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Abstract

We propose a discrete weighted Helmholtz decomposition for edge element functions.
The decomposition is orthogonal in a weighted L? inner product and stable uniformly
with respect to the jumps in the discontinuous weight function. As an application,
the new Helmholtz decomposition is applied to demonstrate the quasi-optimality of a
preconditioned edge element system for solving a saddle-point Maxwell system in non-
homogeneous media by a non-overlapping domain decomposition preconditioner, i.e., the
condition number grows only as the logarithm of the dimension of the local subproblem
associated with an individual subdomain, and more importantly, it is independent of
the jumps of the physical coefficients across the interfaces between any two subdomains
of different media. Numerical experiments are presented to validate the effectiveness of
the non-overlapping domain decomposition preconditioner.
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1 Introduction

The numerical simulation of electromagnetic wave propagation often involves, at each time
step, the solution of the following saddle-point Maxwell system [14] [23] [27] [28] [29]:

curl(acurlu) +ypfu = f in Q,
div(fu) = g in Q, (1.2)

where € is a simply-connected open polyhedral domain in R? with boundary 99, occupied
often by more than one physical medium. Coefficients a(x) and B(x) are two physical
parameters, which may have jumps (possibly very large) across the interface between any
two neighboring different media in . f and ¢ are two source functions satisfying the
compatibility condition vy g = divf. The coefficient 7o in (1.1) is a constant, taking either
value 1 or 0, which is added here deliberately so that the system (1.1)-(1.2) covers more
physical cases. System (1.1)-(1.2) with 79 = 0 appears in the Darwin model for Maxwell’s
equations [10, 12] and the vector potential model for magneto static fields [3]. When vp =0
in (1.1) or when 79 = 1 but the coefficient 5 in the zero-th order term is much smaller in
magnitude than the coefficient « in the higher order term, system (1.1)-(1.2) becomes more
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challenging numerically as the divergence equation in (1.2) must be explicitly reinforced in
the discretization in order to avoid the spurious non-physical solutions. We shall complement
the system (1.1)-(1.2) with the following boundary condition:

uxn=0 on 99N, (1.3)

where n is the unit outward normal direction on 0f2.

Efficient preconditioning-type solvers such as multigrid and domain decomposition meth-
ods have been well developed for second order elliptic problems in H'-Sobolev space, in par-
ticular non-overlapping domain decomposition methods have proved also to be robust and
efficient when the elliptic equations have large jumps in coefficients, see, e.g., [24, 29, 30]).
However, the construction of such efficient solvers for elliptic equations in the H'-space
fails to work for the Maxwell equations (1.1)-(1.2) in the H(curl)-space, especially in three
dimensions. One of the reasons for the failure is due to the type of finite element methods
used in the discretizations. Contrary to the popularity of classical nodal elements in the
discretization of elliptic equations, Nédélec edge elements have been more widely used for
the discretization of the Maxwell system (1.1)-(1.2), see, e.g., [15] [25] and the references
therein. And the resulting algebraic systems arising from the discretization of the Maxwell
system by edge element methods is of essentially different nature from the ones arising
from the discretization of elliptic problems by standard nodal element methods. Another
ingredient causing the failure comes from the fact that the curl operator involved in the
Maxwell system has a much larger null space than the one for the gradient in elliptic prob-
lems. A fundamental tool, which may treat the larger null space and at the same time take
the advantage of some existing methodologies in developing effective multigrid and domain
decomposition methods for elliptic equations, is the Helmholtz-type decompositions (see,
e.g., [2] [15] [25]). Based on these decompositions, many variants of efficient multigrid and
domain decomposition methods have been constructed and analyzed for the edge element
systems arising from the discretization of the Maxwell equations; see [2] [14] [15] [20] [21]
[28] [30] [31] and the references therein.

However, all the existing Helmholtz-type decompositions do not involve any coeflicients
in the Maxwell system (1.1)-(1.2), so they can not help analyze in general how the conver-
gence of the existing methods depend on the coefficients or their jumps across interfaces
between different media. In this work we shall establish a discrete weighted Helmholtz de-
composition based on a decomposition of the global domain €2 into a set of nonoverlapping
subdomains so that the Helmholtz decomposition is stable uniformly with respect to the
discontinuous coefficients or their jumps across the interface between any two subdomains.
To the best of our knowledge, this is the first discrete weighted Helmholtz decomposition
of the kind in the literature. Considering the complexity of the construction of such a de-
composition, one can imagine that the subsequent analysis is rather technical and delicate.
The new (weighted) Helmholtz decomposition can be used to analyze convergence of various
preconditioners for Maxwell’s equations with large jumps in coefficients. As an example, we
will show with the help of such a weighted Helmholtz decomposition that the substructur-
ing preconditioner constructed in [21] converges not only nearly optimally in terms of the
subdomain diameter and the finite element mesh size, but also independently of the jumps
in the coefficients across the interfaces between any two subdomains of different media.

The outline of the paper is as follows. In Section 2 we describe the decomposition of
the original domain into subdomains, the triangulation of the subdomains and some basic
Sobolev and edge element spaces. The results on the new weighted Helmholtz decomposition
and several variants of discrete Helmholtz decomposition are presented in Sections 3-4. The
new weighted Helmholtz decomposition is constructed for general edge element functions



in Section 5 and analysed in Section 6. A direct application of the new discrete weighted
Helmholtz decomposition is discussed in Section 7.

2 Domain decomposition, finite elements and subspaces

This section shall introduce some Soboleve spaces and edge elements, that are most fre-
quently used for the discretization and analysis of the system (1.1)-(1.2), as well as sub-
domain decompositions and some fundamental edge element subspaces and concepts to be
used in the construction and analysis of a discrete weighted Helmholtz decomposition.

We will need the following spaces associated with an open bounded domain @ in R3:

H(curl; O
Hy(curl; O
H(div; O
Hy(div; O

= {veL*0)3 curlv € L*(0)3},

= {ve H(curl;0); vxn=0ond0},
{v € L*(0)?; divv € L*(0)3},

= {ve H(div;O); v-n=0on 00}.

)
)
)
)

2.1 Subdomains and edge elements

The central aim of the work is to construct a discrete weighted Helmholtz decomposition
based on a decomposition of the global domain §2 into a set of nonoverlapping subdomains so
that the Helmholtz decomposition is stable uniformly with respect to a desired discontinuous
weight function. For this purpose, we first decompose the entire domain 2 into subdomains
based on the discontinuity of the weight function, which plays a role as the coefficient 3(x)
of (1.2) in applications.

Domain decomposition based on the distribution of coefficients. Associated
with the coefficient 5(x) in (1.2), we assume that the entire domain €2 can be decomposed

into Ny open convex polyhedral subdomains 9,9, - "99\70 such that Q = vaz‘)lf_lg and
B(x) is constant on each subdomain, namely for r = 1,2,..., Ny,
B(x)=pH Vxe? (2.1)

where each 3, is a positive constant. Such a convex decomposition is possible in many
applications when €2 is formed by multiple media. In some cases when a medium forms an
irregular nonconvex subregion in {2, one may need to further split such nonconvex medium
subregion into smaller convex subdomains. In this sense our assumption is not restrictive
and does cover many practical cases.

Remark 2.1 The subdomains {Q,Q}ivzol are of different nature from those in the context
of the standard domain decomposition methods: {Q?}fy:ol 1s decomposed based only on the
distribution of the jumps of the coefficient B(x) (so Ny is a fized integer). Therefore the
size of every such subdomain Q0 is basically irrelevant to the finite element mesh size or the
subdomain size meant in the standard domain decomposition methods. When applying our
results in this work to domain decomposition methods (see Section 7), each subdomain Q0
should be divided into several smaller subdomains.

Edge and nodal element spaces. Next, we further divide each Q0 into smaller
tetrahedral elements of size h so that the restrictions of the triangulations from any two
neighboring subdomains on their common face match each other. Let 7; be the resulting
triangulation of the domain 2, which we assume is quasi-uniform. By &, and N}, we denote



the set of edges of T, and the set of nodes in T, respectively. Then the Nédélec edge element
space, of the lowest order, is a subspace of piecewise linear polynomials defined on Tj:

Vi(Q) = {v € Ho(curl;Q); vk € R(K), VK € n},
where R(K) is a subset of all linear polynomials on the element K of the form:
R(K) = {a—i—b xx; a,beR3 xe¢ K}

It is known that for any v € V;(Q), its tangential components are continuous on all
edges of each element in the triangulation 7y, and v is uniquely determined by its moments
on each edge e of Ty:

My(v) = {/\e(v) = /V “teds; e € 5h}
(&

where t. denotes the unit vector on edge e, and this convention will be used to any edge
or union of edges, either from an element K € 7, or from a subdomain. For a vector-
valued function v with appropriate smoothness, we introduce its edge element interpolation
rpv such that rpv € V4(Q), and rpv and v have the same moments as in My(v). The
interpolation operator r;, will be needed in the construction of a stable decomposition for
any function vj, € V() in Section 5.

As we will see, the edge element analysis involves also frequently the nodal element
space. For this purpose we introduce Z;(2) to be the standard continuous piecewise linear
finite element space in H}(2) associated with the triangulation 7j.

