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which Neumann boundary conditions are given. In this general setting, our algo-
rithms have the same optimal convergence rate as the usual two level overlapping
domain decomposition methods on structured meshes. The condition number of
the preconditioned system depends only on the (possibly small) overlap of the
substructures and the size of the coarse grid, but is independent of the sizes of
the subdomains.
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1. Introduction

Unstructured grids are popular and flexible, since they easily allow for compli-
cated geometries and the resolution of fine scale structure in the solution [1], [19].
However, this flexibility may come with a price. Traditional solvers that exploit
the regularity of the mesh may become less efficient on an unstructured mesh.
Moreover, efficient vectorization and parallelization may require extra care. Thus,
there is a need to adapt and develop current solution techniques for structured
meshes so that they can run as efficiently on unstructured meshes.

In this paper, we present Schwarz methods defined for overlapping subdo-
mains, for solving elliptic problems on unstructured meshes in two and three
space dimensions. These are extensions of existing domain decomposition meth-
ods, constructed in such a way that they can be applied to unstructured meshes,
and still retain their optimal efficiency. These methods are designed to possess
inherent coarse grain parallelism in the sense that the subdomain problems can
be solved independently on different processors.

The theory and methodology of domain decomposition methods for elliptic
problems on structured meshes are quite well developed, see, for example, [23],
[2], [3], [10], [12]. On a structured mesh, most of the existing theories and
algorithms exploit the fact that the space of functions on the coarse mesh is a
subspace of that on the fine mesh. Unfortunately, this property may no longer
hold on an unstructured mesh. Both the theory and the algorithms need to be
developed to accommodate this fact.

In this paper, we continue to develop the theory, begun by Cai [4] and Chan
and Zou [6], of overlapping Schwarz methods for elliptic problems in two and
three dimensions on unstructured meshes. Our main new results are to (1) prove
convergence even when the domains defined by the fine @ridnd the coarse
grid, 2", are not identical, for instance, when the coarse grid covers only a
(large) portion of the fine grid, and (2) provide a simple proof of convergence
when standard finite element interpolation from the coarse to fine grid is used
that also holds for non-quasi-uniform triangulations. An important observation is
that to obtain these strong results, in general, any Neumann boundary must be
covered by the coarse grid. As in the earlier work, the subdomains are allowed
to be of arbitrary shapes.

2. The finite element problem

We consider the following self-adjoint elliptic problem:

0 ou _ :
@) - (@ gy, ) TOU=T, in 2

d
ij=1 8)(]

with a Dirichlet boundary condition

2 u=0, onl
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and with a natural boundary condition

d
ou
3) ”Z::la;,- o n+au=0, ondN\I.

Here 2 c RY(d = 2,3), (a;(x)) is symmetric, uniformly positive definite,
and is allowed to be piecewise smooth, but has no large jumps over the entire
domain. The functiorb(x) > 0 in {2, a(x) > 0 on 942, andn = (g, Ny, - - -, Ng)
is the unit outer normal of the boundadif?.

By Green’s formula, it is immediate to derive the variational problem corre-
sponding to (1)—(3): Findi € HA(2) = {v € HY(£2);» =0 onI'} such that

(4) a(u,v) =f(v) Vove H}(Q)
with
_ d ou Ov
(5) a(u,v) = /Q(I;a” ox, 0% +b m) dx + /an\rauv ds,
6) f@0=u/fvdx
2

We will solve the above variational problem (4) by the finite element method.
Suppose we are given a family of triangulatiofs” "} on 2. We will not
discuss the effects of approximating but always assume in this paper that
the triangulations.7 "} of (2 are exact. So we hav@ = 2" = U, 7. Let
h =h = max.c h;, h, = diamr, h = min.c h;, p, = the radius of the
largest ball inscribed in. Then we say7 " is shape regulaif it satisfies

h
(7) sup max <oy,
h T€7" Pr

and we say7 " is quasi-uniformif it is shape regular and satisfies
8 h<~h,

with o9 and v fixed positive constants; see Ciarlet [8]. In the paper, we only

assume that the elements are shape regular, but not necessarily quasi-uniform.
Let V" be a piecewise linear finite element subspaceéi 4{2) defined on

7" with its basis denoted by¢'},, andO; =supps". Later we will use the

following simple observations: i7" is shape regular, then there exist a positive

constantC and an integer, both depending only omaq appearing in (7) and

independent of, so that, fori =1,2,--- n,
(9) diamQ; < Ch,, V7 COQ,
(10) card{r €. 7", 1 Cc O} <.

