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Abstract This is the first part of a threefold article, aimed at solving numerically
the Poisson problem in three-dimensional prismatic or axisymmetric domains. In
this first part, the Fourier Singular Complement Method is introduced and analy-
sed, in prismatic domains. In the second part, the FSCM is studied in axisymmetric
domains with conical vertices, whereas, in the third part, implementation issues,
numerical tests and comparisons with other methods are carried out. The method is
based on a Fourier expansion in the direction parallel to the reentrant edges of the
domain, and on an improved variant of the Singular Complement Method in the 2D
section perpendicular to those edges. Neither refinements near the reentrant edges
of the domain nor cut-off functions are required in the computations to achieve an
optimal convergence order in terms of the mesh size and the number of Fourier
modes used.
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1 Introduction

The Singular Complement Method (SCM) was originally introduced by Assous
et al [8,7], for the 2D static or instationary Maxwell equations without charges.
The cases with charges have been recently solved by Garcia et al [6,19], including
the numerical solution to the 2D Vlasov-Maxwell system of equations. The SCM
has been extended in [13] to the 2D Poisson problem. Further extensions to the 2D
heat or wave equations, or to similar problems with piecewise constant coefficients,
can be obtained easily. As a matter of fact, this stems from the analysis which is
performed hereafter (see Remark 4.1). The primary basis of the SCM is the decom-
position of the solution into regular and singular parts. Methodologically speaking,
the SCM consists in adding some singular test functions to the usual P1 Lagrange
FEM so that one recovers the optimal H 1-convergence rate, even in non-convex
domains. In 2D, one may simply add one singular test function per reentrant corner.

There exist a couple of numerical methods in the literature for accurately solv-
ing 2D Poisson problems in non-convex domains. It was shown in [13] that the
SCM can be reformulated so that it coincides with the approach of Moussaoui [27,
1] when L-shaped domains are considered. The SCM differs from the Dual Singu-
lar Function Method (DSFM) of Blum and Dobrowolski [10] in that it requires no
cut-off functions. Actually, when the numerical implementation of the SCM is car-
ried out, the cut-off function is traded for a non-homogeneous boundary condition.
Note that Cai and Kim [12] recently proposed a new SFM which involves the evalu-
ations of singular and cut-off functions and the solution of a nonsymmetric elliptic
problem. The SCM is clearly different from (anisotropic) mesh refinement tech-
niques [28,3,24,4,2], and can be applied efficiently to instationary problems (see
Remark 4.1), since it does not need mesh refinement and thus larger timesteps may
be allowed. However the anisotropic mesh refinement methods have one advantage:
they require only a partial knowledge of the most singular part of the solution.

The numerical solution of 3D singular Poisson problems is quite different from
the 2D case, and much more difficult. This is a relatively new field of research:
most approaches rely on anisotropic mesh refinement, see for instance [3,5,24,4,
25], and [2] and Refs. therein. To our knowledge, this series of papers is the first
attempt to generalize the SCM for three-dimensional singular Poisson problems.
Specifically, we shall consider the numerical solution of the Poisson problem:
Find u ∈ H 1

0 (�) such that

−�u = f in �, (1)

where f ∈ L2(�), and � is a (right) prismatic domain described by

� = ω × Z , (2)

andω is a two-dimensional general polygonal domain,Z is an interval varying from
0 to a positive constant L on the x3-axis. The bases of the domain are the subsets
of the boundary ∂�, which are included in the planes {x3 = 0} and {x3 = L}.

The case of an axisymmetric domain is considered in the companion paper [14].
When the Poisson problem (1) is solved in this class of domains, two difficulties
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arise. The first difficulty is that one has to deal with weighted Sobolev spaces, the
weights being functions of the distance to the axis. The second one is that there
exist two kinds of geometrical singularities: reentrant edges like in the prismatic
case, and, in addition, sharp conical vertices. As for implementation issues and
comparisons with other methods (such as variants of our method, the FSCM, or
mesh refinement techniques [25]), we refer the reader to [15].

The rest of the paper is organized as follows. In the next Section, some theo-
retical results concerning the regularity of the solution to the Poisson problem in
prismatic domains are recalled. A priori regularity results of the solution u to (1),
and a first splitting of the solution into regular and singular parts, are emphasized.
In Section 3, some results about the Fourier expansion along x3 are recalled and/or
proven. This suggests a framework for building the Fourier Singular Complement
Method (FSCM) for accurately solving the problem (1), using a Fourier expansion
in x3, and an improved variant of the Singular Complement Method [13] in the 2D
section ω. In Section 4, we study the variant of the SCM, based on a theoretical
splitting of the solution uµ to 2D problems of the form −�uµ + µuµ = fµ in
ω (with a parameter µ ≥ 0 related to the Fourier modes). The main feature of the
regular-singular splitting is that it is chosen independently of µ; this independence
is important, and very helpful, from the computational point of view. Estimates on
Sobolev norms of uµ and its splitting are established. To end this Section, the SCM
is considered from a numerical point of view, to approximate uµ accurately, via the
discretization of the splitting: the optimalH 1-norm convergence of the orderO(h)
is recovered. In the last Section, we first prove a refined splitting of the solution
u to the 3D Poisson problem under suitable assumptions on the right-hand side
f , using the Fourier expansion along x3. Then, we build the numerical algorithms
which define the FSCM, and we show that the FSCM has the optimal convergence
of orderO(h+N−1), where h is the 2D mesh size andN is the number of Fourier
modes used.

Throughout this paper, when two quantities a and b are such that a ≤ C b, with
a constant C > 0 which depends only on the geometry of the domain, we shall use
the notation a � b.

2 Poisson problem in prismatic domains

Let us recall that a (right, open) cylinder of R
3, with axis parallel to x3, is equal to

D× I , whereD is any connected (open) subset of R
2, and I is any (open) interval

of R. Let us proceed then with some remarks on the class of domains �, i.e., the
prismatic domains. A priori, such domains could be considered:

• either as truncated infinite cylinders;
• or as polyhedra.

As it happens, considering � as a polyhedron is helpful, in a simple manner.
Indeed, from [4,18], we know that, in any polyhedra, the solution u to (1) can be
split as

u = ur + ue + uv, with ur ∈ H 2(�), (3)

ue =
∑

e

µe(ρe, ze) sin(αeφe), and uv =
∑

v

∑

−1/2<λv<1/2

µv,λvρ
λv
v 	v(θv, φv).
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Above, ur is called the regular part, ue the edge singularity part, and uv the vertex
singularity part. Note that when ue �= 0 or uv �= 0, they do not belong to H 2(�).
The summation inue is taken over all reentrant edges e, (ρe, φe, ze) denote the local
cylindrical coordinates, and π/αe the dihedral angle (so that αe ∈]1/2, 1[). Last,
the summation in uv is taken over all non-convex vertices v and over all eigenvalues
λv of the Laplace-Beltrami operator, which belong to the interval ] − 1/2, 1/2[,
and (ρv, θv, φv) denote the local spherical coordinates.

In our case, i.e., when� is a prismatic domain with polygonal bases, it has been
shown [29,2] that the vertex singularity part uv always vanishes, so (3) reduces to

u = ur + us, with ur ∈ H 2(�) and us =
∑

e

µe(ρe, ze) sin(αeφe). (4)

Let us describe how one can fall into the other class, that of the infinite cylinders.
The first step is to introduce a suitable continuation ũ of the solution u (odd

reflection at the bases) along the x3 direction from Z to R: one builds a problem to
be solved in the infinite cylinder C∞ = ω× R. Unfortunately, with this continua-
tion technique, one gets a solution (and data) which is not in L2(C∞). Thus, one
introduces in a second step a smooth truncation function η, such that η(x3) is equal
to one for x3 ∈] − L/2, 3L/2[, and to zero for |x3| > 2L. Then, one multiplies ũ
by η, to obtain a Poisson problem in C∞ with solution uη = u η. This time, one
has uη ∈ H 1(C∞) (and f η = −�uη ∈ L2(C∞)). By construction, the restriction
of uη on � coincides with u.

