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Summary. Inthis paper, we consider some nonlinear inexact Uzawa meth-
ods for iteratively solving linear saddle-point problems. By means of a new
technique, we first give an essential improvement on the convergence re-
sults of Bramble-Paschiak-Vassilev for a known nonlinear inexact Uzawa
algorithm. Then we propose two new algorithms, which can be viewed as a
combination of the known nonlinear inexact Uzawa method with the clas-
sical steepest descent method and conjugate gradient method respectively.
The two new algorithms converge under very practical conditions and do not
require any apriori estimates on the minimal and maximal eigenvalues of the
preconditioned systems involved, including the preconditioned Schur com-
plement. Numerical results of the algorithms applied for the Stokes problem
and a purely linear system of algebraic equations are presented to show the
efficiency of the algorithms.

Mathematics Subject Classificatiof5F10, 65N20

1 Introduction

The purpose of this paper is to study some nonlinear inexact Uzawa algo-
rithms for solving the following system of linear equations
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(1.1) (gt ff) (5) - <§>

whereA is a symmetric positive definite x n matrix, andB is ann x m
matrix (m < n). We assume that the + m) x (n + m) coefficient matrix

A B
= (50)
is nonsingular, which is equivalent to the positive definiteness of the Schur
complement matrix

(1.2) C=DB'A"'B.

Linear systems such as (1.1) are called saddle-point problems, which may
arise from finite element discretizations of Stokes equations and Maxwell
equations [7,11, 15], mixed finite element formulations for second order el-
liptic problems [2, 7] or from Lagrange multiplier methods for optimization
problems [1, 16], for the parameter identification and domain decomposition
problems [12,17] and [19].

Inrecentyears, there is a rapidly increasing literature which is concerned
with preconditioned iterative methods for solving the indefinite system of
equations like (1.1), see [3,5,6,8,14,20-22]. In particular, inexact Uzawa-
type algorithms have attracted wide attention, see [3,5,8,14,21] and the
references therein. The common nice properties of these Uzawa-type algo-
rithms are that they have minimal memory requirements, and are easy to
implement.

Let A andC be two positive definite matrices, which are assumed to
be the preconditioners of the matricdsandC = B'A~! B respectively.

And let R denote the usudtdimensional Euclidean space. For dny [
positive definite matrixG, we use| x| to denote theF-induced norm,
namely|z|¢ = (Gz, x)Y/? for all z € R'. Then the standard inexact
Uzawa algorithm can be described as follows (cf. [5] and [14]):

Algorithm 1.1 (inexact Uzawa).
Givenzy € R" andyy € R™, the sequencé(x;,y;)} C R™ x R™is
defined fori = 1,2,-- -, by

(13) Tiv1 = Ti + A_l[f — (Aﬂ;‘l + Byl)},

(1.4) Yir1 =i+ CH(B'wip1 — g).

There are some earlier versions of the above algorithm, e.g., see [3] and
[21]. The existing convergence results indicate that these algorithms are

convergent by assuming some good knowledge of the spectrum of the pre-
conditioned matriced ~* 4 andC'~1C or under some proper scalings of the
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preconditionersi andC. This "preprocessing” may not be easy to achieve
in some applications.

To avoid the estimate on the minimal generalized eigenvaludssith
respect to A, a practical way is to replace the inner iteration (1.3) of the
standard inexact Uzawa algorithm by some nonlinear iteration, for exam-
ple, the PCG iteration. The detailed convergence properties of the resulting
algorithm can be found in [5] and [14]. However, some improvements on
the convergence results achieved so far seem necessary (see the numerical
examples given in [5] and Sect. 2 below). Moreover, a good knowlwdge
on the spectrum of the preconditioned Schur complement is needed for a
proper scaling of the preconditioner to guarantee the convergence of the
global inexact Uzawa iteration, see Sect. 2 for the details.

To avoid the estimate of the generalized eigenvalues wfith respect
to B*A~! B, the Uzawa-type algorithm proposed in [3] introduced a PCG
algorithm as an inner iteration of (1.4). It was proved that the Uzawa-type
algorithm converges under the assumptions that each inner iteration temi-
nates with a certain accuracy and the basic iteration for the preconditioned
systemA~! 4 is convergent.

The preconditioned minimal residual method studied in [20] and [22] is
always convergent, but needs some good knowledge of the smallest eigen-
values of the matricesi—' 4 and C—!(B*A~!B) to achieve a practical
convergence rate. Without a good apriori estimate on the smallest eigen-
values of these two preconditioned matrices, the condition number of the
(global) preconditioned system may be still very large even if the condition
numbers of the matriced ' A andC (Bt A~1B) are small (cf. [22]). In
this case, the convergence of this iterative method may be slow (see Sect. 4).

The purpose of this paper is twofold. By means of a new technique, we
first give an essential improvement on the convergence results of Bramble-
Paschiak-Vassilev for a known nonlinear inexact Uzawa algorithm. Then
we propose two new algorithms, which can be viewed as a combination
of the known nonlinear inexact Uzawa method with the classical steepest
descent method and conjugate gradient method respectively. We will show
our algorithms are always convergent without any assumptions on the spectra
of the preconditioner§' and A.