Our finite element problem is: Fina" € V" such that



152 T.F. Chan et al.

(11) a(u", ") =f (") VACANSAVA
The corresponding linear system is
(12) Au=f

with A= (a(ef, ¢"));-, being the corresponding stiffness matrix.

Because of the ill-conditioning of the stiffness matAxour goal is to con-
struct a good preconditionér for A by domain decomposition methods to be
used in conjunction with the preconditioned conjugate gradient method.

As usual, we decompose the domdmhinto p nonoverlapping subdomains
2 such that2 = UP_, £, then extend each subdomafih to a larger onef/
such that the distance betwe@s; anddf2 is bounded from below by; > 0.
We denote the minimum of aft by §. We assume thal(2/ does not cut through
any element- € .7 ". For the subdomains meeting the boundary we cut off the
part of £ that is outside off2. No other assumptions will be made ¢ }
in this paper except that any poirte (2 belongs to only a finite number of
subdomaind {2/ }. This means that we allow eadh to be of quite different size
and shape from other subdomains. We define the subspat&saifrresponding
to the subdomaing(2'}, i =1,2,---,p, by

(13)  VM"={wneVMu=00n @\ 2)U(02\(02n3N))}.
For interior subdomains, and those adjacent to only a Dirichlet boundary,
(14) V"=V A HE2).

To develop a two level method, we also introduce a coarse.gfld, which
forms a shape regular triangulation £f but has nothing to do witt" ", i.e.,
none of the nodes o7 " need to be nodes o# ". In general, 2" # . Let
H be the maximum diameter of the elements @, and 2" = Ung 7.
Moreover, let™™ denote the portion of the boundady?t to which we will apply
Dirichlet boundary conditions. (If the original problem is not pure Neumann, we
require that the measure 6t be at least the order of one coarse element size.)

By VH we denote a subspace f’, (22"') consisting of piecewise polyno-
mials defined on7"; by {¥" }™, we denote its basis functions related to the
nodes{q™ }1,. Let O" = suppy. We note thatvH need not necessarily be
piecewise linear; for example, it may be defined by bilinear (2-D), trilinear (3-D),
or higher order elements. Thus we do not necessarily have the usual condition:
VH c VI We need to impose one important constraint on the coarse grid:

(AL): oR\T C 24,
i.e., the coarse grid covers all of the Neumann boundary, (see Fig.1).

For technical reasons, we make two further, less restrictive assumptions on
the coarse grid:

(A2): MNnR#£0 foral " e .71,
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Fig. 1. Non-matching coarse grid

i.e., no coarse grid element lies completely outside the fine grid. For the com-
plementary sef2 \ 21, let S be the set of all verticeg" of 2", and letBy(r)
be a ball centered at the poiptwith radiusr. We assume that

(A3): 2\ 2" C Ugnes Byr(diamOf),

namely, the coarse grid must cover a significant part of the fine grid.
To overcome the difficulty tha¥" ¢ V", in both the theory and the algo-
rithms, we need a way of mapping values frafff to V. For the coarse space
to be effective, this mapping must possess the propertiésestability andL?
optimal approximation; see Chan and Zou [6] and Mandel [18]. In this paper
we mainly consider two such mappings. The first is the standard finite element
interpolation 7, defined in terms of the fine grid basis functiofg!}!.;. The
second is the local,?-like projection,.#2, used in Chan and Zou [6].
Throughout the paper, we u$ge ||m » and| - |m » to denote the norm and
semi-norm of the usual Sobolev spad&'((?2) for any integem > 0. In addition,
||I|m.r.2 @nd|-|m.r.2 Will denote the norm and semi-norm of the spadé®’ (1)
for any integem > 0 and real number > 1.