Interestingly, it has been proven in [21,26], that a splitting similar to (4) holds
for uη. Furthermore, uηs can be expressed as

uηs = γ ηe (ρe, x3)ρ
αe
e sin(αeφe). (5)

The function γ ηe in (5) is often called in mechanics the stress intensity distribution.
On the one hand, in the original paper [21], γ ηe is expressed as a convolution prod-
uct. On the other hand, in [26], it is characterized as the solution to a second order
PDE. Finally, the regularity of the singular part uηs , can be expressed accurately as
follows [26]. Let δ denote the minimal distance between two reentrant edges, and
for each reentrant edge e, let �e = {�x ∈ � : d(�x, e) < δ/2}. Then






u ∈ H 1+α−ε(�), ∀ε > 0, α = mine αe,
u ∈ H 2(� \ ∪e�̄e),
ρ
βe
e ∂iu ∈ H 1(�e), ∀e, ∀βe > 1 − αe, i = 1, 2,
∂3u ∈ H 1(�).

(6)

In Sections 3 and 6, using a Fourier expansion along the x3 axis, we recover
some properties which are very similar to (4-6).

We end this Section with remarks on other possible boundary conditions.
If the boundary condition for u on the bases of the physical domain � is the

non-homogeneous Dirichlet boundary condition:

u = g at x3 = 0 and x3 = L,

one can set w = u − g̃ with g̃ being a continuation of g into �. Then the prob-
lem reduces to the case with the solution w satisfying the homogeneous Dirichlet
boundary condition, assuming that g̃ ∈ H 2(�).
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If the boundary condition for u is the homogeneous Neumann boundary condi-
tion ∂nu = 0 on ∂�, then one can replace the sin(αeφe) factor in (4) by the expected
cos(αeφe). Moreover, to obtain an expression like (5), one uses an even reflection of
u at the bases of the domain. If we have the non-homogeneous Neumann boundary
condition:

∂nu = g at x3 = 0 and x3 = L,

one may then study the solution

w(�x) = u(�x)−
∫ x3

0
g̃(x1, x2, z) dz

first, which satisfies the homogeneous Neumann boundary conditions at the bases
of the domain�. Here g̃ is a continuation of g into�, and it is assumed that

∫ x3
0 g̃dz

belongs to H 2(�).
From now on, we assume, for ease of exposition, that the polygon ω has only

one reentrant corner C, i.e., with an interior angle larger than π , denoted as π/α,
with 1/2 < α < 1. In particular, the summation which defines the singular part us
in (4) reduces to exactly one term.

3 Fourier expansion

We devote this Section to some justifications about the Fourier series expansion of
the Poisson solution to (1). First, one can show, following for instance Heinrich’s
proof of Lemma 3.2 in [23], the well-known result

Lemma 3.1 For any f ∈ L2(�), there exist Fourier coefficients defined by

fk(x1, x2) = 2

L

∫ L

0
f (x1, x2, x3) sin

kπ

L
x3 dx3, k = 1, 2, 3, · · · , (7)

such that fk ∈ L2(ω) and

f (x1, x2, x3) =
∞∑

k=1

fk(x1, x2) sin
kπ

L
x3 a.e. in � , (8)

and

‖f ‖2
L2(�)

= L

2

∞∑

k=1

‖fk‖2
L2(ω)

< ∞. (9)

If f ∈ H 1
0 (�), then fk ∈ H 1

0 (ω) for all k and

‖∇f ‖2
L2(�)

= L

2

∞∑

k=1

{
‖∇fk‖2

L2(ω)
+

(kπ
L

)2‖fk‖2
L2(ω)

}
< ∞. (10)
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For f inL2(�), let us introduce the sequence of partial sums (FK)K of the Fourier
decomposition of f , which converges to f in L2(�), cf. (8):

FK =
K∑

k=1

fk sin
kπ

L
x3, for K > 0. (11)

We note that when f is in H 1
0 (�), (FK)K converges to f in H 1

0 (�), according to
(10). Also, the sine functions can be replaced by cosine functions with the same

argument
kπ

L
x3, and (7-10) still holds (for (10), with any f in H 1(�).)

In our subsequent analysis, summations like

∞∑

k=1

k4‖fk‖2
L2(ω)

(12)

will appear. The result below provides a characterization of elements f of L2(�),
which are such that (12) is bounded. Let the following Sobolev spaces be intro-
duced:

h1(�) := H 1(]0, L[, L2(ω)) = {f ∈ L2(�) : ∂3f ∈ L2(�)} ;
h1�(�) := H 1

0 (]0, L[, L2(ω)) = {f ∈ h1(�) : f|{x3=0} = f|{x3=L} = 0} ;
h2(�) := H 2(]0, L[, L2(ω)) = {f ∈ h1(�) : ∂33f ∈ L2(�)}.

Lemma 3.2 Given f ∈ L2(�), one has the following equivalences

f ∈ h1�(�) ⇐⇒
∞∑

k=1

k2‖fk‖2
L2(ω)

< ∞ ; (13)

f ∈ h1�(�) ∩ h2(�) ⇐⇒
∞∑

k=1

k4‖fk‖2
L2(ω)

< ∞. (14)

Proof Let f be in L2(�).
Assume in addition that f ∈ h1�(�). We note that, by the definition of the

Fourier mode fk and integration by parts (f vanishes at the bases), one has

(kπ)fk = −2
∫ L

0
f

(
cos

kπ

L
x3

)′
dx3 = 2

∫ L

0
∂3f cos

kπ

L
x3 dx3.

Since by assumption, ∂3f is inL2(�), one gets the expected
∞∑

k=1

k2‖fk‖2
L2(ω)

< ∞.

Let us prove the reciprocal assertion. For f in L2(�), as the sequence (FK)K
(see (11)) converges to f in L2(�), one infers that (∂3FK)K converges to ∂3f in
H−1(�). Now, if the sum is bounded, (∂3FK)K is a Cauchy sequence in L2(�),
so it converges in this space, and its limit ∂3f is in L2(�). Since both (FK)K and
(∂3FK)K converge in L2(�), (FK)K converges to f in h1(�), and, as FK belongs
to h1�(�) for all K , f is also in h1�(�), which proves (13).
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In order to establish (14), one proceeds similarly, by performing a second inte-
gration by parts. Note that for this additional integration by parts, no assumption

is required on the trace of f at the bases, since the (sin
kπ

L
x3)k vanish there.

k2π2

L
fk = 2

kπ

L

∫ L

0
∂3f cos

kπ

L
x3 dx3 = −2

∫ L

0
∂33f sin

kπ

L
x3 dx3.

With this identity, one concludes the proof easily. ��
Now that the general results have been obtained, we focus on the Poisson prob-

lem (1). Consider the weak form of the Poisson problem:

a(u, v) = f (v) ∀ v ∈ H 1
0 (�) (15)

where a(·, ·) and f (·) are given by

a(u, v) =
∫

�

∇u · ∇v dx, f (v) =
∫

�

f v dx.

We expand the solution u in (1) in the Fourier sine series:

u(x1, x2, x3) =
∞∑

k=1

uk(x1, x2) sin
kπ

L
x3. (16)

Following again Heinrich’s proof of Lemma 3.2 in [23], the next two Lemmas
hold.

Lemma 3.3 For any u, v ∈ H 1
0 (�), we have

a(u, v) = L

2

∞∑

k=1

ak(uk, vk), f (v) = L

2

∞∑

k=1

fk(vk),

where ak and fk are given by

ak(uk, vk)=
∫

ω

{
∇uk · ∇vk+

(kπ
L

)2
ukvk

}
dx1dx2, fk(vk)=

∫

ω

fk vk dx1dx2,

and uk , vk and fk are Fourier coefficients of u, v ∈ H 1
0 (�) and f ∈ L2(�)

respectively.