The outline of the remainder of the paper is as follows. We give a
new convergence result for a known nonlinear inexact Uzawa algorithm
in Sect. 2, and present two new algorithms and analyse their convergence
rates in Sects. 3 and 4. Finally, we apply the proposed new algorithms for
solving the Stokes problem and a linear system of purely algebraic equations
in Sect. 5.
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2 An improved convergence result
for the known nonlinear inexact Uzawa algorithm

The main purpose of this section is to present an essential improvement
on the convergence results of Bramble-Paschiak-Vassilev for a nonlinear
inexact Uzawa algorithm. In this algorithm, the computation of the action
of the inversed—! in (1.3) is replaced with that of an approximation4o!
which results from applying a nonlinear iterative process for inverting
Two examples of such approximations are from defining the approximate
inverse by a PCG iteration or the operator which results from the application
of a multigrid cycling algorithm with a nonlinear smoother (cf. [5]).

We now describe the nonlinear inexact Uzawa algorithm, in which the
nonlinear approximate inverse is defined by a niap R* — R". For
¢ € R", ¥(¢) is an "approximation” to the solutiof of

(2.1) A€ = 6.

The following assumption was made in [5] on the accuracy of the approxi-
mation:

(2.2) 1Z(¢) — A7 04 <5 AT ¢lla, Vo€ R

for somed € (0,1). This is a natural assumption and can be satisfied by
the approximate inverse associated with the PCG iteration and the approxi-
mate inverse defined by one sweep of a multigrid algorithm with conjugate
gradient smoothing (cf. [5]).

The nonlinear inexact Uzawa algorithm is defined as follows:

Algorithm 2.1 (nonlinear inexact Uzawa).
Givenzy € R™ andy, € R™, the sequencé(z;,y;)} € R" x R™ is
defined fori = 1,2, ---, by

(2.3) zit1 =z + ¥ (f — (Az; + By;)),
(2.4) yir1 =i+ C (B'wit1 — g).
Under the assumption (2.2) and
(2.5) (1-(Cy,y) < (Cy,y) < (Cy,y), VyeR™,

it was proved in [5] that Algorithm 2.1 converges if

1—
(2.6) §< -7,
3—7
And in this case the following estimate of the convergence rate holds:

wmi+mﬁé>

wmi+wm%Spﬂ(

1+9 1+96
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and

T 7— g T
et < (1+0) (1420022 (Bl + el ).

wheree? ande! are the error functions
e%:x_l‘i) e?:y_yl

and

2547+ /(26 +7)2 +46(1 — )
— 5 .

Generally speaking, the convergence condition (2.6) is somehow not
very satisfactory as it depends on the “preconditioning parameterhe
condition says that the evaluation.df ! ; for somef; required in (2.3) by
the nonlinear iteratio# should be more accurate if the preconditioning of
the Schur complement becomes worse (iyés, close tol). This seems not
so reasonable. Indeed we find surprisingly that such a requiremeérdam
be made completely independentgfnamely the same results still hold
when (2.6) is replaced by < 1/3 as shown below.

To demonstrate such an essentially improved result, we will first establish
the convergence rate for the residual

fi=Ff—(Az; + By;) = Aej + Bel,

instead of the traditionally used error vectgras was done in [5]. This is
an important observation which leads to our improved results. To do so, we
define a new nornfi| - |||:

o]l = (floa? + fleal|2)2, v = (v1,02) € B x R™
With this norm we can show
Theorem 2.1 Under the assumptions (2.2) and (2.5), fox % we have
_1 n m
@.7) (1Bl <o B, Ei=(V6A2f;ef) € R" x R™
The convergence raf@(< 1) can be estimated by

VE+ 0246 for 0<y< 5
(2.8) P < y(116)—264+\/[(155)—25]2 44 o
i ; for 1+6 <vy<l1

s{‘/5+52+5 for o<7<1+6,

1— 21 —9)(1+6) for <y<l
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Proof. The inequality (2.8) was discovered and proved independently by
Cheng [10] and the authors [18]. However, for reader’'s convenience, we
outline the main idea of the proof.
Let
B'A™z = U(X, 0)V*
be the singular value decomposition of the matfsix4~ . Define
Qo = XoUtC U,

and

(=T +Qo) ViQo
F_< VQo (I—Qo))'

It can be verified directly that

_ 5 _ _ 5 _ 2
IF] < mox 1—8—B1+8)|++/|1-6—pB(1+0)] +45’
Bea(Qo) 2

whereo(Qo) is the spectrum of the matrig,. One can check that the
matrix Qy has the same eigenvalues as the maftiXC. Thus we have
(Qo) C [1—1,1] by (2.5). Then we can show< || F'||, and (2.8) follows
from (2.10).

We next show (2.9). When > 45/(1 + §), we have

v(146) —26 > 2§ > 0.

This with the condition thay < 1 leads to

(1 +08) =26 4+ /[y(1 +6) — 20]2 + 40
<A(1408)—20++/(1—0)2+46
= y(1406)—26+1—46
=24+ (y—1)(1+9).

(2.9) follows then from this relation and (2.8). In particular, wlien % we
havep < 1. a

Using Theorem 2.1, we can estimate the convergence rates of the errors
e ande!:
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Theorem 2.2 Under the assumptions (2.2) and (2.5), Algorithm 2.1 con-
verges for any < %. Moreover, we have

(2.11)  [eflla < (VI +40+p)p | Eolll, i=1,2,-
and

(2.12) He;yHCSﬁZ”‘EOH‘v i=1,2,---.