3. Two level overlapping Schwarz algorithms

Based on the finite element spadandVH given in the preceding section, we
derive the two level overlapping Schwarz methods for nonnested grids. Schwarz
methods are preconditioners for the linear systaume f that are built by using
local and coarse grid solvers. We first define these solves. From these we may
write down the preconditioners using matrix notations.

The local solves are defined as in Dryja and Widlund [11] and in Bramble,
Pasciak, Wang, and Xu [3]. Define th&!-projection operator®; : V" — V",
i =1,---,p, such that for any € V", Piu € V" satisfies

(15) a(Pyu, v) = a(u, v) Vo eV
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The coarse grid projection-like operator must be defined slightly differently
than in Dryja and Widlund [11], due to the non-nestedness of the coarse grid
space. Let#, be any linear operator that mags$' into a subspacef,VH of V.

It may be chosen as the modified standard finite element interpolation operator
Iy, or the locally defined operatov?;,; see Sect. 5 for more details.

In Method 1 we defineP, by first definingPyu € V™ on the original coarse

grid space by

(16) a(Pyu,v) = a(u, Fv) ueVvh wvuevH

and then defind® = . ZPu: V" — V. The subspac¥] c V" is defined by
FVH.

In Method 2 we definePy by calculating the projection directly onto the
subspacé//,

(17) a(Pou, v) = a(u, v) ueVvh weVv,
wherePou € V.

Remark 1.We note here that for the left-hand side in (18fuy,vy) for any
Uq,vy € VM, is not an integral over the original domai®, but one over the
coarse domairf2, i.e.

d
ou ov
(18) a(uy,v ):/ aij +buw dx+/ auvds.
HooH oH (2::1 ’8)(, O ) dNH\IH

Thus in the sequel we always assume that the coefficient fundiigns o are
extended inta2" \ 2 properly in the sense that (1) the extendggx) is still
symmetric, uniformly positive definite over the closuref 2", (2) the largest
and smallest eigenvalues of the extendg@x) can be bounded by the largest
and smallest eigenvalues of the origigl(x) respectively, (3) the extendeal
and « can be bounded by the bounds of origibaand «, and (4) the extended
a is still non-negative oved2" \ I'™'. Below, we will use|| - ||a and|| - ||a -

to denote the energy nornag:, -) over 2 and 2", respectively.

We now derive the matrix representation of the operaRyrand Py. Using
these, we can write down both the additive and multiplicative Schwarz precondi-
tioners. For the rest of this section only, we will useto denote finite practice,
the element functions and to denote the vector of coefficients of that finite el-
ement function, that isy” = >~ uéx. A purely algebraic of Schwarz algorithms
may be found in Hackbusch [15].

Let {¢f; 1L, C {#R}f=, be the set of nodal basis functions Wf', i =
1,2,---,p. For eachi, we define a matrix extension operaRy as follows: For
anyu € V;", we denote by the coefficient vector ofif in the basis{¢l'; }',,
and we letR"u; be the coefficient vector af in the basis{¢!'},.

It is immediate to check that



Schwarz methods on unstructured meshes 155

(19) A =RAR,

whereA andA;, i =1,2,---,p, are the stiffness matrices corresponding to the
fine subspac¥ " and the subspacag", i = 1,2 ---,p. And from (15) it follows
that for anyu" € V", the coefficient vector oP;u" in the basis{¢"}I; is

(20) R'A'RAU,

whereu denotes the coefficient vector aof in the basis{¢!'}L,.

Since{y!" }, is the set of basis functions ™", then{Z ¢ }1, is the set
of basis functions o¥". We define a matrix extension operaly as follows: For
anyul) € V{', we denote by, the coefficient vector af} in the basis. 7y 11,
and we defineRjup as the coefficient vector aff) in the basis{¢{'}[_;. Then
Ro, = Tt () whereg; is the nodal vertex o&ﬁjh. When.%, = I, thenRy, is
simply given by (q).

