sigma (x) =  - k
\int 
S2

| u\infty | 2d\sigma (\^x) \leq 0 .

Here, u\infty is the far-field pattern of u given by (2.5). We now consider the field inside the
domain. Similarly, with the help of an integration by parts over D and the first equation in
(3.3), we obtain

(3.6)  - 
\int 
D
| \nabla \times u| 2  - k2\lambda | u| 2dx =

\int 
\partial D

\nu \times \nabla \times u \cdot \=ud\sigma (x)

and its imaginary part

(3.7) \frakI m

\int 
\partial D

\nu \times \nabla \times u \cdot \=ud\sigma (x) = \frakI m

\int 
D
k2

1

\lambda 
| u| 2dx .

Noting that \frakI m\lambda  - 1 =  - \frakI m(\lambda /| \lambda | 2) \geq 0, we readily have

\frakI m

\int 
\partial D

\nu \times \nabla \times u \cdot \=ud\sigma (x) = 0 ,
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1478 HABIB AMMARI, BOWEN LI, AND JUN ZOU

by (3.5) and (3.7), since the tangential traces of u and \nabla \times u are continuous. Then, we see
from the above formula and (3.5) that the far-field pattern u\infty vanishes, and thus u vanishes
in the unbounded connected component of \BbbR 3\setminus \=D by Rellich's lemma. Therefore, it follows
that

(3.8) \nu \times u = 0 , \nu \times \nabla \times u = 0 on \Gamma 0 ,

where \Gamma 0 is the boundary of the unbounded component of \BbbR 3\setminus \=D.
To complete the proof, let us first consider the simple case: \lambda \not =  - 1, where the interior

wave number k\lambda does not vanish. The desired result that u = 0 in D directly follows from (3.8)
and the Holmgren's theorem (cf. [21, Theorem 6.5]). We now consider the other case where
\lambda =  - 1 under the condition that \BbbR 3\setminus \=D is connected. In this case, we only have \nabla \times u = 0 in
D, i.e., u \in H0(curl0, D), from (3.6) and the observation \Gamma 0 = \partial D. Recalling (A.2), we have
the following characterization of H0(curl0, D),

H0(curl0, D) = \nabla H1
0 (D) ,

since the \BbbR 3\setminus \=D is connected and thus the corresponding normal cohomology space KN (D) is
trivial. Therefore, we can conclude u = \nabla p for some p \in H1

0 (D) if \lambda =  - 1 is an eigenvalue
and complete the proof.

The above theorem does not tell us whether \lambda =  - 1 is an eigenvalue or not. However, if
we extend an L2-field u from \nabla H1

0 (D), or more generally, H0(curl0, D), by zero outside the
domain D, i.e., \chi Du, we can find that it solves the system (3.3) for \lambda =  - 1, which indicates
that \lambda =  - 1 is indeed an eigenvalue of T k

D. Thus, we actually have the following corollary.

Corollary 3.3. For a bounded smooth domain D, \lambda =  - 1 is always an eigenvalue of T k
D with

the associated eigenspace containing H0(curl0, D). If \BbbR 3\setminus \=D is connected, then the eiganspace
is equal to \nabla H1

0 (D).

To proceed, we need the following concepts about the spectrum of a bounded linear op-
erator A. We say that \lambda \in \sigma (A) is an eigenvalue of finite type if and only if \lambda is an isolated
point in \sigma (A) and the corresponding Riesz Projection P\lambda ,

(3.9) P\lambda (A) =
1

2\pi i

\int 
\Gamma 
(z  - A) - 1dz,

is a finite rank operator, where \Gamma is a Cauchy contour in \BbbC enclosing only the eigenvalue \lambda 
among \sigma (A), and the definition does not depend on the choice of \Gamma . The other concept is the
essential spectrum \sigma ess(A) defined by

\sigma ess(A) = \{ \lambda \in \BbbC ; \lambda \BbbI  - A is not Fredholm operator\} .

Inspired by the work [22], where the strongly singular volume integral equation associated with
the EM scattering problem was transformed to a coupled surface-volume system involving
only weakly singular kernels by introducing an additional variable on the boundary via an
integration by parts, here we exploit the Helmholtz decomposition of L2-vector fields to obtainD
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another operator matrix similar to the one in [22] but with fully decoupled unknown variables.
This newly derived system enables us to see a clear and insightful spectral structure of T k

D.
We now recall from Proposition A.3 the Helmholtz decomposition of L2-vector fields:

L2(D,\BbbR 3) = \nabla H1
0 (D)\oplus \bot H0(div0, D)\oplus \bot W ,(3.10)

where W is the function space consisting of H1-harmonic functions and H0(div0, D) =
curl \widetilde X0

N \oplus \bot KT (D). Denote by \BbbP 0, \BbbP \mathrm{d}, and \BbbP \mathrm{w} the projections from L2(D,\BbbR 3) to \nabla H1
0 (D),

H0(div0, D), and W , respectively. In Appendix A, we show how these subspaces are con-
nected with the divergence, curl, and normal trace of a vector field. In particular, we have
\BbbP 0u =  - \nabla \BbbS divu and \BbbP \mathrm{w}u = \widetilde \gamma  - 1

n \gamma n(u+\nabla \BbbS divu); see Appendix A for the definitions of oper-
ators \BbbS and \widetilde \gamma  - 1

n . For our subsequent analysis, we introduce a product space,

\BbbX := \nabla H1
0 (D)\times H0(div0, D)\times H

 - 1
2

0 (\partial D) ,

equipped with the norm \| F\| \BbbX := \| f1\| L2(D)+\| f2\| L2(D)+\| f3\| H - 1/2
0 (\partial D)

for F = (f1, f2, f3) \in \BbbX ,
which is isomorphic to L2(D,\BbbR 3) via the isomorphism \Xi : f \rightarrow \Xi [f ] = (\BbbP 0f,\BbbP \mathrm{d}f, \widetilde \gamma n\BbbP \mathrm{w}f). By
using the isomorphism \Xi , we define an operator \scrT k

D on \BbbX by

(3.11) \scrT k
D := \Xi T k

D\Xi 
 - 1 ,

which is similar to T k
D and hence has the same spectral properties as T k

D. We remark that the
inverse of \Xi is given by \Xi  - 1(f1, f2, f3) = f1 + f2 + \widetilde \gamma  - 1

n f3.
We proceed to consider the spectral analysis of \scrT k

D . We first observe that \nabla H1
0 (D) and

divergence-free vector fields H(div0, D) are T k
D-invariant spaces. In fact, for \phi \in H1

0 (D), we
have

T k
D[\nabla \phi ] = k2\nabla Kk

D[\phi ] +\nabla \Delta Kk
D[\phi ] =  - \nabla \phi ,(3.12)

which can be verified by using integration by parts with the fact that \phi has zero trace on \partial D.
On the other hand, by a density argument and the fact that div : L2(D,\BbbR 3) \rightarrow H - 1(D), we
have

divT k
D[\phi ] =  - div\phi for \phi \in L2(D,\BbbR 3) .

By these observations and the definition of \scrT k
D (cf. (3.11)), we can write the operator matrix

\scrT k
D as follows:

(3.13) \scrT k
D =

\left[   - 1 0 0
0 \BbbP \mathrm{d}T

k
D \BbbP \mathrm{d}T

k
D\widetilde \gamma  - 1

n

0 \gamma nT
k
D \gamma nT

k
D\widetilde \gamma  - 1

n

\right]  .
To further analyze the properties of \scrT k

D , we need to work out explicit formulas for the operators
involved in (3.13), which are only defined in an abstract way. To do so, a direct calculation
gives us that

T k
D[\varphi ] = k2Kk

D[\varphi ] - \nabla \scrS k
\partial D[\varphi \cdot \nu ] = k2Kk

D[\BbbP \mathrm{d}\varphi + \BbbP \mathrm{w}\varphi ] - \nabla \scrS k
\partial D[\gamma n\BbbP \mathrm{w}\varphi ](3.14)
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holds for \varphi \in H(div0, D). Then, we take the normal trace on both sides of (3.14) and find

\gamma nT
k
D[\varphi ] = k2\gamma nK

k
D[\BbbP \mathrm{d}\varphi + \BbbP \mathrm{w}\varphi ] - 

\biggl( 
1

2
+\scrK k,\ast 

\partial D

\biggr) 
[\gamma n\BbbP \mathrm{w}\varphi ] for \varphi \in H(div0, D) ,(3.15)

where we have used the normal trace formula (2.7) for \nabla \scrS k
\partial D. By (3.14) and (3.15), we readily

have
(3.16)\left\{               

\BbbP \mathrm{d}T
k
D[\cdot ] = k2\BbbP \mathrm{d}K

k
D[\cdot ] , \gamma nT

k
D[\cdot ] = k2\gamma nK

k
D[\cdot ]

on H0(div0, D) ,

\BbbP \mathrm{d}T
k
D\widetilde \gamma  - 1

n [\cdot ] = k2\BbbP \mathrm{d}K
k
D\widetilde \gamma  - 1

n [\cdot ] - \BbbP \mathrm{d}\nabla \scrS k
\partial D[\cdot ] , \gamma nT

k
D\widetilde \gamma  - 1

n [\cdot ] = k2\gamma nK
k
D\widetilde \gamma  - 1

n [\cdot ] - 
\biggl( 
1

2
+\scrK k,\ast 

\partial D

\biggr) 
[\cdot ]

on H
 - 1/2
0 (\partial D) .

We are now in a position to prove the following lemma.

Lemma 3.4. \scrR k
D := \scrT k

D  - diag( - 1, 0, - 1
2) is a compact operator on \BbbX .

Proof. To prove the compactness of \scrR k
D on the product space \BbbX , it suffices to show that

each block in \scrR k
D is compact. By the mapping property of Kk

D and Rellich's lemma for
Sobolev spaces, we can obtain that \BbbP \mathrm{d}K

k
D and \gamma nT

k
D are compact operators from H0(div0, D)

to H0(div0, D) and H
 - 1/2
0 (\partial D), namely, the operators (\scrR k

D)2,2 and (\scrR k
D)3,2 are compact

(cf. (3.16)). Meanwhile, a further fact that \scrK k,\ast 
\partial D is compact gives us the compactness of

(\scrR k
D)3,3 = \gamma nT

k
D\widetilde \gamma  - 1

n + 1/2 on H
 - 1/2
0 (\partial D), by (3.16). To show that (\scrR k

D)2,3 = \BbbP \mathrm{d}T
k
D\widetilde \gamma  - 1

n is

compact from H
 - 1/2
0 (\partial D) to H0(div0, D), we write it, by using (3.16), as

\BbbP \mathrm{d}T
k
D\widetilde \gamma  - 1

n [\cdot ] = (k2\BbbP \mathrm{d}K
k
D\widetilde \gamma  - 1

n  - \BbbP \mathrm{d}\nabla (\scrS k
\partial D  - \scrS \partial D))[\cdot ] - \BbbP \mathrm{d}\nabla \scrS \partial D[\cdot ] ,

where the first term is obviously compact, and the second term actually vanishes due to the
fact that \nabla \scrS \partial D[\cdot ] \in W . The proof is complete.

By Lemma (3.4) and the fact that the essential spectrum is stable under a compact
perturbation [29], we directly have the characterization of the essential spectrum [23],

\sigma ess(T
k
D) = \sigma ess(\scrT k

D) = \sigma ess(diag( - 1, 0, - 1

2
)) =

\biggl\{ 
 - 1, 0, - 1

2

\biggr\} 
,

and \lambda  - T k
D is an analytic Fredholm operator function with index zero on \BbbC \setminus \sigma ess as a

consequence of the definition of essential spectrum and the fact that the Fredholm index
ind(\lambda  - T k

D) is a constant on a connected open set. Then, by using the analytic Fredholm
theory [29] and Proposition 3.2, we can conclude that (\lambda  - T k

D)
 - 1 is extended to a mero-

morphic function on \BbbC \setminus \sigma ess(T k
D) with its poles being a discrete and countable bounded set

given by \sigma p(T
k
D)\setminus \sigma ess(T k

D), and for some \lambda 0 \in \sigma p(T
k
D)\setminus \sigma ess(T k

D) and \lambda in a sufficiently small
neighborhood of \lambda 0, (\lambda  - T k

D)
 - 1 has the following Laurent expansion:

(3.17) (\lambda  - T k
D)

 - 1 =
\infty \sum 

n= - q(\lambda 0)

(\lambda  - \lambda 0)
nTn ,
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SUPERRESOLUTION IN RECOVERING EM SOURCES 1481

where T0 is Fredholm operator with index zero, and Ti,  - q(\lambda 0) \leq i \leq  - 1, are finite rank
operators with q(\lambda 0) being a positive integer.

From now on we shall denote the set of all the eigenvalues of finite type of T k
D by \sigma f (T

k
D).

To better understand this set, we recall the following fundamental property concerning the
Riesz projection (cf. [29, Theorem 2.2]).