2.2 Edge- and face-related finite element subspaces

For the subsequent analysis, we need the subspaces of the global edge element space V},(£2)
restricted on a subdomain or the boundary or part of the boundary of 2.
Let 2 be any of the subdomains QY, -- -, Q(]]VO of 2. We will often use F, E and V to

denote a general face, edge and vertex of Q respectively, but use e to denote a general edge
of Tp, lying on I’ = 9. Associated with €, we write the natural restriction of V4 (Q) on
by Vi(Q). Let G be either the entire boundary I' = 9 or a face F of I, then we define the
restrictions of the tangential components of functions in V4 (2) on G as

Vi(G) = {1/) € L*(G)% ¢ =vxn on G for some v € Vh(Q)} .
The following local subspaces of Vh(Q) and Vj,(F) will be important to our analysis:
V(Q) = {V eVi(€); vxn=0 on f‘},

VIF) = {CID:VXnEVh(F); Ae(V) =0, VeC@FﬂEh}.

Similarly, the restrictions of Z(£2) in subdomain Q, on its boundary I" and on a face F, are
written as Z,(Q), Z,(I'), and Zj,(F), respectively. For a subset G of T', we define a “local”
subspace

Z9(G) = {v € Zy('); v =0 at all nodes on I'\G}.

Finally we introduce the discrete curl curl-extension operator Ry, : Vh(f‘) — Vh(fl). We
define Ry, as follows: for any ® € V;,(T'), R, ® € V,,(Q2) satisfies Ry, ® x n =@ on I' and

(curl R;,®, curlvy) + (Ry®,vy) =0, Vv, € V2(Q).



3 A stable weighted Helmholtz-type decomposition

As is well known, the Helmholtz decomposition plays an essential role in the convergence
analysis of the multigrid and non-overlapping domain decomposition methods for solving
the Maxwell system (1.1)-(1.2) by edge element methods; see, e.g., [2] [14] [15] [20] [21].
Any edge element function vy, from V3(£2) admits a Helmholtz decomposition of the form

vi, = Vpn + wWp, (3.1)

for some pp, € Z,(2) and wy, € V3 (2), and p, and wy, are orthogonal in the inner product
of L?(€2), namely (wy, Vpp,) = 0, and have the following stability estimates

IVpnllog < Clivalloq,  [Iwrllog < Clleurlviafloo. (3.2)

But in order to effectively deal with the divergence constraint in (1.2), one needs the decom-
position (3.1) to be orthogonal with respect to the weight function 3, namely (Bwy, V) =
0. This can be done naturally, with the stability estimates (3.2) holding. But unfortunately,
it is unclear how the coefficient C' appearing in the two stability estimates in (3.2) depends
on the coefficient 5, especially for the practically important case where § is discontinuous
in © and may have large jumps across the interface between any two different physical me-
dia. For this reason, although there are many multigrid or domain decomposition methods
available in the literature for the Maxwell system (1.1)-(1.2), with optimal or nearly opti-
mal convergence in terms of the mesh size and subdomain size, it is still unclear how their
convergence depend on the jumps of the coefficients a(x) and B(x) in (1.1)-(1.2).

The aim of this work is to fill in this gap and construct a discrete weighted Helmholtz-type
decomposition, that is stable uniformly with respect to the jumps of the weight coefficient
B(x). The new (weighted) Helmholtz decomposition can be used to analyze convergence
of various preconditioners for Maxwell’s equations with large jumps in coefficients. For an
application, we will show in Section 7 with the help of such a weighted Helmholtz decompo-
sition that the substructuring preconditioner constructed in [21] converges not only nearly
optimally in terms of the subdomain diameter and the finite element mesh size, but also
independently of the jumps in the coefficients a(x) and 5(x) in (1.1)-(1.2).

From now on, we shall frequently use the notations < and . For any two non-negative
quantities  and y, x < y means that x < Cy for some constant C' independent of mesh
size h, subdomain size d and the possible large jumps of some related coefficient functions
across the interface between any two subdomains. z Z y means z < y and y < w.

We need to introduce a few concepts in order to describe the relation between different
subdomains from {99}7{\21, which are described in Section 2.1, based on the distribution of
the discontinuity of the coefficient function £(x) in (1.2).

Definition 3.1 For a subdomain QU, another subdomain QB, is called a “child” of Q0 if

Qg, NQ0 # 0 and B < B,. In this case, the subdomain Q° is called a “parent” of QS,.

Now we make an assumption on the coefficient 5(x). From now on, when we say two
subdomains Q2 and Q0 do not intersect if Q9NQY, = (; otherwise we say the two subdomains
intersect each other. So based on this definition, two subdomains sharing only a common
vertex are also said to intersect each other. For any subdomain Q0 (1 < r < Np), we assume
that it satisfies one of the following two conditions:

Condition A. At most two “ parent ” subdomains of Q20 do not intersect each other.
Here a “ parent ” subdomain may be the union of all parent subdomains of 22 on which
B(x) takes the same value.
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Figure 1: A domain  with multiple media satisfying Condition A (left) or B (right)

Condition B. The intersection of Q¥ with the union of all parent subdomains of Q0 is
a connected set.

In many applications, one may encounter only two or three different media involved in
the entire physical domain, and in this case Condition A or B should be fulfilled naturally.
In general, these two conditions are also mild and reasonable, and cover a lot of practical
applications with complicated multiple medium cases; see Figure 1 for an example with 7 to
12 media, where each block with a different number is a different medium, and the relation
i > j means that the physical coefficients in the two blocks satisfy 3; > 3;, so the medium
domain ¢ is a parent of medium j if they intersect each other. One can readily check that
the left medium example in Figure 1 satisfies Condition A, while the right one satisfies
Condition B. Clearly all the cubic blocks can be of curved shape as well.

The following theorem provides an auxiliary result which is essential to the derivation
of the desired weighted Helmholtz decomposition. The proof of the theorem is delayed to
Section 6.

Theorem 3.1 Assume that either Condition A or Condition B holds for each subdomain
Q0 (1 <r < Ny). Then for any edge element function wy, € Vi (Q) satisfying

(Bwn,Van) =0, Vg, € Zp(9Q), (3.3)
we have the following estimate
|87wh 8.0 < Clog™ ! (1/h) |82 curlwy [§ o, (3.4)
where constants m and C are independent of h and the jumps of the coefficient 3.

The following theorem presents the main result of this paper.

Theorem 3.2 Assume that either Condition A or Condition B holds for each subdomain
Q0 (1 <r<Ny). Then any vy, € Vi (Q) admits a decomposition of the form

Vi = Vpp + Wy, (3.5)
for some pp, € Zy () and wy, € V3, (), and wy, satisfies
(BwWh, Van) =0, Van € Zp(2). (3.6)
Moreover, py, and wy, have the estimates
182Vpnl3e < 182val3a, 182Waldq < Clog™ (1/h)|B2eurlva[3q  (3.7)

where constants m and C are independent of h and the jumps of the coefficient B.



Proof. For any v, € V3(Q2), let py, € Z,(2) be the solution of the problem

(BVon, Van) = (Bvn, Van), Van € Z,(2).

Then the first estimate in (3.7) follows directly from the above definition of p; and the
Cauchy-Schwarz inequality. Now setting wj, = vj, — Vpy, then relations (3.5) and (3.6)
follow immediately also from the definition of pj, while the second estimate in (3.7) is a
direct consequence of (3.6) and Theorem 3.1.

The remaining part of this work is devoted to the demonstration of Theorem 3.1 and the
application of the new discrete weighted Helmholtz decomposition. To this end, we need to
prepare quite a few technical tools and results.

4 Several variants of the Helmholtz decomposition

This section is a preparatory section for the establishment of a stable discrete Helmholtz
decomposition as stated in Theorem 3.2. Throughout this subsection, we shall consider a
convex polyhedron Q with its diameter of size O(1) (see Remark 2.1), which represents a
generic convex polyhedron from the medium subdomains 9, Q9 - - -, Q(])VO. Let Zh(Q) and

V() be the standard nodal and Nédélec finite element space on €) respectively as defined
in Section 2.1.

Lemma 4.1 Let ' be either an empty set or a (closed) face of Q or the union of several
faces of Q, and vy, be a function in Vi () satisfying vy, x n = 0 on I'. Then v, admits

a decomposition v, = Vpp, + wy, for some pp € Zp(2) and wp, € Vi () such that pp, = 0,
wp, xn =0 onT, and wy, satisfies ||wp|, o < [lcurlvy||, -

Proof. As vy, € V,(Q), we have v, - n € L*(99). Consider p € H' () satisfying

A~

Ap = divvy in Q, (4.1)
p = 0 on f,
g—ﬁ = vi-n on IOND (4.3)

and w = vj, — Vp. Then we know w € H(curl; Q) N H(div; ), and w satisfies

~

curlw = curlv, in Q (4.4)
wxn = 0 on I, (4.5
w-n = 0 on dQ\L.