We first note that the coefficient vector of a functione V" in the ba-
sis {y" }m, is exactly the same as the one for the functig in the basis
{FHyH M, So from (16) we find that the coefficient vectorRfu® in the basis
{o iy is
(21) ALRA U,
whereAy; is the stiffness matrix corresponding to the original coarse spdte
with elementsAy; = a(yf",¢'). Now the coefficient vector oPou =.ZPyun
€ V& in the basis{. 7!}, is alsoA;*RyAu. Therefore, by the definition of
RJ, RJA;'RoA U is the coefficient vector oPou” in the basis{¢!' ;.

For Method 2 it is straightforward to derive that

(22) Ao = RARY,

where A is the stiffness matrix corresponding to the subspv({ie It follows
from (17) that the coefficient vector &Hu" in the basis{¢M}, is

(23) RIA; 'RoA L.

From the above, the additive Schwarz preconditioner may be written as

p
(24) My = RIAG R+ ) RTATR

i=1
for Method 1 and

p
(25) Mz = RjA; "Ro+ > RTATR

i=1
for Method 2. These may be thought of as an overlapping block Jacobi method
with the addition of a coarse grid correction. The multiplicative Schwarz method

is the Gauss-Seidel version of the additive algorithm. We write down the sym-
metrized version, using Method 1, as
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M=(—(-RAMRA) ...(I - RIATRA( — RIATRA)
(26) (I —RIARA) ... (1 — RIAT'RIA)A .

In practice, the application of the multiplicative Schwarz preconditioner is carried
out directly, not as given in (26).

Remark 2.From the above matrix representatidig and M, for Method land
Method 2 we see that the only difference between them is in the global coarse
problem solver. The latter coarse problem (\nmpl) is conducted on the newly
constructed coarse subspa(;é, but the former (withA,]l) is conducted on the
original coarse subspad&™. SinceV" is not necessarily nested W', Ay may

not be expressed in terms of the stiffness ma#ias A is in (22).

We give convergence results for the additive algorithm. Similar results may
be obtained for the multiplicative algorithm using the techniques in Xu [27] or
Dryja, Smith, and Widlund [10].

It is easy to check that

P P

27) K(M1A) = 5(Po+ > P1),  K(MoA) = k(> _ Py).
i=1 i=0

For these condition numbers, we have the following bounds:

Theorem 1. Suppose that both triangulationg™" and.7 " are shape regular
(not necessarily quasi-uniform), and satisfy Assumptions (A1)—(A3). Then we have

(28) K(M1A), K(M2A) < C (1 + '2 ).

Theorem 1 will be proved at the end of Sect. 5.

4. Boundedness of the operator,

LetW" andWH be any two finite element subspaces related to the triangulations
7" and.Z ", respectively. Sincavt ¢ WM, the convergence proof for the
overlapping two level Schwarz methods requires that the opefgtorw" —

WM possess the followingi ! stability andL? optimal approximation properties:

(29) | Zul1,0 < Cluly on, Yu e WH,
and
(30) . Zhu — ullo, < Chlulq,on, vYu e wH.

There exist many options for the operatd, for example L? and quasi-?
projection operator®, andQ,. For a discussion, we refer to Chan and Zou [6].
In this paper, we consider only the most natural optiondgri.e., the standard
finite element interpolation operatdi, and the Cément’s localL? projection
operator.72y,.
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Generally, for.%, = IIy, (29) and (30) are not true for all € H(f2).
Fortunately, they are true for general finite element spaces. We state this fact
in the following lemma. Several alternative proofs for this result exist; see, for
instance, Cai [4], Zhang [29], and Widlund [25].

Lemma 1. Assume thatZ " and.Z " are both shape regular, not necessarily
quasi-uniform, and W and W are any two corresponding finite element spaces
consisting of continuous piecewise polynomials defined2cand 2, respec-
tively. Furthermore, assume th&at ¢ 2. Then (29) and (30) hold in both two
and three dimensions fo¥, = I1;,.

