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Abstract

We develop three inverse scattering schemes for locating multiple multiscale acoustic
scatterers in a very general and practical setting. For all of the three locating schemes, only
one single far-field measurement is used. The number of the multiple scatterer components
may be unknown, and each scatterer component is allowed to be an inhomogeneous medium
with an unknown content or an impenetrable obstacle of sound-soft, sound-hard or impedance
type. Moreover, the scatterers could be multiscale, i.e., some scatterers may be of regular
size, and some others may be of small size in terms of the wavelength of the detecting
acoustic wave. If a scatterer component is of regular size, it is required that its shape (not
necessarily its orientation, size and location) should be from an admissible class which is
known in advance. The locating schemes are based on some novel indicator functions, and are
computationally cheap and robust against the measurement noise. Rigorous mathematical
justifications are provided for each scheme, and numerical experiments are presented to
demonstrate its robustness and effectiveness.

Key Words. Inverse scattering, locating, multiscale acoustic scatterers, single far-field
measurement, indicator functions
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1 Introduction

In this work we are concerned with inverse scattering problems, which arise in non-invasive de-
tecting, imaging, and remote sensing by acoustic waves. In practical applications, some unknown
or inaccessible objects might be located in an otherwise homogeneous space. Each inhomoge-
neous object is referred to as a scatterer. One sends certain detecting wave fields, and measures
the scattered/perturbed wave fields produced by the scatterer to infer some knowledge about the
scatterer. The inverse scattering problem has been playing a critical role in many areas of science
and technology, such as radar and sonar, non-destructive testing, remote sensing, geophysical
exploration and medical imaging; see [12, 13, 18, 19, 22, 27, 38, 45, 46] and the references therein.
Before we proceed to discuss the new results in this work, we first present the mathematical
formulation of the inverse scattering problem.
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We shall always take the detecting wave field to be a time-harmonic plane wave of the form

ui(x; d, k) := eikx·d, x ∈ RN , (1.1)

where N = 2 or 3, and k ∈ R+ and d ∈ SN−1 denote the wave number and the incident direction,
respectively. Consider a bounded C2 domain Ω in RN , which supports an inhomogeneous
acoustic scatterer, and it is assumed that RN\Ω is connected. Depending on the acoustic
materials of the scatterer, it could be either a medium or an obstacle. If Ω is an inhomogeneous
medium, then it is characterized by a positive C1 function n(x) such that ‖n(x)−1‖L∞(Ω) > 0 for

x ∈ Ω, and n(x) is known as the refractive index function of the medium. The direct scattering
problem corresponding to the medium (Ω;n) is described by the Helmholtz equation:

∆u(x) + k2(1 + (n2(x)− 1)χΩ)u(x) = 0 for x ∈ RN , (1.2)

where u is the total wave field, formed by the incident wave ui and the scattered wave us, namely

u(x) := ui(x) + us(x) for x ∈ RN . (1.3)

The scattered wave us(x) should satisfy the physical Sommerfeld radiation condition:

lim
|x|→∞

|x|(N−1)/2

(
∂us(x)

∂|x|
− ikus(x)

)
= 0, (1.4)

which holds uniformly in all directions x̂ := x/|x|, x ∈ RN . If Ω is an obstacle, then the wave
field can not penetrate and the direct scattering problem is described by

∆u(x) + k2u(x) = 0 for x ∈ RN\Ω, (1.5)

where u is again the total field, u(x) = ui(x) + us(x) for x ∈ RN\Ω, and us satisfies the
Sommerfeld radiation condition (1.4). In addition, we should complement the obstacle scattering
problem with either one of the following three boundary conditions:

u = 0 on ∂Ω;
∂u

∂ν
= 0 on ∂Ω;

∂u

∂ν
+ iλu = 0 on ∂Ω (1.6)

corresponding, respectively, to the case when the obstacle is sound-soft, sound-hard, and of
impedance type. In (1.6), ν is the outward unit normal vector to ∂Ω, and λ ∈ C(∂Ω) (λ > 0)
stands for a surface impedance. We refer to [36, 40, 41] for the existence of a unique H1

loc-
solution to the medium scattering system (1.2)-(1.4); or the obstacle scattering system (1.3)-
(1.6). Particularly, us admits the following asymptotic expansion as |x| → +∞ (cf. [22, 41]):

us(x) =
eik|x|

|x|
N−1

2

ak(x̂, d) +O

(
1

|x|
N+1

2

)
(1.7)

where ak(x̂, d) is often called the far-field pattern or the scattering amplitude, and x̂ ∈ SN−1

is known as the observation angle/direction, while k and d are the wave number and incident
direction of the incident plane wave.

The inverse problems that we shall consider in this work are to recover the scatterer, namely
(Ω, n) if it is a medium, or (Ω, λ) if it is an obstacle of impedance type, or Ω if it is a sound-soft
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or sound-hard obstacle, by the knowledge of the far-field pattern ak(x̂, d). If one introduces an
operator F which maps the scatterer to the corresponding far-field pattern, the inverse scattering
problem can be formulated as the following operator equation

F(O) = ak(x̂, d), k ∈ R+, x̂, d ∈ SN−1, (1.8)

where O represents (Ω, n), (Ω, λ) or Ω, depending on the type of the concerned inverse problem.
It is widely known that the operator equation (1.8) is nonlinear and ill-posed (cf. [22]). In
(1.8), ak(x̂, d) is given by the measurement data which are usually recorded by some physical
apparatus. The data shall be called a single measurement if ak(x̂, d) is given for a fixed k ∈ R+

and a fixed d ∈ SN−1, but for all x̂ ∈ SN−1. That is, for a single far-field measurement, one
collects the far-field data in every possible observation direction by sending a single detecting
plane wave. If multiple detecting plane waves are used, e.g., many different d’s or k’s are used,
then the corresponding scattering data shall be referred to as multiple measurements. We note
that as ak(·, d) is an analytic function on the unit sphere, it is known on the whole sphere as
long as it is known on any open subset of the unit sphere by the analytic continuation.

In this work, we develop three novel numerical reconstruction schemes for the aforementioned
inverse acoustic scattering problems, more specifically, for locating multiple scatterers by using
the far-field data. These methods have several salient and promising features. First, all three
locating schemes make use of only a single far-field measurement. As it is well-known, the
inverse scattering method with a single far-field measurement is extremely challenging, with
very limited theoretical and numerical advances available. We refer to [35,37,38] for the related
backgrounds and existing progresses in the literature. Second, our methods work in very general
and practical settings. There might be multiple scatterer components of an unknown number,
and each scatterer component could be an inhomogeneous medium with an unknown content or
an impenetrable obstacle of sound-soft, sound-hard or impedance type. Moreover, the scatterers
could be of multiple scales, which may include simultaneously both components of regular size
and small size compared with the wavelength of the detecting acoustic wave. If a scatterer
component is of regular size, its shape (not necessarily its orientation, size and location) is
required to belong to an admissible class, which is known in advance. But the admissible class
may contain many different reference scatterers. Furthermore, some reference scatterers may
appear more than once in the target object, but some others might not show up. The reference
scatterers might be rotated and scaled in the target object. Third, the new locating schemes are
of a direct nature. They are based on some indicator functions, whose evaluations do not involve
any inversions, so they are computationally very efficient and also very robust to measurement
noise. For each scheme, both rigorous theoretical justifications and numerical experiments are
provided.

