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Summary. In this paper, we consider some nonlinear inexact Uzawameth-
ods for iteratively solving linear saddle-point problems. By means of a new
technique, we first give an essential improvement on the convergence re-
sults of Bramble-Paschiak-Vassilev for a known nonlinear inexact Uzawa
algorithm. Then we propose two new algorithms, which can be viewed as a
combination of the known nonlinear inexact Uzawa method with the clas-
sical steepest descent method and conjugate gradient method respectively.
The two newalgorithms converge under very practical conditions and do not
require any apriori estimates on theminimal andmaximal eigenvalues of the
preconditioned systems involved, including the preconditioned Schur com-
plement. Numerical results of the algorithms applied for the Stokes problem
and a purely linear system of algebraic equations are presented to show the
efficiency of the algorithms.
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1 Introduction

The purpose of this paper is to study some nonlinear inexact Uzawa algo-
rithms for solving the following system of linear equations
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,(1.1)

whereA is a symmetric positive definiten× n matrix, andB is ann×m
matrix (m ≤ n). We assume that the(n+m) × (n+m) coefficient matrix

M =
(
A B
Bt 0

)
is nonsingular, which is equivalent to the positive definiteness of the Schur
complement matrix

C = BtA−1B .(1.2)

Linear systems such as (1.1) are called saddle-point problems, which may
arise from finite element discretizations of Stokes equations and Maxwell
equations [7,11,15], mixed finite element formulations for second order el-
liptic problems [2,7] or from Lagrange multiplier methods for optimization
problems [1,16], for the parameter identification and domain decomposition
problems [12,17] and [19].
In recent years, there is a rapidly increasing literaturewhich is concerned

with preconditioned iterative methods for solving the indefinite system of
equations like (1.1), see [3,5,6,8,14,20–22]. In particular, inexact Uzawa-
type algorithms have attracted wide attention, see [3,5,8,14,21] and the
references therein. The common nice properties of these Uzawa-type algo-
rithms are that they have minimal memory requirements, and are easy to
implement.
Let Â and Ĉ be two positive definite matrices, which are assumed to

be the preconditioners of the matricesA andC = BtA−1B respectively.
And letRl denote the usuall-dimensional Euclidean space. For anyl × l
positive definite matrixG, we use‖x‖G to denote theG-induced norm,
namely‖x‖G = (Gx, x)1/2 for all x ∈ Rl. Then the standard inexact
Uzawa algorithm can be described as follows (cf. [5] and [14]):

Algorithm 1.1 (inexact Uzawa).
Givenx0 ∈ Rn and y0 ∈ Rm, the sequence{(xi, yi)} ⊂ Rn × Rm is
defined fori = 1, 2, · · · , by

xi+1 = xi + Â−1[f − (Axi +Byi)],(1.3)

yi+1 = yi + Ĉ−1(Btxi+1 − g).(1.4)

There are some earlier versions of the above algorithm, e.g., see [3] and
[21]. The existing convergence results indicate that these algorithms are
convergent by assuming some good knowledge of the spectrum of the pre-
conditionedmatriceŝA−1A andĈ−1C or under some proper scalings of the
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preconditionerŝA andĈ. This ”preprocessing” may not be easy to achieve
in some applications.
To avoid the estimate on the minimal generalized eigenvalues ofÂ with

respect to A, a practical way is to replace the inner iteration (1.3) of the
standard inexact Uzawa algorithm by some nonlinear iteration, for exam-
ple, the PCG iteration. The detailed convergence properties of the resulting
algorithm can be found in [5] and [14]. However, some improvements on
the convergence results achieved so far seem necessary (see the numerical
examples given in [5] and Sect. 2 below). Moreover, a good knowlwdge
on the spectrum of the preconditioned Schur complement is needed for a
proper scaling of the preconditioner to guarantee the convergence of the
global inexact Uzawa iteration, see Sect. 2 for the details.
To avoid the estimate of the generalized eigenvalues ofĈ with respect

to BtÂ−1B, the Uzawa-type algorithm proposed in [3] introduced a PCG
algorithm as an inner iteration of (1.4). It was proved that the Uzawa-type
algorithm converges under the assumptions that each inner iteration temi-
nates with a certain accuracy and the basic iteration for the preconditioned
systemÂ−1A is convergent.
The preconditioned minimal residual method studied in [20] and [22] is