Proof. Let 7" € .7 ", then (see, for example, Ciarlet [8], Theorem 3.1.5), for
r >3 ands = 0,1, we know for anyu € WH

(31) U~ IIhul2,, < CHO-IRPA/2 /02

This implies

(32 Y lu- P, < CHAS S REWZUOE
ThATH ) ThnrH#9

Now apply the Cauchy inequality
> ab < (O ahva> ph)re
i i i

to the right hand side witpp =r/2> 1 and; + é =1, and get

Z |U_Hhu|§7.,_h < C h2-9)( Z h2d(t/2=1/ray/a¢ Z |u|i?wh)1/p
ThATH#) ThOrH£0 ThATH#)
< ChEIC S W)Yl )
ThATH#D ThATH#D
<C h2(lfs)H7t_i(172/r)( Z |u|r1,r,-rH’)2/r
THATH 20
(33) < C h2(17$)H7(_1(172/r) Hg(Z/rfl) Z |u|iTH’

THATH 20

The last line follows from (9) and (10), and a standard local inverse inequality;
see, for instance, Ciarlet [8], Theorem 3.2.6. Note that since the sum is over only
those elements that are neighborsrtb, we do not need the quasi-uniformity
assumption, called the inverse assumption by Ciarlet [8], only the shape regular

assumption.
Taking the sum overt, we obtain
(34) Yo D u— Il < Rl g,

TH hnrH#)

which implies (29) and (30). O
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For our later use, we introduce a special, locally defined projection operator
Z2n, which has been used in the domain decomposition context in [7] and [6].
Operators with properties similar tg2,, can be also found in Scott and Zhang
[21].

We denote the set of basis functions\of by {4}, corresponding to the
vertices{q"}",. Let O; =suppsl’, i =1,2,---,n.

Definition 1. The mapping#2Q : L2(2) — V" is defined by
n

(35) Z2pu =" Qu(g") 4 vV ue LX),
i=1

whereQ; u € A(0;) satisfies
(36) Qupdk= [ updx  VpeA©)
O O

where 1(0O;) is the space of linear functions defined On

By using the Poincarinequality, the definition of22, and relations (9) and
(10), we can show the following properties.gB?; see also Gment [9].

Lemma 2. The operator%?ﬂ defined by (35) and (36) has the properties

(37) .22y 2 < C ||ul|r.0, YU € HE(2),r =0,1,
(38) lu —.Zullo.2 < C hlulre, Yu e HE(),

where the constant C is independent of h.

Remark 3.In Lemma 2, we assume only thaf " is shape regular, not neces-
sarily quasi-uniform, unlike the usu&P projection.

Remark 4.The definition.720 can be generalized to more general finite element
spacesV", e.g., to bilinear element (2-D), trilinear element (3-D), and higher
order elements. In these cases, one needs only to repi{®) in the relations
(35) and (36) byP(0;), which are determined by the types of elements used in
VP, and Lemma 2 will still hold.

5. Partition lemma

In this section, we give a partition lemma for the finite element spateThe
lemma is essential for the convergence proof of Theorem 1. As denoted previ-
ously, let{:) }icn, be the set of basis functions @f! with Ny = {1,2,---, m},
and let{g" }icn, be the corresponding nodes a@d= suppf.

We introduce an auxiliary subspawé! of VH:

(39) VH = span{y;i e N3}
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with N3 = {i € Nu; " =0 on I'}. We needV" only for the proof of our
main theorem, we do not require its explicit computation for our algorithms. It
is easy to check that " |, ¢ HE(9).

By 2" and 2] we denote

(40) O = Uengsuppyf!, oF =01 U@\ GY).
Let.224 be defined foV" similarly to.#2,, defined forV" in (35) and (36),
with natural modifications, see Remark 4. Now we define a modified operator

S T LA(H) — VM as follows

(41) Su =" Qu(g)y! Vue L2(2%),

ieNg

whereQ; u € Z(0;) satisfies
(42) / Qiupdx:/ u p dx VpeX0O).
ol o

Here (0;) is determined by the type of elements used/if\. If VM consists
of piecewise polynomials of degree q, then ’(0;) = #4(0i). We note that
2 u is well-defined onf? by extending by zero.

For the operator%’:H, we have the following lemma.

Lemma 3. The operatowéH defined by (41) and (42) has the properties

(43) ||U _'%Hu|‘rﬁﬂn S C HUHI‘,QK“? Yue H}?(Q“)J’ = 07 17
(44) [lu—Znullpon <CHJulpon, YUE HA2R),

where the constant C is independent of h and H.