Lemma 3.4 For any f ∈ L2(�), let u ∈ H 1
0 (�) be the unique weak solution of

(15) and uk and fk be the Fourier coefficients of u and f . Then uk ∈ H 1
0 (ω) is the

unique solution of the following 2D weak problem:
Find uk ∈ H 1

0 (ω) such that

ak(uk, v) = fk(v) ∀ v ∈ H 1
0 (ω). (17)

Moreover, uk satisfies the following a priori estimates:
∫

ω

{
|∇uk|2 +

(kπ
L

)2
u2
k

}
dx1dx2 ≤

( L
kπ

)2‖fk‖2
L2(ω)

, k = 1, 2, · · · ,
∞∑

k=1

k2
{
‖∇uk‖2

L2(ω)
+

(kπ
L

)2‖uk‖2
L2(ω)

}
≤ 2L

π2 ‖f ‖2
L2(�)

.



430 Patrick Ciarlet et al.

This means that the k-th Fourier mode of u is characterized as the unique solution
to the 2D problem

Find uk ∈ H 1
0 (ω) such that

−�uk +
(
kπ

L

)2

uk = fk in ω; uk = 0 on ∂ω. (18)

As Corollaries, one gets a convergence result of the sequence of partial sums
(UK)K of the Fourier decomposition of u, and also the last result of (6).

Corollary 3.1 Let f ∈ L2(�), and u be the solution to (1). Then (UK)K converges
to u in H 1(�), and (�UK)K converges to −f in L2(�).

Proof The fact that (UK)K converges to u in H 1(�) is a consequence of Lemma
3.1. Then, one notes that

−�UK =
K∑

k=1

(−�uk +
(
kπ

L

)2

uk) sin
kπ

L
x3

(18)=
K∑

k=1

fk sin
kπ

L
x3 = FK,

which yields the result on the convergence of (�UK)K . ��
Corollary 3.2 Let f ∈ L2(�), and u be the solution to (1). Then ∂3u ∈ H 1(�).

Proof We prove that, for i = 1, 2, 3, ∂i3u belongs to L2(�).

For i = 3, thanks to the last bound of the Lemma 3.4, there holds
∞∑

k=1

k4

‖uk‖2
L2(ω)

< ∞. Result (14) yields u ∈ h1�(�) ∩ h2(�), so that ∂33u is in L2(�).
For i = 1, 2, we note that

∂i3UK = −π
L

K∑

k=1

k∂iuk cos
kπ

L
x3.

According again to the last estimate in Lemma 3.4,
∞∑

k=1

k2‖∂iuk‖2
L2(ω)

< ∞, so

∂i3u is in L2(�). ��
To conclude this Section, we note that the Fourier expansion (16) of u together

with the series of 2D problems (18) suggest the numerical approximation scheme
below, i.e., define the Fourier SCM (FSCM) approximation of the solution u to
(15) as follows:

UhN(x1, x2, x3) =
N∑

k=1

uhk (x1, x2) sin
kπ

L
x3 (19)

where N is the total number of Fourier modes used in the approximation, and uhk
is a suitable approximation of uk , to be studied in the next two Sections.
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4 Regular-singular decomposition in the 2D domain ω: theoretical study

The main interest of this paper is to propose some efficient numerical method for
solving the three-dimensional singular Poisson problem (1) in a prismatic domain.
Basically, the method reduces the 3D problem into a series of 2D Poisson-like prob-
lems, see (18), by the Fourier expansion of the 3D solution along the x3-direction.
This Section will thus focus on the 2D singular Poisson problem:

Find uµ ∈ H 1
0 (ω) such that

−�uµ + µuµ = f in ω. (20)

In the case of the Fourier expansion, one considers µ = k2π2/L2 and f = fk in
(20). Due to the presence of the Fourier mode index k, the coefficient µ varies in
a large range, from π2/L2 to N2π2/L2, where N is the number of Fourier modes
required subsequently in the numerical approximation (cf. Section 6). This brings
in one of the main difficulties in the subsequent error estimates, which should hold
for all µ’s in a large range.

As a preliminary remark, we note that, according to [22], the most singular part
of the solution to (20) is of the form ρα sin(αθ), compared to (4) in 3D.

Let γ1, γ2, · · · , γK be the line segments of ∂ω, where γ1 and γ2 are two line
segments which form the single re-entrant corner of ω. Our numerical method is
based on the following important decomposition of the space L2(ω) [22]:

L2(ω) = �[H 2(ω) ∩H 1
0 (ω)]

⊥⊕ N , (21)

where N is a space of singular harmonic functions defined by

N =
{
p ∈ L2(ω) : �p = 0, p|γk = 0 in (H 1/2

00 (γk))
′, 1 ≤ k ≤ K

}
.

Above, the space H 1/2
00 (γk) is made up of elements of H 1/2(γk), such that their

continuation to ∂ω by zero belongs to H 1/2(∂ω). Its dual space is denoted by
(H

1/2
00 (γk))

′. To understand that the boundary condition on p holds in this dual
space, let us mention that one can prove that, given any φ̃ inH 2(ω)∩H 1

0 (ω), ∂nφ̃|γk
belongs toH 1/2

00 (γk). Then, the fact thatp|γk = 0 simply reflects a surjectivity prop-
erty, which states that the mapping φ̃ �→ ∂nφ̃|γk is onto, from H 2(ω) ∩H 1

0 (ω) to

H
1/2
00 (γk).

As the domain ω has only one re-entrant corner, we know dim(N) = 1, and
N=span{ps} for some ps ∈ N \ {0}, see Grisvard [22].

Let φs be an element in H 1
0 (ω), which solves the Poisson problem

−�φs = ps in ω . (22)

Then by the decomposition (21), we can split the solution uµ to equation (20) as

uµ = ũµ + cµφs, (23)

where ũµ ∈ H 2(ω) ∩H 1
0 (ω), and is called the regular part of uµ.
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We will devote the rest of this Section to the derivation of some a priori esti-
mates for the solution uµ, its regular part ũµ and the singularity coefficient cµ, as
well as the solvability of ũµ and cµ. Let us first introduce some notation.

Throughout the rest of the paper, α0 will be a frequently used fixed positive
constant lying in the interval ] 1

2 , α[, where α ∈] 1
2 , 1[ is the singularity exponent.

| · |s is used to denote the semi-norm of the Sobolev space Hs(ω) for any s > 0,
(·, ·) and ‖ · ‖0 are used to denote the inner product and the norm in the space
L2(ω).

The following Lemma summarizes some a priori estimates on uµ and cµ.

Lemma 4.1 Let uµ be the solution uµ to the Poisson problem (20), then we have
the following a priori estimates:

µ ‖uµ‖0 ≤ ‖f ‖0 ,
√
µ |uµ|1 ≤ 1√

2
‖f ‖0 , ‖�uµ‖0 ≤ 2 ‖f ‖0 , (24)

|cµ| � µ− 1−α
2 ‖f ‖0 (25)

|uµ|1+α0 � µ− 1−α0
2 ‖f ‖0 . (26)

Proof Multiplying equation (20) by uµ and integrating over ω yield

|uµ|21 + µ ‖uµ‖2
0 ≤ ‖f ‖0 ‖uµ‖0 ,

which proves the first estimate in (24). Then applying the Cauchy-Schwarz inequal-
ity, we further obtain

|uµ|21 + µ ‖uµ‖2
0 ≤ 1

2
µ ‖uµ‖2

0 + 1

2µ
‖f ‖2

0,

which leads to the H 1 semi-norm estimate in (24).
The last estimate in (24) follows immediately from �uµ = µuµ − f and the

first inequality in (24).
As far as (25) is concerned, it is a simple matter to check that the singularity

coefficient cµ, multiplied by some constant β�, equals the singularity coefficient
c(µ) of [22, pp. 62-69]. Indeed, in Grisvard’s papers, uµ is decomposed into:

uµ = uGµ + c(µ)e−√
µρξ(ρ)ρα sin(αφ), uGµ ∈ H 2(ω) ∩H 1

0 (ω) (27)

where ξ is a smooth cut-off function, equal to one in a neighborhood of 0.
On the other hand one can decompose the singular part in (23) as (cf. [13] or

(46) below)

cµφs = cµ

(
φ̃ + β�ρα sin(αφ)

)
, φ̃ ∈ H 2(ω), β� = 1

π
‖ps‖2

0.