As in the proof of Theorem 4.3 in [2], we can verify, with some natural modifications, that

[wllso S leurlwlly o = leurlvylly o, (4.7)

where § € (%, 1] depends on the geometric shape of Q only. Now by applying the edge
element interpolation 7, on both sides of the decomposition vy = Vp 4+ w, we know how
to take the desired functions p, and wy, in the lemma, i.e., wy, = rpw and Vp, = r, Vp.
Indeed, we have by the error estimate of the operator ry, (cf.[2] [11]) and (4.7) that

5
IWallog = llrawlly g S IWlloo + lraw = wlly o S Iwllo o + 2 Wll5q S lleurlvally o



Lemma 4.2 For any face F of ), assume that v, € Vh(Q) satisfies vy, - tgp = 0 on OF.

~ ~

Then there exist py, € Zp(82) and wy, € V() such that p, =0, wy, - togp = 0 on IF, and
v = Vpp + wp, (4.8)
with the following estimate
Iwilly.o < log(1/h)llcurtwi |y o. (4.9)
The conclusion is also valid for the case when F is replaced by a union of some faces.

Proof. We separate the proof into two steps.

Step 1: Establish the desired decomposition. We first establish a Hodge-type decom-
position on the given two-dimensional face F. To do so, we introduce a space W} (F) on F,
consisting of tangential vectors:

Wi(F) = {n x (v x n)|p; v, € V3(Q)},
and define a function v, g € Wj,(F) such that
vpip=nx (v xn) on F; vyp=0 on IQ\F.
Then there exist pyp € Z,(Q) and Wi F € Vi(Q) by Lemma 7.12 of [29] such that
Vik = Vsppr +Wpp on F,

where Vg is the two-dimensional surface gradient, pj, r and wy,  satisfy pp v = 0, wpp =0
on OQ\F, and have the estimate

[whrllgq + leurl whplly g S lleurlsvarll 1 g, (4.10)

where curlg is the so-called surface curl; see [29] for its definition. Note that the surface
curl is just the tangential divergence, i.e., curlgvy p = divy(n X v, y); see [1] [2] [20].
Then we define
ViF = Vo — (Vpnr + Wi ). (4.11)

We can check that v, p x n =0 on F. By Lemma 4.1 v, p admits the decomposition
ViF = VDp + Wy (4.12)
for some py, € Zh(Q) and Wy, € Vh(Q) such that pp, =0, wj, x n = 0 on F, and wy, satisfies
[Whallgo S llcurkwy|l, - (4.13)

Now by defining
Ph = PhF +Prn and wp, = Wy p + Wp,

we get the expected decomposition
vip = Vpn + wWp, (4.14)

where p;, and wy, satisfy p, = 0, wy, - tgp = 0 on OF.
Step 2: Verify the desired estimate (4.9) for the decomposition (4.14).



By the definition of wj, and the triangle inequality, we have
[Whlloo S IWnrllog + IWnallgq-

This, along with (4.11), (4.12) and (4.13), leads to

Iwally o < ot lleurlwy, g lly o + [[curlvy|, o

Then, we further get from (4.10) that

HWhHo o S lleurlsvy|| 1F + ||curlvh||0’Q. (4.15)

On the other hand, using the known face H ~2-extension (cf. [17] [29]) and the trace theorem,
we obtain

|curlsval| 1 p S log(1/h)|curlsval_ 100 S < log(1/h)|lcurl vy ¢,

5 ~Y
Substituting this into (4.15), yields the desired result (4.9). i

Remark 4.1 The face H~ 3 -extension used in the proof of Lemma 4.2 brings in an a log-
arithmic factor in the estin%ate, thus an extra logarithmic factor in the main estimate of
Theorem 3.2. This face H_E-exltension, which seems to be sharp, can be regarded as a dual
result of the well-known face H?2 -extension (see, e.g., [32]). To our knowledge, this kind of
face H™ 2 -extensions was first estimated in [17].

Lemma 4.3 Let E be a (closed) edge of Q, and vy, be a finite element function in V;,(Q)
such that v - tg = 0 on E. Then vy, admits a decomposition

v, = Vpn +wp,
for some pp, € Zh(Q) and wy, € Vh(Q) such that pp, = wp, - tg =0 on E and

[Wallyq < log(1/h)|lcurl wyl|) o (4.16)

Proof. We separate the proof into three steps.

Step 1: Establish an edge-related decomposition.

Let F be a face containing the edge E. We first consider a decomposition of the tangential
component vy, -typ of vj, on JF. For convenience, we write E¢ = OF\E. Let s be the arclength
along E, taking values from 0 to [y, where [y is the total length of E€. In terms of s, v, - tge
is piecewise linear on the interval [0,[y], denoted by ©(s). Then we define

lo t
cEzl/O o(s) ds, ¢E(t):/0 (6(s) — Ci)ds, Vte0,l].

lo

Clearly we see ¢g(t) vanishes at ¢ = 0 and ly. Now we can extend ¢ and Cg naturally by
zero onto E, then extend by zero into 9 and € such that their extensions ¢ € Z,(2) and
Cg € Vi (€). One can verify that (cf.[29]) that

Vi - tor = (V(;;E) -tor + CE -tor. (4.17)
Step 2: Construct the desired decomposition in Lemma 4.3. For the purpose, we set

Ve =vi — (VoE + Cg). (4.18)



By (4.17) we know v, g - tsgp = 0 on OF. For function vy g in (4.18), following the same

way as it was done in the proof of Lemma 4.2 one can find two functions p;, € Zh(Q) and
wp, € Vi, (Q) such that pp = 0, Wy, - tgp = 0 on OF, and (see (4.14))

ViE = VDp + Wp,
with the following estimate (see (4.15))
[Whllgo < lleurlwy|g o + chrlgfrh,EH_%’F. (4.19)
Now by defining

ph =B +pn and w, = Cg + Wy,
we get the final decomposition
v = Vpn + Wy (4.20)
such that pp, =0, wp, - tg = 0 on E.
Step 3: Derive the desired estimate in Lemma 4.3 for the decomposition (4.20).

Noting that v, -tg = 0 on E, so vy, - tgp = 0 on E, we have by the Green’s formula on F
and change of variables (cf. [29]) that (with [ being the total arclength of OF)

1/t 1

Cg = / 0(s)ds = / curlgvy, - 1ds. (4.21)
lo Jo lo

Let I21 be the face interpolant of 1, namely I21 € Z(Q) and takes value 1 at those nodes

in F, and zero at all other nodes on 9 and in . Similarly we define the edge interpolant

I9:1. As in the analysis of the face H~'/2-extension (cf. [17] [29])), we can show

N|=

1 _1
1121]1 pg < log=(1/h), lleurlsvallor S h~2llcurlsvall 1 oo [Hzr1llor

)

S h2,
thus obtaining
]/Fcurlgvh -1ds|] < log%(l/h)chrlSvhH 190 S log%(l/h)chrl Valloa-
This, along with (4.21), leads to
C| < log? (1/h)[curl vl .

By the definition of Cg, we further obtain

1

Using this estimate and the definition of Cg we obtain

leurlsCrl|_1 p <1 0g2(1/h)||C

~

(4.22)

HCEHOQ + chrlCEHOQ < HCE taFHO oF < log2 l/h)chrlvhHOQ7 (4.23)

where we have used Lemma 6.8 in [21] for the derivation of the first inequality in (4.22). By
the definition of v, g, combining the H~ 3-extension with (4.22), yields

”CUT150h7E||_%7F < HCUTlthH_%,F + [leurlsCgl|_1 F

~

10



log(l/h)chrlgvhH_%’af2 + log(l/h)||curlvh||07 a

<
S log(1/h)|[curlvy |, ¢ (4.24)

Now by the triangle inequality, we have
IWhllog S ICEloq + 1Wallg g
which, together with (4.23), (4.19) and (4.24), leads to
[Whllgq < log(1/h)[curlvy|ly o + [[curlwpl|, o. (4.25)

Noting that 3 3
curl w;, = curlw;, — curl Cg = curlvy,, — curl Cg,

we obtain by using (4.23) that
leurl¥nllyq < lleurlvi|lgg + llcurl Cllg ¢ < log(1/h)|lcurl vyl .
Combining this with (4.25), we get the desired estimate (4.16). 4
Lemma 4.4 Let v be a vertex on and vy a function in Vh(Q). Then we can write vy, as
Vi = Vpp + Wp
for some py, € Zp(Q) and wy, € Vi,(Q) satisfying pp(v) = 0 and

Iwlly.o S log(L/h) [eurlwyl, 6.

Proof. Consider a face F containing v as a vertex, and let ¢gr be a function that is linear
on each edge of F and continuous on OF such that ¢gp(V) = 0. Then as in the proof of
Lemma 4.3, we can follow [29] to decompose vy, - tgp on OF and build the desired decompo-
sition for vy,.

Lemma 4.5 Let E be a (closed) edge of Q, and v be a vertex on but v € E. Assume that

N

v, € Vi(Q) satisfies Ae(vy) = 0 for all e C E. Then vy, can be decomposed as
Vi = Vpp + Wy,
for some pp, € Zh(Q) and wy, € Vh(fl) such that
pr(V) =0, and prb=0 on E, A(wp)=0 VeCE,
and wyp, has the following estimate

||Wh||07§2 < log(l/h)”curlwhHO’Q. (4.26)

Proof. Let F be a (closed) face, which has v as one of its vertices, but does not have E as
one of its edges. Let Cyr be the average of vy, - tgg over JF, then we can split vy, - tgr into
the sum ¢} + Car on OF such that ¢gp is continuous on OF, and piecewise linear on eaclil
edge of F and satisfies pgp (y) = 0. Then we extend ¢gr and Cgr naturally by zero onto €2

such that their extensions ¢gr € Z5,(Q) and Car € Vj,(Q).
We will treat the problem separately according to two different cases.
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(i) There is a (closed) face F’ such that F' N F = () and F’ has E as one of its edges. It is
the case when () is a hexahedron.