Here the rate of convergengehas the following bounds:

1 1.2
_ pP— 57— 7Y for O<’y< ,
2.13 < 2 6 1+5
(2.13) p_{p—§(5+52) for H_5<’y<1

Proof. The estimate (2.12) is a direct consequence of (2.7). We next prove
(2.11). To do so, we start with the derivation of a useful expression for
A~1/2f;. Clearly, we can write

fi = Aelx + Beiﬂ BtIEH_l —g= _Bte:in—i-l’
this with (2.3) and (2.4) leads to

AZef ) = A3 (ef —WU(f;) = (A

1

2 f, — A2W(f;)) — A2 Be!

and
AT3BeY, = A2 B(e! + O Blel,y)
= AT3B|e/ + CT'BtATE
x((A73f; - ARw(f) - A2 Be )|

= ATEBCTIB AT (A3 f; — AZU(f))
(2.14) +(I— A 2BC'B'A"2)A 2 Be!.
So we have

Ai%fz‘ﬂ = A%efﬂ + A*%Beifﬂ
= (I+ A 2BC 'B'A"2)(A 2 f, — A2W(f;))

(2.15) — (A"2BC'B'A"2)A 2 Bel.

Because of (2.2), for any given natural numbene can construct a sym-
metric and positive definite x n matrix Q) 4; such that

Qav(fi) = fi
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and
_1 _1
|- eztacii] <5

see, for example, Lemma 9 of [3] for such a constructioaf. Thus we
have

(2.16) U(fi) = Qx; fi
and
(2.17) |1 atqzlas| <.

By means of (2.14)-(2.16), we can further write
A 3fi = (I+ A 3BOIBIA 3)(I — A3Q 1 AD)A 3 f,
— (A" 2BC 'B'A"2)A 2 BéY

or equivalently write (replacingby i — 1)

ATaf; = I+ @2)@11‘147%]2‘—1 — @2147%36?_1
where

Qui=1I-A2Q;'A* and Q,=A":BC'B'A 3.
Applying the arithmetic-geometric mean inequality yields
JAT2 Sl < (LT + Q2)QuA™ fia

(2.18) (L) Q2A2 Bel |2,

wheren is any positive number. One can easily see that the méitjihas
the same positive eigenvalues as the maftiXC'. Hence, the assumption
(2.6) implies that the eigenvalues @5 are in the interval0, 1]. Namely,
we have

Q2] <1, 1T+ Q2 <2,
this, with (2.18) and (2.17), leads to

1 1 1
[AT2f;]|* < (L +n)46?| A2 fia|* + (L+n~1)||A"2Bel_, ||?
1
= 45(1 +n)|[VEAT2 fia |2+ (L + 07 ) |lel |12
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Takingn = 1/(44) above and using (2.7) we obtain

_1 _i—
IAT2 il < V1+ 467 ]| Eolll.

Now using the relation
1 1 1
Azef = A7 fj — A"2Bel,

(2.11) follows immediately from (2.7) and the triangle inequality.
It remains to show (2.13). Let us first considex v < 46/(1 + 9)).
We have
/462 24+44
e R (YR )
N VA2 +6) +72 — /4(02 +9)
2 2
+ il .
2(\/4(6%2 +0) + 72 + /4(62 + 6))

Usingd < 1/3 andy < 1, we know

+

p-p=0b+1
2

N[22 >

(2.19)

VA2 +0) + v+ V/4(82 +6) < 3.
This along with (2.19) yields
2
oY
(2.20) p—p>2—|—6.

Now consider the remaining caski/(1 + §) < v < 1. We have

V(26)2 +92 4465

— y
:0_,0—54‘5-1- >
g v V(O +06) =202+ 46
QM)—{Qﬂm_2+ 2 }
=(2-1)s+ (26)* + 7 = [v(1 + 6) — 26)?
2

2(V/(20)2+ 77 + 46 + /[y (1 +0) — 202+ 43)°
Let

f() = (26" +4° = [v(1 +6) — 20]7,
it is easy to see that

f(y) =~0[4(1 +6) — (2 + 9)]
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and
f'(y) =282 > 0.

Thus by the monotonicity of,

46 \ 1667
1+6) (1+6)

Moreover, using) < 1/3 andy < 1 we have

(2.22) 1) > f (

V(2002472 + 46 + /[y(1 + 6) — 20]2 + 46 < 3.
This combining with (2.21)-(2.22) leads to

3 166> 3
D> 0+ ——— > (6462
P=P> 0 Gy~ 200
which completes the proof of (2.13). a

Remark 2.1The key points in the proof of Theorem 2.1 is the replacement
of the errore? by the residualf; and the use of the norffi - |||. Then x n
matrix @ 4; used in the proof can be viewed as a preconditioner of the matrix
A (which is just the preconditionet in [3] and the preconditione® 4 in

[5]). However, this preconditioner changes with the iteration numbinis
makes the norm used in [3] (involving Hi&) and the norm used in the proof

of Theorem 3.1 of [5] (involving| - ||22A7A) not applicable here for the
analysis of the convergence of Algorithm 2.1, because the local contraction
of errors with a changing norm can not guarantee the global convergence of
the algorithm (refer to Theorem 4.2, [5]).

Remark 2.2The numerical results shown in [5] indicated that Algorithm
2.1 may still converge even if the condition (2.6) is not satisfied. It was seen
as a surprising phenomenon (see [5]). Now we would like to illustrate a bit
about this phenomenon. It can be verified directly by (2.10) ft#gf < 1

is equivalent to

1—-0—-pB1+0)<1-06

Thus,||F|| < 1if and only if
2(1—6)
1447

Under the assumption (2.5), we can only obtgin., < 1. Here Gmax
denotes the maximal eigenvalue of the matpx Solving the inequality

(2.23) 3 <

VB € a(Qo).
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1< 2(11+_55), we get § < % which means that the covergence condition

0 < % is sharp theoretically whefy,., = 1. However, if the preconditioner

C is not properly scale@,.x may be bounded far away from one (namely,
close to zero). In this case (e.g., see the example considerd in [5]), the
inequality (2.23) is also valid evendfis close to one. But the convergence
can be very slow (cf. [5]) because the assumption (2.5) holds only with the
~ close to one (note thét < 1 — v < Bmax)- These facts indicate that the
afore-mentioned phenomenon is not too surprising.