Our study follows a similar spirit to the one of the locating methods that were recently
proposed in [31] and [32] for electromagnetic (EM) scattering problems governed by the time-
harmonic Maxwell equations. The methods in [31] and [32] are based on two imaging functionals,
respectively, for locating small-size and regular-size EM media or perfectly conducting (PEC)
obstacles. A local re-sampling technique was developed in [32] to concatenate the two imaging
functionals for locating multiscale EM scatterers. In this work we shall develop three schemes,
Schemes I, II and III, respectively for locating small-size, regular-size and multiscale acoustic
scatterers. Due to the distinct physical nature of the acoustic scattering problems, some new
ingredients and techniques are needed. In defining the imaging functional of locating small EM
scatterers in [31], only the EM monopoles are involved. However, the acoustic scattering from
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small scatterers exhibit more complicated behaviors. In order to obtain the imaging functional
for Scheme I that works independently of the physical properties of the underlying acoustic
objects, both the acoustic monopole and dipoles should be incorporated (see definition (2.9)
in next section). For locating regular-size scatterers, we present our acoustic study in a much
more comprehensive manner than that in [31] and [32] for the EM case. Indeed, the regular-size
EM scatterers were all assumed in [31] and [32] to be PEC obstacles, while the regular-size
scatterers can be both inhomogeneous media and impenetrable obstacles of different kinds in
the current acoustic case. Finally, in order to concatenate Schemes I and II to obtain Scheme
III for locating multiscale acoustic scatterers, a local tuning technique is proposed. The local
tuning technique generalizes the local re-sampling technique proposed in [32]. In fact, the local
re-sampling technique was only used for tuning the locations of scatterers, whereas the local
tuning technique here can be used for adjusting the orientations, scales as well as locations;
see more discussions in Section 4. The local tuning technique concatenates Schemes I and II
in a nice manner to produce Scheme III, which can be used for locating multiscale acoustic
scatterers in a very general and practical setting. It is remarked that the local tuning technique
can be directly extended to strengthen the method proposed in [32] for locating multiscale EM
scatterers to enable it to work in a more general setting as considered here.

We would like to point out that many numerical reconstruction methods have been devel-
oped for inverse scattering problems in various scenarios, such as the linear sampling method,
factorization method, MUSIC-type methods, time reversal, and topological-optimization-type
methods etc.; we refer the readers to [2,4–13,15–21,24–26,28,43–46] and the references therein
for these methods and some other related developments. Compared with most of the existing
methods, which rely on multiple scattered field measurements, the methods developed in this
work are new and more general in the sense that they combine all of the following features
together: only one single far-field measurement is used; the scatterers are allowed to be a mul-
tiscale mixed set of inhomogeneous media and impenetrable obstacles; rigorous mathematical
justifications are established under general settings; some iterative-type refining and local tun-
ing strategies are introduced for quantitatively improving the reconstructions. More relevant
discussions on the comparisons of our method with others are provided in Sections 2 and 3.

The rest of this paper is organized as follows. In Sections 2, 3 and 4, we shall develop Schemes
I, II and III respectively for locating multiple small-size scatterers, multiple regular-size scat-
terers and multiple multiscale scatterers. For each of the three schemes, rigorous mathematical
justifications and numerical results are also provided.

2 Locating small scatterers

Throughout the rest of the paper, we assume the incident acoustic wavenumber k = O(1). That
is, the wavelength of the incident plane wave is given by λ = 2π/k = O(1), hence the size of a
scatterer can be expressed in terms of its Euclidean diameter. In this section, we shall develop
an imaging scheme, referred to as Scheme I, to locate multiple small scatterers in terms of the
incident wavelength.

2.1 Scheme I

We first introduce the class of small acoustic scatterers for our current study. Let l ∈ N, and Dj ,
1 ≤ j ≤ l, be bounded simply-connected C2 domains in RN containing the origin. For ρ ∈ R+,
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we define ρDj := {ρx |x ∈ Dj} and set

Ωs
j = zj + ρDj , zj ∈ RN , 1 ≤ j ≤ l.

Each Ωs
j is referred to as a small scatterer component. If it is sound-soft or sound-hard, we

further write it, respectively, as

Ωs,s
j := zj + ρDs

j and Ωs,h
j := zj + ρDh

j . (2.1)

If Ωs
j is of impedance type, we let λj be the surface impedance on ∂Ωs

j , and denote by

(Ωs
j ;λj) := Ωs,i

j = zj + ρDi
j , (2.2)

where
Di
j := (Dj ;λj(·+ zj)) and ρDi

j = (ρDj ;λj(
·
ρ

+ zj)). (2.3)

If Ωs
j is an inhomogeneous medium, we let nj be its refractive index, and denote by

(Ωs
j ;nj) := Ωs,m

j = zj + ρDm
j , (2.4)

where
Dm
j := (Dj ;nj(·+ zj)) and ρDm

j := (ρDj ;nj(
·
ρ

+ zj)). (2.5)

In the sequel, we set

Ωs,t :=

lt⋃
j=1

Ωs,t
j , t = s, h, i or m, (2.6)

where lt, ρ and t denote respectively the number of components in the scatterer Ωs,t, the relative
size of each component in Ωs,t, and the type of the scatterer, which can be sound-soft, sound-
hard, of impedance type, or a medium. For Ωs,t

j introduced in (2.6), we shall impose the following
qualitative assumptions

ρ� 1 and L = min
1≤j,j′≤lt,j 6=j′

dist(zj , zj′)� 1 . (2.7)

These conditions mean that the relative size of each scatterer component is small compared with
the wavelength of the detecting/incident wave, and all the components must be well separated
in the case of multiple components. It is remarked that ρ and L in (2.7) should be different with
different type of scatterer components; see also Remark 2.1 at the end of this section. But we
will always use the same ρ and L for the ease of notations.

In the sequel, we develop Scheme I to locate the multiple components of Ωs,t introduced in
(2.6). The imaging scheme works in a very general and practical setting. First, we assume very
little a priori knowledge of the scatterer. Both its type and the number of the components,
i.e., t and lt, are not required to be known in advance. Second, if the scatterer is a medium or
of impedance type, the refractive indices or the surface impedances of its components are not
required to be known a priori. Third, in a certain generic situation, the underlying scatterer
Ωs,t could be composed of mixed-type components, namely some of its components could be
media while the others are obstacles of different type. We shall give some more remarks about
this point at the end of this section. Finally, we would like to point out that our numerical
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experiments could speak a bit more about the qualitative assumptions (2.7): Scheme I can
produce satisfactory reconstructions, as long as the size of the scatterer is smaller than half
of the detecting wavelength while the distance between any two different components is bigger
than half of the detecting wavelength. Nevertheless, in the extreme situation where the distance
between two scatterer components is smaller than half of the detecting wavelength, Scheme I
can still produce some qualitative reconstruction of the profile of the two scatterers but it may
not be able to clearly separate them; we refer to Fig. 4.4 in [31] for reconstructing two close-
by electromagnetic scatterers, and Scheme I produces similar reconstructions for the current
acoustic case.