In this case, we can directly decompose vy, - tge into the sum ¢ +Cg, on E¢ = OF'\E as in
Lemma 4.3, then extend ¢r and Cg naturally by zero such that their extensions §Z~5E € Zh(Q)
and Cg, € V;,(€). Then we define

Vi = vi — (Voor + Vg + Cor + Cr).

It is clear to see (Vy, - tor)|ar = (Vi - tgp/)|opr = 0. Now applying Lemma 4.2 for v, one
can get a decomposition of v;, based on the two faces F and ¥/, and further construct the
desired decomposition of vy,.

(ii) The edge E has a common vertex with a (closed) edge E' of F. This is the case when
) is a tetrahedron. Then we set

Vi = v — (Voor + Cor).

By the assumption, we know v, -tpr = 0 on I' = EUE'. Let F’ be the face with E and
E as two of its neighboring edges, and set I'“ = 9F’\I'. As in Lemma 4.3, we can build a
decomposition of vy, - tpe as follows:

Vi - tre = @Z)/l" +Cr onTI€,

where ¢r vanishes at the two endpoints of T'°. Let ¢r € Z,(Q) and Cr € Vj () be the
natural extensions of ¢r and Cr by zero, respectively, and set

Vi =i — (Voor + Vér + Cor + Cr),

one can easily check that (Vy - tor)lor = (Vi - typ)|gpr = 0. Now applying Lemma 4.2 for
Vv, one can get a decomposition of v;, based on the two faces F and ¥/, and further get the
desired decomposition of v, as in Lemma 4.3.

Following the same arguments as the ones in the proof of Lemma 4.5, we can show

Lemma 4.6 Let I’ be the union of a set of neighboring (closed) edges and (closed) faces
on such that it is connected and vy be a function in Vh(Q) satisfying Ae(vy) = 0 for all
e C . Then vy, admits a decomposition

Vi = Vpp + wp

for some py, € Zh(Q) and wj, € Vh(Q) such that pp, = 0 on I' and Ae(wp) =0 fore C I,
and wy, satisfies the estimate

Iwallgq < log(1/h)|curlwy||g o-

5 A stable decomposition for any function v, in V}(Q)

With the help of the preliminary results from Section 4, we are now ready to address the
central task of this work, namely to construct a discrete weighted Helmholz-type decompo-
sition for any function v, in V3 (€2). For the purpose, we start with a classification of all the
polyhedra {Q9}°, based on the values of f(x) in (2.1).

Let X1 be the set of all polyhedral subdomains Qg which do not have a parent subdomain.
Namely, Q¥ € ¥; if and only if it holds that for any subdomain QQ, with 7/ # r, either
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QS, NQY =0 or B < fB,. Clearly ¥ is not empty, as it contains at least all the subdomains
00 where it holds that 3, = maxi<k<nNy Bk-

Let Y9 denote a subset of the children of all polyhedra belonging to 3; such that each
polyhedron in 5 has no parent subdomain in {Q0}° \¥;. If £y = @, then there are no
subdomains where ((x) takes values less than its value in ¥, and we stop the process.

Similarly, if Yo # 0 we let X3 be a subset of the children of all polyhedra belonging to
%)) U ¥ such that each polyhedron in 3 has no parent subdomain in {Q0}Y0 \ (2 U %y).
If X3 = (), there are no subdomains where 3(x) takes values less than its values in 3; and
Yo, then we stop the process.

We continue this procedure to classify a sequence of non-empty sets, 1, Yo, - - -, till we
have ¥,,+1 = 0 for some m > 1, that is, there are no subdomains where 3(x) takes values
less than its value in %,,. Clearly such integer m exists and m < Njy.

We can see from the above classifying process that the sequence i, ---, 3, sat-
isfy the following conditions: (1) ¥; # 0 for 1 < [ < m; (2) X; consists of some chil-
dren of polyhedra belonging to Uli;lZi; (3) each polyhedron in ¥; has no parent sub-
domain in {Q0}N°, (UIZ1%)); (4) any two polyhedra in ¥ either do not intersect each
other or coefficient 3(x) takes the same value on both polyhedra; (5) {€9,Q9,---, Q% } =
{¥1,%9,-+, 250}

Next, we set ng = 0. Without loss of generality, we assume that for [ =1,---,m,

— 0 0 0
= {in,1+l7 Qn171+27 T in}

and n; > n;_1. Clearly, we see n,, = Ny and that ¥; contains (n; — n;_1) polyhedra.

We are now ready to construct a desired decomposition for any vy in V,(€2), and try
and achieve this by three steps.

Step 1: Decompose vy, on all the polyhedra in ;.
We shall write vy, = Vh|99. For » = 1,2,---,n1, we can follow the arguments of
Lemma 4.1 to decompose vy, as follows:

Vhr = Vpr +w, = vph,r + rpwy 1= vph,r + Wp o, (51)

where p, € H(QV), and w,. € H(curl; Q%) N Ho(div; QY) and divw, = 0 in Q0. Moreover,

||Wh7r||0,99 + [|curlwy, , 0,00 < chrlvh,THO,QQ Vr=1,---,nq. (5.2)

Let pp, € Zp(€2) be the standard extensions of p,, by zero onto , and Wy, € Vj,(Q)
be the discrete curlcurl-extension of wy, . in each Q? such that Ac(Wp,) = 0 for every
e C OONIN? for all [ # r. Then we define

Vi = VDhy + Wy, for all 7 such that Qg € 3. (5.3)

We remark that if a subdomain Q¥ in ¥; intersects one or more than one other subdomains
in ¥, then §(x) must take the same values in all these subdomains. In this case, we should
take the union of all these subdomains to replace QY when we do the extensions for Dh,r and
wp,,» above.

Step 2: Decompose vy on all the polyhedra in 3.

Consider a subdomain Q0 from ¥5. By the assumption of Theorem 3.2, Q0 satisfies
either Condition A or Condition B. For the sake of exposition, we treat only one case in
each step, namely Condition A in this step, and Condition B in Step 3. The other case in
each step can be handled in a similar manner. As QU satisfies Condition A, it has at most
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two parent subdomains in 31, which do not intersect each other. Without loss of generality,
assume that QY has two parent subdomains in 1, say QY and Q2 , and Q2 NQY, = 0, while
Q2N QY =V (avertex) and QY N QY = E (an edge). Set

% ~ ~ 0
Vi = Viy — (Ve + Vi) on Qg

It is easy to see that Ac(v} ) = 0 for e C E. Then by Lemma 4.5, there exist p}, . € Zp(Q9)
and w; € V,,(Q0) such that

Vi, = Vpi, +wi, on O, (5.4)
and
Phr(V) =0, pp,=0 on E, and Ae(wp,)=0 forall eCE. (5.5)
Moreover, for r = ny + 1,---,ng, i.e., for all indices r such that Q0 € ¥, it follows from
(5.4) and (5.3) that
leurlwy, , flogp = lleurlvy . [lo.oo = [[eurl(Va, = (Whry + Wi ))llo,0
2
S lleurlvypflo.00 + Z lcurlws, ., [lo,00- (5.6)
=1
We further get by (4.26) that
[Whllogo < log(1/h)|[carlwy . lo a0
2
< log(1/h)(leurl vy, lloao + ) lleurl ¥y, llo oo)- (5.7)
=1
Now we can define the decomposition of v on Q0 € 5 as
2 2
Vie =V Ohe + Y Phn) T Wi+ Y Wiy (5.8)
=1 =1

where wy, ., = 0 on 09 by noting that Q9N le =V, with Vv being a common vertex.

For functions p; . and wj _ in (5.4), we shall extend them onto the entire domain €.
Let pj, . € Zp(S2) be the standard extension of pj, . by zero onto 2, and wj, . € V,(£2) be an
extension of wj  such that A.(W} ) = 0 for every e C 900\0N2 with all I’s such that [ # r,
and w;  is the discrete curl curl-extension on each QZO. Then we set

Ve = VDp + Wy, for all r such that QY € ¥y, (5.9)

We remark that if a subdomain Q0 in X9 intersects one or more than one other subdomains
in X9, then 5(x) must take the same value in all these subdomains. In this case, we should
take the union of all these subdomains to replace QY when we do the extensions for Dy, - and
W}, . above. 7

Step 3: Obtain the final desired decomposition of vy,

We now consider the index [ > 3, and assume that the decompositions of v on all
polyhedra belonging to 31 Yo, ---,%;_1 are done as in Steps 1 and 2. Next, we will build
up a decomposition of vy, in all subdomains Q0 € 3.