3 New algorithm I: the nonlinear inexact Uzawa combined
with the steepest descent method

In general, the crucial assumption (2.5) is not so easy to fulfill as it requires

a good estimate on the maximum eigenvalue of the preconditioned Schur

complement’~1C in order to have the desired proper scalingofVithout

such a good estimate this assumption is not met or it is satisfied only with

somery very closel, which may cause the divergence of the algorithm or

results in very slow convergence of the algorithm. Obtaining such a good

estimate of the eigenvalues is not very convenient or practical. In this and

next sections, we propose two new algorithms to avoid such estimates.
Our first idea is to introduce a relaxation paraméten (2.4) such that

the norm

I7:C g — C gl
is minimized, wherg; = B'z; 1 —g. If g; # 0, the direct calculation gives

(95, C ' g1) (9;,C i)

?: =

IC-tgillz  (A"1BC1g;, BC-lg;)

Since the action oft ! is not allowed, A~ BC'~g; will be then replaced
by w(BC~1g;), which results in the following new algorithm:

Algorithm 3.1 (Nonlinear inexact Uzawa-steepest descent).
Givenzy € R™ andy, € R™, the sequencé(z;,y;)} € R" x R™ is
defined fori = 1,2, ---, by

Step 1 Computef; = f — (Ax; + By;) and¥(f;), update

(3.1) Tit1 =z + ¥ (fi).
Step 2 Computeg; = Blz;41 — g, di = C’_lgi and

i di .
3.2) = > W for g #0;
1 for g;=0.
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Update
(3.3) Yirl = Yi + Ti d;.

Remark 3.1lt is clear that when botlf; andg; vanish, then the vectors
andy; are the exact solution of the equation (1.1), and thus Algorithm 3.1
terminates.

For the sake of convenience, we introduce two paramégandd, which
are the minimal positive numbers satisfying

(3.4) IAT i =W (fi)lla < SIIA7 filla
(3.5) A" Bd; — W(Bd;)||a < 00| A" Bd;| a.

Remark 3.2Note that the assumptions (3.4) and (3.5) are in fact conse-
guences of the assumption (2.2). So we can simply assume the condition
(2.2) instead of (3.4)-(3.5) and all the results in this and next sections hold.
We choose to formulate the above two conditions here so that we can see
how the convergence rate of Algorithm 3.1 depends more explicitly on the
accuracies of the two nonlinear inner iterations in both (3.1) and (3.3). The
evaluations ofA~! f; and A~' Bd; by the nonlinear iteratio# can be dif-
ferent.

Let

4k(1 — 200)
+ 5)2(1 — 50)2,

(36) wk=condC'C), B= \/1 -4

then we have

Theorem 3.1 Assume that the approximation parametém@nd §, satisfy
0 < % anddy < % then Algorithm 3.1 converges. Moreover, we have

(3.7) leflla < (V1445 +p)p|[Eolll, i=1,2,--
and
(3.8) le/llc < Al Eolll, i=1,2,---.

Here the rate of convergenge(< 1) can be estimated by

3.9) N R ) for 0< 2 < 2
' PT =t -8 +6) for {55 < 18 <
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Remark 3.3From Theorem 3.1 we know that the convergence of Algorithm
3.1 is independent of the spectrum of the preconditioned Schur comple-
mentC~1C, and the convergence rate of this new algorithm depends only
on the condition numbex, not necessary to have a proper scaling of the
preconditionel”’ and a good apriori estimate on the maximum and mini-
mum eigenvalues af'~1C. This seems to be an important advantage of the
new algorithm over the existing nonlinear inexact Uzawa algorithms. The
assumptions of Theorem 3.1 are natural and can be satisfied by the approxi-
mate inverse associated with the PCG iteration and the approximate inverse
defined by one sweep of a multigrid algorithm with a suitable smoother
(cf. [3,5,4] and [23]).

For the proof of Theorem 3.1 we need the following lemma:

Lemma 3.1 Assume that the condition (3.5) holds wih < % Then for
any given natural numberthere is a symmetric and positive definite< m
matrix ) g; such that

0) Qpi9i = 7,C7lg;.
. . | . . 1—
(i) All eigenvalues of the matrig) ;. C are in the mterval[Tﬁ, 1].

Proof of Theorem 3.AVith Lemma 3.1, we can view the matriXg; as the
preconditionet” for the Schur complemenit, which satisfies the condition
(2.5) withy = #. Thus Theorem 3.1 is a direct consequence of Theorems
2.1-2.2. Here we have to make use of the important fact that the norms
adopted in Theorems 2.1-2.2 are independent of the preconditiénier
comparison with [5]. O

Proof of Lemma 3.1t is easy to see that

(#(BC'gi), BC ' g;) = |Cgille + (#(BC ' gi)
(3.10) —A"Y(BC '), BCgy).

Using the Cauchy’s inequality and (3.5), yields
((BC'g;) — A7 (BC'g;), BC™gy)

< ||#(BCtg;) — A"HBCg;)||a | BC ' gi)|| a
< 6ollATH(BC g4 IBC™ gi) | a
= 00llIC  gillE-

Substituting the above inequality into (3.10) leads to

(1=00)C'gillE < (W(BC'gi), BC™g;) < (1 + 60)lIC" gl
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Thus,

(9i,C i)
(14 00)%IC~1gillZ

(i,C i)

(3.11) i ,
(1—60)2[C1gill%

<7 <

where the parametéy is defined by

~ _ (9i,C'gi) .
1@ (BC1g:)|1%

Forr > 0, let
F(r)=|7C g — C 7 gil 2.