We are now ready to present our first locating scheme. To begin with, we let

a(x̂; Ωs,t) := ak(x̂, d; Ωs,t), x̂ ∈ SN−1, (2.8)

denote the scattering amplitude of Ωs,t in (2.6) due to a single incident plane wave eikx·d with
fixed k ∈ R+ and d ∈ SN−1. Then we introduce the following real-valued index function I1(z)
for z ∈ RN :

I1(z) :=
1

‖a(x̂; Ωs,t)‖2
L2(SN−1)

1∑
n=0

n∑
p=−n

∣∣∣∣〈a(x̂; Ωs,t), eik(d−x̂)·zY p
n (x̂)

〉
L2(SN−1)

∣∣∣∣2, (2.9)

where 〈u, v〉L2(SN−1) =

∫
SN−1

u · v ds(x̂). In (2.9), Y p
n (x̂) for n ∈ N ∪ {0} and p = −n, . . . , n

are the spherical harmonics which form a complete orthonormal system in L2(SN−1) (cf. [22]).
It is emphasized that there is no harmonic function Y 0

1 (x̂) in the two-dimensional case, so it
should be removed from the summation in (2.9) in defining I1(z). The next theorem about the
indicating behavior of I1(z) is the crux of developing our Scheme I.

Theorem 2.1. Let Ωs,t and I1(z) be described as in (2.6) and (2.9) respectively. Set

Mj :=
‖a(x̂; Ωs,t

j )‖2
L2(SN−1)

‖a(x̂; Ωs,t)‖2
L2(SN−1)

, j = 1, . . . , lt.

Then the following asymptotic expansion holds:

Mj = M0
j +O

(
1

L
+ ρN−2(ln ρ)N−3

)
, j = 1, . . . , lt, (2.10)

where M0
j is a positive number independent of L and ρ. Moreover, there exists an open neigh-

borhood of zj, neigh(zj), 1 ≤ j ≤ lt, such that

I1(z) ≤M0
j +O

(
1

L
+ ρN−2(ln ρ)N−3

)
for z ∈ neigh(zj), (2.11)

where the equality holds only at z = zj. That is, zj is a local maximizer of I1(z) in neigh(zj).

In order to prove Theorem 2.1, we first present two crucial lemmas.

Lemma 2.1. Let Ωs,t and a(x̂; Ωs,t) be given in (2.6) and (2.8) respectively. Then it holds that

a(x̂; Ωs,t) = a(x̂;

lt⋃
j=1

Ωs,t
j ) = a(x̂;

lt⋃
j=1

(zj + ρDt
j)) =

lt∑
j=1

eik(d−x̂)·za(x̂; ρDt
j) +O

(
1

L

)
. (2.12)
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Proof. First, one has

a(x̂; Ωs,t) = a(x̂;

lt⋃
j=1

(zj + ρDt
j)) =

lt∑
j=1

a(x̂; zj + ρDt
j) +O

(
1

L

)
, (2.13)

which was proved in [33] when Ωs,t is a sound-soft obstacle. Following a similar argument, one
can demonstrate (2.13) when Ωs,t is a sound-hard or an impedance obstacle, or an inhomogeneous
medium. On the other hand, it is straightforward to verify that

ak(x̂, d; zj + ρDt
j) = eik(d−x̂)·zjak(x̂, d; ρDt

j),

which together with (2.13) readily gives (2.12).

The results in the following lemma can be found in [12,23,24,29,34].

Lemma 2.2. Let D be a bounded simply-connected C2 domain containing the origin and ρDt

be a scatterer of type t = s, h, i or m, as described in (2.1)–(2.5). Then there exists ρ0 ∈ R+

such that for ρ < ρ0,

ak(x̂, d; ρDt) = c0E(ρ)Y 0
0 (x̂) +O(ρN−2(ln ρ)N−3E(ρ)), t = s, i or m, (2.14)

where c0 is constant depending only on D, k, d and t, but independent of ρ. In (2.14),

E(ρ) := ρN−2(ln ρ)N−3 when t = s; ρN−1 when t = i; ρN when t = m.

In the case when t = h, we have

ak(x̂, d; ρDh) = ρN
1∑

n=0

n∑
p=−n

cpnY
p
n (x̂) +O(ρN+1), (2.15)

where the coefficients cpn are constants depending only on D, k, d, but independent of ρ, and
Y 0

1 (x̂) should be removed from the summation in (2.15) in the two-dimensional case.

Proof of Theorem 2.1. We first consider the three-dimensional sound-hard case. By Lemmas 2.1
and 2.2 we can easily see that

a(x̂; Ωs,h) =
l∑

j=1

a(x̂; Ωs,h
j ) +O

(
1

L

)

=

lh∑
j=1

eik(d−x̂)·zj

[
ρ3

1∑
n=0

n∑
p=−n

cpn,jY
p
n (x̂) +O(ρ4)

]
+O

(
1

L

)
.

(2.16)

Next, without loss of generality, we only consider the indicating behavior of I1(z) in Bρ(z1), a
ball of radius ρ centered at z1. Clearly, we have

|zj − z| ≥ L� 1 for z ∈ Bρ(z1) and j = 2, 3, . . . , lh . (2.17)
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Hence, by using (2.16) and (2.17) one can show by direct calculations that∣∣∣∣〈a(x̂; Ωs,t), eik(d−x̂)·zY p′

n′ (x̂)
〉
L2(S2)

∣∣∣∣
=ρ3

∣∣∣∣∣∣
〈
eik(d−x̂)·z1

1∑
n=0

n∑
p=−n

cpn,1Y
p
n (x̂), eik(d−x̂)·zY p′

n′ (x̂)

〉
L2(S2)

+O
(

1

L
+ ρ

)∣∣∣∣∣∣
≤ρ3

(
|cp
′

n′ |+O
(

1

L
+ ρ

))
for z ∈ Bρ(z1), n′ = 0, 1, q′ = −n′, ..., n′ ,

(2.18)

where we have used (2.17) and the decaying property of oscillatory integrals for the equality
relation, and the orthogonality of spherical harmonics and the Cauchy-Schwartz inequality for
the inequality relation. Furthermore, due to the Cauchy-Schwartz inequality, one can verify that
the equality in the last estimate of (2.18) holds only at z = z1. On the other hand, we have

‖a(x̂; Ωs,t)‖2L2(S2) = ρ6
l∑

j=1

(
1∑

n=0

n∑
p=−n

|cpn,j |
2 +O

(
1

L
+ ρ

))
. (2.19)

By (2.18)-(2.19), it is straightforward to verify the statement of the theorem by taking

M0
1 =

∑1
n=0

∑n
p=−n |c

p
n,1|2∑l

j=1

∑1
n=0

∑n
p=−n |c

p
n,j |2

.

The other cases with t = s, i and m can be proved by following a similar argument to the
above case with t = h, and using Lemmas 2.1 and 2.2.

Using Theorem 2.1, we are now ready to formulate our first imaging scheme of locating
multiple small scatterer components.

Scheme I

1) For an unknown scatterer Ωs,t in (2.6), collect the far-field data by sending a single incident
plane wave eikx·d with fixed k and d.