Using this, (23) and (27), we can write

(cµβ
� − c(µ)ξ(ρ))ρα sin(αφ)

= uµ − (ũµ + cµφ̃)− c(µ)ξ(ρ)ρα sin(αφ)

= uGµ + c(µ)
(

e−√
µρ − 1

)
ξ(ρ)ρα sin(αφ)− (ũµ + cµφ̃). (28)
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Noting that each term on the right-hand side of (28) belongs to H 2(ω), we must
have cµ = c(µ)/β�. But it is shown in [22, ineq. (2.5.5)] that

|c(µ)| � µ− 1−α
2 ‖f ‖0, (29)

which implies (25).
In order to derive the estimate (26), we shall use (27–29), with the additional

norm estimate [22, ineq. (2.5.4)] on the regular part uGµ , namely

|uGµ |2 + √
µ|uGµ |1 + µ‖uGµ‖0 � ‖f ‖0. (30)

Indeed, from the estimates

|uGµ |1 � µ−1/2‖f ‖0, |uGµ |2 � ‖f ‖0 ,

we have then by standard interpolation theory that

|uGµ |1+α0 � µ− 1−α0
2 ‖f ‖0.

Next, we use (29) and a direct estimate of the H 1+α0 semi-norm to bound the
singular part in (27). Actually, there holds

|v|21+α0
=

∫

�x∈ω

∫

�x′∈ω
|∇v(�x)− ∇v(�x′)|2

|�x − �x′|2+2α0
dω(�x) dω(�x′), ∀ v ∈ H 1+α0(ω).

Due to the uniform smoothness (in µ) of e−√
µρξ(ρ)ρα sin(αφ) for ρ ≥ ρ0 > 0,

it is possible to evaluate the integrals only on ω∞ = {(ρ, φ) ∈]0, ρ0[×]0, π/α[}.
Then, one performs the changes of variables s = √

µρ, s′ = √
µρ′, to find

|e−√
µρξ(ρ)ρα sin(αφ)|H 1+α0 (ω∞) ≤ C(α0)µ

− α−α0
2 .

This with (25) leads to (26). ��
Now, let us study the solvability of ũµ and cµ in decomposition (23). For

convenience, we introduce the notation aµ(·, ·) and the norm ‖ · ‖a:

aµ(w, v) = (∇w,∇v)+ µ (w, v) , ‖v‖2
a = aµ(v, v) ,

and the linear mappingAµ fromH 1
0 (ω) toH−1(ω), defined byAµu = −�u+µu,

or equivalently by

H−1(ω) < Aµw, v >H 1
0 (ω)

= aµ(w, v) ∀w, v ∈ H 1
0 (ω).

It is not difficult to verify that Aµ is a one-to-one and onto mapping, so it is invert-
ible.

So, we claim that ũµ and cµ solve the following coupled system:

aµ(ũµ, v)+ cµ aµ(φs, v) = (f, v) ∀v ∈ H 1
0 (ω) , (31)

(‖ps‖2
0 + µ|φs |21

)
cµ + µ (ũµ, ps) = (f, ps) . (32)
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In fact, by multiplying the equation (20) by ps and integrating over ω we obtain

−(�uµ, ps)+ µ (uµ, ps) = (f, ps) ,

then (32) follows readily from the decomposition (23), the orthogonality between
ps and �ũµ, along with the relation (22) and its following direct consequence

|φs |21 = (φs, ps). (33)

On the other hand, the solution uµ of (20) also satisfies the weak form:

(∇uµ,∇v)+ µ (uµ, v) = (f, v) ∀v ∈ H 1
0 (ω).

This and the decomposition (23) lead to the equation (31).
Below, we show the well-posedness of the system (31)-(32).

Lemma 4.2 There exists a unique solution (ũµ, cµ) to the coupled system (31)-
(32) and the following stability estimates hold:

‖ũµ‖a ≤ √
2

(
2
√
µC2

P + 1√
µ

)
‖f ‖0 ,

|cµ| ≤ 2
‖f ‖0

‖ps‖0
, |ũµ|2 ≤ 4 ‖f ‖0 ,

where CP is the constant in the Poincaré inequality.

Proof To see the unique existence, we rewrite (31) as the following operator form:

Aµũµ + cµ Aµφs = f in H−1(ω). (34)

As the inverse of Aµ exists, we know from (34) that ũµ can be determined if cµ is
available:

ũµ = A−1
µ f − cµ φs . (35)

This is exactly our original decomposition (23). Substituting this into (32),
(
‖ps‖2

0 + µ|φs |21
)
cµ + µ (A−1

µ f − cµ φs, ps) = (f, ps) .

With (33), we obtain that

cµ = (f − µA−1
µ f, ps)

‖ps‖2
0

. (36)

With cµ uniquely determined, ũµ is clearly uniquely determined by (31) or (35).
Next, we derive the stability estimates in Lemma 4.2. We show that these esti-

mates are the consequences of (35-36) and of the following inequality

‖A−1
µ g‖0 ≤ 1

µ
‖g‖0 ∀ g ∈ L2(ω). (37)
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In fact, if (37) is true, then the desired estimate on cµ follows from (36):

|cµ| ≤ ‖f ‖ + µ ‖A−1
µ f ‖0

‖ps‖0
≤ 2

‖f ‖0

‖ps‖0
.

On the other hand, we have from (33) and the Poincaré inequality that

‖φs‖0 ≤ CP ‖∇φs‖0 ≤ C2
P ‖ps‖0 .

Using this and the bound of cµ, we derive from (31) by taking v = ũµ that

‖∇ũµ‖2
0 + µ‖ũµ‖2

0 ≤ ‖f ‖0‖ũµ‖0 + |cµ| (‖∇φs‖0‖∇ũµ‖0 + µ ‖φs‖0‖ũµ‖0)

≤ ‖f ‖0‖ũµ‖0 + 2CP ‖f ‖0‖∇ũµ‖0 + 2µC2
P ‖f ‖0‖ũµ‖0 .

Then, an application of the Young inequality yields

‖∇ũµ‖2
0 + µ‖ũµ‖2

0 ≤ 1

2
µ‖ũµ‖2

0+ 1

µ
‖f ‖2

0+ 1

2
‖∇ũµ‖2

0+2C2
P ‖f ‖2

0+4µC4
P ‖f ‖2

0.

This implies

1

2
‖ũµ‖2

a ≤
(

1

µ
+ 2C2

P + 4µC4
P

)
‖f ‖2

0 ≤
(

1√
µ

+ 2
√
µC2

P

)2

‖f ‖2
0 ,

so the desired estimate on ‖ũµ‖a follows.
We now show the H 2-norm estimate. By the decomposition (35), we have

uµ = A−1
µ f = ũµ + cµφs , and

−�ũµ = −�uµ + cµ�φs = f − µuµ − cµps,

which gives

‖�ũµ‖0 ≤ ‖f ‖0 + µ‖uµ‖0 + |cµ| ‖ps‖0.

But we know from Lemma 4.1 thatµ‖uµ‖0 ≤ ‖f ‖0. This, along with the previous
bound for cµ, leads to

‖�ũµ‖0 ≤ 4‖f ‖0.

Now, for any �v ∈ H 1(ω)2 such that �v · �τ = 0 on ∂ω, with �τ the vector tangential
to ∂ω, it is well-known (cf. [17]) that (since ω is a polygon)

∑

1≤k,l≤2

‖∂kvl‖2
0 = ‖curl�v‖2

0 + ‖div�v‖2
0.

So, by taking �v = ∇ũµ, one actually finds

|ũµ|2 = ‖�ũµ‖0 ≤ 4‖f ‖0.