Lemma 3.5. For a bounded linear operator A on a Banach space X, let \sigma be an isolated
part of \sigma (A) and P\sigma (A) be the associated Riesz projection. Then both imP\sigma (A) and kerP\sigma (A)
are the invariant subspaces of A with \sigma (A| \mathrm{i}\mathrm{m}P\sigma ) = \sigma and \sigma (A| \mathrm{k}\mathrm{e}\mathrm{r}P\sigma (A)) = \sigma (A)\setminus \sigma . Moreover,
X has the direct sum decomposition: X = imP\sigma (A)\oplus kerP\sigma (A).

From Lemma 3.5 it immediately follows that \sigma f (T
k
D) is a subset of \sigma p(T

k
D). Conversely,

note from (3.17) that for \lambda 0 \in \sigma p(T
k
D)\setminus \sigma ess(T k

D),

P\lambda 0(T
k
D) =

1

2\pi i

\int 
\Gamma 
(\lambda  - \lambda 0)

 - 1T - 1d\lambda = T - 1

is a finite rank operator. By this fact, together with the definition of eigenvalues of finite type
and \sigma f (T

k
D) \subset \sigma p(T

k
D), we readily have

(3.18) \sigma p(T
k
D)\setminus \sigma ess(T k

D) = \sigma f (T
k
D)\setminus \sigma ess(T k

D) .

In fact, we can obtain a sharper version of (3.18) by some further observations. We first note
from Lemma 3.1 and Proposition 3.2 that \{ 0, - 1

2\} \not \subset \sigma p(T
k
D) and further that

(3.19) \sigma p(T
k
D)\setminus \sigma ess(T k

D) = \sigma p(T
k
D)\setminus \{  - 1\} \subset \{ \lambda \in \BbbC ; \frakI m\lambda > 0\} .

To consider the relation between \sigma f (T
k
D) and \sigma ess(T

k
D), we need a general result from [26,

Lemma 4.3.17].

Lemma 3.6. Let A be a bounded linear operator, and let \lambda 0 be an isolated point in \sigma (A).
Then we have \lambda 0 \in \sigma ess(A) if and only if the Riesz projection P\lambda 0(A) has an infinite-
dimensional range. In particular, we have

\sigma ess(A)
\bigcap 
\sigma f (A) = \emptyset .

This lemma, along with (3.18) and (3.19), allows us to conclude that

\sigma p(T
k
D)\setminus \{  - 1\} = \sigma f (T

k
D) .

With all the above arguments, we actually have proved our second main result of this subsec-
tion.

Theorem 3.7. The spectrum \sigma (T k
D) is a disjoint union of essential spectrum and eigenvalues

of finite type, i.e.,

\sigma (T k
D) = \sigma ess(T

k
D)
\bigcup 
\sigma f (T

k
D) ,D
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1482 HABIB AMMARI, BOWEN LI, AND JUN ZOU

where \sigma ess(T
k
D) and \sigma f (T

k
D) are given by

\sigma ess(T
k
D) =

\biggl\{ 
 - 1, 0, - 1

2

\biggr\} 
, \sigma f (T

k
D) = \sigma p(T

k
D)\setminus \{  - 1\} \subset \{ \lambda \in \BbbC ; \frakI m\lambda > 0\} ,

and \sigma ess(T
k
D) gives all the possible accumulation points of \sigma f (T

k
D). Furthermore, (\lambda  - T k

D)
 - 1

is a meromorphic function on \BbbC \setminus \sigma ess(T k
D) with a discrete set of poles given by \sigma f (T

k
D).

Remark 3.8. This remark emphasizes the special roles of eigenvalue  - 1 and its eigenspace
and connects it with the nonradiating sources. We have observed in Corollary 3.3 that
H0(curl0, D) is a T k

D-invariant subspace with \sigma (T k
D| H0(\mathrm{c}\mathrm{u}\mathrm{r}\mathrm{l}0,D)) = \{  - 1\} , which can also be

obtained by a direct calculation as in (3.12). In fact, we have

T k
D[\varphi ] = curlKk

D[curl\varphi ] - curl\scrA k
\partial D[\nu \times \varphi ] - \varphi \chi D for \varphi \in H(curl, D) .

Hence, the space H0(curl0, D) also corresponds to the nonradiating sources in the sense that
T k
D[\varphi ] for \varphi \in H0(curl0, D) vanishes in the far field since T k

D[\varphi ] =  - \varphi \chi D. A more general
version of this fact has actually been included in the proof of Proposition 3.2 implicitly. We
have proved therein that if u is the eigenfunction of T k

D with eigenvalue  - 1, then T k
D[u] has

a vanishing far-field pattern. We refer the readers to [17] for the detailed characterization of
nonradiating sources for Maxwell's equations in the homogeneous space.

3.2. Pole-pencil decomposition. To fully understand the structure of (\lambda  - T k
D)

 - 1, we
may need to perform the full expansion of a vector field with respect to eigenfunctions and
generalized eigenfunctions of T k

D as the one given in [13] for the Helmholtz equation. Nev-
ertheless, such a full expansion does not work here since we do not know whether the set
of eigenfunctions and generalized eigenfunctions is complete in the space L2(D,\BbbR 3). To cir-
cumvent this technical barrier, we develop a new pole-pencil decomposition (local expansion)
in this subsection for the resolvent (\lambda  - T k

D)
 - 1 near the reciprocal of the contrast \tau instead,

which relies on the concept of eigenvalues of finite type and Theorem 3.7.
For our purpose, we define an \varepsilon -neighborhood of \tau  - 1 in \sigma (T k

D):

(3.20) \sigma := B(\tau  - 1, \varepsilon ) \cap \sigma (T k
D) ,

where \varepsilon is a given small enough constant. By the fact from Theorem 3.7 that \sigma f (T
k
D) is

discrete, we readily see that \sigma must be a finite set of eigenvalues of finite type of T k
D, i.e.,

\sigma = \cup i\in I\{ \lambda i\} = \{ \lambda i ; \lambda i \in B(\tau  - 1, \varepsilon ) \cap \sigma f (T k
D)\} ,

where I \subset \BbbN is a finite index set. Without loss of generality, we assume that \sigma is a nonempty
set. In view of the facts that \nabla H1

0 (D) is an invariant space of T k
D and \sigma (T k

D| \nabla H1
0 (D)) = \{  - 1\} 

is disjoint from \sigma , it suffices to consider the resolvent of the restriction of T k
D on H(div0, D)

to derive the pole-pencil decomposition of (\lambda  - T k
D)

 - 1. In the remainder of this subsection,

we simply denote T k
D| H(\mathrm{d}\mathrm{i}\mathrm{v}0,D) by \widetilde T k

D. To proceed, we first note from (3.13) and Lemma 3.4

that Theorem 3.7 still holds with T k
D replaced by \widetilde T k

D except

\sigma ess( \widetilde T k
D) = \{ 0, - 1/2\} and \sigma f ( \widetilde T k

D) = \sigma p( \widetilde T k
D) .D
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It follows that both \sigma and its complement \zeta := \sigma ( \widetilde T k
D)\setminus \sigma are closed subsets of \sigma ( \widetilde T k

D), which

allows us to choose a Cauchy contour \Gamma in \rho ( \widetilde T k
D) around \sigma separating \sigma from \zeta and define the

Riesz projection corresponding to \sigma :

(3.21) P\sigma :=
1

2\pi i

\int 
\Gamma 
(\lambda  - \widetilde T k

D)
 - 1d\lambda =

\sum 
i\in I

P\lambda i
.

The Riesz projection corresponding to \zeta can be introduced similarly. By Lemma 3.5,H(div0, D)
can be decomposed into two invariant subspaces of \widetilde T k

D (and also T k
D),

(3.22) H(div0, D) = imP\sigma \oplus kerP\sigma 

with kerP\sigma = imP\zeta , and it holds that

\sigma (T k
D| \mathrm{i}\mathrm{m}P\sigma ) = \sigma = \cup i\in I\{ \lambda i\} , \sigma (T k

D| \mathrm{k}\mathrm{e}\mathrm{r}P\sigma ) = \sigma ( \widetilde T k
D)\setminus \cup i\in I \{ \lambda i\} .

This decomposition (3.22), along with the Helmholtz decomposition (3.10), gives us the fol-
lowing T k

D-invariant subspace decomposition of L2-vector fields:

L2(D,\BbbR 3) = \nabla H1
0 (D,\BbbR 3)\oplus \bot (imP\sigma \oplus imP\zeta ) .

On the associated product space, \nabla H1
0 (D,\BbbR 3)\times imP\sigma \times imP\zeta , the operator \lambda  - T k

D with \lambda \in \BbbC 
has a diagonal representation, diag(\lambda + 1, \lambda  - T k

\sigma , \lambda  - T k
\zeta ), where T

k
\sigma and T k

\zeta are shorthand

notation of T k
D| \mathrm{i}\mathrm{m}P\sigma and T k

D| \mathrm{i}\mathrm{m}P\zeta 
, respectively. With the help of this notation, we arrive

at the following representation of the solution to (\lambda  - T k
D)[\varphi ] = f for f \in L2(D,\BbbR 3) and

\lambda \in B(\tau  - 1, \varepsilon )\setminus \sigma :

(3.23) \varphi =
1

\lambda + 1
\BbbP 0f + (\lambda  - T k

\sigma )
 - 1P\sigma f + (\lambda  - T k

\zeta )
 - 1P\zeta f .

To further understand the behavior of (\lambda  - T k
D)

 - 1 locally, we recall from the defini-
tions of \sigma and P\sigma that imP\sigma is of finite-dimensional and T k

D| \mathrm{i}\mathrm{m}P\sigma is an operator acting on
a finite-dimensional vector space with eigenvalues \{ \lambda i\} i\in I . By the Jordan theory to the finite-
dimensional linear operator, there exists a basis such that the matrix representation of T k

D| \mathrm{i}\mathrm{m}P\sigma 

has a Jordan canonical form, that is, the representation matrix is a block diagonal one con-
sisting of elementary Jordan blocks:

J =

\left[      
\lambda 1

\lambda 
. . .
. . . 1

\lambda 

\right]      .
More precisely, suppose that \lambda i has geometric multiplicity Ni, and then the associated Jordan
matrix J\lambda i

will have the form J\lambda i
= diag(J1

\lambda i
, . . . , JNi

\lambda i
), where J j

\lambda i , 1 \leq j \leq Ni, are the

elementary Jordan blocks. Suppose also that for each Jordan block J j
\lambda i , there is a Jordan chainD
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1484 HABIB AMMARI, BOWEN LI, AND JUN ZOU

\bfitvarphi j
\lambda i

:= (\varphi j,0
\lambda i
, \varphi j,1

\lambda i
, . . . , \varphi 

j,nij - 1
\lambda i

), \BbbN \ni nij \geq 1, an ordered collection of linearly independent

generalized eigenfunctions, such that J j
\lambda i is the representation matrix of T k

D restricted on Ej
\lambda i
:

T k
D| Ej

\lambda i

\bfitvarphi j
\lambda i

= \bfitvarphi j
\lambda i
J j
\lambda i
,

where Ej
\lambda i

is the invariant subspace of T k
D spanned by the Jordan chain \bfitvarphi j

\lambda i
. Without loss of

generality, we assume
\bigm\| \bigm\| \varphi j,s

\lambda i

\bigm\| \bigm\| 
L2(D)

= 1 for i \in I, 1 \leq j \leq Ni, 0 \leq s \leq nij  - 1 in the rest of the

exposition. With Ej
\lambda i
, we can write the following invariant subspace decomposition of imP\sigma :

imP\sigma = \oplus i\in I \oplus Ni
j=1 E

j
\lambda i
.

In our notation, the eigenspace corresponding to \lambda i is spanned by \{ \varphi j,0
\lambda i
\} Ni
j=1 with dimension Ni

while the generalized eigenspace is given by \oplus Ni
j=1E

j
\lambda i

with dimension
\sum Ni

j=1 nij (the algebraic

multiplicity of \lambda i). For vector \varphi \in Ej
\lambda i
, denote by (\varphi )

\bfitvarphi 
j
\lambda i

= ((\varphi )
\bfitvarphi 
j
\lambda i

(0), (\varphi )
\bfitvarphi 
j
\lambda i

(1), . . . (\varphi )
\bfitvarphi 
j
\lambda i

(nij - 

1)) \in \BbbR nij the coefficients in the expansion of \varphi with respect to the basis \{ \varphi j,s
\lambda i
\} nij - 1
s=0 , i.e.,

(3.24) \varphi = \bfitvarphi j
\lambda i

\cdot (\varphi )
\bfitvarphi 
j
\lambda i

:=

nij - 1\sum 
k=0

(\varphi )
\bfitvarphi 
j
\lambda i

(k)\varphi j,k
\lambda i
.

With the help of these notions and (3.23), we arrive at the pole-pencil decomposition of
(\lambda  - T k

D)
 - 1.