2) Select a sampling region with a mesh Th containing Ωs,t.

3) For each sampling point z ∈ Th, compute the index value I1(z).

4) Locate all the significant local maxima of I1(z) on Th, which represent the locations of the
scatterer components.

Remark 2.1. As it can be seen from Theorem 2.1, the indicating behavior of I1(z) is independent
of the type of the underlying scatterer, which can be obstacle or inhomogeneous medium. Indeed,
Scheme I can be extended to a much more general situation where the underlying scatterer Ωs

might be composed of mixed-type scatterers from different Ωs,t for t ∈ {s, h, i,m}. We illustrate
the situation by taking a special example, say, Ωs consists of two components, a sound-soft
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Ωs
1 and a sound-hard Ωs

2 in three dimensions. Suppose that the relative sizes of Ωs
1 and Ωs

2

are, respectively, ρ1 and ρ2. According to Lemma 2.2, the scattering strength due to Ωs
1 is of

order ρ1 whereas that due to Ωs
2 is of order ρ3

2. If ρ1 ≈ ρ2, then ρ3
2 � ρ1, hence the scattering

information from the sound-hard component is annihilated in the scattering data due to the
sound-soft component. In this case, one cannot expect a reasonable locating by using Scheme
I. However, if ρ3

2 ∼ ρ1, then it is straightforward to verify that the local maximum behavior in
Theorem 2.1 holds for the locations of the two mixed-type scatterer components, hence Scheme I
works to locate both of them. This observation holds for the general case with multiple scatterer
components of different type. As long as the scattering strengths from different components are
comparable, Scheme I is effective to locate all of them.

Remark 2.2. In [43], an orthogonality sampling method was proposed where the indicator func-
tion is related to our indicator function I1(z) in (2.9). Indeed, if only a single far-field measure-
ment is used, the indicator function in [43] actually corresponds to the first term in the sum
defining I1(z) in (2.9). It can be easily verified from Lemma 2.2 and the proof of Theorem 2.1, if
the underlying scatterer is sound-soft, then the two indicator functions would produce the same
local maximum behavior. However, if one wants to produce an indicator function for locating
a small-size scatterer independent of the physical properties of its components as discussed in
the previous remark, then both the acoustic monopole and dipoles should be involved. As the
orthogonality sampling method and topological derivative-based approaches (cf. [12] and [25])
are closely relate, similar observations can be made for the latter approaches.

2.2 Numerical experiments

In this subsection, we present some numerical tests to verify the applicability of Scheme I in both
two and three dimensions. In all the tests, the exact far-field data are obtained by solving the
forward equation (1.2) or (1.5) using the quadratic finite elements on a truncated circular (2D) or
spherical (3D) domain enclosed by a PML layer. The forward equation is solved on a sequence
of successively refined meshes till the relative error of two successive finite element solutions
between the two adjacent meshes is below 0.1%. Then the scattered data are transformed into
the far-field data by employing the Kirchhoff integral formula on a closed circle (2D) or surface
(3D) enclosing the scatterer. For scatterers of small size, we always add to the exact far-field
data a uniform noise of 5% and use it as the measurement data in our numerical tests.

Example 1. The true scatterer consists of three components, a sound-soft square component
(in red) with side length 0.2 located at (−1, 2), a sound-hard circular component (in white) with
radius 0.5 located at (1.5, 0), and a medium square component (in yellow) with side length 0.2
located at (−2, −1.5). They are respectively shown in Fig. 1(a).

We set the wave number k to be 3 and choose the incident direction d = (1, 0), namely
from left to right. The detecting wave length is larger than the sizes of all the components.
Fig. 2(a) shows the indicating behavior using the indicator function (2.9) of Scheme I, and the
three components of the unknown scatterer are located very well using a single detecting plane
wave field. By further increasing the wave number k to be 6 and adopting a different incident
direction d = (0, 1), namely from bottom to top, we find that each component of the scatterer is
highlighted as a local maximum as shown in Fig. 2(b). It is pointed out that Scheme I applies to
such a complex scenario with scatterer components of mixed types when the scattering of each
component are comparable, which implies that the size of the sound-hard component should be
relatively larger than those of its sound-soft and medium ones in light of Remark 2.1.
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Figure 1: True scatterer components in (a) Example 1 and (b) Example 2.
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(a) k = 3, d = (1, 0) (b) k = 6, d = (0, 1)

Figure 2: Imaging of the scatterer components in Example 1 by Scheme I.
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Figure 3: True scatterer components in Example 2.
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Figure 4: Imaging of scatterer components in Example 2 by Scheme I.

Example 2. The true scatterer consists of two sound-hard circular disks of radius 0.1,
located at (−1, 0), (1, 0) as shown in Fig. 1(b).

Through this example, we show that Scheme I is totally independent of incident directions. It
is found that we can always locate this pair of scatterer components with only one measurement
data from an arbitrary incident direction. For instance, we show the cases when k = 9 but
d = (1, 0), (1, 1) and (0, 1) in Fig. 4.

Example 3. We try further a complex scatterer in 3D. The wave number of the incident
wave field is set to be k = 5. The true scatterer (see Fig. 5(a)) consists of three components,
namely a sound-soft cube (in red) with side length 0.2 centered at (−1, 0, 1.5), a sound-hard
sphere (in green) with radius 0.2 centered at (2, 0, 0), and a medium cube (in blue) with side
length 0.1 centered at (−1.5, 0, −1.5).

The resulting indicator function value distribution is plotted on a pair of orthogonal slice
planes x = 0 and y = 0 in Fig. 5(b). As one can see, three scatterer components are well located,
and their positions are visualized in the highlighted part (local maxima). Clearly, the positions
of the respective detected components match quite well with the ones of the exact components.

In summary, we have observed from Examples 1-3 that Scheme I is able to locate multiple
small scatterer components of an unknown number robustly and efficiently.
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(a) (b)

Figure 5: (a) True scatterer components in Example 3. (b) Imaging of the scatterer components
in Example 3 by Scheme I.

3 Locating scatterers of regular size

3.1 Scheme II

In this section, we consider the locating of multiple scatterers of regular size. We first fix some
notations that shall be used throughout the rest of the paper. Let G be a bounded simply-
connected Lipschitz domain in Rn containing the origin, and U ∈ SO(N) a rotation matrix in
RN , and we define

ΠUG := UG = {Ux |x ∈ G}. (3.1)

We also introduce the scaling operator as follows: for any r ∈ R+,

ΛrG := rG = {rx |x ∈ G} . (3.2)

For any domain Ω of the form Ω := z + ΛrΠUG, we shall write the quartette Ω := (G; z, r, U),
and call z, r and U respectively the location, the scale and the orientation of Ω relative to G.
In our subsequent study, G could be a sound-soft, sound-hard or impedance-type obstacle, or
an inhomogeneous medium, and we shall write correspondingly Gt with t = s, h, i or m, and
Ωt = (Gt; z, r, U). For the ease of exposition, we always assume that the corresponding surface
impedance λ or the refractive index n is a constant in the case when G is an impedance obstacle
or a medium. Next, we let θ ∈ R+ such that θ � 1, and T1 be a suitably chosen finite index set,
such that {Uj}j∈T1 be a θ-net of SO(N). That is, for any rotation matrix U ∈ SO(N), there
exists j ∈ T1 such that ‖Uj − U‖ ≤ θ. We define