Finally, it remains to prove (37). By the definition of aµ(·, ·), we easily see the
following lower bound:

H−1(ω) < Aµv, v >H 1
0 (ω)

= aµ(v, v) ≥ µ ‖v‖2
0 ∀ v ∈ H 1

0 (ω) . (38)
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Then for any g ∈ L2(ω) ⊂ H−1(ω), let v = A−1
µ g ∈ H 1

0 (ω). One has Aµ v = g

in L2(ω) and it follows from (38) that

‖A−1
µ g‖2

0 = ‖v‖2
0 ≤ 1

µ
(Aµ v, v) = 1

µ
(g,A−1

µ g) = 1

µ
‖g‖0 ‖A−1

µ g‖0,

which proves (37). ��
We end this Section with a number of important remarks on the theoretical and

practical range of the splitting into regular and singular parts.

Remark 4.1 Equation (20) is also useful when the 2D heat equation is considered
in ω:

∂u

∂t
−�u = f in ω×]0, T [,

with initial condition and (homogeneous) Dirichlet boundary condition.As a matter
of fact, assume it is first discretized in time, with a time-step δt , at times tm = mδt ,
m = 0, 1, · · · : let um = u(tm). Then one has to solve in space the implicit problems
(with θ ∈]0, 1] given)

Find um+1 ∈ H 1
0 (ω) such that

−�um+1 + 1

θδt
um+1 = f(tm+1) + 1 − θ

θ
f(tm) + 1

θδt
um + 1 − θ

θ
�um, in ω.

Above, θ = 1 (resp. θ = 1/2) corresponds to the implicit Euler (resp. Crank-Ni-
colson) scheme. This is precisely (20) with µ = 1/θδt .

Clearly, implicit schemes for the 2D wave equation

∂2u

∂t2
−�u = f in ω×]0, T [,

lead to other instances of Equation (20).

Remark 4.2 Both φs and ps in (22) are chosen independent of µ, f and uµ, so
their norms will be regarded as some generic constants (i.e., independent of µ, f
and uµ.)

Remark 4.3 Instead of the decomposition (23), it seems more natural [21,22] to
take the decomposition uµ = ũ′

µ + cµφµ, where φµ ∈ H 1
0 (ω) depends on the

parameter µ, and it is the solution to the problem: −�φµ +µφµ = pµ in ω, with
pµ ∈ Nµ \ {0}, where Nµ is given by

Nµ =
{
p ∈ L2(ω) : (−�+ µ)p = 0, p|γk = 0 in (H 1/2

00 (γk))
′, 1 ≤ k ≤ K

}
.

But the decomposition (23) has an important advantage: the singular part φs is
independent of the parameter µ. As we shall see, this will be much less expensive
than using the above more natural decomposition.
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5 Discrete formulation in the 2D domain ω: the SCM

In this Section we shall formulate the generalized SCM for solving the coupled sys-
tem (31)-(32) and derive the error estimates of the approximate solutions. The SCM
was first introduced by Assous et al [8] for solving the 2D static or unsteady Max-
well equations without charges, and then used in [13] for the 2D Poisson problem.
As we will see, the formulation of the SCM for the 2D Poisson-like problem (18)
is quite different here due to the involvement of the parameter µ.

Let T h be a regular triangulation of the domain ω, with vertices {Mj }Ni+Nbj=1

and the last Nb vertices lying on the boundary ∂ω. We define V h to be the contin-
uous piecewise linear finite element space on Th with the standard basis functions
{ψj }Ni+Nbj=1 (cf. [16]). We further define V h0 to be the subspace of V h with all func-
tions vanishing on the boundary of ω. The interpolation associated with the space
V h will be denoted by �h.

5.1 Approximation of the singular function ps

We start with the finite element approximation of the singular function ps ∈ N in
(22). Recall the splitting (see [13])

ps = p̃ + p
P
, p̃ ∈ H 1(ω), p

P
= ρ−α sin(αφ) .

Asps is harmonic inω, one can directly verify that the regular part p̃ in the splitting
solves the problem:

Find p̃ ∈ H 1(ω) such that p̃ = s on ∂ω and

(∇p̃,∇v) = 0 ∀ v ∈ H 1
0 (ω) (39)

where the boundary function s is given by

s = 0 on γ1 ∪ γ2; s = −p
P

on γk (3 ≤ k ≤ K).

For the finite element approximation of the problem (39), we shall use the
simple treatment of the boundary condition:

πh s =
Ni+Nb∑

j=Ni+1

s(Mj )ψj . (40)

Then we approximate ps by phs = p̃h+p
P

, where p̃h is the piecewise linear finite
element solution to the problem (39). Namely, p̃h = πhs + p0

h where p0
h ∈ V 0

h
solves

(∇p̃h,∇vh) = 0 ∀ vh ∈ V h0 . (41)

The error estimates for the singular function ps and its finite element approxi-
mation phs are summarized in the following lemma.
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Lemma 5.1 We have 1

|ps − phs |1 � hα0 , ‖ps − phs ‖0 � h2α0 .

Proof We introduce a smooth continuation of s into ω:

s̃ = −p
P
(1 − ξ(ρ)) .

Clearly, s̃ = s on ∂ω and s̃ ∈ H 2(ω). Let p0 = p̃ − s̃. It is known that p̃ ∈
H 1+α0(ω), so we have p0 ∈ H 1+α0(ω) ∩H 1

0 (ω). It follows from (39) that

(∇p0,∇v) = −(∇ s̃,∇v) ∀ v ∈ H 1
0 (ω) . (42)

Recall �h is the interpolant associated with V h, thus we can rewrite the finite
element solution p̃h to the system (41) as p̃h = �hs̃ + p0

h with p0
h ∈ V h0 now

solving

(∇p0
h,∇vh) = −(∇�hs̃,∇vh) ∀ vh ∈ V h0 , (43)

by noting �hs̃ = πh s on ∂ω.
Now we are ready to derive the error estimates. It is clear from (42) and (43)

that

(∇(p0 − p0
h),∇vh) = (∇(�hs̃ − s̃),∇vh) ∀ vh ∈ V h0 . (44)

Using this, we obtain for any qh ∈ V h0 that

‖∇(p0 − qh)‖2 ≥ ‖∇(p0 − p0
h)‖2 + 2(∇(�hs̃ − s̃),∇(p0

h − qh)),

taking qh = �hp
0 above and using the Young inequality leads to

|p0 − p0
h|21 ≤ |p0 −�hp

0|21 + 2 |�hs̃ − s̃|1 (|p0
h − p0|1 + |p0 −�hp

0|1)
≤ 2 |p0 −�hp

0|21 + 1

2
|p0
h − p0|21 + 3 |�hs̃ − s̃|21 .

Then by the standard interpolation results we obtain

|p0 − p0
h|21 ≤ 4 |p0 −�hp

0|21 + 6 |�hs̃ − s̃|21 � h2α0 |p0|21+α0
+ h2 |s̃|22.

This leads to the desired H 1-norm error estimate:

|ps − phs |1 = |p̃ − p̃h|1 = |p0 + s̃ − p0
h −�hs̃|1

≤ |p0 − p0
h|1 + |s̃ −�hs̃|1 � hα0 + h|s̃|2 � hα0 .

1 By construction, neither ps nor phs belong to H 1(ω), due to the presence of p
P

, but the
following holds:

ps − phs = p̃ − p̃h ∈ H 1(ω).
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Finally, we apply the Nitsche trick to derive the L2-norm error estimate. Let
w ∈ H 1

0 (ω) be the solution to the variational problem

(∇w,∇v) = (p0 − p0
h, v) ∀ v ∈ H 1

0 (ω). (45)

By the elliptic theory, we know w ∈ H 1+α0(ω) and

|w|1+α0 � ‖p0 − p0
h‖0.

Let wh be the finite element approximation of w: wh ∈ V h0 solves

(∇wh,∇vh) = (p0 − p0
h, vh) ∀ vh ∈ V h0 .

Taking vh = wh above and using the Poincaré inequality, we know

|wh|1 � ‖p0 − p0
h‖0.

Also, by the standard error estimate, we have

|w − wh|1 � hα0 |w|1+α0 � hα0‖p0 − p0
h‖0.