Proof. Analogous to Lemma 2, we can prove that

(45) HU _'—u/gHuHr,QH < C HUHI‘,QH Vue Hl(‘QH)ar = 07 17
(46) lu—.Znulloon < CHJulpgn, VueHY 2.

Let ONy = {i;i € Ny \ N3}. We see that for any € H(24)

47) U—Zpu=u—Zyu+ > Qu(ah)ul.

i €ONy

Using (45) and (46), we need only to estimate the last term of (47).

For anyi € 0Ny, we have by a local finite element inverse inequality,
Poincaé’s inequality, (cf. Ladyzhenskaya and Ural'tseva [16]), and the previous
assumption (A3) o2 \ 2, that
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IQu@™u! 8o < D 111w [1Quul[2e
THCGO;
<C Y H (HAQulls )
HCO

IN

ClQullso <Cllullso
C ||u||§_c~)i < C (diam Oi)2|uﬁ(~)i

C H2 |U‘id,

IN

(48)

IN

where®; = the union ofO; with the part off2 that is outsided;, (see Fig. 1).
Now (43) withr = 0 and (44) follow from (45)—(48). The inequality (43)
with r =1 can be proved analogously to the case ef0 above. O

We choose
(49) \VAERZ AV

where.Z, can be any linear operator that map8 onto the subspacé;V" of

VP and retains théd ! stability andL?- optimal approximatiorin any subspace
(not necessarily in the whole V) of VM of functions that vanish od™. This
essential observation will become very clear when we go through the following
proof of Lemma 4. Therefore may be chosen as the standard finite element
interpolation operator, or locaf projection operator2, after simple and natural
modifications for satisfying the Dirichlet boundary condition BnFor example,

. may be chosen ag2) defined in Definition 4.1, or afly defined as follows:

n

(50) IIgu => " u(g")el.

i=1

From (49), we require that the coarse grid cover the fine grid Neumann boundary,
see (Al). OtherwiseZ, makes no sense for the pat\ 2. But the coarse
grid does not need to cover the fine grid Dirichlet boundary, since we impose
also homogeneous Dirichlet boundary conditions on the corresponding coarse
grid boundary, so%, still makes sense by naturally extending the coarse grid
functions by zero for2 \ £2". Our numerical experiments will show that this
strategy is important for practical computations.

We now have the following partition lemma for the fine spate

(51) VI =ve+ V4V

Lemma 4. Let 2 ¢ RY(d = 2,3). We assume that both triangulatiorg" and
71 are shape regular but not necessarily quasi-uniform. Then for agyMf",
there exists a constant C independent optH, 6, and y € Vih, i=21---,p
and b =.Zhuy € V& with uy € VM such that

(52) U=Up+up+---+Up

and
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p
H.2
(53) Dl <€+ )l e
i=1
(54) lUolle < Cllulle, [[unllex < Cllullse.

Proof. Let 2 be an open domain iR? large enough such that c Qf cc 2.
Then we know, (see Stein [24]), that there exists a linear extension operator
E : HY(2) — H(£2) such thatEu|, = u and

(55) [Eully,p < Cllufl1.e-

We note that we do not requieu for u € V" to be a finite element function.
For anyu € V", we chooselg = .Zuy with uy = .%:H  andu'=Eu . Then

2y

from Lemma 3 and Lemma 1, we obtain

lUol[r,2 = |[FhZnl|lr,e < C [ 22n1||1,00 = C [[. 221 1T]|y on
(56) < Cllally,ep < C Al o < Clullse,

which implies (54), and
lu = tollo. < [|u—Rnllo.0 +[|.781 T — Fr72u |
(57) < [|a— Auillo,an +C h|.Au ]y on
< CHIl[y o +C h[l[y on < CHl| o < CHJulpe.