ΠθG := {ΠUjG}j∈T1 . (3.3)
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In a similar manner, for Λr with r ∈ [R0, R1], we let τ � 1 and T2 be a suitably chosen finite
index set such that {rj}j∈T2 be an τ -net of [R0, R1]. Define,

ΛτG = {ΛjG}j∈T2 . (3.4)

With the above preparations, we are now ready to introduce the multiple scatterers of regular
size for our subsequent study. Let lt ∈ N ∪ {0}, t = s, h, i or m, and Gj , j ∈ N, be a bounded
simply-connected Lipschitz domain in Rn containing the origin. We write

At = {Gtj}
lt
j=1, t = s, h ; Ai = {Gij}

li
j=1 = {(Gij , λj)}

li
j=1; (3.5)

Am = {Gmj }lmj=1 = {(Gmj , nj)}lmj=1 ; A =
⋃

t=s,h,i,m

At := {Gj}l
′:=ls+lh+li+lm
j=1 . (3.6)

Let l ∈ N and set

Ωr =

l⋃
j=1

Ωr
j , Ωr

j := (Σj ; zj , rj , Uj) with Σj ∈ A , j = 1, . . . , l. (3.7)

For Ωr introduced in (3.7), we assume that

rj ∈ [R0, R1], R0 ≈ 1, R1 ≈ 1, and L = min
1≤j,j′≤l,j 6=j′

dist(zj , zj′)� 1. (3.8)

Ωr represents the multiple scatterers of regular size in our current study, and we shall develop
Scheme II to locate all the multiple components. We assume that the admissible class A is
known in advance. In the physical situation, this means that Ωr might be composed of multiple
regular-size components of an unknown number, and each component could be from a different
type: obstacles of different types or a medium. If the scatterer component is an obstacle (sound-
soft, sound-hard or impedance type), then its shape must be from a known admissible class.
Moreover, the surface impedance of an impedance-type component must also be known a priori.
If the scatterer is a medium, then both its shape and content should be known from the admissible
class. It is emphasized that the number of admissible class, namely l′ in A , and the number of
the unknown scatterer components, namely l in Ωr, are not necessarily the same. This means
that a certain shaped admissible scatterer might appear more than once or does not appear in
Ωr. For the regular-size multiple scatterers Ωr described above, we shall develop Scheme II to
determine the location, the size/scale and the orientation of each of its components, by using a
single far-field measurement, i.e. a(x̂; Ωr) := ak(x̂, d; Ωr) with fixed k ∈ R+ and d ∈ SN−1.

In order to present our Scheme II, we first augment the admissible class A as

Ã = ΠθΛτA =

l′⋃
j=1

{ΠθΛτGj} := {G̃j}l
′′
j=1. (3.9)

We shall make the following two assumptions about the augmented admissible class Ã :

(i) ak(x̂, d; G̃j) 6= ak(x̂, d; G̃j′) for j 6= j′ and 1 ≤ j, j′ ≤ l′′, x̂ ∈ SN−1;

(ii) ‖ak(x̂, d; G̃j)‖L2(SN−1) ≥ ‖ak(x̂, d; G̃j′)‖L2(SN−1) for j < j′ and 1 ≤ j, j′ ≤ l′′.
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Assumption (ii) can be fulfilled by reordering if necessary. For assumption (i), we recall the
following well-known conjecture in the theory of the inverse acoustic scattering problem:

ak(x̂, d;G) = ak(x̂, d; G̃) if and only if G = G̃, (3.10)

where G and G̃ are two obstacles, with k and d fixed. (3.10) states that a single far-field
measurement can uniquely determine an acoustic obstacle. There is a widespread belief that
(3.10) holds true, but there is only limited progress in the literature (cf. [35, 37, 38]). Clearly, if

(3.10) holds true, and if Ã contains only obstacle scatterers, assumption (ii) is always fulfilled.
On the other hand, (3.10) does not holds true in general for inhomogeneous medium scatterers,

hence if there are medium scatterers presented in Ã , assumption (ii) can not be always fulfilled.

Nevertheless, since Ã is known, assumption (ii) can always be verified in advance.
Now we introduce the following l′′ indicator functions for identifying the multiple scatterers

of Ωr in (3.7):

Ij2(z) =

∣∣∣∣〈a(x̂; Ωr), eik(d−x̂)·za(x̂; G̃j)〉L2(SN−1)

∣∣∣∣
‖a(x̂; G̃j)‖2L2(SN−1)

, G̃j ∈ Ã , j = 1, 2, . . . , l′′. (3.11)

Next, we present a key theorem on the indicating behavior of these indicator functions, which
forms the basis of our Scheme II.

Theorem 3.1. Suppose that G̃1 ∈ Ã is of the following form

G̃1 = (Gj0 ; rp0 , Uq0) = ΠUq0
Λrq0Gj0 , Gj0 ∈ A , Uq0 ∈ T1, rp0 ∈ T2.

Suppose that in Ωr, there exists J0 ⊂ {1, 2, . . . , l} such that for j ∈ J0, the component Ωr
j =

(Σj ; zj , rj , Uj) satisfies

(i) Σj = Gj0 ; (ii) ‖Uj − Uq0‖ ≤ θ; (iii) ‖rj − rp0‖ ≤ τ ; (3.12)

whereas for j ∈ {1, 2, . . . , l}\J0, at least one of the conditions in (3.12) is not fulfilled by the
scatterer component Ωr

j . Then for each zj, j = 1, 2, . . . , l, there exists an open neighborhood of
zj, neigh(zj), such that

(i) if j ∈ J0, then

I1
2 (z) ≤ 1 +O

(
1

L
+ θ + τ

)
∀ z ∈ neigh(zj). (3.13)

Moreover, the equality holds in the above relation only when z = zj. That is, zj is a local
maximum point for I1

2 (z).

(ii) if j ∈ {1, 2, . . . , l}\J0, then there exists ε0 > 0 such that

I1
2 (z) ≤ 1− ε0 +O

(
1

L
+ θ + τ

)
∀ z ∈ neigh(zj). (3.14)

In order to prove Theorem 3.1, we first derive a key lemma as follows.
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Lemma 3.1. Let G be a bounded simply-connected domain in RN containing the origin, which
supports an acoustic scatterer Gt, t = s, h, i or m. Then we have

ak(x̂, d; ΠUG
t) = ak(U

T x̂, UTd;G) for U ∈ SO(n) (3.15)

and
ak(x̂, d; ΛrG

t) = rakr(x̂, d;G) for r ∈ R+ . (3.16)

Proof. (3.15) and (3.16) can be readily verified by a change of variables in the corresponding
scattering systems.

Proof of Theorem 3.1. First it follows by Lemma 2.1 that

ak(x̂, d; Ωr) = ak(x̂, d;

l⋃
j=1

Ωr
j) =

l∑
j=1

ak(x̂, d; Ωr
j) +O

(
1

L

)

=

l∑
j=1

ak(x̂, d; (Σj ; zj , rj , Uj)) +O
(

1

L

)

=

l∑
j=1

akrj (U
T
j x̂, U

T
j d; Σj)e

ik(d−x̂)·zj +O
(

1

L

)
.