Proposition 3.9. The resolvent (\lambda  - T k
D)

 - 1 on B(\tau  - 1, \varepsilon )\setminus \sigma has the following pole-pencil
decomposition:

(3.25) (\lambda  - T k
D)

 - 1[\cdot ] = 1

\lambda + 1
\BbbP 0[\cdot ] +

\sum 
i\in I

Ni\sum 
j=1

\bfitvarphi j
\lambda i

\cdot (\lambda  - J j
\lambda i
) - 1(P j

\lambda i
[\cdot ])

\bfitvarphi 
j
\lambda i

+ (\lambda  - T k
\zeta )

 - 1P\zeta [\cdot ].

Here, P j
\lambda i

:= P j
i P\lambda i

is the composition of projections P j
i and P\lambda i

, where P j
i (i \in I, 1 \leq j \leq Ni)

are finite-dimensional projections from imP\lambda i
to E

\lambda j
i
.

By the above theorem, we clearly see that the behavior of (\lambda  - T k
D)

 - 1 is essentially deter-

mined by its principal part,
\sum 

i\in I
\sum Ni

j=1\bfitvarphi 
j
\lambda i
\cdot (\lambda  - J j

\lambda i
) - 1(P j

\lambda i
[\cdot ])

\bfitvarphi 
j
\lambda i

, in the sense that it contains

all the singularity of (\lambda  - T k
D)

 - 1 on B(\tau  - 1, \varepsilon ) while the remainder term (\lambda + 1) - 1\BbbP 0 + (\lambda  - 
T k
\zeta )

 - 1P\zeta is an analytic operator function on B(\tau  - 1, \varepsilon ). In fact, if \sigma has only one element \lambda i,

the principal part here exactly matches the one in the Laurent series of (\lambda  - T k
D)

 - 1 (3.17) near
the pole \lambda i:

(3.26)

Ni\sum 
j=1

\bfitvarphi j
\lambda i

\cdot (\lambda  - J j
\lambda i
) - 1(P j

\lambda i
[\cdot ])

\bfitvarphi 
j
\lambda i

=
 - 1\sum 

n= - q(\lambda i)

(\lambda  - \lambda i)
nTn .
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We also note that (\lambda  - J j
\lambda i
) - 1 has the following explicit form,

(\lambda  - J j
\lambda i
) - 1 =

\left[      
(\lambda  - \lambda i)

 - 1 (\lambda  - \lambda i)
 - 2 . . . (\lambda  - \lambda i)

 - nij

(\lambda  - \lambda i)
 - 1 . . .

...
. . . (\lambda  - \lambda i)

 - 2

(\lambda  - \lambda i)
 - 1

\right]      ,

which readily gives us that the order q(\lambda i) of the pole \lambda i is determined by

(3.27) q(\lambda i) = max
1\leq j\leq Ni

nij .

Hence, we may expect that there is a blow-up of (\lambda  - T k
D)

 - 1 near the pole \lambda i with order of
1/| \lambda  - \lambda i| q(\lambda i). In fact, we have the following local resolvent estimate (see Proposition 3.10)
directly from (3.17) and the estimate for \| (\lambda  - J j

\lambda i
) - 1\| :

(3.28)
\bigm\| \bigm\| \bigm\| (\lambda  - J j

\lambda i
) - 1
\bigm\| \bigm\| \bigm\| \leq C

1

| \lambda  - \lambda i| nij
,

where \lambda is in a small neighborhood of \lambda i and C is a generic constant depending on nij and
the aforementioned neighborhood of \lambda i. Note that we do not indicate the matrix norm that
is used due to the norm equivalence property on a finite-dimensional space.

Proposition 3.10. Suppose that B(\tau  - 1, \varepsilon ) and \sigma are given as in (3.20). There exists a
constant depending on \varepsilon and the pole set \sigma such that the following estimate holds for f \in 
L2(D,\BbbR 3) and \lambda \in B(\tau  - 1, \varepsilon )\setminus \sigma :\bigm\| \bigm\| \bigm\| (\lambda  - T k

D)
 - 1f

\bigm\| \bigm\| \bigm\| 
L2(D)

\leq C
\sum 
i\in I

1

| \lambda  - \lambda i| q(\lambda i)
\| f\| L2(D) ,

where q(\lambda i) is given by (3.27).

This subsection ends with two remarks for a further discussion of the resolvent estimate
of T k

D.

Remark 3.11. In [32], the author gives the following bound for the smallest singular value
of an n\times n Jordan block J with \lambda being its diagonal elements:\biggl( 

n+ 1

n

\biggr) n | \lambda | n

n+ 1
\leq min

1\leq j\leq n
sj(J) <

| \lambda | 
n

for 0 < | \lambda | < n

n+ 1
,

where sj(A)
n
j=1 denote the singular values for a general n\times n matrix A. The above estimate

further gives us a sharper estimate for the induced 2-norm of the resolvent of J j
\lambda i

than (3.28):\bigm\| \bigm\| \bigm\| (\lambda  - J j
\lambda i
) - 1
\bigm\| \bigm\| \bigm\| 
2
= max

1\leq j\leq nij

sj((\lambda  - J j
\lambda i
) - 1) =

1

min1\leq j\leq nij sj((\lambda  - J j
\lambda i
))

\leq (
nij

nij + 1
)nij

nij + 1

| \lambda  - \lambda i| nij
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1486 HABIB AMMARI, BOWEN LI, AND JUN ZOU

when 0 < | \lambda  - \lambda j | \leq nij/(nij +1). It allows us to derive a new local resolvent estimate for T k
D,\bigm\| \bigm\| \bigm\| (\lambda  - T k

D)
 - 1f

\bigm\| \bigm\| \bigm\| 
L2(D)

\leq C
\sum 
i\in I

Ni\sum 
j=1

\surd 
nij(

nij
nij + 1

)nij
nij + 1

| \lambda  - \lambda i| nij
\| f\| L2(D) ,

for a generic constant C and \lambda \in B(\tau  - 1, \varepsilon ), which seems to be a little bit shaper than the
one in Proposition 3.10 but actually does not provide us new information on the singularity
of (\lambda  - T k

D)
 - 1 and its blow-up rate near the regular value \tau  - 1.

Remark 3.12. In general, it is very difficult to obtain a sharp global estimate for the
resolvent (\lambda  - T k

D)
 - 1 of the nonselfadjoint and noncompact operator T k

D. Nevertheless, by
noting that T k

D is a quasi-Hermitian operator, we can apply a general result to T k
D to obtain

its resolvent estimate. We put the detailed analysis and some relevant definitions in Appendix
B.

We have observed from Proposition 3.2 and Theorem 3.7 that \tau  - 1  - T k
D is invertible, and

then Propositions 3.9 and 3.10 permit us to write

(3.29) (\tau  - 1  - T k
D)

 - 1 \sim 
\sum 
i\in I

Ni\sum 
j=1

\bfitvarphi j
\lambda i

\cdot (\tau  - 1  - J j
\lambda i
) - 1(P j

\lambda i
[\cdot ])

\bfitvarphi 
j
\lambda i

and to see that the behavior of (\tau  - 1  - T k
D)

 - 1 is indeed significantly influenced by the poles of
the resolvent of T k

D near \tau  - 1 and their associated eigenstructures, as is suggested at the end
of section 2.

3.3. Spherical region. In view of the formula (3.29), both eigenvalues and eigenfunctions
can play a crucial role in the local behavior of (\lambda  - T k

D)
 - 1 near the very small regular value

\tau  - 1, which motivates us to quantitatively investigate the asymptotic behaviors of eigenvalues
and eigenfunctions of the operator T k

D as \lambda \rightarrow 0 to further explore the mechanism lying behind
the superresolution. In this subsection, we consider the spectral properties of T k

D on the unit
ball D = B(0, 1) in \BbbR 3, where the Mie scattering theory is applicable.

We have seen in Lemma 3.1 that solving the eigenvalue equation (\lambda  - T k
D)[\varphi ] = 0 is

equivalent to finding \lambda and the associated nontrivial radiating solution to the transmission
problem:

(3.30) \nabla \times \nabla \times E  - k2E =
k2

\lambda 
E\chi D.

In this subsection, we assume \lambda \not =  - 1 so that the wave number k\lambda = k
\surd 
1 + \lambda  - 1 inside the

domain will never vanish; see Remark 3.14 and also Remark 3.8 for a discussion of the case
of \lambda =  - 1. By the Mie theory, any solution E of the time-harmonic Maxwell equations
\nabla \times \nabla \times E  - k2E = 0 in the far field can be represented in the following series form:

(3.31) E(x) =

\infty \sum 
n=1

n\sum 
m= - n

\gamma n,mE
TE
n,m(k, x) + \eta n,mE

TM
n,m(k, x) ,
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where the complex coefficients \gamma n,m and \eta n,m are to be determined and ETE
n,m and ETM

n,m are
vector wave functions defined in the Appendix C.1. Similarly, any solution E to the Maxwell
equations \nabla \times \nabla \times E  - k2\lambda E = 0 near 0 has the following representation:

(3.32) E(x) =
\infty \sum 
n=1

n\sum 
m= - n

\alpha n,m
\widetilde ETE
n,m(k\lambda , x) + \beta n,m \widetilde ETM

n,m(k\lambda , x)

with undetermined coefficients \alpha n,m, \beta n,m \in \BbbC (see (C.3) and (C.4) for the definitions of\widetilde ETE
n,m and \widetilde ETM

n,m). To establish the equations for eigenvalues \lambda , we match the Cauchy data
(\^x\times E, \^x\times \nabla \times E) of (3.31) and (3.32) on the boundary \partial B(0, 1). By the trace formulas of
multipole fields (C.5) and (C.6) and recalling that \{ Um

n \} and \{ V m
n \} are an orthonormal basis

of L2
T (S

2), matching Cauchy data reduces the original eigenvalue problem to solving infinite
linear systems,

[\^x\times E(x)] = 0 \Leftarrow \Rightarrow 

\Biggl\{ 
\gamma n,mh

(1)
n (k) = \alpha n,mjn(k\lambda ),

\eta n,m\scrH n(k) = \beta n,m
k
k\lambda 
\scrJ n(k\lambda ),

n = 1, 2, . . . , m =  - n, . . . , n ,

and

[\^x\times \nabla \times E(x)] = 0 \Leftarrow \Rightarrow 

\Biggl\{ 
\gamma n,m\scrH n(k) = \alpha n,m\scrJ n(k\lambda ),

\eta n,mkh
(1)
n (k) = \beta n,mk\lambda jn(k\lambda ),

n = 1, 2, . . . , m =  - n, . . . , n ,

which can be reformulated into the following independent equations with the undetermined
coefficients as unknowns:

(3.33)

\Biggl[ 
jn(k\lambda )  - h(1)n (k)
\scrJ n(k\lambda )  - \scrH n(k)

\Biggr] \biggl[ 
\alpha n,m

\gamma n,m

\biggr] 
= 0 , n = 1, 2, . . . , m =  - n, . . . , n ,

and

(3.34)

\Biggl[ 
k
k\lambda 
\scrJ n(k\lambda )  - \scrH n(k)

k\lambda jn(k\lambda )  - kh(1)n (k)

\Biggr] \biggl[ 
\beta n,m
\eta n,m

\biggr] 
= 0 , n = 1, 2, . . . , m =  - n, . . . , n .

We readily observe that the coefficient matrices in the above linear systems do not depend
on the index m, and the equation (3.30) has nontrivial solutions for \lambda \in \sigma p(T

k
D)\setminus \{ 0\} if and

only if (3.33) or (3.34) has nonzero solutions for some index n \in \BbbN +, or equivalently, the
determinants of the associated coefficient matrices are zero:

(3.35) h(1)n (k)\scrJ n(k\lambda ) - jn(k\lambda )\scrH n(k) = 0

or

(3.36)
k2

k2\lambda 
h(1)n (k)\scrJ n(k\lambda ) - jn(k\lambda )\scrH n(k) = 0 .

To proceed, let us focus on the first case, i.e., (3.33) and (3.35). We note from the fact
that all the zeros of jn(z)(n \in \BbbN +), except the possible point z = 0, are simple [39] thatD
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1488 HABIB AMMARI, BOWEN LI, AND JUN ZOU

jn(k\lambda ) and \scrJ n(k\lambda ) cannot vanish simultaneously, and neither can h
(1)
n (k) and \scrH n(k) by a

similar observation. Then all the nontrivial solutions of (3.33) have the form (\alpha n,m, \gamma n,m) =
cn,m(\alpha n, \gamma n) with \alpha n, \gamma n \not = 0 and cn,m \in \BbbC \setminus \{ 0\} . Therefore, for \lambda such that (3.35) holds for

some index n, there is an associated subspace spanned by the eigenfunctions \{ \widetilde ETE
n,m\} m=n

m= - n.
If the same \lambda happens to satisfy (3.33) for index n\prime \not = n or (3.34) for index n\prime \prime , we can find
another (sub)eigenspace spanned by \{ \widetilde ETE

n\prime ,m\} m=n\prime 
m= - n\prime or \{ \widetilde ETM

n\prime \prime ,m\} m=n\prime \prime 
m= - n\prime \prime , which is orthogonal

to the aforementioned one. Moreover, the geometric multiplicity of \lambda is the sum of the
dimensions of these subspaces, which must be finite, since all the eigenvalues of T k

D except  - 1
are eigenvalues of finite type (see Theorem 3.7). The same arguments can be applied to the
system (3.34) as well as to (3.36). We summarize the above facts in the following theorem.