Clearly,

(312)  F(r) =0 gille = 2r(g:. C " gi) + 721 C g2

It is easy to verify thaf’(7) is an increasing function for

and is a decreasing function for

;< (gué_lgi)'
~IC gl

Using this property and (3.11), we know

_ T0i T0i
(3.13) F(Ti)ﬁmaX{F<1+5o>’F<150>}

where

B (giaé_lgi)
Toi = AL 2
1C gl

On the other hand, it follows from (3.12) that

T0i 1 2 2(1+60) —1 (gi C1g;)?
F = |C gillc — A
(13'5) = el - 50 1C gl

Q. Hu, J. Zou

2(14 o) — 1 9i,C1g;)? _
={1— Ut 21l ool jomig2.

(1+00)* |C-gi]lZ Cail%
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Let \in @ndX,,q denote respectively the minimal and maximal eigenval-
oA 1 A1 . . .
ues of the matrixC~ 2 CC'™ 2. Then using the well-known matrix-eigenvalue

inequality we obtain
(9i, é_lgi)Q
IC1gill2: 1C gil 2.

. (é_%giaé_%gi)Q
(C2CC3(C2g,),C2g) (C72CC72)~1(C2g;),C2g;)
4)\mzn)\maac o 4
o ()\min+Amaz)2 (1+ )
Hence

21 48) —1 4r .
(314)F< 50><{1 TR (1+/<)2}HC LgillZ.

Similarly we can show (note thag < %)

21—6))—1 4r _
(315)F< 5>§{1_ (1= 60)2 (1“)2}\\0 alle-

Now by the direct calculation, we have

214+60)—1 2(1—=6) —1
(1+60)2  (1—8)?

(1 1 L1,
N 1—14g 1+ g 1—14g 1+ g

1 1 262
= — 0~ >0,
1—-60 1+ 1-4;

2(1—60) —1 21468 —1
-6 ~ (1102

which, together with (3.13)-(3.15), yields
F(7) <{1— ;
< {1- 2 s e
= B(IC™ gill2.-
Summarizing the above, we have proved

17C g — C 7 gille < BIIC  gillc-

namely,
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Itis clear that3 < 1 whendy < % Hence by Lemma 9 of [3] we know that
there is a symmetric and positive definitex m matrix Q z; such that

Qpigi =7C g

and

.1 .1
HI o wteTopcd IS0}

Now QB; = ZQBZ« is the desired matrix, since the matﬂ}g%C has the
1 1
same eigenvalues as the matgx’ CQ 5’ . O

4 New algorithm II: the nonlinear inexact Uzawa combined
with the conjugate gradient method

In the last section, we proposed a nonlinear inexact Uzawa combined with
the steepest descent method (Algorithm 3.1), which converges when a gen-
eral preconditioner is used for the Schur complement system and a general
nonlinear iteration is used for solvingyr = b involved in the inner iteration.
However, the steepest descent method converges with a reasonable rate only
when a good preconditioner is available for the Schur complement system.
This is the case when the saddle-point problem arises, for example, from the
Stokes problem, mixed finite element formulations of second order elliptic
problems [22], and domain decomposition methods with Lagrange multi-
pliers [17]. Without such a good preconditioner the method may converge
with a slow rate. This fact can be observed from the numerical experiments
shown in Sect. 5.

In this section, we propose another new algorithm which combines
the nonlinear inexact Uzawa algorithm with the conjugate gradient (CG)
method, in an effort to accelerate the nonlinear inexact Uzawa algorithm
when a good preconditioner is not available for the Schur complement sys-
tem. Thisis the case when the saddle-point problems arise from the Lagrange
multiplier formulations for optimization problems [16] and the parameter
identification [12] [19].

In the following, we will first derive a new nonlinear inexact Uzawa
algorithm and combine it with the CG method, then analyse the conver-
gence of the new algorithm and compare its convergence rate with that of
Algorithm 3.1, which uses the steepest descent method.

Foragivensequendd;} C R", let{Q 4;} bethe sequence of symmetric
and positive definites x n matrices satisfying (2.16) and (2.17), and set
H;, = BtQ;‘Z.lB. Clearly,H; is also a symmetric and positive definitex m
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matrix. For a given sequende;} C R™, consider the linear system (with
the index: fixed)

(4.1) Hiz = g;.

We intend to solve (4.1) for each fixed indefty the PCG iteration with
the preconditioneC’. This process is to find a sequence of approximate
solutions{z/} as follows:

initialize : =0, V=g, p= (jvflgz., ho = 0;
iterate forj =1,2,---:

~

G

2] a1 ~JAj—1 ~J D
z; =z + T p; T: = 77— =1 =1
AZ, A14 1 zP{ ' 1 ’ (Hip; 1,p§ b
J _ Bl ~) 7. A
P = hy; A—ij T Hpy
o J
=9 — hia
. R . o .. A1 ad 7y aj—1
N C_lAJ _ 9] ~j—1 0] o (C 1T§,H¢pz )
— e s, =
' ! ( ¢ (Hipi P )

Note that one has the relatidl = H; 3/ between the variables’ and 2/
above, and each action &f; involves the action of);. In general it is
difficult to obtain the explicit form of the matrig) 4;. Thus, it is important
and practical to use the inexact solV&Bp; _1) to replaceQ;}Bﬁg ! The
resulting iteration can be formulated as follows:

initialize : D=0, W=g, pP= c-lg;, B = 0;
iterate forj =1,2,---: o
Wo=hydBwBph,
rl = gi — h, o |
pl = Gl —gipit, g7 = B B ))

¢ (w(Bpl )BT

For convenience, we usg,(g;) to denote thésth iteratez* generated
from the above procesg;, defines a (nonlinear) mapping froRi"™ to R™,
and®y(g;) can be regarded as an approximate solution of the system (4.1).
Note that we may not hav( Bb) = Qg}Bbforavectorb € R"™ingeneral,
so P (g;) is not the true approximation generated by thsteps of PCG
iteration for (4.1).