(3.17)

Then by (3.12) and Lemma 3.1, we have that for j0 ∈ J0,

akrj (U
T
j x̂, U

T
j d; Σj) =akrp0 ((Uq0)T x̂, (Uq0)Td;Gj0)eik(d−x̂)·z +O(θ + τ)

=ak(x̂, d; G̃1) +O(θ + τ).
(3.18)

Hence we obtain using (3.17) and (3.18) that

a(x̂; Ωr) =
∑
j∈J0

a(x̂; G̃1)eik(d−x̂)·zj +
∑

j∈{1,...,l}\J0

a(x̂; Ωr
j) +O

(
1

L
+ θ + τ

)
. (3.19)

For j0 ∈ J0, by (3.19) we can show that for z ∈ neigh(zj0),∣∣∣〈a(x̂; Ωr), ek(d−x̂)·za(x̂; G̃1)〉L2(SN−1)

∣∣∣
=
∣∣∣〈a(x̂; G̃1)eik(d−x̂)·zj0 , eik(d−x̂)·za(x̂; G̃1)〉L2(SN−1)

∣∣∣+O
(

1

L
+ θ + τ

)
≤‖a(x̂; G̃1)‖2L2(SN−1) +O

(
1

L
+ θ + τ

)
.

(3.20)

For the equality relation in (3.20), we have made use of the Riemann-Lebesgue Lemma about
oscillatory integrals by noting |zj − z| ≥ L � 1 for 1 ≤ j ≤ l, j 6= j0 and z ∈ neigh(zj0) by
means of (3.8). For the last relation in (3.20), we have applied the Cauchy-Schwartz inequality,
and it is easily seen that the equality holds only at z = zj0 . These observations clearly imply
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(3.13) for z ∈ neigh(zj0) and j0 ∈ J0. On the other hand, by a similar argument, together with

assumption (i) on Ã , we can directly verify that

I1
2 (zj) < 1 +O

(
1

L
+ θ + τ

)
, j ∈ {1, 2, . . . , l}\J0, (3.21)

which readily implies (3.14).

Based on Theorem 3.1, we are now ready to formulate Scheme II for locating the multiple
scatterer components of regular size in Ωr successively.

Scheme II

1) For the admissible scatterer class A in (3.6), formulate the augmented admissible class Ã
as that given in (3.9).

2) Collect in advance the far-field patterns associated with the admissible reference scatterer

space Ã corresponding to a single incident plane wave eikx·d with fixed k and d, and reorder
Ã if necessary so that assumptions (i) and (ii) are satisfied.

3) For an unknown scatterer Ωr in (3.7), collect the far-field data corresponding to the single
incident plane wave as specified in 2).

4) Select a sampling region with a mesh Th containing Ωr.

5) Set j = 1.

6) For each sampling point z ∈ Th, compute the index value Ij2(z).

7) Locate all those significant local maxima of Ij2(z) satisfying Ij2(z) ≈ 1 for the scatterer

components of the form z + G̃j .

8) Remove all the sampling points inside those Nid identified components z+G̃j found in 7) from
Th. Subtract the individual far-field patterns associated with those already reconstructed
components in 7) and their respective identified locations zj from the far field as follows:

a(x̂; Ωr) := a(x̂; Ωr)−
Nid∑
j=1

eik(d−x̂)·zja(x̂; G̃j) (3.22)

Note that the updated far-field pattern in (3.22) is still denoted by a(x̂; Ωr), which will be
further checked by subsequent reference components in (3.11).

9) If j = l′′, i.e., the maximum number of the unknown component reaches, then stop the
reconstruction; otherwise, set j := j + 1, and go to 6).
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Figure 6: Basic scatterer components : a reference kite with first four orientations.

Remark 3.1. In (3.7), it is assumed that the admissible class A contains exactly the base
scatterer Σj of the unknown scatterer component Ωr

j in Ωr. However, our Scheme II relies on the

augmented admissible class Ã , which may contain only an approximate scatterer configuration
to the target scatterer component Ωr

j in Ωr. Hence, if the admissible class A contains only
an approximate base scatterer to Σj of the unknown scatterer component Ωr

j in Ωr, Scheme II
would still work, and in fact, it can be easily justified from the proof of Theorem 3.1. This point
will be also illustrated by our numerical experiments in Example 5 in Subsection 3.2.

Remark 3.2. The introduction of a known admissible class A in our algorithm is related to
the dictionary matching algorithms that have been recently investigated in a series of works by
Ammari and his collaborators [1,3,14], where some a priori known base shapes form a dictionary
for the reconstruction. We also remark that comparable indicator functions are used in a recent
work [15] for reconstructing the acoustic scatterers at small scale and regular scale, respectively.

3.2 Numerical experiments

We proceed now with some numerical tests using Scheme II to detect multiple scatter components
of regular size. The synthetic far-field data is generated in the same manner as stated in
Section 2.2, then a uniform noise of 3% is added to the synthetic data.

Two geometries will be considered for the scatterer components in our numerical tests. They
are characterized by the following 2D parametric curves

Peanut : {(x, y) : x =
√

3 cos2(s) + 1 cos(s), y =
√

3 cos2(s) + 1 sin(s), 0 ≤ s ≤ 2π},
Kite : {(x, y) : x = cos(s) + 0.65 cos(2s)− 0.65, y = 1.5 sin(s), 0 ≤ s ≤ 2π}.

These will be denoted by P and K, respectively, for short. The candidate data set Ã includes the
far-field data of both reference components P and K, and is further lexicographically augmented
by a collection of a priori known orientations and sizes. More precisely, the augmented data set
is obtained by rotating P and K in the x-y plane every 45 degrees as shown in Figs. 6 and 7,
respectively, and by scaling P and K by one half, one and twice.

For imaging of regular-size scatterers, we adopt a technique from image contrast enhancement
by increasing the order of power of the indicator function Ij2(z), namely (Ij2(z))α is employed
as the indicator, where α is taken in our experiments to be 2, 3 or 4. This contrast enhancing
technique helps keep the maxima around 1 and reduces significantly the potential region where
multiple scattering happens.
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Figure 7: Basic scatterer components : a reference peanut with four orientations.
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Figure 8: True scatterer components in Example 4.

As we recall, Scheme II will locate all the components, one by one, by computing an index
function for each reference object in the augmented admissible class, which tells the shapes,
orientations and scales of all potential components.

Example 4. The true scatterer consists of two components, a medium kite located at
(−5, 5) and a medium peanut located at (5, −5), see Fig. 8. The wavenumber of the incident
field and the incident direction are set to be k = 5 and d = (1, 1)/

√
2.

In the first stage, the reference peanut component is first chosen to be located, based on the
reordering of the magnitudes of the far-field patterns of all the reference scatterer components.
We plot in Fig. 9 the indicator function value distribution by testing reference data associated
with four orientations. It clearly indicates the right position of the peanut when the orientation
angle of the peanut is 90 degrees and there are a local maximum close to the unity, which
implicitly gives hints about the scatterer’s shape, orientation and scale by incorporating the
relevant message carried in the reference data. In Fig. 9(a), we plot a superimposed image of
the indicating value distribution of the four aforementioned images by taking the maximum of
four indicator function values pointwise. After obtaining the position of the peanut component,
it is now possible to identify the first unknown scatterer component in Fig. 9(b).