0,02

It is well-known, (see Dryja and Widlund [11] or Bramble et al. [3]), that
there exists a partitiod¢; }_; of unity for (2 related to the subdomaing2/}
such thaty""_, 6;(x) =1 on 2 and fori =1,2,---,p,

(58)  suppd C 2/ U2, 0< 6 <1and ||V6||Le) < C &

Now for anyu € V", let up = .42, 0 € V" be chosen as above, and let
u = ITnb; (U — ug) with IT,, being the standard interpolation ¥f". Obviously,

u € V" and

(59) U=Up+ug+---+Up.

Then (53) follows in the standard way; see Dryja and Widlund [11] and Smith
[22]. We give a complete proof here so that one can see clearly that no quasi-
uniformity assumption or” " and the subdomaing?, } is required in the present
case. Letr be any element belonging 1, with h, being its diameter anéy

the average of on elementr. Then from (58) and the fact that— uy € V",

we get

N

ulf, < 2(0ITn(u — o)l + 2/ 1Tn (B — i) (U — Uo)l3 .
2\u — uolZ . + 2/ ITn (B — Oi)(u — Uo)Z ..

IN

By using the local inverse inequality, which requires only the shape regularity
of .7 " (see Proposition 3.2 in Xu [26]), we obtain
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ulf, < 2Ju—uol . +C ho?||[ITn(0k — Oi)(u — Uo)[|5

IN

_,h?
2u—uwli,+Ch 255 [lu— woll3
k
1
< 2u—uwff, +C ,llu—ulff,.
k
By taking the sum over € (2, we have
2 2 1 2
(60) U1 oy < 2/u—Uoly o +C 52”“ — Uol[, ¢ -
K

Recall the assumption made previously that any peigt {2 belongs only to a
finite number of subdomaing(?'}, it follows from (56), (57), and (60) that

P
1
(61) > ulf o < C (Ju—uoff+ 52!t = Wol[6)
k=1

IN

(62) c(1+ '; )2|u|§.

Analogously, we derive that

P 2

h
> B <€ (1+ )l

k=1

which completes the proof of (53).0

In the rest of this section, we prove Theorem 1. We first state a general abstract
lemma that is a natural extension of the one due to Lions [17], Nepomnyaschikh
[20], Dryja and Widlund [11], Zhang [28], and Griebel and Oswald [14]. The
proof is straightforward, similar to the one of Theorem A in [14].

Given a Hilbert spac¥ and a symmetric, positive definite bilinear foet, -)
and a set of auxiliary spacéé for which the bilinear form is also defined, but
which are not necessarily the subspace¥ oSuppose there exist “interpolation”
operatord; : V; — V and defineT; : V — V,; by

(63) a(Tiu,v) =a(u,ljv), Yv e V.

ThenT =Y"F_ I;T; satisfies the following lemma.

Lemma 5.
p
1, = mi -
(64) a(T~*u,u)= min z;a(u.,u.).
_ P =

u= Ij uj
i=0 '
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Proof of Theorem 1The estimate of(M,A) is quite routine by using Lemma 4
and (27). To get the bound @&f(M1A), it suffices to show that there exist two
constantsCq and C; independent of , ¢, h such that for any" € V",

2
(65) Coa(PuM,u") <a@M, u" <c, (1 + '; ) a(Pu,u).

We first provide the upper bound. From (16) we see that
(66) a(Pqu", Pyu") = a(APuu", u").
Thus, by Cauchy-Schwarz’s inequality and the stabilityf

©®7)  [Pau"([Zon < [[U"lallZAPHU"la < C [Ju”[al|PHU"la,0n,

i.e., [[Phu"|[a.on < C [|u"||a, which leads to
(68) a(Bou", uM) = a(Pyu", PyuM) < C a@u",uh).

From standard coloring arguments and the fact that the norm of a projection
operator equals one, (see Zhang [28]),

P
(69) > a(Piu",u") < Ca(u",u").

i=1
Therefore we have proved the first inequality in (65). For the second inequality,
we choosdg =.%, |; fori > 0 to be the identity operator, angy = V", then
applying Lemma 5 and Lemma 4 gives our results.

Remark 5.We can improve the bound of Theorem 1 by replacing KL/4)? by

(1 +Hpax/96) if the subdomaing (2, ip:1 form a quasi-uniform triangulation a?

andH < [Hmax for some fixed constant. Here Hpax is the maximum of the
diameters of the subdomains. This can be done by using a result by Dryja and
Widlund [13]; cf. Chan and Zou [6].