We assume that there is a positive numbgk: 1 such that

4.2) |Dx(9:) — 2illm, = | Pr(9s) — H;  gill s < BillH;  gill ;-
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Then by Lemma 9 of [3], there is a symmetric and positive definite m
matrix Q;, such that), ! g; = @ (g;) and

< Bk,

A1 a1
‘I - QkiQHiQk:iQ

which implies

1 1
Hw,w) VYweR™.
1+ By 1—ﬂk( )

On the other hand, it follows from (2.17) that
(1=0)(A w,w) < (Qjw,w) < (14 0)(A'w,w) YweR™,
This, together with (4.3), leads to

1-94 A 1+9
@4 T (Cww) < (Quww) < 7o ().
DefineQy; = 125 Qs Itis easy to see that
1-96

and

(1—-0)(1 —Bk)

2(1—+5)(Qkiw,w) < (Cw,w)
(4.6) < (Qriw,w) YweR™

by using (4.4) and the fact thai, < 1.

Based on (4.5) and Algorithm 2.1, we propose the following new algo-
rithm:

Algorithm 4.1 (Nonlinear inexact Uzawa—PCG method).

Givenzy € R™ andy, € R™, the sequencé(z;,y;)} € R" x R™ is
defined fori = 1,2, ---, by

Step 1 Computef; = f — (Ax; + By;) and¥(f;), update

(4.7) Tiy1 = 3+ Qo fi = xi + V().

Step 2 Computey; = B'z; 11 — g, anddy; = P (g;), update
_ 1-96

(4.8) Yir1 =i + Q) gi = yi + dy;.

The inequality (4.6) indicates that the matfy,; satisfies the inequality

(2.5) withvg, = %w Thus by Theorem 2.2 we obtain
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Theorem 4.1 Assume that (2.2) holds fér< %, and (4.2) holds foB;, < 1.
Then Algorithm 4.1 converges. Moreover, we have

4.9  leflla < (V1445 + pi) (o) M| Eolll, i=1,2,-
and

and the convergence rafg (< 1) can be estimated by

(411) < VIHT+S for 0< G <P,
)11 -8 -6 for X <p<l

Remark 4.10ne can easily see from (4.5)-(4.6) that Theorem 4.1 also holds
ifthe factor(1—4)/2in (4.8) isreplaced by any numbere (0, 1/3). Infact,

the numerical results in Sect. 5 indicate that Algorithm 4.1 still converges
when the factof1 — §)/2 is replaced byi. So Algorithm 3.1 is a special
case of Algorithm 4.1 wittk = 1.

As noted in Remark 3.3, the first assumption of Theorem 4.1 holds when
the mapping? is properly defined. However, it is difficult to verify the
condition (4.2) in general. The following proposition gives a condition which
guarantees (4.2) when dli;’s are taken to be the same:

Proposition 4.1 Assume that there is a symmetric and positive definite
matrixQ 4, suchthaty ,* ¢ = ¥(¢) forany¢ € R™. Definell = B'Q ;' B.
Then the following inequality holds for somig < 1:

(4.12) 1Pk(9:) — H 'gillur < BellH *gillm.

Proof. Under the assumption of Proposition 44%,(g;) is just the approxi-
mate solution generated by thateps of PCG iteration for the linear system

(413) HZ,‘ = G;-

Thus, the paramete?;, satisfying the relation (4.12) can be estimated by

(cf. [2])
. Ve —1 K k" —1
6k_mm{2<\//?*+l> ,R*+1}<1

with x* =cond C~'H). O
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Remark 4.2The assumption in Proposition 4.1 is satisfied in some applica-
tions. For example, itis true when the mapping defined by the precondi-
tioned Richardson iteration, which includes the standard multigrid sweeps.

To see this, for any € R™, recall the preconditioned Richardson itera-
tion for solving the system

(4.14) Az=b

with the preconditione# is
$i+1:$i+A71(b—AI), i:1,2,-"

Ifthe eigenvalues o~ Aisintherang® < X < 2, theiteration converges.
Takingzy = 0, we can easily see
g =ax— (I —A1TA) Ty
i+1

_ Z ] 1Cz]+1 A)

1+1
_Z 17107 (ATTA)T A .

This suggests us to defiig," as
i+1 _ .
Q' =Y (-1 TICL (AT AY AT = (T - (1 - ATy ) AT
j=1
We can easily verify that the matri@ 4 is symmetric and positive definite,
and satisfies

Qb =21 =0(b) VbeR"

Note that if A is the stiffness matrix which arises from the finite element
discretization of self-adjoint second order elliptic problems, then one can
choosed ! to be the operator corresponding to one V-cycle sweep of multi-
grid method [5] or the hierarchical basis multigrid method [3].

In the following we make some comparison between the convergence
rates of Algorithm 3.1 and Algorithm 4.1.