Once the peanut component is found, then we proceed by subtracting the far-field contri-
bution of the detected peanut component from the total far-field pattern. We can then find
the kite’s position reasonably; see Fig. 10. We see that only the configuration with 45 degree
maximizes the indicator function to achieve nearly the unity and indicates the position of the
detected kite component very clearly. In Fig. 10(a), we plot a superimposed image of maximizing
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Figure 9: Example 4. From left to right in the first row: Imaging of the indicator function
value distribution by testing the reference far-field data of the basis peanut (k = 5) at four
orientations of 0, 45, 90 and 135 degrees, respectively; (a) a superimposed image of the four
indicating images aforementioned by taking the maximum of four indicator functions pointwise;
(b) Reconstruction of the peanut component.
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the eight aforementioned image values. After obtaining the position of the kite component, it
is now possible to identify the second unknown scatterer component in Fig. 9(b) by combining
the information carried implicitly in the reference data, which tells us not only the shape of the
scatterer but also its size and orientation.

Example 5. To further study the reliability of our locating scheme from a generic admissible
reference class, we keep the admissible class unchanged but perturb pointwisely the parametric
forms of the true scatterers P and K by 5% uniform noise with respect their respective centers as
shown in Fig. 11. Now the admissible set is only an approximate class to describe the scatterer
components.

Scheme II is repeated for such an interesting setting. The measured far-field pattern is first
compared with the reference peanut data set according to (3.11). The highlighted red dot as
shown in Fig. 12 when the orientation is 90 degrees tells us the rough position. Compared
with Fig. 9, there exist some small ripples in the contour plots in Fig. 12 which are rather
weak and do not affect the locating accuracy. Those weak ripples can be understood as some
additional noise caused by the small geometric difference between the unknown components and
their approximate class.

After subtracting the corresponding far-field pattern detected in the first step, we proceed
with the locating of the perturbed kite components. The indicating contour plots associated
with the first four orientations are shown in Figure 13. Except for some oscillating ripples, the
correct position of the perturbed kite component can be well located by the red dot when the
orientation is 45 degrees.

4 Locating scatterers of multiple scales

4.1 Scheme III

In this section, we consider locating multiple scatterers of multiple scales of the form

Ωm = Ωs,t ∪ Ωr, (4.1)

where Ωs,t is the scatterer of small size described in Section 2.1 (cf. (2.6)-(2.7)) and Ωr is the
scatterer of regular size described in Section 3.1 (cf. (3.7)-(3.8)). In addition to the respective
assumptions on the small-scale scatterer components of Ωs,t and the regular-scale scatterer
components of Ωr in Sections 2.1 and 3.1, we shall further assume that

L = dist(Ωs,t,Ωr)� 1. (4.2)

By Lemma 2.1, one has

ak(x̂, d; Ωm) = ak(x̂, d; Ωs,t) + ak(x̂, d; Ωr) +O
(

1

L

)
. (4.3)

On the other hand, by Lemma 2.2 and (2.16), one further sees that

|ak(x̂, d; Ωs,t)| � |ak(x̂, d; Ωr)|. (4.4)

Hence we know
ak(x̂, d; Ωr) ≈ ak(x̂, d; Ωm). (4.5)
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Figure 10: Example 4. From left to right in the first two rows: Imaging of the indicator
function value distribution by testing the reference far-field data of the basis kite (k = 5) at eight
orientations of 0, 45, 90, 135, 180, 225, 270 and 315 degrees, respectively; (a) a superimposed
image of the eight indicating images aforementioned by taking the maximum of eight indicator
functions pointwise; (b) Reconstruction of the kite component.
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Figure 11: Perturbed scatterer components (left) and their respective zoomed-in image (middle,
right) in Example 5.
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Figure 12: Example 5. From left to right: Imaging of the indicator function value distribution
by testing the reference far-field data of the basis kite (k = 5) at first four orientations of 0,
45, 90 and 135 degrees, respectively; The highlighted red dot reveals the reconstruction of the
perturbed peanut component at the orientation of 90 degrees.
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Figure 13: Example 5. From left to right: Imaging of the indicator function value distribution
by testing the reference far-field data of the basis peanut (k = 5) at four orientations of 0,
45, 90 and 135 degrees, respectively. The highlighted red dot reveals the reconstruction of the
perturbed kite component at the orientation of 45 degrees..
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Therefore, it is natural to locate the scatterers Ωm of multiple scales in a two-stage manner as
follows. First, by (4.5), one uses ak(x̂, d; Ωm) as the far-field data for Scheme II to locate the
regular-scale scatterers in Ωr; that is, one can (approximately) find

Ωr
j = (Σj ; zj , rj , Uj) with Σj ∈ A , j = 1, . . . , l. (4.6)

Second, after locating Ωr
j , one can calculate that

ak(x̂, d; Ωs,t) ≈ ak(x̂, d; Ωm)− ak(x̂, d; Ωr). (4.7)

Then, using the far-field data obtained above to Scheme I, one can locate the multiple small-
scale scatterers in Ωs,t. However, we would like to emphasize the following two facts: first, the
size contrast between Ωr and Ωs,t can not be too sharp, since otherwise by (4.4) and (4.5), the
scattering information of Ωs,t might be overwhelmed by that of Ωr; second, one should have fine
reconstructions of Ωr

j ’s in the first stage. Indeed, in the first-stage reconstruction, instead of
(4.6), one has

Ω̂r
j := (Σj ; ẑj , r̂j , Ûj) ≈ (Σj ; zj , rj , Uj), Σj ∈ A , j = 1, . . . , l, (4.8)

where ẑj , r̂j and Ûj are, respectively, approximations to zj , rj and Uj . Hence, by (4.7), the
far-field data used in the second stage of the reconstruction is

ak(x̂, d; Ωs,t) ≈ ak(x̂, d; Ωm)− ak(x̂, d; Ωr) + (ak(x̂, d; Ωr
j)− ak(x̂, d; Ω̂r

j)). (4.9)

If the reconstructed scatterer (Σj ; ẑj , r̂j , Ûj) is not close enough to the true scatterer (Σj ; zj , rj , Uj),

the error produced by ak(x̂, d; Ωr
j)− ak(x̂, d; Ω̂r

j) would dominate over the weak scattering from
Ωs,t. In order to overcome this error-sensitivity problem, we propose the following local tuning
technique to be incorporated into the above two-stage reconstruction of Ωm.