Now, taking v = p0 − p0
h in (45) and using (44) and the duality argument, we

obtain

‖p0 − p0
h‖2

0 = (∇w,∇(p0 − p0
h))

= (∇(w − wh),∇(p0 − p0
h))+ (∇wh,∇(p0 − p0

h))

= (∇(w − wh),∇(p0 − p0
h))+ (∇(�hs̃ − s̃),∇(wh − w))

+(∇(�hs̃ − s̃),∇w)
≤ |w − wh|1 |p0 − p0

h|1 + |�hs̃ − s̃|1 |wh − w|1
+|�hs̃ − s̃|1−α0 |w|1+α0

� h2α0‖p0 − p0
h‖0 + h1+α0 |s̃|2‖p0 − p0

h‖0 ,

which leads to the desired L2-norm error estimate:

‖ps − phs ‖0 ≤ ‖p0 − p0
h‖0 + ‖s̃ −�hs̃‖0 � h2α0 + h2|s̃|2 � h2α0 .

��
Remark 5.1 Following the proof given in [1], one can improve the results of the
previous Lemma. Indeed, one can derive the estimates |ps − phs |1 � hα and
‖ps − phs ‖0 � h2α , under slightly more restrictive assumptions on the mesh.
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5.2 Approximation of the singular part φs

In order to approximate the singular part φs in the decomposition uµ = ũµ+cµ φs ,
we recall (cf. [13]) that φs ∈ H 1

0 (ω) solves the elliptic problem (22) and has the
following decomposition:

φs = φ̃ + β�φ
P
, φ̃ ∈ H 2(ω), β� = 1

π
‖ps‖2

0, φP = ρα sin(αφ) . (46)

Using (22), we see that φ̃, satisfying φ̃ = −β�φ
P

on ∂ω, solves the variational
problem:

(∇φ̃,∇v) = (ps, v) ∀ v ∈ H 1
0 (ω). (47)

The next step is to consider the finite element approximation of φ̃ in V h:

φ̃h = −β�hπhφP + φ0
h,

where πh is defined as in (40), β�h is computed using β�h = 1

π

∫

ω

(phs )
2dω, and

φ0
h ∈ V h0 is the solution to the problem:

(∇φ̃h,∇vh) = (phs , vh) ∀ vh ∈ V h0 . (48)

Then we propose to compute the finite element approximation of φs by

φhs = φ̃h + β�hφP .

Below, we derive the error estimates for this approximation.

Lemma 5.2 The following error estimates hold

|φs − φhs |1 � h , ‖φs − φhs ‖a � √
µh .

Proof We first estimate the error φ̃ − φ̃h. Subtracting (48) from (47) yields

(∇(φ̃ − φ̃h),∇vh) = (ps − phs , vh) ∀ vh ∈ V h0 ,
thus we obtain for any wh ∈ V h satisfying wh − φ̃h ∈ V h0 ,

|φ̃ − wh|21 = |φ̃ − φ̃h|21 + |φ̃h − wh|21 + 2(ps − phs , φ̃h − wh),

which with the Young inequality and the Poincaré inequality gives

|φ̃ − φ̃h|21 ≤ |φ̃ − wh|21 + 2CP ‖ps − phs ‖0(|φ̃ − φ̃h|1 + |φ̃ − wh|1)
� 2 |φ̃ − wh|21 + 1

2
|φ̃ − φ̃h|21 + ‖ps − phs ‖2

0. (49)

Noting that φ̃ = −β�φ
P

on ∂ω, so β�h�hφ̃ = β�φ̃h on ∂ω. Let wh = β�h�hφ̃/β
�,

then wh − φ̃h ∈ V h0 . With this wh, we derive from (49) and Lemma 5.1 that

|φ̃ − φ̃h|21 � h2 + (β�)−2|β�φ̃ − β�h�hφ̃|21
� h2 + |β� − β�h|2 |φ̃|21 + |β�h|2 |φ̃ −�hφ̃|21. (50)
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But using the definitions of β� and β�h, we have

|β� − β�h| = 1

π

∣∣∣‖ps‖2
0 − ‖phs ‖2

0

∣∣∣ � ‖ps − phs ‖0 � h2α0 . (51)

It follows from (50) and the property φ̃ ∈ H 2(ω) that

|φ̃ − φ̃h|1 � h .

This with (51) and the decompositions of φs and φhs gives the desired H 1-norm
estimate:

|φs − φhs |1 ≤ |φ̃ − φ̃h|1 + |β� − β�h| |φP |1 � h .

Finally, by noting that both φs and φhs vanish on γ1 and γ2, we can apply the
Poincaré inequality to the function φs − φhs to get

‖φs − φhs ‖0 ≤ C′
P |φs − φhs |1 .

Then the desired estimate on ‖φs − φhs ‖a follows from

‖φs − φhs ‖2
a = |φs − φhs |21 + µ ‖φs − φhs ‖2

0 � h2 + µh2.

��

5.3 Approximation of ũµ and cµ in decomposition (23)

Noting that ũµ and cµ solve the coupled system (31) and (32), it is natural to
formulate their finite element approximations as follows:
Find ũhµ ∈ V h0 and chµ ∈ R

1 such that

aµ(ũ
h
µ, v)+ chµ aµ(φ

h
s , v) = (f, v) ∀v ∈ V h0 , (52)

(
‖phs ‖2

0 + µ|φhs |21
)
chµ + µ (ũhµ, p

h
s ) = (f, phs ) , (53)

where φhs and phs are the finite element approximations of φs and ps , see Sub-
sect. 5.1-5.2.

However, this formulation requires solving a coupled system, and it poses
some difficulty in getting the error estimates as it does not fall into any existing
saddle-point-like framework. Instead, we are going to propose a more efficient
approximation which enables us to find ũhµ ∈ V h0 and chµ separately. In fact, we can

use the formula (36) to first find chµ, and then use (52) to find ũhµ ∈ V h0 . This leads

to the following algorithm to find ũhµ ∈ V h0 and chµ. LetC� > 0 be a fixed constant.

SCM Algorithm for finding ũhµ ∈ V h0 and chµ ∈ R
1.

Step 1. Find zhµ ∈ V h0 such that

aµ(z
h
µ, v) = (f, v) ∀ v ∈ V h0 . (54)
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Compute chµ as follows:

chµ = (f − µzhµ, p
h
s )

‖phs ‖2
0

if
√
µ < C� h

− 1
2−α0 ; (55)

and

chµ = 0 if
√
µ ≥ C� h

− 1
2−α0 . (56)

Step 2. Find ũhµ ∈ V h0 such that

aµ(ũ
h
µ, v)+ chµ aµ(φ

h
s , v) = (f, v) ∀v ∈ V h0 . (57)

Remark 5.2 In practice (see [15]), the conditions (55-56) mean that only a few
coefficients (chµ)µ need to be computed, with respect to the total number of Fourier
modes.

Below, we shall derive the error estimates on (cµ − chµ) and (ũµ − ũhµ). Recall the
formula (36) for cµ:

cµ = (f − µzµ, ps)

‖ps‖2
0

, (58)

where zµ = A−1
µ f ∈ H 1

0 (ω) solves

aµ(zµ, v) = (f, v) ∀ v ∈ H 1
0 (ω) . (59)

Clearly zµ = uµ, the solution to the equation (20). But a different notation zµ is
kept here for convenience, since the numerical approximation zhµ is derived with
the standard piecewise linear FEM.

Lemma 5.3 For the solution zµ to the problem (59) and its piecewise linear finite
element approximation zhµ in (54), we have the following error estimates

‖zµ − zhµ‖0 ≤ µ−1‖f ‖0 , (60)

‖zµ − zhµ‖0 � h2α0µα0−1(1 + √
µh)2‖f ‖0 , (61)

while for the coefficient cµ in (58) and its approximation chµ in (55), we have

|cµ − chµ| � (h2α0µα0(1 + √
µh)2 + h) ‖f ‖0 . (62)

Proof It follows from (59) and (54) that

aµ(zµ − zhµ, zµ − zhµ) = aµ(zµ, zµ − zhµ) = (f, zµ − zhµ).