Theorem 3.13. Denote by \sigma 1n and \sigma 2n the sets of \lambda such that (3.35) and (3.36) holds, re-
spectively, and then we have that the set of eigenvalues of finite type of T k

D for a spherical
region B(0, 1) is given by

\sigma f (T
k
D) = \sigma p(T

k
D)\setminus \{  - 1\} = \cup \infty 

n=1(\sigma 
1
n \cup \sigma 2n) .

And for each \lambda \in \sigma f (T
k
D), the finite-dimensional eigenspace is spanned by

\cup 2
i=1 \cup n\in \Lambda i \cup n

m= - n
\widetilde Ei
n,m(k\lambda , x),

where \Lambda i, i = 1, 2, is a finite subset of \BbbN + such that \lambda \in \sigma in for n \in \Lambda i. Here, \widetilde Ei
n,m(k\lambda , x),

i = 1, 2, denote the eigenfunctions \widetilde ETE
n,m(k\lambda , x) and \widetilde ETM

n,m(k\lambda , x), respectively.

Remark 3.14. As we have seen in Corollary 3.3 and Remark 3.8, the eigenspace of eigen-
value \lambda = 1 is given by \nabla H1

0 (D), which are the nonradiating sources. For the case of the
domain B(0, 1), it is spanned by the gradient of eigenfunctions un of the Dirichlet Laplacian,
that is, \biggl\{ 

\Delta un =  - k2nun in B(0, 1) ,
un = 0 on \partial B(0, 1) .

The explicit formulas of the Dirichlet eigenvalues kn and eigenfunctions un are available in
[27]. It is also worth mentioning that in the above argument, we have actually proved that all
of these eigenfunctions, \widetilde ETE

n,m and \widetilde ETM
n,m , are the radiating sources, since both solution spaces of

(3.33) and (3.34) are one-dimensional and spanned by some vector p \in \BbbC 2 with nonvanishing
components p1, p2, i.e., p1, p2 \not = 0.

3.3.1. Asymptotic behavior of eigenvalues. This subsection is devoted to the under-
standing of the distribution of eigenvalues in \sigma in for i = 1, 2, namely, the eigenvalues of T k

D.
For this purpose, it suffices to investigate the zeros of f in(z) for i = 1, 2 on \BbbC \setminus \{ 0\} , where f in(z)
are introduced by the right-hand side of (3.35) and (3.36) by setting z = k\lambda , i.e.,

f1n(z) = h(1)n (k)\scrJ n(z) - jn(z)\scrH n(k),(3.37)

f2n(z) =
k2

z2
h(1)n (k)\scrJ n(z) - jn(z)\scrH n(k).(3.38)
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Figure 1. 70 zeros of f i
n(z) for i = 1 (the first row), i = 2 (the second row), and n = 1, 5, 9 (from left to

right) in the right half plane: \{ z \in \BbbC ;  - \pi 
2
< arg(z) \leq \pi 

2
\} .

We readily see from the analyticity of z - njn(z) on \BbbC that f in for i = 1, 2 and n \in \BbbN + are
analytic on the whole complex plane \BbbC , except that f21 (z) is a meromorphic function on \BbbC 
with 0 being its only simple pole. By the symmetry property of jn(z), jn( - z) = ( - 1)njn(z)
[35], we have

\scrJ n( - z) = jn( - z) + ( - z)j\prime n( - z) = ( - 1)njn(z) + ( - 1)nzj\prime n(z) = ( - 1)n\scrJ n(z) ,

which directly gives us the following lemma.

Lemma 3.15. For f in(z), n \in \BbbN +, i = 1, 2, defined by (3.37) and (3.38), the following
symmetry properties hold:

f1n( - z) = ( - 1)nf1n(z) , f2n( - z) = ( - 1)nf2n(z) .

As a consequence of Lemma 3.15, the zeros of f in are symmetric with respect to the origin.
To obtain an intuition about the behavior of those zeros, we numerically compute the zeros
of f in for i = 1, 2 and different values of n in the right half plane \{ z \in \BbbC ;  - \pi 

2 < arg(z) \leq \pi 
2 \} ,

by Muller's method [6]. As we can observe in Figure 1, the zeros of f in(z) are complex and
lie in the lower half-plane. This fact has been theoretically justified by Proposition 3.2. Also
the overall magnitudes of their imaginary parts rapidly decrease as the value of n increases.
Moreover, it is remarkable to note that for fixed i and n, there is a sequence of zeros of
f in tending exponentially fast to the real axis. It motivates us to investigate the asymptotic
behavior of zeros of f in(z) as | z| \rightarrow \infty .D
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1490 HABIB AMMARI, BOWEN LI, AND JUN ZOU

For this, we first consider f1n(z) and see the following asymptotics from (C.8) and (C.10)
that for | arg(z)| < \pi ,

f1n(z) = h(1)n (k) cos
\Bigl( 
z  - n\pi 

2

\Bigr) 
 - 1

z
\scrH n(k) cos

\Bigl( 
z  - n\pi 

2
 - \pi 

2

\Bigr) 
+ e| \frakI mz| O

\biggl( 
1

| z| 

\biggr) 
= h(1)n (k) cos

\Bigl( 
z  - n\pi 

2

\Bigr) 
+ e| \frakI mz| O

\biggl( 
1

| z| 

\biggr) 
as | z| \rightarrow \infty ,(3.39)

where we have also utilized the fact that both h
(1)
n (z) and \scrH n(z) do not have real zeros. In

view of (C.11), we can find generic positive constants C1, C2, and C3 depending on n such
that

| f1n(z)| \geq | h1n(k)| 
e| \frakI mz|  - 1

2
 - e| \frakI mz| C1

1

| \frakI mz| 
\geq C2

when | \frakI mz| \geq C3. Combining the above estimate with the symmetry of the zeros, it readily
follows that the zeros of f1n(z) must lie in the strip:

\{ z \in \BbbC ; | \frakI mz| \leq C3\} .

In this region, the remainder term e| \frakI mz| O(| z|  - 1) in (3.39) converges to zero as | z| \rightarrow \infty . Since
all the zeros of the entire function cos(z  - n\pi 

2 ) are real and simple, given by

(3.40) \widetilde zn,l = (1 + 2l + n)\pi 

2
, l \in \BbbN ,

we foresee that there are zeros of f1n(z) lying near \widetilde zn,l when | z| is large enough, which is indeed
the case, by a direct application of Rouch\'e's theorem and the inverse function theorem. To

see this, we define the entire function gn(z) = h
(1)
n (k) cos(z  - n\pi 

2 ) on the complex plane \BbbC ,
which has the minimal period 2\pi in the sense that if \alpha \in \BbbC satisfies gn(z + \alpha ) = gn(z) for
all z, then \alpha = 2\pi m for some integer m. Noting that g\prime n(\widetilde zn,l) \not = 0 for l \in \BbbN , by the inverse
function theorem, we can find an open neighborhood Vn of \widetilde zn,0 and an open neighborhood
Wn of the origin such that g(Vn + l\pi ) = ( - 1)lWn and g is an analytic isomorphism from the
neighborhood Vn + l\pi of \widetilde zn,l to the neighborhood ( - 1)lWn of 0 for each l \in \BbbZ , where we also
use the periodicity and symmetry of gn(z) : gn(z + l\pi ) = ( - 1)lgn(z), l \in \BbbZ . We denote by rn
the radius of the largest ball contained in Vn with center at the \widetilde zn,0 and define

Mn := inf
z\in \partial B(\widetilde zn,l,rn)

| gn(z)| ,

which is independent of the value of l. When l is large enough, we can guarantee

sup
z\in \partial B(\widetilde zn,l,rn)

| f1n(z) - gn(z)| < Mn ,

by using the asymptotic expansion (3.39). Then, the Rouch\'e's theorem helps us to conclude
that in the region B(\widetilde zn,l, rn) \subset Vn + l\pi , f1n(z) has a simple zero denoted by zn,l. It then
directly follows that gn(zn,l) \in ( - 1)lWn and

(3.41) 0 = gn(\widetilde zn,l) = f1n(zn,l) = gn(zn,l) +O

\biggl( 
1

| zn,l| 

\biggr) 
.
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Hence we have, by using (3.41) and the local invertibility of g\prime n,

| zn,l  - \widetilde zn,l| 
| gn(zn,l) - gn(\widetilde zn,l)| = | zn,l  - \widetilde zn,l| 

| gn(zn,l))| 
\leq sup

\xi \in ( - 1)lWn

| (g - 1
n )\prime (\xi )| = sup

z\in Vn

| g\prime n(z)|  - 1 < +\infty ,

which immediately implies

(3.42) | zn,l  - \widetilde zn,l| \leq Cn
1

| zn,l| 
\leq Cn| l|  - 1

for large enough l, where Cn denotes a generic constant depending on n and may have different
values in the following. Further, considering the fact that a nonconstant analytic function on
the closure of a bounded domain can only have finite zeros, we arrive at the following result.

Lemma 3.16. The zeros of f1n(z) are symmetric with respect to the origin and contained
in the strip: \{ z \in \BbbC ; | \frakI mz| \leq C\} for some constant C. Let \{ z1n,l\} l\in \BbbN denote the zeros with

 - \pi 
2 < arg(z) \leq \pi 

2 . Then \{ z1n,l\} has the following estimate:

(3.43) | z1n,l  - \widetilde z1n,l| \leq Cnl
 - 1 \forall l \in \BbbN + ,

where \{ \widetilde z1n,l\} is given by (3.40).

Recall that what we are truly interested in is \lambda 1n,l := k2/((z1n,l)
2  - k2) \in \sigma 1n. We translate

the above lemma with respect to z1n,l to \lambda 
1
n,l and obtain\bigm| \bigm| \bigm| \bigm| \lambda 1n,l  - 4k2

(1 + 2l + n)2\pi 2  - 4k2

\bigm| \bigm| \bigm| \bigm| \leq Cn| l|  - 4 ,

by applying the mean-value theorem to the one-dimensional function h(t) = k2/((\widetilde z1n,l+t(z1n,l - \widetilde z1n,l))2  - k2) on [0, 1]. This estimate can be further simplified as follows:\bigm| \bigm| \bigm| \bigm| \lambda 1n,l  - 4k2

(1 + 2l + n)2\pi 2

\bigm| \bigm| \bigm| \bigm| \leq Cn| l|  - 4 as l \rightarrow +\infty .

For our second case, by a very similar argument applied to zf2n(z), which has the same
zeros away from the origin as f2n(z) and satisfies the following asymptotic form:

zf2n(z) =
k2

z
h(1)n (k) cos

\Bigl( 
z  - n\pi 

2

\Bigr) 
 - \scrH n(k) cos

\Bigl( 
z  - n\pi 

2
 - \pi 

2

\Bigr) 
+ e| \frakI mz| O

\biggl( 
1

| z| 

\biggr) 
=  - \scrH n(k) cos

\Bigl( 
z  - n\pi 

2
 - \pi 

2

\Bigr) 
+ e| \frakI mz| O

\biggl( 
1

| z| 

\biggr) 
as | z| \rightarrow \infty ,(3.44)
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we can obtain that the zeros \{ z2n,l\} of f2n(z) in the right half plane satisfy the estimate,

(3.45)
\bigm| \bigm| z1n,2  - \widetilde z2n,l\bigm| \bigm| \leq Cnl

 - 1 with \widetilde z2n,l := (2l + n)\pi 

2
\forall l \in \BbbN + ,

and the associated \{ \lambda 2n,l\} \subset \sigma 2n have the asymptotics,\bigm| \bigm| \bigm| \bigm| \lambda n,l  - 4k2

(2l + n)2\pi 2

\bigm| \bigm| \bigm| \bigm| \leq Cn| l|  - 4 as l \rightarrow +\infty .

We now give the main result of this subsection.

Theorem 3.17. Let \{ \lambda in,l\} l\in \BbbN be the eigenvalues in \sigma in for i = 1, 2 and n \in \BbbN +. Then, when
l \rightarrow +\infty , the following asymptotic estimates hold:

(3.46)

\bigm| \bigm| \bigm| \bigm| \lambda 1n,l  - 4k2

(1 + 2l + n)2\pi 2

\bigm| \bigm| \bigm| \bigm| = O(l - 4) ,

\bigm| \bigm| \bigm| \bigm| \lambda 2n,l  - 4k2

(2l + n)2\pi 2

\bigm| \bigm| \bigm| \bigm| = O(l - 4) .

We refer readers to Proposition B.2 for an interesting related result.