Local tuning technique. Let {Uj}j∈T1 and {rj}j∈T2 be the two given sets of rotations

and scalings and Th be the sampling mesh introduced in Section 3.1, and (Σj ; ẑj , Ûj , r̂j), j =
1, . . . , l be the reconstructed scatterers described above. For a properly chosen δ ∈ R+, let
N j

1 , N j
2 , and N j

3 be, respectively, δ-neighborhoods of ẑj , Ûj and r̂j , j = 1, . . . , l. Then let

{Th′ , {Uj}j∈T ′1
, {rj}j∈T ′2

} be an arbitrary refined mesh of {Th∩N j
1 , {Uj}j∈T1∩N

j
2 , {rj}j∈T3∩N

j
3 },

then we call ̂̂
Ωr
j := (Σj ; ̂̂zj , ̂̂rj , ̂̂U j) for ̂̂zj ∈ Th′ , ̂̂rj ∈ {rj}j∈T ′2

,
̂̂
U j ∈ {Uj}j∈T ′1

(4.10)

a local tuneup of Ω̂r
j = (Σj ; ẑj , r̂j , Ûj) relative to {Th′ , {rj}j∈T ′2

, {Uj}j∈T ′1
} for j = 1, 2, . . . , l.

Now we define ̂̂
Ωr :=

l⋃
j=1

̂̂
Ωr
j , (4.11)

where each
̂̂
Ωr
j is a local tuneup relative to

{
Th′ , {rj}j∈T ′2

, {Uj}j∈T ′1

}
for j = 1, 2, . . . , l. We call̂̂

Ωr a local tuneup of Ω̂r relative to {Th′ , {rj}j∈T ′2
, {Uj}j∈T ′1

} for j = 1, 2, . . . , l.

With the above preparations, the local tuning can be proceeded as follows:
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For each local tuneup
̂̂
Ωr, we compute

âk(x̂, d) := ak(x̂, d; Ωm)− ak(x̂, d;
̂̂
Ωr), (4.12)

then apply the resulting far-field data to Scheme I. By running through all the local tuneups

relative to
{
Th′ , {rj}j∈T ′2

, {Uj}j∈T ′1

}
according to the above procedure, one can locate all the

clustered local maximum points on Th, which represents the locations of the small scatterer
components of Ωs,t.

By using the local tuning technique, one can not only locate the small-size scatterers com-
ponents of Ωs,t, but also improve the reconstruction of the regular-size scatterers. Indeed, it can

be easily seen that the local tuneup,
̂̂
Ωr, which is used in the local tuning that can produce the

clustered local maximum points for Scheme I, is a more accurate updating of the reconstruction
Ω̂r.

In summary, we are now ready to formulate Scheme III for locating the multiple multiscale
scatterers of Ωm in (4.1).

Scheme III

1) Collect a single far-field measurement ak(x̂, d; Ωm) corresponding to Ωm = Ωs,t ∪Ωr in (4.1).

2) Select a sampling region with a mesh Th containing Ωm.

3) Let Ωr be given as in (3.7). Apply Scheme II with ak(x̂, d; Ωm) as the far-field data, and
locate the rough scatterer components of Ωm,

Ω̂r
j = (Σj ; ẑj , r̂j , Ûj), Σj ∈ A , j = 1, . . . , l, (4.13)

where ẑj ∈ Th, r̂j ∈ {rj}j∈T2 and Ûj ∈ {Uj}j∈T1 (cf. Section 3.1).

4) Apply the local tuning technique as stated below to update Ω̂r
j , j = 1, . . . , l, and locate the

small-scale components of Ωs,t.

a) For each reconstructed Ω̂r
j in (4.13), formulate the refined local sampling meshes Th′ ,

{rj}j∈T ′2
and {Uj}j∈T ′1

, j = 1, 2, . . . , l.

b) For a local tuneup given in (4.10)–(4.11), calculate the far-field pattern âk(x̂, d) according
to (4.12).

c) Using âk(x̂, d) obtained in b) as the far-field data, apply Scheme I to locate the significant
local maximum points on Th\ ∪lj=1 N

j
1 .

d) Repeat b) and c) for all possible local tuneups relative to {Th′ , {rj}j∈T ′2
, {Uj}j∈T ′1

}. The

clustered local maximum points on Th\ ∪lj=1 N
j
1 are the positions corresponding to the

scatterer components of Ωs,t.

e) Update Ω̂r to the local tuneup
̂̂
Ωr which generates the clustered local maximum points in

d).
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0 o 45 o 90 o 135 o

Figure 14: Basic Scatterers: Peanut (multiscale)

Remark 4.1. By concatenating Schemes I and II with the local tuning technique, Scheme III
can effectively locate multiple multiscale scatterers. For the practical consideration, one can
easily see from our discussions that as long as the scattering strengths from the small scatterer
components of Ωs,t are more significant than the measurement noise involved, Scheme III can
produce reasonable reconstructions for multiple multiscale scatterers.

4.2 Numerical experiments

In this subsection, we test some 3D multiscale imaging problem using Scheme III. The wave
number k is chosen to be 5 and the incident direction is d = (0, 0, −1). The synthetic data
are obtained for the revolving solids of the 2D shapes K and P along the x-axis, which are for
short still denoted by K and P without ambiguities. As for each reference component, we rotate
it every 90 degrees in the x-y, y-z and z-x planes; see, e.g., four different orientations of the
peanut in the z-x plane are shown in Fig. 14. Three different sizes of the reference components
are tested, namely scaled by a factor of 0.3, 1 and 1.5 respectively.

Example 6. We consider a 3D multiscale scatterer consisting of two components, a small
sound-hard kite scaled by a factor 0.3 located at (−5, 0, 5) and a large sound-hard peanut with
no scaling and located at (5, 0, −5), see Fig. 15.

In the first stage, we extract the information of the regular-size component using the indicator

True scatterer. x-y plane y-z plane x-z plane

Figure 15: True scatterer components in Example 6.
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(a) (b)

Figure 16: (a) Imaging of the 3D multi-scale scatterer in the first stage. (b) A local resampling
mesh.

function of Scheme II by computing the inner product with a priori known far-field patterns
associated with those reference scatterer components with different orientations and sizes. We
can find the approximate position of the larger peanut component of regular size when the
reference scatterer is at its upright position, see Fig. 16(a).

Next, we adopt the local tuning (resampling) technique discussed in Section 4.1 to search a
small cubic mesh around the rough position of the peanut determined by the local maximum,
which is shown in Fig. 16(b).

In the final stage, the location of the smaller component can be obtained by performing
a local searching of each grid point in the cubic mesh. In Fig. 17, as the search grid points
approach gradually from (4.8 , 0 ,−5) to (5 , 0 ,−5) (from left to right), the value distribution of
the indicator function in Scheme I displays an interesting change of the highlighted position.
In the right plot of Fig. 17, the red dot indicates an approximate position of the smaller kite
component, which agrees with the exact one very well. In such a way, the smaller sound-hard
kite could be positioned, and it helps us finely tune the position of the peanut and update it
to be around (5 , 0 ,−5). They could now be well approximated in Fig. 18 by combining the
relevant shape, scale and size information hidden in the reference data.
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Figure 17: Example 6. Indicating behavior of local re-sampling technique. From left to right:
Imaging of indicator function value distribution at the sampling points (4.8, 0, −5), (4.9, 0, −5)
and (5, 0 ,−5), respectively.

Figure 18: Example 6. From left to right: local sampling procedure at the sampling points
(−4.8, 0, 5), (−4.9, 0, 5) and (5, −5), respectively. Imaging of the position of the reconstructed
kite component.
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