Without loss of generality, we assume that Q0 satisfies Condition B; see the remark
at the first part of Step 2. Then by Condition B, we use I'; to denote the corresponding
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connected set, which is the union of some edges and faces. For the ease of notation, we
introduce two index sets:

Alz{i; 1 < ¢ < ng such that 89?(18(227&@}’

A7V = {4 ni+1<i<mn_;such that 9QY N aNL £ p}.
Define

y=Vhy — thl— Z Vii on Q. (5.10)

1€AL igAL_l
By the definitions of vj; and v}, ;, we know )\e(v;‘w) =0 for all e C I';. So by Lemma 4.6,
one can find p} . € Z, (V) and w} , € V,(922) such that
Vi = VD, +Wp, on Qv (5.11)

and
Phyr =0 on I and Ae(wy,) =0 foralleCT,. (5.12)

Using (5.10) and (5.11), we have the following decomposition for v, on each Q¥ € ¥; :

Vi = V(ph, + Z Phi + Z Phi) T Wh, + Z Wi + Z W}, on Q. (5.13)
= ieA! €Ay ieAl!

By (5.11) and the estimate for w}, . in Lemma 4.6, one can verify for all Q0 € 3 that (see
Step 2)

leurlwy flooo S leurlwy, ;[lo,.0o(5-14)

€Ay ienlt

Iwilooy < log(1/m)(lleurlvi, o + Y- lleurl Wil oy
i€AL

+ Y lleurl Wi floa)- (5.15)

ieAl!

As it was done in Steps 1 and 2, we can extend P and wj - by zero onto the entire
domain 2 to get p; . and w} . Then we define

Vi, = VP, + Wi, forallrsuch that Q) €. (5.16)

By the definition of v . and the property (5.12), we know A.(vy,) =0 for alle € T',.
Continuing with the above procedure for all I’s till [ = m, we will have built up the

decomposition of vy over all the subdomains Q(l), Qg, e Q?VO such that
1 Nm
VA=Y Vhet > Vi, =Vppt+ws (5.17)
r=1 r=ni+1

where p;, € Z,(2) and wy, € V() are given by

ph—zphr+ Z phr and Wh—ZWhr—f— Z WZ’T. (518)

r=ni+1 r=ni+1
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6 Proof of the key auxiliary result

This section is devoted to the proof of the key auxiliary result of this paper, Theorem 3.1.
For this purpose a few important concepts about the relation between different subdomains
are first introduced. It is reminded that all the subdomains 09,99, .. Q?VO below are the
same as the ones described in Section 3.

Definition 6.1 A parent of subdomain QU is called a level-1 ancestor of Q°, and a parent
of a level-1 ancestor of Q0 is called a level-2 ancestor of Q0. In general, a parent of a level-j
ancestor of Q2 is called a level-(j + 1) ancestor of QV.

Definition 6.2 A child of Q0 is called a level-1 offspring of 2, and a child of a level-1
offspring of Q0 is called a level-2 offspring of Q0. In general, a child of a level-l offspring of
00 is called a level-(I + 1) offspring of QU.

By AY )(a) we shall denote the set of all level-j ancestors of ¥, and L, (a) the number of
all the levels of the ancestors of QV. By AV (0) we shall denote the set of all I-level offsprings
of Q0 and L,(0) the number of all the levels of the offsprings of QU.

The following auxiliary estimate is needed in the proof of Theorem 3.1.
Lemma 6.1 For any subdomain Q0 from ¥; (1 > 2), let w}, . be defined as in Steps 2 and

3 for the construction of the decomposition of any vy, € Vi,(2) in Subsection 5. Then wj .
admits the following estimate

Ly(a)
leurlwi,, lo.00 S llewrlvillpop + S log/(1/h) 3 feurlvillgge.  (6.1)
J=1 ieA?) (a)

Proof. We prove by induction, and start with the case of [ = 2. It follows from (5.6) that

2

0.00 + ) lleurl Wi, flo.qo- (6.2)
=1

Jeurl wi,,|

000 S [leurl vy, |

As Wy, is the discrete curl curl-extension in QY, we have (cf. Lemmata 4.5 and 6.10, [20])

~

= log(l/h)chrlvhHO@gQ, (6.3)

leurlW,,lloe S log"2(1/h) Wi, X 1o < log(1/h)||curlwp, ., [lo,00,

where E denotes the common edge of QY and QY or the union of these common edges. This,
combining with (6.2) and the fact that Wy, =0 on QY, yields

lewrlwi logy < llewrlvao.gp +log(1/h)eurl vi o op

< leurlvylog +log(1/h) Y [leurl vyl go- (6.4)
ieAtM (a)

So (6.1) is verified for all the subdomains Q2 in Y.
Now, assume that (6.1) is true for all subdomains Q0 € ¥ with I < n. Then we need to
verify (6.1) for all subdomains Q2 € %,,,1. It follows from (5.14) that

leurlwi oo < lleurlvisllogo + D feurlwhillogo + Y feurlwylloge.  (6.5)
e iEAT
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Similarly as (6.3) was derived, one can check that for each i € A,

leurlwylloo < log(1/h)|lcurlwy g o = log(1/h)|curl v illo oo,

log!/2(1/h)[[¥},; x nllo.e = log"*(1/B)||wi,; x nlog
log(1/) eurl wj, [ os.

leurlwy il S
<

where E denotes the common edge of Q0 and Q? or the union of these common edges.

Combining these estimates with (6.5) gives

leurlw} flog < lleurlvi,oag +log(1/h) D lleurlvill oo
1€AL
+ log(1/h) Y [leurlw} ;o oo-
ieA?

(6.6)

Noting that for i € A}, we have Q? € 3 for some [ < n. Thus by the inductive assumption,

Y lleurlwi oo < D lleurlvylg g

iEAD iEAD
Li(a)
+ Z Z log? (1/h) Z lcurlvillg oo
€A j=1 kEA(-j>(a)

(6.7)

But for all subdomains QY € ¥,,41 and i € A”, we know L;(a) < L,.(a) and Az(j)(a) = () for

j > L;(a) by definition, so we have the relation

Ly(a)

¥Y Y Yy Y -3 %

€AY J=1 kenD (@) I €A keAD (@) T keAUT Y (a)

Combining this with the fact that AV (a) = 0 for j > L,(a), we get

Li(a) Ly(a)—1
€A J=1 kea (a) = keAV ™ (a)
From this identity and (6.7) it follows that
L,(a)
Z [curl wj ; Z chrlvhHO,Qg.
1EAT ZEA" kEAsj)(a)

Substituting this into (6.6), and using the identity

Z+Z: Z for Q0 € %41,

’L’EA}. 1EAT iEA»(pU(a)
we can immediately derive that

Ly(a)

[curlwy ,

) Y Jleurlvag g

j=1 keAY) (@)
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This proves (6.1) for all subdomains QY € ¥,, 11, thus completes the proof of Lemma 6.1 by
the mathematical induction.

Proof of Theorem 3.1. We are now ready to show Theorem 3.1. Let v;, € V()
satisfy the orthogonality (3.3), then we can have the decomposition (5.17) for vy,
By means of (5.17) and the orthogonality (3.3), we first see

(BVvh.vh) = (BVph, Vpn) + (Bwh, wy) 4+ 2(8Vpr, wy)
(BVpnh, Vor) + (BWh, W) + 2(8Vph, Vi, — Vp)
= (Bwn, Wn) — (BVpn, Vo) < (Bwh, wy),

which implies

No
1
(Bvivi) < 3183 Wal2 g0 6.11)
r=1

: : . 1 )
So it remains to estimate [|32wy||2 o for each subdomain Q0.
R

We start with the estimate of HﬁéwhHg qo for each subdomain Q2 in ¥y, ie., 1 <r < nj.
By the definition of W} , in (5.18), we have A.(W} ;) = 0 for e € 9QY. Moreover, any two
of the subdomains QY - - 7921 do not intersect, so we have

1 1
187 wAlIG 0o = 187 Wn,rl13 00 = B Iwn,r Il -

This, along with (5.2), yields the following estimate for r =1, .-+ nq,

1 1
183 wnl12 00 < Brlleurl vy, |2 go = 157 curl vy 12 go. (6.12)

Next, we consider all the subdomains Q¥ in ¥5. As in Step 2 of the construction of the
stable decomposition for v, we assume that Q0 satisfies Condition A and has just two
parent subdomains in %y, QY and Qf, which satisfy that Q) N Q% = v (a vertex) and

QYN QY =E (an edge). Then we have
Wh|QQ = W;kz,r + whﬂ? |QQ

By the triangle inequality,

Iwallo.oo < I1Whrllogo + W llogo- (6.13)

Noting that wy, ., is the discrete curl curl-extension in QY we can deduce by using Lem-

ry
mata 4.5 and 6.10 in [20] that

- 1 -
[Whrsllogg < 1og2(1/h)[[Whr, X nllor S log(1/h)[lcurlvallg o -
Using this estimate, (5.7) and (6.4) we derive from (6.13) that
Iwrllo,00 < log(1/h) leurl vy o a0 +log?(1/h)|[curl valg oo - (6.14)

Then by inserting the coefficient 3, we readily have for all subdomains Q¥ € Y5 that

1 1 1
182 whllooo < log(1/h) |87 curlvyloao +log®(1/h) |57 curl vallo oo,
1 1
S log(1/h)|| 37 curl vplg oo + log?(1/h) g”ﬁ%cuerhHo,ng- (6.15)
T2
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Finally we consider all the subdomains QU from the general class ¥; with [ > 3. By
the definition of wp, we can establish the same decomposition for wh\Qo as we did for
Vi = Vhlgo in Section 5; see (5.10), which leads to the following decomp031tlon in QY for

Wh!
* ~ ~ %
Wh =W, + E Wi+ E Wh,i-
i€A} ieal!