3.3.2. Asymptotic behavior and localization of eigenfunctions. Theorem 3.17 has clearly
described asymptotic behaviors of the eigenvalues in \sigma in, i = 1, 2. We see from (3.46) and (3.29)
that when l is large enough, \lambda 1n,l and \lambda 

2
n,l will most likely be contained in the \varepsilon -neighborhood

of \tau  - 1 so that the high-frequency resonant modes \widetilde ETE
n,m(k\lambda , x), \widetilde ETM

n,m(k\lambda , x) for the same value

of n and m will be excited simultaneously. Via the integral operator T k
D, these resonant

modes carrying the subwavelength information of the embedded sources can propagate into
the far field. In this subsection, instead of considering the vector fields T k

D[
\widetilde ETE
n,m(k\lambda , \cdot )](x) and

T k
D[
\widetilde ETM
n,m(k\lambda , \cdot )](x), we consider their tangential component measurements for ease of exposi-

tion, which can be explicitly represented by

\^x\times T k
D[
\widetilde ETE
n,m(k\lambda , \cdot )](x) = ik3

\sqrt{} 
n(n+ 1)h(1)n (k| x| )Um

n (\^x)

\int 1

0
jn(kr)jn(k\lambda r)r

2dr

and

\^x\times T k
D[
\widetilde ETM
n,m(k\lambda , \cdot )](x)

=  - 
k
\sqrt{} 
n(n+ 1)

k\lambda | x| 
\scrH n(k| x| )V m

n (\^x)

\int 1

0
\scrJ n(kr)\scrJ (k\lambda r) + n(n+ 1)jn(kr)jn(k\lambda r)dr

for | x| > 1, by (C.12) and (C.13) in Appendix C.3. These formulas motivate us to define the
following two propagating functions, respectively, responsible for the propagation of vector
spherical harmonics Um

n and V m
n :

(3.47) \varphi \lambda ,1
n (kt) :=

\Biggl\{ \sqrt{} 
n(n+ 1)\lambda jn(k\lambda t) , 0 < t \leq 1 ,

ik3
\sqrt{} 
n(n+ 1)h

(1)
n (kt)

\int 1
0 jn(kr)jn(k\lambda r)r

2dr , t > 1 ,

and
(3.48)

\varphi \lambda ,2
n (kt) :=

\left\{   
i\lambda 
\surd 

n(n+1)

k\lambda t
\scrJ n(k\lambda t) , 0 < t \leq 1 ,

 - k
\surd 

n(n+1)

k\lambda t
\scrH n(kt)

\int 1
0 \scrJ n(kr)\scrJ (k\lambda r) + n(n+ 1)jn(kr)jn(k\lambda r)dr , t > 1 .
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Here, to define \varphi \lambda ,i
n inside the domain for i = 1, 2, we have used the fact that \widetilde ETE

n,m and \widetilde ETM
n,m

are eigenfunctions of T k
D with eigenvalue \lambda . From the definitions (3.47) and (3.48), we readily

see that when t > 1, \varphi \lambda ,1
n (resp., \varphi \lambda ,2

n ) is proportional to h
(1)
n (kt) (resp., \scrH n(kt)) and thereby

has the same asymptotic behavior as h
(1)
n (kt) (resp., \scrH n(kt)) as t\rightarrow +\infty . To understand the

roles played by \varphi \lambda ,i
n for different orders n in the far-field measurement, we give the result about

their asymptotics for large order n. The detailed calculations and estimates are included in
Appendix C.3.

Proposition 3.18. The following asymptotic estimates uniformly hold for t in a compact
subset of (1,+\infty ),
(3.49)

\varphi \lambda ,1
n (t) = O

\Biggl( \Bigl( e
2t

\Bigr) n+1 kn - 1
\lambda 

(n+ 1)n

\Biggr) 
, \varphi \lambda ,2

n (t) = O

\Biggl( \biggl( 
ek

2t

\biggr) n - 1 kn - 2
\lambda 

(n - 1)n - 3

\Biggr) 
as n\rightarrow \infty ,

where we recall that the big-O terms are bounded by constants independent of n but depending
on other parameters: the wave number k, the eigenvalue \lambda , and the compact set for variable
t.

In view of the exponential decay of propagating functions \varphi \lambda ,i
n in (3.49) when n tends to

infinity, we have theoretically justified the previously mentioned fact in the introduction that
the evanescent part of the radiating EM wave with the fine-detail information of the objects,
i.e., the remainder term of the infinite sum in (3.31) from large enough n, is almost negligible
in the measured far-field data. It is the low-frequency component,

Elow(x) =
N\sum 

n=1

n\sum 
m= - n

\gamma n,mE
TE
n,m(k, x) + \eta n,mE

TM
n,m(k, x) , \gamma n,m, \eta n,m \in \BbbC , | x| \gg 1,

that dominates the far-field behavior of the radiating wave E, where N is a given small positive
integer. We plot both real and imaginary parts of \varphi \lambda ,i

n in Figures 2 and 3 for different values of
n and k = 1, from which we can clearly observe that the higher the resonant mode oscillates,
the smaller the amplitude is.

We also note from Figures 2(a) and 3(a) that the imaginary parts of \varphi \lambda ,1
n for different n

have very small amplitudes inside and outside the domain, while for the case \varphi \lambda ,2
n , it is the real

part. However, it is not a surprising fact if we recall from Theorem 3.17 that the eigenvalues
\lambda of T k

D are near the real axis and there is an additional factor i in the definition of \varphi \lambda ,2
n ,

compared to \varphi \lambda ,1
n (cf. (C.3) and (C.4)).

We next consider the behaviors of the propagating functions \varphi 
\lambda i
n,l,i

n (kt) for i = 1, 2 inside
the domain. To simplify the notation, we redenote them as follows:

(3.50) \varphi 1
n,l(kt) := \varphi 

\lambda 1
n,l,1

n (kt) =
\sqrt{} 
n(n+ 1)\lambda 1n,ljn(z

1
n,lt) for t \in [0, 1]

and

(3.51) \varphi 2
n,l(kt) := \varphi 

\lambda 2
n,l,2

n (kt) =
i\lambda 2n,l

\sqrt{} 
n(n+ 1)

z2n,lt
\scrJ n(z

2
n,lt) for t \in [0, 1] .
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(a) \varphi \lambda ,1
5 (t). Left: t \in (0, 1); right: t\in (1, 6).
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(b) \varphi \lambda ,2
5 (t). Left: t \in (0, 1); right: t\in (1, 6).

Figure 2. Propagating function \varphi \lambda ,i
5 for the first four \lambda from \sigma i

5, i = 1, 2. First row: real part of \varphi \lambda ,i
5 ;

second row: imaginary part of \varphi \lambda ,i
5 for i = 1, 2.
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(a) \varphi \lambda ,1
9 (t). Left: t \in (0, 1); right: t\in (1, 6).
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(b) \varphi \lambda ,2
9 (t). Left: t \in (0, 1); right: t\in (1, 6).

Figure 3. Propagating function \varphi \lambda ,i
9 for the first four \lambda from \sigma i

9, i = 1, 2. First row: real part of \varphi \lambda ,i
9 ;

second row: imaginary part of \varphi \lambda ,i
9 for i = 1, 2.

By estimates (3.43) and (3.45), the zeros zin,l, i = 1, 2, have very small imaginary parts when

l is large enough (for the case n = 5, \frakI mzin,l \sim 10 - 8 by numerical simulation; see Figure 1).

This indicates that \varphi 1
n,l is almost a real function while \varphi 2

5,l is almost purely imaginary (for

the case n = 5, \frakI m\varphi 1
n,l \sim 10 - 10 and Re\varphi 2

n,l \sim 10 - 11 by numerical simulation; see Figure 2).

We plot in Figure 4 the normalized real parts of propagating function \varphi 1
n,l(k| x| ),

\widetilde Re\varphi 1
n,l(k| x| ) =

Re\varphi 1
n,l(k| x| )

max0\leq | x| \leq 1Re\varphi 1
n,l(k| x| )

,
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(a) l = 1, 5, 20, 50 (Rez15,l = 11.6952, 24.7230, 75.2638, 216.7232) from left to right.

(b) l = 1, 5, 20, 50 (Rez25,l = 9.3339, 22.8956, 70.4700, 164.8413) from left to right.

Figure 4. (a) Normalized real part of \varphi 1
5,l(| x| ); (b) normalized imaginary part of \varphi 2

5,l(| x| ) for different
values of l on the cross-sectional plane: | x| \leq 1 with x3 = 0.

and the normalized imaginary parts of propagating function \varphi 2
n,l(k| x| ),

\widetilde \frakI m\varphi 2
n,l(k| x| ) =

\frakI m\varphi 2
n,l(k| x| )

max0\leq | x| \leq 1Re\varphi 2
n,l(k| x| )

,

on a two-dimensional cross-sectional plane of the ball B(0, 1) passing through the origin for
k = 1, n = 5, and different values of l. And we readily see from Figure 4 that for a fixed n, when

l tends to infinity, both \widetilde Re\varphi 1
5,l(| x| ) and \widetilde \frakI m\varphi 2

5,l(| x| ) present a remarkable localization pattern
in the sense that they are highly oscillating, essentially distributed in a small neighborhood
of the origin, and rapidly attenuated toward the boundary.

We now give a qualitative mathematical result to illustrate this localization phenomenon.

Theorem 3.19. Let \{ \varphi i
n,l\} , i = 1, 2 be the sequences of propagating functions defined by

(3.50) and (3.51). Then the following asymptotics hold:

(3.52)
maxt\in [a,1] | \varphi 1

n,l(kt)| 
maxt\in [0,1] | \varphi 1

n,l(kt)| 
= O(l - 1) ,

maxt\in [a,1] | \varphi 2
n,l(kt)| 

maxt\in [0,1] | \varphi 2
n,l(kt)| 

= O(l - 1) as l \rightarrow \infty ,

where a is a positive real number from (0, 1).

Proof. The proof is direct and simple based on two lemmas in Appendix C. We only give
the argument for the first estimate in (3.52). The analysis for the second one can be conducted
by the same idea. In fact, by Lemma C.2 and the asymptotic expansion (C.8), we have

maxt\in [a,1] | \varphi 1
n,l(kt)| 

maxt\in [0,1] | \varphi 1
n,l(kt)| 

=
maxt\in [a,1] | jn(z1n,lt)| 
maxt\in [0,1] | jn(z1n,lt)| 

\leq 
C1| z1n,l|  - 1

maxt\in [0,1] | jn(\widetilde z1n,lt)|  - C2| l|  - 1
,
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1496 HABIB AMMARI, BOWEN LI, AND JUN ZOU

where C1 and C2 are some generic constants depending on n. Note that letting l tends to
infinity, both \{ \widetilde z1n,l\} and \{ z1n,l\} vanish with the rate l - 1. Then the result directly follows from
Lemma C.1.

Remark 3.20. It is possible to obtain more subtle estimates for the localization speed under
various Lp-norm (p \geq 1) in a similar manner as in [34], where the authors considered the high-
frequency localization of Laplacian eigenfunctions in circular, spherical, and elliptical domains
under various boundary conditions. However, detailed discussions are beyond the scope of this
work. Another important and very challenging problem is how to extend Theorems 3.17 and
3.19 to the arbitrarily shaped domain to provide a quantitative explanation of superresolution
for nonspherical domains.

4. Applications to superresolutions in high contrast media. We have established the
main mathematical results in this work concerning the spectral properties of T k

D and the
behavior of the resolvent (\lambda  - T k

D)
 - 1 in the high contrast regime, as well as the asymptotic

estimates for the eigenvalues and eigenfunctions for a spherical domain. In this section,
we shall derive the resonance expansions for the Green's tensor G and its imaginary part
\frakI mG, by Theorem 2.2 and Proposition 3.9, and use it to explain the expected superresolution
phenomenon when imaging the source f embedded in the high contrast medium. We shall
also provide the numerical experiments for the case of a spherical region to show the existence
of the possible subwavelength peaks of the imaginary part of the Green's tensor.