Proposition 4.2 Assume that the parameters< and 5, in (2.2), (3.6) and
(4.2) satisfy

1 R
§< -, rk=cond(C7!C)>2, lim B =0
5 k—o0
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respectively. Then Algorithm 4.1 converges faster than Algorithm 3.1 when
k is sufficiently large. But this may not be true for genérat 2.

Proof. We first show that the parametgrin (3.6) is larger tharl /3 when
Kk > 2. Itis easy to see that

1— 26
- <1
(1—(50)2 -7
and so
4k k—1 1
> /1 — — -
= 1+ k)2 K+l 3
whenk > 2.

Now let p andpy, be the convergence rates of Algorithm 3.1 and Algo-
rithm 4.1 (see Theorems 3.1 and 4.1). Since : andd < 1, itis easy to
see

45 2 147

55 — 1
z <1 < Bg.
1+5<3< 5 <1 and 1_6<0_ﬁ,€

Then by (3.9) and (4.11) we have
s 1_ L _3a_
p=1-10-A1+0)>1-(1-5)
and

po=1- (= BI1—8) <1-2(1- G,

Therefore one hagy < p if

1 3
5(1 — Br) > E(l - B),

that is,
3 1

Itis clear that wher > % the inequality (4.15) can be satisfied for laige

It remains to show the second part of Proposition 4.2. Form Theorem 2.1
and the proof of Lemma 3.1, we know that the convergence rate of Algo-
rithm 4.1 is determined by the parametirsatisfying

1®1(g:) — C 'gille < BellC  gille, g € R™,
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more accurately, it is determined by the vali#®,(g;) — C~1g;l|c, i.e., the

error at thek-th iteration. Since the results generated by Algorithm 4.1 with

k = 1arethe same as the ones generated by Algorithm 3.1, for our purpose it
suffices to construct a counterexample to show that the following inequality
does not hold:

(4.16) 1®2(9:) — C ' gille < |D1(g:) — C ' gill -

In fact, we can show that (4.16) is not true whén= C' = I. By the
definition of Algorithm 4.1, we have

Bo(gi) = 2 = 2 + 77Dy

thus
1®2(9:) — C 1 gille = 27 — gill?
(4.17) =1z — gill> + 277 (zf — gi,pi) + (70 P I

By the basic property of the CG method, we know,p?) = 0, which
implies

(Tilﬂpil) = (rilﬂdil - Hzlp?) >0,

and sor? > 0 by the definition ofr?. Now the desired conclusion follows
if we can find a matrix/ such thatz} — g;, p}) > 0. Indeed, if this is true,
then it follows from (4.17) that

192(9:) — C1gille > ll2i — gill* = [21(g:) — O il

which negates (4.16). It remains to find such a makfixBy the definition
of Algorithm 4.1,z! = 7! g, and

pr =rf —0ip) = gi — 7 Hgi — 6} gi.

Therefore we have

(Z - g’upz) = ( (gza ( )gz - Tngz)
{<1—el il = 7 lill3 }
(4.18) = <1 =) lgill?,

where we have used the fact that= ||g;||?/||g:(|%- By the definitions of
6}, it is easy to verify that

A2 NE gl = 114 12 = g2
@19 ot o - QDA I~ )
9illgr
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By the Cauchy-Schwarz inequality,
lgell® 1 gill® = llgillzr > 0

provided thatd # cI (c is a constant). Without loss of generality, we
assume that the first componentgis not zero, then define

H:diag(gll ).

Itis clear that

I

gl = |lg: |3 > O,

so we have from (4.19) tha! (1 — 7}') > 0. This, together with (4.18),
leads to

(211 _gi>pi1) > 0. |

5 Numerical experiments

In this section, we apply our newly proposed Algorithm 3.1 and Algorithm
4.1, and some other existing algorithms, to solve the two-dimensional Stokes
problem and another system of purely algebraic equationg?betthe unit
square domain i®?, andL3(2) be the set of all square integrable functions
over 2 with zero averages. Ldf ! (£2) be the usual Sobolev space of order
one on{? and H}(£2) be a space consisting of those functiongih((2)
whose traces vanish on the boundarybf

Our first example is the generalized Stokes problem whose variational
formulation reads as follows:

(5 l) { (Nvua VU) - (p,v-?)) = (fvv)7 Vo € H&(Q)2,

wheref € L?(£2) andu € L°(02) with p(x)>c > 0 almost everywhere
in £.

We use one of the well-known conforming Taylor-Hood elements, which
has been widely used in engineering, to solve the system (5.1). For any
positive integetV, we divide(2 into N x N subsquares, and set=1/N.

Such a triangulation of?, with its elements being all squares, is denoted as
Th.LetX), C H}(£2) andM;, C H(2) N LE(£2) be the usual continuous
Q2 and Q) finite element spaces defined @ respectively (cf. [7,13]).
The total number of unknowns for this finite elementis- m = 2(2N —
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Table 1. Number of iterations (Algorithm 3.1)

0=0.1 0=0.2

N 8 16 32 8 16 32
PCG 21 21 22 26 25 24
CG 22 24 24 31 31 30

1)2 +[(N +1)2 — 1]. The finite element approximation of the above Stokes
system can be formulated as follows:

(5.2) (u(z)Vup, Vo) — (pn, V-v) = (f,v), Vv e X7,
(5.3) (¢, V-up) =0, VYq€& My,

It is known that theinf-sup condition is satisfied by the pa{tX?, M},)
(see [7]), thus the Schur complement matikA~—! B associated with the
system (5.2)-(5.3) has a condition number independeht 8k in [6] and
[22], we take the variable coefficieptto bey = 1+ 2122+ x% — x§/2, and
know that the corresponding matriis block diagonal with two copies of
the stiffness matrix associated with the bilinear famiz)V-, V-) on the
diagonal. Therefore, if. = 1, it can be solved by the fast Poisson solver. It
is natural to choose this fast solvéras the preconditioner of. It is clear
that

(5.4) 0.5(Az,2) < (Az,z) <2.5(Az, 2),

thus the matrixA—1 A is well-conditioned, and so is the matrix A~ B.