In an analogous way as deriving (6.14), one can verify by using (5.15) that

Iwalloge S log(1/h)llcurl vilgqo +log*(1/h) D lleurl vallgqo

1EAL
+ log*(1/h) Y |leurl w} o qo- (6.16)
ienl™t

But it follows from Lemma 6.1 that

Ll(a)
leurlwi ;oo < lleurlvallggo + > log?(1/h) Y Jleurlviloqo-

j=1 keA? (a)

Then we further deduce from (6.16) that
Ly(a)

IWhllogo < log(1/h)|[curlvillogo + D log’ ™ (1/h) > [leurlvylo go-

7=1 ieA?) (a)

Inserting the coefficient 5 gives

1 1
| N lOg(l/h)ll/é’%url Vhllo.00
(a)
+ Z log/t1(1/h) Z ||ﬂ2curl vallo, Q0

7j=1 A(J)( )
Summing up this estimate with the ones in (6.12) and (6.15), we come to

1 1
182 wallso < 10g(1/h)H520ur1 valld.o

’r

No
Br 1
+ > Zlogﬁl 1/h) > E||ﬁ2curlvh|](2m?. (6.17)

r=ni+1 j=1 ZEA(Tj>(a)

By the definitions of L,(a), AY )(a) and AY) (0), we can verify that

'r‘

No 5
> ZlogJH 1/h) Y ﬁTHﬁchrlvhHOQO

r=ni1+1 j=1 ng&”()
No Ly (o)

= Y (B Yot a/m) Y Br)lBFeurl villf g

r=1 7j=1 Z’EAS”(O)

No
< 1og™ 1 (1/h) Y G|z curl vy o, (6.18)
r=1
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where m = max L,(0) and C, is a constant given by
1<r<No

Ly (o)
Or = 18;1 Z Z /87, .

7=l ier (o)

Noting the facts that 3; < 3, for all i € Agj)(o), L,(0) is a finite number and the set

AY (0) contains only a few elements, the constant C, must be uniformly bounded for all r’s.
Applying (6.18) to (6.17), we obtain

1 1
182 wll5.o < Clog™ ! (1/h)||B2 curl v4|[5 o

where C' is a constant given by C' =  max. C,. This completes the proof of Theorem 3.1. §
<r<No

7 Application

In this section we shall apply the discrete weighted Helmholtz decomposition (cf. Theo-
rem 3.2) developed in Section 3 to analyse how the condition number of the preconditioned
edge element system by the non-overlapping domain decomposition preconditioner proposed
in [21] depends on the jumps of the coefficients in (1.1) and (1.2) across the interfaces be-
tween any two subdomains of different media. We will adopt the same notations below as
the ones in Section 2.1.

Associated with the Maxwell system (1.1)-(1.2), we may consider (cf. [21]) the following
variational saddle-point formulation: Find (u, p) € Hy(curl; Q) x H}(£2) such that

{ (acurl u, curl v) + v (Bu,v) + (Vp, pv) = (f,v), Vv € Hy(curl; Q) (7.1)
(Bu,Vq) = (9.9), Vg€ Hi(Q) '
and its edge element approximation: Find (up,pp) € Vi(Q) x Z,(2) such that
{ (acurl up, curl vi) + vo(Bun, vi) + (Vpn, Bvy) = (£,vy), Vv € Vi (Q) (7.2)
(Bun, Van) = (9,an);  Van € Zn(). '

It is well known (cf. [11] [15] [25]) that the system (7.2) can be simplified to a symmetric
and positive definite one, namely we can set the Lagrange multiplier p;, = 0 and remove the
second equation, when vy = 1 or the zeroth order term is present in the Maxwell equation
(1.1). The most challenging case in the numerical solution of system (7.2) is the real saddle-
point case when -y = 0, where we have to keep pp and the second equation there. Still no
efficient iterative methods have been proposed in the literature for this saddle-point system
by using non-overlapping domain decomposition preconditioners, except the one developed
in [21], in combination with a preconditioned iterative Uzawa method. The preconditioned
system using the substructuring preconditioner from [21] for the whole saddle-point system
(7.2) was shown to be nearly optimal in the sense that its condition number grows only
as the logarithm of the ratio between the subdomain diameter and the finite element mesh
size, but no conclusion was achieved in [21] about how the condition number of the global
preconditioned system depends on the jumps of the coefficients o and g in (7.2). We are
able to show in the rest of this section, with the help of the novel stable discrete weighted
Helmholtz decomposition developed in Section 3, that this condition number is indeed also
independent of the jumps of the coefficients.
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7.1 Augmented saddle-point system and Uzawa methods

In this and next subsections, we shall recall the non-overlapping domain decomposition
preconditioner developed in [21] for the saddle-point system (7.2). We first write the system
into an equivalent operator form by introducing the operators A : V;,(2) — V() and
B: Zh(Q) — Vh(Q) by

(Aup, vp,) = (acurl wy, curl vi),  (Bpp, vi) = (Vpn, Bva)
for all uy, vy, € V4 (Q) and pp, € Z,(2), and the dual operator Bt : Vj,(Q) — Z,(Q) of B by

(B'an, qn) = (Bun, Var), Van € Zn(9). (7.3)

Let f, € Vi(Q), gn € Z,(R2) be the L?-projections of f and g. Then we can rewrite the
system (7.2) into

(A+~v0B81)u,+ Bp, =1, B'a, = g (7.4)

Noting that A is singular, we can transform the system (7.4) into the following equivalent
augmented saddle-point problem:

Auy, + Bpy, = 13, Btuh = gh. (75)
where A and f}, are given by [21]
A=A+~ BI+BC'B' and f,=1,+BC g, (7.6)

and C' : Z,(Q) — Z5,(2) will be chosen to be a symmetric and positive definite preconditioner
for the discrete Laplace operator on Z(£2). Let A be a preconditioner for operator A. Then
the system (7.5) can be solved by many existing preconditioned iterative methods, e.g., the
nonlinear preconditioned Uzawa-type algorithm developed in [19]. As shown in [19], the
efﬁ(nency of the Uzawa-type algorithm is completely determined by the condition numbers
k(A~1A) and k(C~'B*A~'B). Two efficient preconditioners A and C' were developed in
[21], based on a domain decomposition method. And it was shown that x(A~'A) and
m((f'*lBtAle) are nearly optimal, i.e. nearly independent of the subdomain size d and
fine mesh size h, but it is unclear how they depend on the jumps of the coefficients in (1.1)-
(1.2). The remaining part of this work will clarify this important issue. We will propose
an improved variant of A introduced in [21], and demonstrate rigorously that the condition
numbers of the preconditioned systems is independent of the jumps in the coefficients.

7.2 Construction of a preconditioner for A

In this section we present a substructuring preconditioner for A that improves the one
proposed in [21]. First we recall the decomposition of the global domain 2 in Section 2.1
into a set of medium subdomains Y, QY - - QS’V , based on the distribution of the coefficient
B(x). Then we further decompose each medlum subdomain Q0 (1 < r < Np) into a set of
smaller polyhedral subdomains of size d (see [4] [32]), thus leading to a domain decomposition
of the global domain Q: Q1, Qq, -+, Qn. We assume that each Q; (1 < k < N) is formed
by a set of fine elements of the triangulation 75 over Q.
We will write the common face of two subdomains €2; and €); by I';;, and set

I‘:Uijl”ij, I, =T'noqQ;, Qij:QiUQjUFij.
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I' is called the interface associated with the domain decomposition €y, 4, ---, Qu. For
the definiteness, a unique unit normal direction n is assigned to each face F of I'. On each
subdomain Q (k=1,---,N) let V3 (%) be the restriction of V,(€2) on ). Then we define
operator Ag : Vi (%) — Vi(Q) by

(Apv,w)q, = (acurlu,curlv)g, + (Bu,v)g, Yu,ve Vy(Qy),
and a local subspace
VE(Q) = {v e V,(Q); Ae(v) =0 for each ee Q\Q}.

We now introduce a subspace which is defined globally in € but is discrete Ag-harmonic in
each subdomain:

VHEQ) = {v € Vi(2); v is the discrete Ap-extension of (v x n)|gpg, in each Qk}

Let A : V;,(Q) — V4 (Q) be the self-adjoint operator defined by
(Au,v) = (acurlu,curlv) + (Bu,v) Vu,v e V,(Q),

then one can easily see that Vi (22) has the following orthogonal decomposition with respect
to the inner product (A-,-):

VEQ) e VEQ). (7.7)

WE

Vi() =
=1

For any face F of €;, we use F, to denote the union of all T;-induced (closed) triangles
on F, which have either one single vertex or one edge lying on 0F, and Fy to denote the open
set F\Fy. Furthermore, we define two subspaces of V1 (Q):

Vij(Q) — {V c VH(Q); Ae(v) =0 for each ec€ Q\Qij},

VoQ) = {V e VE(Q); \(v) =0 for each e € Fy with F C I‘}.