6. Numerical experiments

In this section, we give the results of two numerical experiments for the case
Sk = IIy. In our first numerical experiment, we demonstrate that the assumption
(A1) is necessary in practice, i.e., it is very important to cover the Neumann
boundary. When the coarse grid does not completely cover the fine grid Neumann
boundary, one obtains rather poor convergence.

We consider the Poisson problem on the unit square with either pure homo-
geneous Dirichlet or mixed boundary conditions. In the case of mixed boundary
conditions, we prescribe homogeneous Dirichlet boundary conditior f010.2
and homogeneous Neumann boundary conditionxfor 0.2. A uniform trian-
gulation using linear finite elements is used. The coarse grid is defined on the
square [01 + 3] x [0,1]. If 3 is less than zero, we are not covering the right
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6>0

6 <0

Fig. 2. Overlapping region

edge of the fine grid, see Fig. 2. Note that only whien 0 do we have a nested
coarse

grid space. In all of the experiments we use an extension by zero during
the interpolation from the coarse grid for all fine grid nodes not covered by the
coarse grid.

We ran with four size grids: 20 by 20, 40 by 40, 80 by 80 and 160 by 160.
With each refinement the number of subdomains was increased by a factor of
four from 16 to 64 to 256 to 1024. A constant overlap of one element was used.
The coarse grid was refined from 5 by 5 to 10 by 10 to 20 by 20, to 40 by
40. The value of the “missing” overlap3|, was changed from 0.1 to 0.05 to
0.025 to 0.0125. Note that we kegpl =< H. For all our calculations, we always
choose the initial iterative guess of zero and stop the iteration when a relative
decrease in the discrete norm of residual of 1@ obtained.

As one can see in Tables 1 and 2, the number of iterations was essentially
unaffected by the “missing” overlap for the Dirichlet boundary conditions. How-
ever, for the case of Neumann boundary conditions, the number of iterations
required to achieve the same tolerance increased greatly. This result agrees very
well with our theory.

In our second experiment, we solve a mildly varying coefficient problem:

aax ((1 +Xy) gz) + 88y ((1 +sin(4 + 4y)) g;) = x?sin(3y)

discretized by a standard piecewise linear finite element method on the unstruc-
tured airfoil grid shown in Fig.3. The airfoil is embedded in the unit square.
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Table 1. Convergence for multiplicative Schwarz

Boundary Conditions (3 Fine Mesh
20x20 40x40 80x80 160x160

Dirichlet 0 10 10 9 9

+ 10 10 11 12

- 9 10 10 10

Mixed 0 10 10 10 10

+ 10 10 10 10

- 15 22 30 43

Table 2. Convergence for additive Schwarz

Boundary Conditions 3 Fine Mesh
20x20 40x40 80x80 160x160

Dirichlet 0 30 28 26 25

+ 29 30 28 30

- 27 28 28 29

Mixed 0 23 28 29 29

+ 23 28 29 28

- 33 50 77 110

Table 3. Multiplicative DD iterations for theAirfoil mesh. 32 subdomains

Overlap
(no. elements)  Coarse Grid

0 None 55
0 Gy 30

0 Gy 20

1 None 31
1 Gy 17

1 Gy 11

2 None 24
2 Gy 13

2 Gy 9

We use nonhomogeneous Dirichlet boundary conditionsfer0.2 and homo-
geneous Neumann boundary conditionsxar 0.2. Note that since the present
software used for the calculations can generate only coarse grids that are inte-
rior to the fine grid, we do violate Assumption (Al) here. This explains why
the iteration counts are slightly higher then one would expect for, for example,
a Dirichlet boundary value problem. The subdomains are shown in Fig.3 and
two sets of coarse grids are given in Fig. 4. Since the theoretical convergence
behavior of additive and multiplicative overlapping Schwarz is very similar, we
have chosen to only include the results for the multiplicative case, see Table 3.
Other numerical studies may be found in Chan and Smith [5].
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