In this case, we can choose for Algorithm 1= I and¥ defined by

the CG method (without preconditioning) or the PCG method with the pre-
conditionerA for A. For all the numerical results shown below, the inner
nonlinear iteration is terminated whénsatisfies

o — A¥()I/ll¢ll <6

for a given vectory € R™. And the outer iteration of Algorithm 3.1 termi-
nates when

(5.5) e = ||Muv; — b||/||Mvg —b|| < 1.0 x 107°

withv; = (z;4;)t, vo = (o o)t andb = (f g)t. The number of iterations of
Algorithm 3.1 is listed in Table 1, where we can see the rate of convergence
independent of mesh size

In comparison with Algorithm 3.1, we tried to solve the Stokes system
also by Algorithm 4.1 with the same preconditioners as above. The number
of iterations for different is listed in Tablel’.
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Table 1. Number of iterations (Algorithm 4.1) PCG inner iteratidn= 0.1

N k=2 k=5 k=10 k=20

8 102 60 30 16
16 19 28 45 28
32 19 18 27 20

We can see from Tabl# that Algorithm 3.1 outperforms Algorithm 4.1

in this example, and Algorithm 3.1 shows a more stable and consistent
convergence history than Algorithm 4.1. The results are reasonable as Al-
gorithm 3.1 should perform better than Algorithm 4.1 when a good precon-
ditioner C' is available for the Schur complemefit Indeed, the precondi-
tionerh2C = h2I is spectrally equivalent t6' (and the two algorithms are
invariant under constant scalings).

It can be verified by (5.4) thaf' = 21 satisfies the assumption (2.5)
(cf. [6]). Thus we can also apply Algorithm 2.1 to solve the system (5.2)-
(5.3). However, the resulting convergence is very slow for this example
because the parametedefined by (2.5) is close to one. For examplz9
iterations are needed to reach the same tolerance as (5.5)\Whef and
¥ is defined by the CG iteration with= 0.1.

_ We can also use the diagonal preconditioner with diagonal bibakd

C = h?I (spectrally equivalent t@) to solve the system (5.2)-(5.3) by the
minimum residual method. Unfortunately, its convergence seems slow. For
exampleps iterations are needed to reach the same tolerance Wherl 6.

Our second example is a system of purely algebraic equations. We define
the matricesA = (a;;)nxn @NdB = (bij)nxm (n > m)in (1.1) as follows:

S S e
ai; =19 1, =5 Y 7] 0, otherwise
0, otherwise

The preconditionersl = (@;;)nxn andC' = (¢i;)nxm are defined by

a”:{l, Z:]’ c,,:{i2+3a =7,
K 0, otherwise K 0, otherwise
The right-hand side vectoisandg are defined such that the exact solutions
x andy are the vectors with all components being

We solve the corresponding system (1.1) by Algorithm 3.1 with the
preconditionet’ and¥ defined byN, iterations of the CG method (without
preconditioner) and the PCG method with the preconditioheklgorithm
3.1 terminates when the errer< 1.0 x 10~%, the resulting number of
iterations is given in Table 2.

To compare Algorithm 3.1 with Algorithm 4.1 for this example, we
solved the considered system again by Alg. 4.1. The numerical experiments
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Table 2. Numbers of iteration (Algorithm 3.1)

n =200,m =150 n =400,m =300 n = 800,m = 600

PCG(V. = 2) 18 18 19
CG(N, = 6) 18 19 20

Table 3. Number of iterations PCG(.=2) inner iteration(' = I

(n,m) Algorithm 3.1 Algorithm 4.1

k=1 k=2 k=5 k=10 k=20
(200,150) 297 138 93 47 20
(400,300) 254 163 94 40 23
(800,600) 364 147 78 38 21

Table 4. Number of iterations CGY.. = 6) inner iteration,C' = I

(n,m) Algorithm 3.1 Algorithm 4.1

k=1 k=2 k=5 k=10 k=20
(200,150) 318 179 82 39 21
(400,300) 387 166 86 43 23
(800,600) 362 166 81 50 26

indicate that both algorithms have almost the same number of iterations with
the preconditione€ and¥ defined as above, even when the faé@i in

(4.8) is replaced by}. So the detailed number of iterations is omitted here.
To further compare the performance of both algorithms in the case with a
very bad preconditionet’, we takeC' = I, the worst preconditioner faf,
namely without any preconditioning. Tables 3 and 4 below listed the number
of iterations in this case.

Tables 3 and 4 above indicate that Algorithm 4.1 is more efficient in the
case with a very bad precondition€rfor the Schur complemerdt.

We also tried to use Algorithm 2.1 to solve the considered system, but
the numerical experiments indicate that this algorithm is divergent for this
example. In fact, the assumption (2.5) is not satisfied with the given pre-
conditionerC. Also note that it is not easy to achieve a good estimate on
the minimal generalized eigenvalue of the preconditiafiewith respect
to the matrix B*A~! B in this case (except that the action 4f ! is al-
lowed), then there seems no direct way to solve the considered system using
Algorithm 2.1.
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