4.1. Resonance expansion of Green's tensor. To write the resonance expansion for the
Green's tensor G, we directly substitute the pole-pencil decomposition in (3.25) into the
representation of G in (2.27) with a polarization p \in S2 and then obtain

G(z, z\prime , k)p =
1

k2\tau 
\nabla zdivz(\widetilde g(z, z\prime , k)p) + 1

\tau + 1
\BbbP 0
\widetilde G(z, z\prime , k)p

+
1

\tau 

\sum 
i\in I

Ni\sum 
j=1

\bfitvarphi j
\lambda i
(z) \cdot (\tau  - 1  - J j

\lambda i
) - 1(P j

\lambda i

\widetilde G(\cdot , z\prime , k)p)
\bfitvarphi 
j
\lambda i

+ (1 - \tau T k
\zeta )

 - 1[P\zeta 
\widetilde G(\cdot , z\prime , k)p](z)(4.1)

for z \in D and z\prime \in D\prime ; see Theorem 2.2 for the definitions of \widetilde g and \widetilde G here. To derive the
resonance expansion of \frakI mG, we first recall the explicit form \BbbP 0 =  - \nabla \BbbS div and formula (2.22),
and then have

\frakI m\BbbP 0
\widetilde G(z, z\prime , k)p = \BbbP 0\frakI m \widetilde G(z, z\prime , k)p

=  - \nabla z\BbbS divz\frakI mG0(z, z0, k)p+\nabla z\BbbS divz
1

k2
\nabla zdivz\frakI m\widetilde g(z, z0, k)p

=  - 1

k2
\nabla zdivz(\frakI m\widetilde g(z, z0, k)p) ,(4.2)

by noting that divz\frakI mG0(z, z0, k)p = 0 and \BbbS is the inverse of  - \Delta in the variational sense (cf.
(A.1)). In view of (4.2), taking the imaginary part of both sides of (4.1) gives us the followingD
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resonance expansion of \frakI mG,

\frakI mG(z, z\prime , k)p = \frakI m
1

\tau 

\sum 
i\in I

Ni\sum 
j=1

\bfitvarphi j
\lambda i
(z) \cdot (\tau  - 1  - J j

\lambda i
) - 1(P j

\lambda i

\widetilde G(\cdot , z\prime , k)p)
\bfitvarphi 
j
\lambda i

+ \frakI m(1 - \tau T k
\zeta )

 - 1[P\zeta 
\widetilde G(\cdot , z\prime , k)p](z) , z \in D, z\prime \in D\prime ,(4.3)

which has a more concise expression than (4.1). Note that the counterpart of the expansion
(4.3) for the imaginary part of the free space Green's tensor \frakI mG0 can be derived from (2.22)
and (4.2):

\frakI mG0(z, z
\prime , k)p =

1

k2
\nabla div(\frakI m\widetilde g(z, z\prime , k)p) + \frakI m(\BbbP 0 + P\sigma + P\xi ) \widetilde G(z, z\prime , k)p

= \frakI m
\sum 
i\in I

Ni\sum 
j=1

\bfitvarphi j
\lambda i
(z) \cdot (P j

\lambda i

\widetilde G(\cdot , z\prime , k)p)
\bfitvarphi 
j
\lambda i

+ \frakI mP\xi 
\widetilde G(z, z\prime , k)p , z \in D, z\prime \in D\prime ,(4.4)

where we have used the fact that \BbbP 0 + P\sigma + P\xi is the identity operator, and the definition
of P\sigma in (3.21) and the expression (3.24). The first term in the above expansion may be
viewed as the high-frequency part of \frakI mG0 that can encode the subwavelength information of
the sources due to the superoscillatory nature of the generalized eigenfunctions in the Jordan
chains \bfitvarphi j

\lambda i
; see Figures 3 and 4. Comparing it with (4.3), we can find that this high-frequency

part is amplified by the resolvents of Jordan matrices: (1 - \tau J j
\lambda i
) - 1 when \tau  - 1 is approaching

the eigenvalues \lambda i, i \in I. Therefore, the imaginary part of G may display a sharper peak than
the one of G0 for some specified high contrast parameters and thus help us more accurately
resolve subwavelength details.

4.2. Numerical illustrations. In this subsection, we numerically study the imaginary part
of the Green's tensor G(x, y, k) corresponding to the spherical medium B(0, 1) with the high
contrast \tau , as a complement of the analysis and the illustration for the superresolution pro-
vided in the previous subsection. For the sake of simplicity, we let y = 0 and write G(x, k)
(resp., G0(x, k)) for G(x, 0, k) (resp., G0(x, 0, k)). (If y \not = 0, we shall have an infinite series
representation for G(x, y, k)p in (4.5) and need to further truncate the series in order to per-
form the numerical simulations.) By the addition formula in (C.7) for G0 and noting that\widetilde ETE

n,m(k, 0) = 0 for n \geq 1 and \widetilde ETM
n,m(k, 0) = 0 for n \geq 2, we have

G0(x, k) =
ik

2

1\sum 
m= - 1

Em(k, x)\otimes \widetilde Em(k, 0) , x \in \BbbR 3\setminus \{ 0\} .

Here and throughout this subsection, we simply denote ETM
1,m (resp., \widetilde ETM

n,m) by Em(k, x) (resp.,\widetilde Em) for m =  - 1, 0, 1. As in section 3.3, via the vector wave functions, we assume that the
Green's tensor G with a real polarization vector p \in \BbbR 3 has the following ansatz:

(4.5) G(x, k)p =

\biggl\{ 
G0(x, k\tau )p+

\sum 1
m= - 1 am

\widetilde Em(k\tau , x) , | x| \leq 1 ,\sum 1
m= - 1 bmEm(k, x) , | x| \geq 1 ,D
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where am and bm for m =  - 1, 0, 1 are complex constants to be determined and linearly
depending on p. To proceed, we note that, from (C.5) and (C.6), it follows that
(4.6)\left\{   \^x\times G0(x, k\tau )p =  - 1\surd 

2| x| \scrH 1(k\tau | x| )
\sum 1

m= - 1 V
m
1 (\^x) \widetilde Em(k\tau , 0)

t \cdot p , x \in \BbbR 3\setminus \{ 0\} ,

\^x\times \nabla \times G0(x, k\tau )p =  - k2\tau \surd 
2
h
(1)
1 (k\tau | x| )

\sum 1
m= - 1 U

m
1 (\^x) \widetilde Em(k\tau , 0)

t \cdot p , x \in \BbbR 3\setminus \{ 0\} .

To avoid calculating the three coefficients am(m =  - 1, 0, 1), we choose a special real polariza-
tion vector p,

(4.7) p =
\widetilde p

\| \widetilde E0(k\tau ,0)\| 2
\in \BbbR 3 , \widetilde p = \widetilde E0(k\tau , 0)/i ,

according to two easily verified observations that \widetilde Em(k, 0), m =  - 1, 0, 1, are orthogonal
vectors with the same l2-norms (cf. (C.13)), and \widetilde E0(k\tau , 0) has purely imaginary components
since Y 0

1 (\^x) is a real vector function on S2. With this specially chosen p, we can simplify (4.6)
as follows:

(4.8)

\left\{   \^x\times G0(x, k\tau )p =
i\surd 
2| x| \scrH 1(k\tau | x| )V 0

1 (\^x) , x \in \BbbR 3\setminus \{ 0\} ,

\^x\times \nabla \times G0(x, k\tau )p =
ik2\tau \surd 
2
h
(1)
1 (k\tau | x| )U0

1 (\^x) , x \in \BbbR 3\setminus \{ 0\} .

Matching the Cauchy data of the field in (4.5) inside and outside the domain on the boundary
\partial B(0, 1), we obtain, by using (C.5) and (C.6), that a - 1 = a1 = 0 and b - 1 = b1 = 0, and the
following equation for (a0, b0):\Biggl[ 

1
ik\tau 

\scrJ 1(k\tau )  - 1
ik\scrH 1(k)

 - ik\tau j1(k\tau ) ikh
(1)
1 (k)

\Biggr] \biggl[ 
a0
b0

\biggr] 
=

\Biggl[ 
i
2\scrH 1(k\tau )

ik2\tau 
2 h

(1)
1 (k\tau )

\Biggr] 
.

Then the solution a0 to the above equation readily follows (we only need a0 to investigate the
behavior of G inside the domain):

a0 =
 - k2

2k\tau 
\scrH 1(k\tau )h

(1)
1 (k) + k\tau 

2 \scrH 1(k)h
(1)
1 (k\tau )

k2

k2\tau 
\scrJ 1(k\tau )h

(1)
1 (k) - j1(k\tau )\scrH 1(k)

.

We regard a0 as a function of the real variable k\tau and plot its absolute value in Figure 5 for
k = 1, from which we clearly see that it blows up when k\tau hits the real parts of the discrete
zeros z21,l of f

2
n(z).

Since the spherical harmonics has nothing to do with the contrast \tau , in the following, we
shall pay attention to the imaginary part of the radial part,

\phi (k\tau , t) =
i\surd 
2t
\scrH 1(k\tau t) - a0

\surd 
2

ik\tau t
\scrJ n(k\tau t), t \in [ - 1, 1] ,

of the tangential component \^x\times G(x, k)p of G(x, k)p:

\^x\times G(x, k)p =
i\surd 
2| x| 

\scrH 1(k\tau | x| )V 0
1 (\^x) - a0

\surd 
2

ik\tau | x| 
\scrJ n(k\tau | x| )V 0

1 (\^x) .
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Figure 5. | a0(k\tau )| as a function of k\tau , k\tau \in [1, 50].
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(a) k\tau = 1,Re(z21,l) for l = 2, 3, 4, 5, i.e., k\tau =1, 7.5944,
10.8119, 13.9949, 17.1626.
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(b) k\tau =1, 15, 25.

Figure 6. Imaginary part of \phi (k\tau , t) for various k\tau .

We remark that \phi (k\tau , t) is a one-dimensional function but keeping all the main features of
\frakI mG(x, k)p we are interested in; and the radial part of the normal component \^x \cdot G(x, k)p has
a very similar behavior as \phi (k\tau , t).

From Figure 6(a), where we present \frakI m\phi (k\tau , t) for different values of k\tau , we see that when
k\tau increases and hits the real parts of z21,l, the imaginary part of Green's tensor become highly
oscillating and exhibit a subwavelength peak, and hence the superresolution can be achieved
with the increasing likelihood. When \tau tends to infinity, we can even expect the infinite
resolvability of the imaging system, by Theorems 3.17 and 3.19. However, we would like to
stress that the superresolution phenomenon can only be expected for discrete values of \tau . For
those \tau taking high values but not near the resonant values, the magnitude of \frakI mG(x, k)p will
not be significantly enhanced and have almost the same order of \frakI mG0(x, k)p, although it is
more oscillatory than the one in the homogeneous space; see Figure 6(b).D
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1500 HABIB AMMARI, BOWEN LI, AND JUN ZOU

5. Concluding remarks. In this work, we have considered the time-reversal reconstruction
of EM sources embedded in an inhomogeneous background and tied its anisotropic resolution
to the resolvent of a certain type of integral operators T k

D via a newly derived Lippmann--
Schwinger representation that reveals the close relation between the medium (shape and re-
fractive indices) and its associated EM Green's tensor. We have then investigated the spectral
structure of T k

D for a bounded smooth domain with a very general geometry and found that all
the poles of its resolvent in \BbbC \setminus \sigma ess(T k

D) are eigenvalues of finite type and lie in the upper-half
plane with \sigma ess(T

k
D) being all its possible accumulation points. With these new findings, we

have derived the pole-decomposition for the resolvent of T k
D and obtained the local resonance

expansion for the Green's tensor associated with the high contrast medium. More quanti-
tative results about the asymptotic behaviors of eigenvalues and eigenfunctions have been
also provided for the case of a spherical domain. As a byproduct of our spectral analysis, we
have given a characterization and discussion about the EM nonradiating sources (see Remarks
3.8 and 3.14). Some further interesting spectral results about the operator T k

D based on the
fact that T k

D is a quasi-Hermitian operator have been included in Appendix B. In section 4,
we have applied our new theoretical results to explain the expected superresolution in the
inverse electromagnetic source problem at some discrete characteristic values. It turns out
that both eigenvalues and eigenfunctions are responsible for the superresolution phenomenon
in the sense that the eigenfunctions are superoscillatory and can encode the subwavelength
information of the sources; while the eigenvalues serve as an amplifier when they nearly hit
the reciprocal of the contrast so that these subwavelength information can be measurable in
the far field. We finally remark that our analysis and results can be naturally extended to the
Lipschitz domain by noting the facts that the Helmholtz decomposition in Appendix A still
holds [14] and that for a self-adjoint operator on a Hilbert space, the essential spectrum is a
compact subset of the real line [29].

Appendix A. Helmholtz decomposition of \bfitL \bftwo -vector fields. In this section we give a
complete review of the Helmholtz decomposition of L2-vector fields in a unified manner due
to its great significance to our main analysis in the work. For a vector field u, the Helmholtz
decomposition provides us a procedure to separate its divergence, curl, and the normal trace
information. In the following, we show how to extract these information from a field u by
solving some subvariational problems. Let us first give a more precise description about the
geometry of the domain D. We denote by \Gamma j , 0 \leq j \leq J , the connected component of \partial D, in
which \Gamma 0 is the boundary of the unbounded connected component of \BbbR 3\setminus \=D. And the genus L
of \partial D may be nontrivial, i.e., L \geq 0 (for L \geq 1, we can construct interior cuts: \Sigma i , 1 \leq i \leq L
contained in D such that D\setminus \cup L

i=1 \Sigma i is simple connected; see [33, section 3.7]). A typical
example of D with L = 1 and J = 1 is a torus with a ball hole.

Denote by \BbbS : H - 1(D) \rightarrow H1
0 (D) the solution operator of the Dirichlet source problem,

namely, for l \in H - 1(D), \BbbS l \in H1
0 (D) solves the variational problem:

(A.1) Find \psi \in H1
0 (D) such that \langle l, \varphi \rangle H1

0 (D) = (\nabla \psi ,\nabla \varphi )L2(D) \forall \varphi \in H1
0 (D) .