This implies

|zµ − zhµ|21 + µ ‖zµ − zhµ‖2
0 ≤ ‖f ‖0 ‖zµ − zhµ‖0,

thus (60) follows by the Young inequality.
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We next show (61). Again it follows from (54) and (59) that

‖zµ − zhµ‖a ≤ ‖zµ − vh‖a ∀ vh ∈ V h0 .
But, by standard interpolation theory, we know that

|zµ −�hzµ|1 � hα0 |zµ|1+α0 , and ‖zµ −�hzµ‖0 � h1+α0 |zµ|1+α0 .

Therefore, we reach

‖zµ − zhµ‖a � (1 + √
µh)hα0 |zµ|1+α0 . (63)

On the other hand, for any g ∈ L2(ω), define w ∈ H 1
0 (ω) such that

aµ(w, v) = (g, v) ∀ v ∈ H 1
0 (ω). (64)

Using the duality and (64), we have

‖zµ − zhµ‖0 = sup
g∈L2(ω)

(zµ − zhµ, g)

‖g‖0
= sup
g∈L2(ω)

aµ(w, zµ − zhµ)

‖g‖0

= sup
g∈L2(ω)

aµ(w −�hw, zµ − zhµ)

‖g‖0

≤ sup
g∈L2(ω)

‖w −�hw‖a ‖zµ − zhµ‖a
‖g‖0

.

Using the interpolation result and the same derivation as in (63) and the a priori
estimate (26) (with u and f replaced by w and g), we obtain

‖zµ − zhµ‖0 � sup
g∈L2(ω)

h2α0(1 + √
µh)2|w|1+α0 |zµ|1+α0

‖g‖0

� h2α0µα0−1(1 + √
µh)2‖f ‖0 ,

which proves (61).
It remains to prove (62). We have from (55) and (58) that

cµ − chµ = (f − µzµ, ps)

‖ps‖2
0

− (f − µzhµ, p
h
s )

‖phs ‖2
0

=
{ (f, ps)

‖ps‖2
0

− (f, phs )

‖phs ‖2
0

}
+ µ

{ (zhµ, phs )
‖phs ‖2

0

− (zµ, ps)

‖ps‖2
0

}
:= I1 + I2 .

For I1, we have from Lemma 5.1 that

|I1| � h ‖f ‖0 .

For I2, we further write it as follows

I2 = µ
(zhµ − zµ, p

h
s )

‖phs ‖2
0

+ µ
(zµ, p

h
s − ps)

‖phs ‖2
0

+ µ (zµ, ps)
{ 1

‖phs ‖2
0

− 1

‖ps‖2
0

}
.
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Then using estimate (61) and Lemma 5.1, we can derive

|I2| � µ ‖zµ − zhµ‖0 + h ‖f ‖0 � (h2α0µα0(1 + √
µh)2 + h) ‖f ‖0 .

This with the estimate of I1 gives (62). ��
In the rest of this Section, we shall estimate the error between the solution

uµ to the elliptic problem (20) and its SCM approximation uhµ. We note that the
decomposition of uµ is equal to:

uµ = ũµ + cµ φs = ũµ + cµ (φ̃ + β�φ
P
) . (65)

So, we propose its SCM approximation uhµ of the form:

uhµ = ũhµ + chµ φ
h
s = ũhµ + chµ (φ̃h + β�hφP ). (66)

We shall derive the error estimate on uµ − uhµ. Let us start with the estimate of
(ũµ − ũhµ). We have

Lemma 5.4 The following error estimate holds

‖ũµ − ũhµ‖2
a � √

µ (h2 ‖f ‖2
0 + |cµ − chµ|2) .

Proof Subtracting (52) from (31) we have

aµ(ũµ − ũhµ, vh)+ cµaµ(φs, vh)− chµaµ(φ
h
s , vh) = 0 ∀ vh ∈ V h0 .

Using this we obtain for any wh ∈ V h0 ,

‖ũµ − wh‖2
a = ‖ũµ − ũhµ‖2

a + ‖ũhµ − wh‖2
a + 2chµaµ(φ

h
s , ũ

h
µ − wh)

−2cµaµ(φs, ũ
h
µ − wh),

which implies

‖ũµ − ũhµ‖2
a ≤ ‖ũµ − wh‖2

a + 2cµ aµ(φs − φhs , ũ
h
µ − wh)

+2(cµ − chµ)aµ(φ
h
s , ũ

h
µ − wh)

≤ ‖ũµ − wh‖2
a + 2 |cµ| ‖φs − φhs ‖a ‖ũhµ − wh‖a

+2 |cµ − chµ| ‖φhs ‖a ‖ũhµ − wh‖a . (67)

Now, there holds ‖φs‖a − ‖φs − φhs ‖a ≤ ‖φhs ‖a ≤ ‖φs‖a + ‖φs − φhs ‖a . Using
Lemma 5.2 and ‖φs‖2

a = |φs |21 +µ ‖φs‖2
0, we find ‖φhs ‖a ≈ √

µ ‖φs‖0. Using the
interpolation results, we obtain

‖ũµ −�hũµ‖2
a ≤ |ũµ −�hũµ|21 + µ ‖ũµ −�hũµ‖2

0 � h2 |ũµ|22,
thus letting wh = �hũµ in (67) and using Lemma 4.2, we derive

‖ũµ − ũhµ‖2
a � h2 |ũµ|22 + √

µh2‖f ‖0 |ũµ|2 + √
µh |cµ − chµ| |ũµ|2

� √
µ (h2 ‖f ‖2

0 + |cµ − chµ|2) .
��
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Theorem 5.1 Letuµ be the solution to the equation (20) anduhµ be its finite element
approximation given in (66). Then the following error estimate holds:

∃C > 0 such that ∀µ, ‖uµ − uhµ‖a ≤ C µh ‖f ‖0.

Proof It follows from (65) and (66) that

uµ − uhµ = (ũµ − ũhµ)+ cµ(φs − φhs )+ φhs (cµ − chµ).

Then we obtain, using Lemmas 5.4, 5.2 and 4.2, that

‖uµ − uhµ‖2
a ≤ 3

{
‖ũµ − ũhµ‖2

a + |cµ|2 ‖φs − φhs ‖2
a + ‖φhs ‖2

a|cµ − chµ|2
}

� µh2 ‖f ‖2
0 + µ |cµ − chµ|2 .

To prove the desired estimate, we need simply

|cµ − chµ|2 � µh2 ‖f ‖2
0 . (68)

First consider the case (56), i.e.,
√
µ ≥ C� h

− 1
2−α0 . This condition is equivalent

to

h−2µα0−2 � 1.

Then (68) comes directly from this condition, chµ = 0 and (25) as follows:

|cµ − chµ|2 = c2
µ � µα0−1‖f ‖2

0 � µh2 (h−2µα0−2)‖f ‖2
0 � µh2 ‖f ‖2

0 .

For the remaining case (55), we have
√
µ < C� h

− 1
2−α0 , or h2 � µ−(2−α0).

On the one hand, since α0 < 1,
√
µh � h

1−α0
2−α0 � 1. On the other hand, since

2α0 − 1 > 0, h4α0−2 � µ−(2α0−1)(2−α0). But one infers from (62) and these
inequalities that

|cµ − chµ|2 � (h4α0µ2α0 + h2) ‖f ‖2
0 � h2 (µ2α0−(2α0−1)(2−α0) + 1) ‖f ‖2

0 .

To conclude, (68) follows from this and the fact that, as α0 ∈] 1
2 , 1[, the exponent

of µ is bounded by

2α0 − (2α0 − 1)(2 − α0) = 2α2
0 − 3α0 + 2 = 1 + (2α0 − 1)(α0 − 1) < 1 .

��
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6 Fourier Singular Complement Methods

In order to define the numerical part of the Fourier Singular Complement Method,
let us prove a result which can be viewed as the mathematical foundation of the
FSCM, from the Fourier point of view. It allows to recover (4-6), for sufficiently
smooth right-hand sides.

Let u be the solution to the Poisson problem (1) and uk be its Fourier coeffi-
cients in (16). By Lemma 3.4, we know that uk(x1, x2) solves the 2D problem
(17-18). And using (23) we can decompose uk as follows:

uk = ũk + ck φs (69)

where ũk ∈ H 2(ω) ∩H 1
0 (ω) and φs ∈ H 1

0 (ω) solves (22).