The space V°(Q) is called the coarse subspace. It is easy to see that the space V},(Q2) has
the following decomposition (not a direct sum):

N
V() => VR o (VO(Q) + ) VY(Q)). (7.8)
k=1 D

Next, we introduce a substructuring preconditioner for operator A, that improves the
one proposed in [21]. Corresponding to the decomposition (7.8), we will define the local
solvers and global coarse solver respectively on the subspaces V¥(Q2), V¥ (Q) and V°(Q).

On each subdomain €, and each face T';;, the local solver A, : V¥() — V*(Q) and

~

A;j 1 V() — V¥(Q) can be naturally defined such that
(Akv,v) = (Apv,v)q, Vv e Vk(Q); (flijv,v) = (Aiv, V), + (Ajv,v)q, Vv eE Vij(Q).

But the definition of an efficient global coarse solver on V() is much more tricky. For
the sake of exposition, we assume that the coefficients a(x) and S(x) in (1.2) are piecewise
constant with respect to the medium domain decomposition {Q0}°  namely a(z) = a
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and B(x) = B, for x € Q2. Then we set of = alq, and S} = Blq,. Clearly we have af =
and 8 = G for Q, C Q?. For any subdomain Q (k = 1,---, N), we introduce an important
set on its boundary:

Ak = U Fp .

FCFk
Then we define the global coarse solver Ay on VO(€2) as follows: for any v, w € V0(Q),

N
(Agv, w) = B[1+log(d/h)] 3 {a};(divT(vxnﬂpk,divT(w % n)|r ) A, + BV X n,wxn)Ak}.
k=1
This is an improved coarse solver compared to the one proposed in [21], where £} is taken
to be the same as aj. We note that the entries of the stiffness matrix associated with Ag
can be easily computed [21].
With the above preparations, we are ready to define our new preconditioner A for A:

N
AT =N "AQe+ A Qo+ Y ASNQi (7.9)
k=1 Ty
where Q, Qo and Q;; are the L%-projections from V}, () onto VK(Q), VO(Q) and V¥ (Q)
respectively.
In the subsequent analysis, we assume the coefficients a(x) and [(x) satisfy that

1< /L <1 for each face TIy; and Bj <ajp for each Q, (7.10)
&

*

@

and for convenience, we introduce an operator J : Z,(2) — Z,(€2) by

(Jén,¥n) = (BV¢n, Vibn), Vb, ¥ € Zn(Q). (7.11)
We will show the following estimate for the preconditioner A defined in (7.9).

Theorem 7.1 Let G(-) > 1 be some given function, and the operator C satisfy
(J,6) S (Co,0) < G(d/h)(Jo,0), Vo € Zn(Q),
or equivalently,
(C716,0) S (J7'6,¢) S G(d/h)(CT'4,¢), Vo € Zy(), (7.12)
then we have the following estimate (with the integer m from Theorem 3.2)

cond(A~1A) < [G(d/h) + log™ L (1/h)][1 + log(d/h))>. (7.13)

A similar preconditioner to A in (7.9) was constructed in [21] and proved to be nearly
optimal: the condition number of the resulting preconditioned system grows only as the
logarithm of the dimension of the local subproblem associated with an individual subdomain,
but possibly depends on the jumps of the coefficients a(x) and S(z) in (1.1)-(1.2). In the
next subsection, we can show that the estimate (7.13) is independent of possible large jumps
in the coefficients a(z) and §(z).

Now we introduce a preconditioner for the Schur complement B*A~!'B associated with
the saddle-point system (7.5). Assume that C' is a preconditioner for the discrete Laplacian
and satisfies the condition (7.12), then we have
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Theorem 7.2 The condition number of the preconditioned Schur complement system can
be estimated by

cond(C~'B'A™IB) < G(d/h)[G(d/h) + log™+ (1/R)]. (7.14)

Proof. Using (7.12) we can show [21] that for any g € Z,(2),

_ _ Vq)?

B'A™'Bq,q) = sup (ﬁvh’i, 7.15

( ) v EVL() (AVh, Vh) ( )
_ Vq,Vq)?

(B'ABgq) > — VLY (59, gy (7.16)

(BC-1Bt(Vq), Vq)

On the other hand, by means of Theorem 3.2 and (7.12) we can verify that (see (7.29) and
(7.31) in Section 7.3)

(B8R, Vi) S (BVpn, pn) + (BWn, wi) S [G(d/R) + log"™ ) (1/h)](Avh, V), Vi € Vi(€2).
Now it follows from (7.15), the above estimate and the Cauchy-Schwarz inequality that

182vil2 ¢ 187 VallZ g
VhEVR(Q) (BVh, Vh)
< [G(d/h) +log™ L (1/m))(BVq, V), Vg € Zy(Q).

(B'A™'Bq,q) < [G(d/h) +1og™*(1/h)]

The desired estimate is now a consequence of this estimate, (7.16) and (7.12).

Remark 7.1 When C is chosen as the usual multigrid preconditioner and the substructur-
ing preconditioner (cf. [4] [32]) for the Laplacian operator, the function G(d/h) in (7.12)
can be taken to be 1 and [1 + log(d/h)]? respectively. For these two standard choices of C,
the estimates (7.13) and (7.14) can be simplified respectively as (note that m > 1)

cond(flflA) < logmﬂ(l/h)[l + log(al/h)]2

and
cond(C*B*A™'B) < G(d/h)log™*(1/h).

7.3 Proof of Theorem 7.1

We devote this section to the proof of our main theorem of this paper, Theorem 7.1. We
first present some important auxiliary results. On each subdomain 2, we define a norm on
its boundary I'y:

1

1930, = (cflldive®|?, s p, + BIBIE, 1 )7 Y@ € Va(Ty).

The proof of the next lemma 7.1 follows the one of lemma4.9 in [21] by means of the
assumption (7.10) and the inverse estimates for HdivT(IDH%Ik and HCIJH%LC, while the proof of
lemma 7.2 is a consequence of the Green formulae and the assumption (7.10) (e.g., see [1]).

Lemma 7.1 For any ® € V,,(T'y), there exists an extension Ry ® € Vi, (Qy), such that

aileurl(Ri®)|[5 o, + Bil Ri®

200 S0, (7.17)
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Lemma 7.2 For any v € V;,(Qy), we have
v xnf%, < aglleurl v[§ o +BilvIE o, (7.18)

The following lemma can be proved in nearly the same manner as it was done in [21]
(see pp.52-56), with the help of condition (7.10) and Lemmas 7.1-7.2.

Lemma 7.3 For any wy, € V3, (), we can write
N ..
wh:W2+ZW,]§+ZW;lJ (7.19)
k=1 T
for some w9 € VO(Q), wF € VF(Q) and vzj € Vi (Q) such that

N
(Aowh, wi) + > (Aewh, wh) + Y (Ayw), wi!) < [1+log(d/h)*(Awy, wy).  (7.20)
k=1 Iyj

Throughout this section we will use F to denote a face of some subdomain €, and W the
set of the (coarse) edges of all subdomains €. For any given subset G of I' and a function
¢ € L*(G), we use 7, (¢) to denote the average value of p on G. Then for any function
¢ € Zp(T), we define ¢ € Z,(T") as follows:

0 _ [e(x),  forxeWNAN,
T p(x) = {’YF(‘P% forx cFNN, (FCT)" (7.21)

For any py, € Z,(2), define pd € Z,(Q) such that p) = 7%pp|r) on I' and is discrete
harmonic in each subdomain Q4. One can check that Vp) € V0(Q), and p) meets the
following estimate which can be proved using the definition of Ay (see (5.17)-(5.18), [21]):

=2

(Ao(Vp}), Vp)) S [1+ log(d/h) QZﬁk\ph\mk (7.22)

Furthermore, for each I'j; we define pzj € Zp(9) such that pﬁlj = pp — pY) on I'yj, pﬁlj =0on
I'\I';j, and p;’ is discrete harmonic in each Q; (1 < j < N). Also, for each subdomain Qy,
we define pﬁ € Zn(9Q): pﬁ = (pn —ph Zp )\Qk Clearly Vp;f € V¥ (Q) and Vpﬁ € Vk(Q)

And by the standard arguments (see, e.g., [32]) we can show that pﬁlj and p} satisfy
.. N
> BV V) + D (BVpE, VpE) < [1+log(d/h)] Zﬁk phlia,  (7:23)
Ty k=1 k=1
Now for any v) € V,2(2), we can verify (cf. (4.47), [21]) that
Vi x n3, < AL +log(d/M)](Bilvh * nllgr, +aglldiv(vi x n)[[§r,), Yvi € V(Q),
which implies

N

Yo Ivh xnl, < (Aovi, vi). (7.24)
k=1
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Using the above preparations, we can now build up a stable decomposition for any
v, € V(). First by Theorem 3.2 we have the following Helmholtz-type decomposition:

Vi = Vpp + Wy (7.25)
for some p, € Z,(2) and wy, € V,(12), and they are orthogonal in the sense of (3.6) and
satisfies the a priori estimates (3.7). For p, and wy, in (7.25), let p%, pzj, pﬁ be defined as
above and w¥, wl, wa be the functions as those given in (7.19). Then we set

vh =V +wi € VO(Q), vE=Vpi+wreVEQ), vi!=Vpl +w) eViQ)
We can easily verify that
N
Vi =V +Zvﬁ +Zvﬁf.
k=1 Ty

Next we show the stability of this decomposition:

N
(Agv),v9) + Z(Akvﬁ, Vi) + Z(Aijvflj, v;f)
k=1 I
< [G(d/R) +1og™(1/R)]|[1 + log(d/h) ]2 (Avh, vi). (7.26)

But we obtain readily from (7.20) and (7.22)-(7.23) that
N .. ..
(v, vi) + > (ArvE, vi) + D (Ayvil,vi))
k=1 T
< [1 -+ 1og(d/B)2(Epn, pn) + 1+ log(d/m)2(Aws, w,). (7.27)
Then (7.26) will follow if we can show
(BVpn, pr) < G(d/h)(Avy,vy) and (Awy, wy) < log™ L (1/h)(Avy, vp). (7.28)
The second estimate in (7.28) follows immediately from (7.25), (3.7) and (7.10):

([lwh, W) (acurl vy, curl vp,) + (Bwp, wp)

(acurl vy, curl v;,) + log™ ™ (1/h)(Bcurl vy, curl vy,)
log™  (1/h)(Avp, V). (7.29)

AN NI

Using (7.25) and the definitions of operators J in (7.11) and B! in (7.3), we can write

(BVpn,Vpn) = (Bvh, Vpp) = (B'vi,pn)
= (Jpn, J ' B'vi) = (BVpp, V(J ' B'vy))
= (Bvi, V(J'B'vy)) = (B'vy, J ' B'vy).
Using this relation and the estimate (3.7), we derive
(BJ'B'vi,vi) = (BVph, Vu) < (Bva, vh). (7.30)
Combining this relation with (7.12) gives

(BVpr, Vpn) S G(d/h)(BC™' B'vi, vi) < G(d/h)(Avh, Vi), (7.31)
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so the first estimate in (7.28) is proved. Now we readily get the estimate of the smallest
eigenvalue of the preconditioned system A~1A from (7.27):

Amin(A71A) 2 1/([G(d/h) +1og™ (1/R)][1 + log(d/)]?).
To estimate the largest eigenvalue, we use (7.12) and (7.30) to obtain that

(acurl vy, curl v;) +40(Bvh, vi) + (BJ ' Blvy, vi)

(acurlvy, curlvy) + (Bvhp, vi) + (BVh, Vi)
(Avh,vh), Yvy, € Vh(Q) (7.32)

(Avp,vp)

IANVANRZAN

Let v € V9(Q). Since v is discrete Ag-harmonic in €, for each k, it possesses the minimum
energy property on each Q. Then it follows from (7.32), Lemma 7.1 and (7.24) that

N
(Avy,vi) = ) (aglleurlvilig o, + Billvills o)
k=1

(Avp, Vi)

~

(ajllcurl(Ry,(vh x nlp))[5 o, + BilRe(vi x nlr,) 3 0,)

A
7=

S

N

ovh, vH),  Wvh e VO(Q).
This, along with the following bounds directly from the definitions of Ay, and flij,
(AVE vE) < (ApvE, vEY Wi e VEQ); AV viD) S (Al vi7) ol e ViT(Q),

gives the estimate of the largest eigenvalue, )xmax(fl_lA) < 1, thus completes the proof of
Theorem 7.1. §

Remark 7.2 The key step in the proof of Theorem 7.1 is the derivation of (7.29), by using
the weighted discrete Helmholtz decomposition newly developed in Theorem 3.2. If the stan-
dard Helmholtz decomposition is used, no conclusion can be made about how the constant in
the upper bound of (7.29) depends on the possible large jumps of the coefficient B(x).

8 Numerical experiments

In this section we present some numerical experiments to verify the convergence of the newly
proposed preconditioner in Section 7.2. For the purpose we construct a test example with
an exact solution. We consider the most difficult saddle-point case of system (1.1)-(1.2),
namely 79 = 0, and and the cubic domain Q = (0,1) x (0,1) x (0,1). In order to test the
case of non-homogeneous media, we take

TS TP - I
D_[47 2] U[27 4] )
and choose the coefficients a(x) and (x) to be

ag, x€D

o(x) =25(x) :{ 1, xeQ\D.

We will test ap = 1 and ag = 10°. Clearly there are no jumps in the coefficients a(x)
and f(x) for agp = 1, but there is a large jump in both coefficients and two cross-points
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appear in  for ag = 10°. The source terms f and g are taken such that the exact solution
u = (u1,ug,uz)” of the system (1.1)-(1.2) is given by

= ayz(z—1)(y—-1(-1),
ug = sin(mx)sin(7wy)sin(7rz),
uz = (1—e")(1—e" A —e)(1—e (1 —e?)(1—e* ).

To generate the subdomain decomposition of the whole domain €2, we first partition the
three edges of ) on the x-, y- and z-axis respectively into equally distributed n subintervals,
then we can naturally generate n® equal smaller cubes of size d = 1/n. This yields the
desired subdomain decomposition in our experiments: €, ---, Qx, with N = n3.

To generate a fine triangulation 7 of size h over the entire domain €2, we divide each
subdomain €2 into m3 equal smaller cubes of size h = 1/(mn), in the same manner as we
generated the subdomains above. Then 7}, is obtained by triangulating each small cube into
6 tetrahedra. For the easy reference we shall denote the triangulation T, by m3(n?) below.

Our numerical experiment is to solve the saddle-point system (7.5), which is equivalent
to the edge and nodal element saddle-point system (7.2), by the Nonlinear Inexact Precon-
ditioned Uzawa Algorithm mentioned in Section 7.1, with the preconditioners A given in
Section 7.2 and C being the standard multigrid preconditioner for the discrete Laplacian
(thus satisfying the condition (7.12) with G(d/h) = 1; see Remark 7.1). For any ¢ € V;(),
let ¥(¢) be an approximation of the solution £ to the system A{ = ¢ obtained by the PCG
method with preconditioner A. Then the inexact Uzawa-type algorithm for solving (7.5)
can be described below (see [19]).

Nonlinear Inexact Preconditioned Uzawa Algorithm.

Step 1. Compute f; = f, — (Au}, + Bp}) and ¥(f;), update u?jl =ul + V(f);

Step 2. Compute g; = Btuﬁfl — gn, d;i = C"lgi and

1 (95 di)

T, > (U(Bdy), Bdy) or g; #* T or g;

Then update pﬁfl = pﬁl ~+ 1id;.

Note that the above algorithm involves two inner iterations, namely computing two
approximations W(f;) and ¥(Bd;) by the PCG method with preconditioner A. However,
the approximations ¥(f;) and W(Bd;) are not required to be accurate and suffice when the
energy-norm errors are reduced respectively by a factor 1/2 and 1/3 (cf. [19]). The inexact
Uzawa iteration will terminate when the global relative residual (cf. [19]) is less than 107,
and the corresponding number of iterations will be reported; see iter in Table 8.1. To show
the efficiency of the preconditioner A, we will also report the averaging number of iterations
for the approximations W(f;) and W(Bd;); see ny and ng in Table 8.1.

We can see from Table 8.1 that the numerical results confirm our theoretical predictions
in Theorem 7.1: the preconditioner A is nearly optimal in the sense that the condition
number depends weakly on the ratio m = d/h (see the growth of ny and ng with respect
to m in Table 8.1 when n is fixed) and is almost independent of n = 1/d and the jumps of
the coeflicients in a(x) and §(x) (see the growth of ny and ng with respect to n or ag in
Table 8.1 when m is fixed). In particular, the convergence rates for the case with jumps in
the coeflicients deteriorate only slightly compared to the case without jumps, namely, the
condition number for the case with jumps is slightly more sensitive to the ratio mn = 1/h
than the case without jumps.

Finally we would like to mention the very satisfactory convergence of the resulting global
inexact Uzawa algorithm, the maximum number of iterations is less than 25 iterations as we
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see from Table 8.1 for the very large discrete saddle-point system (7.2), with a total number
of degrees of freedom being 14,532,992 (when n = 8 and m = 16). In addition, we can see
clearly from Table 8.1 that the resulting global inexact Uzawa algorithm converges nearly
optimally in terms of mesh size h (see the growth of Iter with respect to m in Table 8.1
when n is fixed) and subdomain size d (see the growth of Iter with respect to n when m
is fixed), and the convergence rate is affected slightly by the jumps in the coefficients «(x)

and [(x).

ap =1 ap = 10°

m \n 4 8 4 8

Iter | ny | ng | Iter | ny | ng | Iter | ny | ng | Iter | ny | ng
4 17 (47134 | 18 |53 |30 | 22 |48 32| 23 |52]|35
8 19 |68 50| 18 |64 |43 | 25 | 7.1 |47 | 24 |6.8]5.0
16 19 {98 |6.7] 19 | 85|58 25 199|164 | 25 |95]6.8

Table 8.1: Number of iterations of the inexact Uzawa algorithm.
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