We remark that \BbbS is an isomorphism betweenH - 1(D) andH1
0 (D). Note that div : L2(D,\BbbR 3) \rightarrow 

H - 1(D) is the adjoint operator of  - \nabla : H1
0 (D) \rightarrow L2(D,\BbbR 3). For u \in L2(D,\BbbR 3), we considerD
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(A.1) with

\langle l, \varphi \rangle H1
0 (D) := (u,\nabla \varphi )L2(D) \forall \varphi \in H1

0 (D) .

Then there exists a unique solution \psi 1 :=  - \BbbS divu \in H1
0 (D) satisfying (A.1), from which it

follows that u  - \nabla \psi 1 is divergence-free in the distribution sense, and the normal trace \gamma n is
well-defined.

To obtain the curl part of u, we need to solve a magnetostatics problem. To do so, we
introduce the Hilbert space XN := H0(curl, D)

\bigcap 
H(div, D) with the graph norm \| \cdot \| XN

:=

\| \cdot \| L2(D) + \| div\cdot \| L2(D) + \| curl\cdot \| L2(D) and its subspace X0
N := H0(curl, D)

\bigcap 
H(div0, D). By

the well-known de Rham diagram (cf. [33, section 3.7]), we see that the kernel space of the
curl operator in H0(curl, D), i.e., H0(curl0, D), has the following orthogonal decomposition:

(A.2) H0(curl0, D) = \nabla H1
0 (D)\oplus \bot KN (D),

where KN (D) is the normal cohomology space with the dimension J , given by

KN (D) = \{ u \in H0(curl, D) ; \nabla \times u = 0, divu = 0 in D\} .

Moreover, we have the following characterization of KN (D) from [33, Theorem 3.42].

Lemma A.1. KN (D) is spanned by \nabla pj, 1 \leq j \leq J , where pj \in H1(D) satisfies

\Delta pj = 0 in D, and pj = \delta j,s on \Gamma s, 0 \leq s \leq J.

In addition \langle \partial pj\partial \nu , 1\rangle H1/2(\Gamma s)
= \delta j,s, 1 \leq j \leq J , and \langle \partial pj\partial \nu , 1\rangle H1/2(\Gamma 0)

=  - 1.

By Friedrich's inequality (cf. [14, Corollary 3.19]), on the space XN , the seminorm

| \cdot | XN
:= \| curl\cdot \| L2(D) + \| div\cdot \| L2(D) +

J\sum 
j=1

\bigm| \bigm| \bigm| \langle \gamma n\cdot , 1\rangle H1/2(\Gamma j
)
\bigm| \bigm| \bigm| 

is equivalent to the graph norm \| \cdot \| XN
. We now define the following quotient space:

\widetilde XN := XN/KN (D)

with the standard quotient norm \| [u]\| \widetilde XN
:= infv\in KN (D) | u + v| XN

, where [u] \in \widetilde XN denotes
the equivalent class of u. It is easy to see that the quotient norm has an explicit form:

(A.3) \| [u]\| \widetilde XN
= \| curl[u]\| L2(D) + \| div[u]\| L2(D) ,

where curl[u] and div[u] are well-defined. Indeed, we can choose

v =  - 
J\sum 

j=1

\langle \gamma nu, 1\rangle H1/2(\Gamma j)
\nabla pj \in KN (D)

D
ow

nl
oa

de
d 

07
/1

9/
22

 to
 1

37
.1

89
.4

9.
14

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1502 HABIB AMMARI, BOWEN LI, AND JUN ZOU

such that for the representation element u+v of [u], the term
\sum J

j=1 | \langle \gamma n\cdot , 1\rangle H1/2(\Gamma j)
| vanishes,

which directly leads us to (A.3). Moreover, on the subspace \widetilde X0
N := X0

N/KN (D) the quotient
norm reduces to \| curl\cdot \| L2(D). We are now ready to consider the following magnetostatic field

problem: for f \in L2(D,\BbbR 3), find \psi \in \widetilde XN such that

(A.4)

\left\{   
curlcurl\psi = curlf in D ,
div\psi = 0 in D ,
\nu \times \psi = 0 on \partial D ,

which shall be seen to have a unique solution. Its variational formulation is given by the next
lemma.

Lemma A.2. The system (A.4) is equivalent to the following variational problem: find
\psi \in \widetilde XN such that it holds, for all \phi \in \widetilde XN , that

(A.5) (f, curl\phi )L2(D) = (curl\psi , curl\phi )L2(D) + (div\psi ,div\phi )L2(D) .

Proof. If \psi is a solution of (A.4), by the first equation in (A.4), then it holds for all
\phi \in H0(curl, D) that

(f, curl\phi )L2(D) = (curl\psi , curl\phi )L2(D).

Therefore, by combining it with the fact that div\psi = 0, we can directly see that (A.5) holds.
Conversely, if (A.5) holds, it suffices to prove that div\psi = 0 to conclude the lemma. Recalling
(A.2), we have

(A.6) H0(curl0, D)
\bigcap 
H(div, D) = \{ \nabla \varphi ; \varphi \in H1

0 (D) with \Delta \varphi \in L2(D)\} \oplus \bot KN (D).

Denoting the space defined in (A.6) by X, we then obtain L2(D) = div(X/KN (D)) since for
all v \in L2(D), we can find \varphi \in H1

0 (D) such that \Delta \varphi = v in the variational sense. By choosing
\phi \in X/KN (D) in (A.5), we readily see div\psi = 0, and hence the proof is complete.

To show the existence and uniqueness of a solution, we introduce the isomorphism \BbbT :\widetilde X \prime 
N \rightarrow \widetilde XN such that for l \in \widetilde X \prime 

N , T l satisfies

\langle l, \phi \rangle \widetilde XN
= (curl\BbbT l, curl\phi )L2(D) + (div\BbbT l,div\phi )L2(D) \forall \varphi \in \widetilde XN ,

by (A.3) and the Riesz representation theorem. We note that curl can be regarded as a
continuous mapping from L2(D,\BbbR 3) to \widetilde X \prime 

N , by setting

(A.7) \langle curlu, \phi \rangle \widetilde XN
:= (u, curl\phi )L2(D),

which is well-defined since curl\phi is independent of the choice of the representative element of
[\phi ]. Then for u \in L2(D,\BbbR 3), there is a unique \psi 2 := \BbbT curlu \in \widetilde X0

N solving (A.5) or (A.4) with
f = u. By the above constructions, we can see that the remaining v of u \in L2(D,\BbbR 3),

(A.8) v := u - \nabla \psi 1  - curl\psi 2 = u+\nabla \BbbS divu - curl\BbbT curlu \in L2(D,\BbbR 3) ,

is an irrational and divergence-free vector field, i.e., divv = curlv = 0.D
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The last step regarding the normal trace is relatively simple by noting the fact that
the restriction of normal trace mapping \widetilde \gamma n := \gamma n| W on W is an isomorphism from W to

H
 - 1/2
0 (\partial D). To be precise, for \phi \in H

 - 1/2
0 (\partial D), \widetilde \gamma  - 1

n \phi is the gradient, which is unique, of a
solution to the following Neumann problem:\biggl\{ 

\Delta p = 0 in D ,
\partial p
\partial \nu = \phi on \partial D .

By setting \phi = \gamma nv, where v is introduced in (A.8), we can find an element \widetilde \gamma  - 1
n \gamma nv from W

to characterize the normal trace information of v (and also u).
However, after we remove the divergence, curl, and normal trace component of u, the

remaining part,

u - \nabla \psi 1  - curl\psi 2  - \widetilde \gamma  - 1
n \gamma nv ,

is still nontrivial if the genus L \geq 1, and it is located in the so-called tangential cohomology
space KT (D), defined by

KT (D) = \{ u \in H0(div, D) ; \nabla \times u = 0, divu = 0 in D\} ,

which has dimension L. We remark that there exists a similar characterization as in Lemma
A.1 for KT (D). We now summarize the above constructions in the following result, where the
L2-orthogonal relation can be verified directly.

Proposition A.3. L2(D,\BbbR 3) has the following L2-orthogonal decomposition:

L2(D,\BbbR 3) = \nabla H1
0 (D)\oplus \bot curl \widetilde X0

N \oplus \bot W \oplus \bot KT (D) ,

where \nabla H1
0 (D), curl \widetilde X0

N , and W are uniquely determined by divu, curlu, and \gamma n(u+\nabla \BbbS divu),
respectively. Here, the operator \BbbS is given by (A.1).

Appendix B. \bfitT \bfitk 
\bfitD as a quasi-Hermitian operator.

B.1. A global resolvent estimate. In this subsection, we provide a resolvent estimate for
(\lambda  - T k

D)
 - 1 on \rho (T k

D) by applying a general spectral result from [28]. To do this, We first
introduce some notions. We consider the bounded linear operator A acting on a separable
Hilbert space H. The imaginary Hermitian component AI and the real Hermitian component
AR are defined as follows:

AI =
A - A\ast 

2i
, AR =

A+A\ast 

2
,

where A\ast is the adjoint operator of A in the Hilbert sense. Moreover, we say that an operator
A is quasi-Hermitian operator if it is a sum of a self-adjoint operator and a compact one.
For such kinds of operators, we have a general resolvent bound under the condition (cf. [28,
Theorem 7.7.1]):

(B.1) AI is a Hilbert--Schmidt operator.D
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1504 HABIB AMMARI, BOWEN LI, AND JUN ZOU

Proposition B.1. Under condition (B.1), the following bound for the norm of (\lambda  - A) - 1

holds,

(B.2)
\bigm\| \bigm\| (\lambda  - A) - 1

\bigm\| \bigm\| \leq 
\surd 
2

dist(\lambda , \sigma (A))
exp

\biggl( 
g2I (A)

dist2(\lambda , \sigma (A))

\biggr) 
,

where the quantity gI(A) is given by

(B.3) gI(A) =
\surd 
2
\Bigl[ 
\| AI\| 2HS  - 

\infty \sum 
k=0

(\frakI m\lambda k(A))
2
\Bigr] 1

2
,

where \lambda k(A) are the eigenvalues of A counting multiplicity and \| \cdot \| HS denotes the Hilbert--
Schmidt norm.

For our purpose, we write T k
D as the sum of TD and Nk

D := T k
D  - TD, where TD is known

to be a self-adjoint operator. We consider the kernel KN of the integral operator Nk
D:

KN (x, y) := (k2 +\nabla xdivx)(g(x, y, k) - g(x, y, 0)) .

It is easy to see that when x approaches y, the kernel has the following singularity:

KN (x, y) = O

\biggl( 
1

| x - y| 

\biggr) 
.

It directly follows that Nk
D and its imaginary Hermitian component Nk

D,I are Hilbert--Schmidt
operators. We further note the relation,

T k
D,I =

T k
D  - T k,\ast 

D

2i
=
Nk

D  - Nk,\ast 
D

2i
= Nk

D,I ,

which helps us to conclude that T k
D is a quasi-Hermitian operator satisfying condition (B.1),

and thus Proposition B.1 can be applied.

B.2. Decay property and bound of the imaginary parts of eigenvalues. Formula (B.3)
has suggested to us that \{ \frakI m\lambda k(A)\} is a bounded sequence and tends to zero when k \rightarrow \infty .
Its detailed proof can be found in [28, pp. 106--107]. Here we provide a sketch of the main
argument for the sake of completeness. For a quasi-Hermitian operator A satisfying condition
(B.1), we have the following triangular representation,

A = D + V ,

such that \sigma (D) = \sigma (A), where D is a normal operator and V is a compact operator with
\sigma (V ) = \{ 0\} and

\| AI\| 2HS = \| DI\| 2HS + \| VI\| 2HS < +\infty .

Then, by using \sigma (A) = \sigma (D) and the fact that D is a normal operator, we can obtain

\| DI\| 2HS =

\infty \sum 
k=0

(\frakI m\lambda k(A))
2 < +\infty .

We end this appendix with the corresponding result for T k
D.D
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Proposition B.2. For the integral operator T k
D defined in (2.2), its spectrum \sigma (T k

D) is con-
tained in a strip in the complex plane,

\sigma (T k
D) \subset \{ z \in \BbbC ; | \frakI mz| \leq C\} for some C ,

and the imaginary parts of the eigenvalues in the spectrum consists of a 2-power summable
sequence, i.e.,

\infty \sum 
i=0

\bigm| \bigm| \bigm| \frakI m\lambda i(T k
D)
\bigm| \bigm| \bigm| 2 < +\infty , \lambda i \in \sigma f (T

k
D) .

Appendix C. Some definitions, calculations, and auxiliary results for section 3.3.

C.1. Vector wave functions. Let Y m
n (\^x), n = 0, 1, 2, . . . , m =  - n, . . . , n, be the spherical

harmonics on S2. The vector spherical harmonics, which form a complete orthonormal system
of L2

T (S
2) [21, Theorem 6.25], are introduced as follows:

Um
n =

1\sqrt{} 
n(n+ 1)

\nabla SY
m
n , V m

n = \^x\times Um
n , n = 1, 2, . . . , m =  - n, . . . , n .