Lemma 6.1 Let f ∈ h2(�)∩ h1�(�), and u ∈ H 1
0 (�) be the solution to (1). Then

u = ũ+ γ (x3)φs, with ũ ∈ H 2(�) ∩H 1
0 (�), γ ∈ H 2(]0, L[) ∩H 1

0 (]0, L[).
(70)

Proof Let (UK)K be the Fourier sequence of u. Recall that (UK)K converges to
u in H 1

0 (�), and (�UK)K converges to −f in L2(�). From (69), let us split the
Fourier sequence into regular and singular parts, as

UK = ŨK + γK(x3) φs, with ŨK =
K∑

k=1

ũk sin
kπ

L
x3, γK(x3)=

K∑

k=1

ck sin
kπ

L
x3.

We shall prove below that (γK)K converges inH 2(]0, L[)∩H 1
0 (]0, L[), and (ŨK)K

converges in H 2(�) ∩H 1
0 (�).

As far as the singular part is concerned, from (14) and the bound on |ck| in

Lemma 4.2, we obtain that
∞∑

k=1

k4|ck|2 < ∞. Since we are dealing with the 1D

Fourier sequence (γK)K (with sine functions), it is well-known that it converges
to a limit, subsequently called γ , inH 2(]0, L[)∩H 1

0 (]0, L[). Then, one finds that
(γK φs)K converges to γ φs inH 1

0 (�), and that (�(γK φs))K converges in L2(�),
to γ ′′ φs − γps .

For the regular part, we note that since there holds ŨK = UK − γK φs , (ŨK)K
converges in H 1

0 (�), to a limit called ũ, which is equal to

ũ = u− γ φs.

Moreover, (�ŨK)K converges in L2(�), to �ũ.
To conclude the proof, one has to establish that ũ is an element of H 2(�).

From Corollary 3.2, we know already that ∂3ũ is in H 1(�). So one has to check
that ∂ij ũ is in L2(�), for i, j ∈ {1, 2}. But this follows from the estimate on |ũk|2
in Lemma 4.2, and on the expression of the second order partial derivatives of ŨK ,
that is

∂ij ŨK =
K∑

k=1

∂ij ũk sin
kπ

L
x3.

��
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Remark 6.1 In the more general case, i.e., f ∈ L2(�), one gets only a convergence
of (γK)K in H 1−α(]0, L[), see [11]. This precludes a convergence of the singular
part in the desired Sobolev spaces, i.e., H 1(�) with L2(�) Laplacian.

In order to build the numerical schemes which completely define the FSCM, we
introduce uhk (x1, x2) the SCM approximation to uk(x1, x2). It is the same as uhµ in
(66), but with µ replaced by k2π2/L2, that is,

uhk = ũhk + chk φ
h
s .

We then rephrase the 2D SCM Algorithm (54-57). This gives
Step 1. Find zhk ∈ V h0 such that

ak(z
h
k , v) = (f, v) ∀ v ∈ V h0 . (71)

Compute chk as follows:

chk =
(f − k2π2

L2 zhk , p
h
s )

‖phs ‖2
0

if k < C�
L

π
h

− 1
2−α0 ; (72)

and

chk = 0 if k ≥ C�
L

π
h

− 1
2−α0 . (73)

Step 2. Find ũhk ∈ V h0 such that

ak(ũ
h
k , v)+ chk ak(φ

h
s , v) = (f, v) ∀v ∈ V h0 . (74)

As mentioned already, only a few coefficients (chk )k are actually computed.
Following (19), we finally define the FSCM approximation to the solution u to

(1) as follows:

UhN(x1, x2, x3) =
N∑

k=1

uhk (x1, x2) sin
kπ

L
x3 .

Then we have the final error estimate below

Theorem 6.1 Assume thatf ∈ h1�(�)∩h2(�). The following error estimate holds:

‖∇(u− UhN)‖L2(�) � (h+N−1)
{
‖f ‖L2(�) + ‖∂33f ‖L2(�)

}
.

Proof Using the Fourier expansion of u and the definition ofUhN , we have, cf. (10),

‖∇(u− UhN)‖2
L2(�)

= L

2

N∑

k=1

(
‖∇(uk − uhk )‖2

0 + (
kπ

L
)2‖uk − uhk‖2

0

)

+L
2

∑

k>N

(
‖∇uk‖2

0 + (
kπ

L
)2‖uk‖2

0

)

=: I1 + I2.
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According to Lemma 3.4, we derive

I2 = L

2

∑

k>N

(
‖∇uk‖2

0 + (
kπ

L
)2‖uk‖2

0

)

≤ L

2
N−2

∑

k>N

k2
(
‖∇uk‖2

0 + (
kπ

L
)2‖uk‖2

0

)

≤
(L
π

)2
N−2 ‖f ‖2

L2(�)
.

For I1, we have

I1 = L

2

N∑

k=1

‖uk − uhk‖2
a .

According to Theorem 5.1 we have

‖uk − uhk‖2
a � k4 h2 ‖fk‖2

0 .

Using this and (14), we obtain the estimate of I1:

I1 � h2
N∑

k=1

k4 ‖fk‖2
0 � h2 ‖∂33f ‖2

L2(�)
,

which, together with the previous estimate of I2, leads to the desired error estimate.
��

7 Conclusion

The optimal convergence rate of the FSCM in prismatic domains, has been proven
for the Poisson problem with homogeneous Dirichlet boundary conditions.Assum-
ing that the right-hand side f is slightly more regular than f ∈ L2(�), i.e., that f
belongs to h2(�) ∩ h1�(�), the convergence rate of the FSCM in H 1-norm is like

‖u− UhN‖1 ≤ Cf (h+N−1),

where h is the 2D mesh size, and N is the number of Fourier modes used.
The same result also holds for the discretization of the Poisson problem with

a homogeneous Neumann boundary condition, or for the Poisson problem with
non-homogeneous boundary conditions, provided there exist sufficiently smooth
liftings.

Further, it is no difficulty to consider the case of a prismatic domain � with
several reentrant edges, i.e., ω with several reentrant corners.

As far as the assumptions on the right-hand side f are concerned, a few remarks
can be made. It seems that, in a prismatic domain� such as the one we considered
here, the boundary condition on the bases was omitted in [2]. Nevertheless, this
condition does not exist in the case of an axisymmetric domain, see [14], nor in the
case of an infinite cylinder. In other words, f ∈ h2(�) is enough in those types of
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domains. In the case of a Poisson problem with Neumann boundary conditions, one
has to replace the vanishing trace conditions at the bases by the familiar ∂3f = 0
at the same bases.

As mentioned already, this paper is the first part of a three-part article [14,15].
In the companion paper [14], the FSCM is analysed theoretically and its numerical
approximation is built, in axisymmetric domains with conical vertices and reen-
trant edges. There are two difficulties which are inherent in this class of domains.
The first one is the weights, which have to be introduced in the 2D sections. The
second one is the addition of sharp vertex singularities, which have to be taken
into account separately. In [15], the FSCM is analyzed from a numerical point of
view (complexity, implementation issues, numerical experiments, etc.), and it is
compared to other methods, such as mesh refinement techniques, or variants of the
FSCM (2D SCM with the λ-approach [13]; 3D discretization of the regular part,
etc.) in prismatic or axisymmetric domains. In particular, the use of the FFT to
aproximate the sine functions in x3 is motivated and justified there.

As noted in Remark 4.1, one can apply the same theoretical and numerical
techniques to the 2D heat or wave equations, with any L2-smooth (in space) right-
hand side. For these PDEs, the singular functions ps and φs do not depend on the
time-step.

Finally, the results, can also be viewed as the first effort towards the discreti-
zation of electromagnetic fields in prismatic domains, with continuous numerical
approximations, the importance of which is well-known, cf. [9]. As a matter of
fact, the SCM developed in [8,7,19] for 2D electromagnetic computations can be
generalized, based on the results obtained here.
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