Define the radiating electric multipole fields in \BbbR 3\setminus \{ 0\} for n = 1, 2, . . . and m =  - m, . . . , n
[33]:

ETE
n,m(k, x) = \nabla \times \{ xh(1)n (k| x| )Y m

n (\^x)\} 

=  - 
\sqrt{} 
n(n+ 1)h(1)n (k| x| )V m

n (\^x),(C.1)

ETM
n,m(k, x) =  - 1

ik
\nabla \times ETE

n,m(k, x)

=  - 
\sqrt{} 
n(n+ 1)

ik| x| 
\scrH n(k| x| )Um

n (\^x) - n(n+ 1)

ik| x| 
h(1)n (k| x| )Y m

n (\^x)\^x ,(C.2)

where h
(1)
n (t) is the spherical Hankel function of the first kind and order n and \scrH n(t) :=

h
(1)
n (t) + t(h

(1)
n )\prime (t). The entire electric multipole fields \widetilde ETE

n,m(k, x) and \widetilde ETM
n,m(k, x) can be

similarly introduced [33]:

\widetilde ETE
n,m(k, x) = \nabla \times \{ xjn(k| x| )Y m

n (\^x)\} 

=  - 
\sqrt{} 
n(n+ 1)jn(k| x| )V m

n (\^x),(C.3)

\widetilde ETM
n,m(k, x) =  - 1

ik
\nabla \times \widetilde ETE

n,m(k, x)

=  - 
\sqrt{} 
n(n+ 1)

ik| x| 
\scrJ n(k| x| )Um

n (\^x) - n(n+ 1)

ik| x| 
jn(k| x| )Y m

n (\^x)\^x ,(C.4)

where jn(t) is the spherical Bessel function of the first kind and order n and \scrJ n is given
by \scrJ n(t) := jn(t) + tj\prime n(t). Then, a direct calculation gives us the tangential traces of theD
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multipole fields:

(C.5)

\left\{   \^x\times ETE
n,m(k, x) =

\sqrt{} 
n(n+ 1)h

(1)
n (k| x| )Um

n (\^x) ,

\^x\times ETM
n,m(k, x) =  - 

\surd 
n(n+1)

ik| x| \scrH n(k| x| )V m
n (\^x)

and

(C.6)

\left\{   \^x\times \widetilde ETE
n,m(k\lambda , x) =

\sqrt{} 
n(n+ 1)jn(k| x| )Um

n (\^x) ,

\^x\times \widetilde ETM
n,m(k\lambda , x) =  - 

\surd 
n(n+1)

ik| x| \scrJ n(k| x| )V m
n (\^x)

We end this section with the addition formula of the Green's tensor G0(x, y, k) [21, The-
orem 6.29]:

G0(x, y, k) =
\infty \sum 
n=1

ik

n(n+ 1)

n\sum 
m= - n

ETM
n,m(x)\otimes \widetilde ETM

n,m(y)

+

\infty \sum 
n=1

ik

n(n+ 1)

n\sum 
m= - n

ETE
n,m(x)\otimes \widetilde ETE

n,m(y) for | x| > | y| .(C.7)

C.2. Asymptotic expansions for spherical Bessel functions. We collect some standard
results about asymptotic expansions for jn(z), n \geq 0. For the complex variable z with
| arg(z)| < \pi , the following asymptotics holds [39, p. 199]:

jn(z) =
1

z
cos
\Bigl( 
z  - n\pi 

2
 - \pi 

2

\Bigr) 
+ e| \frakI mz| O

\biggl( 
1

| z| 2

\biggr) 
as | z| \rightarrow \infty .(C.8)

Combining (C.8) with the following recurrence relations of Bessel functions [35, 39],

njn - 1(z) - (n+ 1)jn+1(z) = (2n+ 1)j\prime n(z),

we see the asymptotic form of j\prime n(z):

(C.9) j\prime n(z) =
1

z
cos
\Bigl( 
z  - n\pi 

2

\Bigr) 
+ e| \frakI mz| O

\biggl( 
1

| z| 2

\biggr) 
as | z| \rightarrow \infty .

By definition of \scrJ n(z), (C.8), and (C.9), it holds that

\scrJ n(z) =
1

z
cos
\Bigl( 
z  - n\pi 

2
 - \pi 

2

\Bigr) 
+ cos

\Bigl( 
z  - n\pi 

2

\Bigr) 
+ e| \frakI mz| O

\biggl( 
1

| z| 

\biggr) 
= cos

\Bigl( 
z  - n\pi 

2

\Bigr) 
+ e| \frakI mz| O

\biggl( 
1

| z| 

\biggr) 
as | z| \rightarrow \infty ,(C.10)

where we have also used the observation

(C.11)
e| \frakI mz|  - 1

2
\leq | cos(z)| =

\bigm| \bigm| \bigm| \bigm| eiRez - \frakI mz + e - iRez+\frakI mz

2

\bigm| \bigm| \bigm| \bigm| \leq 1 + e| \frakI mz| 

2
.
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C.3. Auxiliary results for propagating functions. In this section, we first calculate the
tangential traces of \^x\times T k

D[
\widetilde ETE
n,m(k\lambda , \cdot )](x) and \^x\times T k

D[
\widetilde ETM
n,m(k\lambda , \cdot )](x) on the sphere \partial B(0, | x| )

with radius | x| > 1, where D = B(0, 1). By the addition formula for the Green's tensor (C.7)
and the definition of T k

D, we have, by using the orthogonality of \{ Um
n \} and \{ V m

n \} ,

\^x\times T k
D[ \widetilde ETE

n,m(k\lambda , \cdot )](x) =
ik3

n(n+ 1)
\^x\times ETE

n,m(k, x)

\int 
B(0,1)

\widetilde ETE
n,m(k, x)t \cdot \widetilde ETE

n,m(k\lambda , x)dx

= ik3\^x\times ETE
n,m(k, x)

\int 1

0
jn(kr)jn(k\lambda r)r

2dr

= ik3
\sqrt{} 
n(n+ 1)h(1)n (k| x| )Um

n (\^x)

\int 1

0
jn(kr)jn(k\lambda r)r

2dr(C.12)

and

\^x\times T k
D[ \widetilde ETM

n,m(k\lambda , \cdot )](x)

=
ik3

n(n+ 1)
\^x\times ETM

n,m(k, x)

\int 
B(0,1)

\widetilde ETM
n,m(k, x)t \cdot \widetilde ETM

n,m(k\lambda , x)dx

=
ik3

kk\lambda 
\^x\times ETM

n,m(k, x)

\int 1

0
\scrJ n(kr)\scrJ n(k\lambda r) + n(n+ 1)jn(kr)jn(k\lambda r)dr

=  - 
k
\sqrt{} 
n(n+ 1)

k\lambda | x| 
\scrH n(k| x| )V m

n (\^x)

\int 1

0
\scrJ n(kr)\scrJ (k\lambda r) + n(n+ 1)jn(kr)jn(k\lambda r)dr .(C.13)

The integrals involved in (C.12) and (C.13) can be explicitly calculated by the Lommel's
integrals [39] for n \geq 1:

(C.14)

\int 1

0
jn(kr)jn(k\lambda r)r

2dr =
1

k2  - k2\lambda 
[k\lambda jn(k)jn - 1(k\lambda ) - kjn - 1(k)jn(k\lambda )]

and \int 1

0
n(n+ 1)jn(kr)jn(k\lambda r) + \scrJ n(kr)\scrJ n(k\lambda r)dr

=
kk\lambda 

2n+ 1

\biggl( 
(n+ 1)

\int 1

0
jn - 1(kr)jn - 1(k\lambda r)r

2dr + n

\int 1

0
jn+1(kr)jn+1(k\lambda r)r

2dr

\biggr) 
.(C.15)

We next provide the calculations and estimates for Proposition 3.18. We recall the follow-

ing asymptotic forms of jn and h
(1)
n for large n that uniformly hold for z in a compact subset

of \BbbC away from the origin,

(C.16) jn(z) = O

\Biggl( \biggl( 
e| z| 

2(n+ 1)

\biggr) n+1
\Biggr) 
, h(1)n (z) = O

\biggl( \biggl( 
2n

e| z| 

\biggr) n\biggr) 
as n\rightarrow \infty ,

as a result of series expansions of jn and h
(1)
n and Stirling's formula (cf. [21, p. 30]). For the

propagating function \varphi \lambda ,1
n (kt), by (C.12) and (C.14), a direct application of (C.16) gives usD
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for t from a compact subset of (1,+\infty ),

\varphi \lambda ,1
n (kt) = O

\Biggl( 
n

\biggl( 
2n

ekt

\biggr) n 1

| k\lambda | 2

\Biggl[ 
| k\lambda | 

\biggl( 
ek

2(n+ 1)

\biggr) n+1\biggl( e| k\lambda | 
2n

\biggr) n

+

\biggl( 
ek

2n

\biggr) n\biggl( e| k\lambda | 
2(n+ 1)

\biggr) n+1
\Biggr] \Biggr) 

= O

\Biggl( 
n
1

tn
1

| k\lambda | 2

\Biggl[ 
| k\lambda | 

\biggl( 
1

2(n+ 1)

\biggr) n+1

(e| k\lambda | )n +

\biggl( 
e| k\lambda | 

2(n+ 1)

\biggr) n+1
\Biggr] \Biggr) 

= O

\Biggl( 
n
1

tn
1

| k\lambda | 2

\biggl( 
e| k\lambda | 

2(n+ 1)

\biggr) n+1
\Biggr) 

= O

\biggl( \Bigl( e
2t

\Bigr) n+1 | k\lambda | n - 1

(n+ 1)n

\biggr) 
.

A very similar but more complicated calculation yields the second estimate in (3.49). We omit
the details here.

The following two lemmas were used for Theorem 3.19.

Lemma C.1. Suppose that f(x) is a continuous function on [0,+\infty ) with f(x) \rightarrow 0 as
x\rightarrow +\infty . We have

max
x\in [0,a]

| f(x)| = max
x\in [0,+\infty )

| f(x)| 

for any a \in \BbbR larger than some fixed a0 > 0. Moreover, let \{ an\} be a sequence such that
an \rightarrow +\infty when n\rightarrow +\infty , and then \{ f(anx)\} are localized near the origin in the sense that

lim
n\rightarrow +\infty 

maxx\in [a,1] | f(anx)| 
maxx\in [0,1] | f(anx)| 

= 0 .

Lemma C.2. For jn(z) and \scrJ n(z)/z, the following estimates uniformly hold for t \in [0, 1],

(C.17)
\bigm| \bigm| jn(z1n,lt) - jn(\widetilde z1n,lt)\bigm| \bigm| = O(l - 1) ,

\bigm| \bigm| \bigm| \bigm| \bigm| \scrJ n(z
2
n,lt)

z2n,lt
 - 

\scrJ n(\widetilde z2n,lt)\widetilde z2n,lt
\bigm| \bigm| \bigm| \bigm| \bigm| = O(l - 1) ,

when l tends to infinity. Here, \{ zin,l\} and \{ \widetilde zin,l\} , i = 1, 2, are the same as the ones in (3.43)
and (3.45).

Proof. For the first estimate, we first observe from (C.9) and (C.11) that | j\prime n(z)| is bounded
by a constant M on the strip:

(C.18)
\Bigl\{ 
z \in \BbbC ; | \frakI mz| \leq C,  - \pi 

2
< arg(z) \leq \pi 

2

\Bigr\} 
,

where the constant C \in \BbbR is chosen such that \{ z1n,l\} l\in \BbbN lie in (C.18). Then we have, by using
the analyticity of jn(z) and the contour integral,

| jn(zn,lt) - jn(\widetilde zn,lt)| = \bigm| \bigm| \bigm| \bigm| \int 
\gamma 
j\prime n(\xi )d\xi 

\bigm| \bigm| \bigm| \bigm| \leq M | zn,l  - \widetilde zn,l| | t| , t \in [0, 1] ,

where \gamma is the segment connecting z1n,lt with \widetilde z1n,lt. Combining the above estimate with (3.43),
we can conclude that the first estimate in (C.17) holds. For the second estimate, it suffices toD
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note that the derivative of \scrJ n(z)/z is entire and satisfies the following asymptotic form:\biggl( 
\scrJ n(z)

z

\biggr) \prime 
=
j\prime n(z)z  - jn(z)

z2
+ j\prime \prime n(z) =

1

z
cos
\Bigl( 
z  - n\pi 

2
 - \pi 

2

\Bigr) 
+ e| \frakI mz| O

\biggl( 
1

| z| 2

\biggr) 
as | z| \rightarrow \infty 

and can also bounded on a strip of the form (C.18) with a different constant C such that it
contains the zeros \{ z2n,l\} of f2n(z). Then, in view of (3.45), the same argument as the previous
one allows us to complete the proof.
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