always convergent, but needs some good knowledge of the smallest eigen-
values of the matriceŝA−1A and Ĉ−1(BtÂ−1B) to achieve a practical
convergence rate. Without a good apriori estimate on the smallest eigen-
values of these two preconditioned matrices, the condition number of the
(global) preconditioned system may be still very large even if the condition
numbers of the matriceŝA−1A andĈ−1(BtÂ−1B) are small (cf. [22]). In
this case, the convergence of this iterative methodmay be slow (see Sect. 4).
The purpose of this paper is twofold. By means of a new technique, we

first give an essential improvement on the convergence results of Bramble-
Paschiak-Vassilev for a known nonlinear inexact Uzawa algorithm. Then
we propose two new algorithms, which can be viewed as a combination
of the known nonlinear inexact Uzawa method with the classical steepest
descent method and conjugate gradient method respectively. We will show
ouralgorithmsarealwaysconvergentwithoutanyassumptionson thespectra
of the preconditionerŝC andÂ.
The outline of the remainder of the paper is as follows. We give a

new convergence result for a known nonlinear inexact Uzawa algorithm
in Sect. 2, and present two new algorithms and analyse their convergence
rates in Sects. 3 and 4. Finally, we apply the proposed new algorithms for
solving theStokes problemand a linear systemof purely algebraic equations
in Sect. 5.
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2 An improved convergence result
for the known nonlinear inexact Uzawa algorithm

The main purpose of this section is to present an essential improvement
on the convergence results of Bramble-Paschiak-Vassilev for a nonlinear
inexact Uzawa algorithm. In this algorithm, the computation of the action
of the inverseA−1 in (1.3) is replaced with that of an approximation toA−1

which results from applying a nonlinear iterative process for invertingA.
Two examples of such approximations are from defining the approximate
inverse by a PCG iteration or the operator which results from the application
of a multigrid cycling algorithm with a nonlinear smoother (cf. [5]).
We now describe the nonlinear inexact Uzawa algorithm, in which the

nonlinear approximate inverse is defined by a mapΨ : Rn → Rn. For
φ ∈ Rn, Ψ(φ) is an ”approximation” to the solutionξ of

Aξ = φ.(2.1)

The following assumption was made in [5] on the accuracy of the approxi-
mation:

‖Ψ(φ) −A−1φ‖A ≤ δ ‖A−1φ‖A, ∀φ ∈ Rn(2.2)

for someδ ∈ (0, 1). This is a natural assumption and can be satisfied by
the approximate inverse associated with the PCG iteration and the approxi-
mate inverse defined by one sweep of a multigrid algorithm with conjugate
gradient smoothing (cf. [5]).
The nonlinear inexact Uzawa algorithm is defined as follows:

Algorithm 2.1 (nonlinear inexact Uzawa).
Givenx0 ∈ Rn and y0 ∈ Rm, the sequence{(xi, yi)} ⊂ Rn × Rm is
defined fori = 1, 2, · · · , by

xi+1 = xi + Ψ(f − (Axi +Byi)),(2.3)

yi+1 = yi + Ĉ−1(Btxi+1 − g).(2.4)

Under the assumption (2.2) and

(1 − γ)(Ĉy, y) ≤ (Cy, y) ≤ (Ĉy, y), ∀y ∈ Rm ,(2.5)

it was proved in [5] that Algorithm 2.1 converges if

δ <
1 − γ

3 − γ
.(2.6)

And in this case the following estimate of the convergence rate holds:

δ

1 + δ
‖ex

i ‖2
A + ‖ey

i ‖2
Ĉ

≤ ρ2i

(
δ

1 + δ
‖ex

0‖2
A + ‖ey

0‖2
Ĉ

)
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and

‖ex
i ‖2

A ≤ (1 + δ) (1 + 2δ) ρ2i−2
(

δ

1 + δ
‖ex

0‖2
A + ‖ey

0‖2
Ĉ

)
,

whereex
i ande

y
i are the error functions

ex
i = x− xi, ey

i = y − yi

and

ρ =
2δ + γ +

√
(2δ + γ)2 + 4δ(1 − γ)

2
.

Generally speaking, the convergence condition (2.6) is somehow not
very satisfactory as it depends on the “preconditioning parameter”γ. The
condition says that the evaluation ofA−1fi for somefi required in (2.3) by
the nonlinear iterationΨ should be more accurate if the preconditioning of
the Schur complement becomes worse (i.e.,γ is close to1). This seems not
so reasonable. Indeed we find surprisingly that such a requirement onδ can
be made completely independent ofγ, namely the same results still hold
when (2.6) is replaced byδ < 1/3 as shown below.
Todemonstrate suchanessentially improved result,wewill first establish

the convergence rate for the residual

fi = f − (Axi +Byi) = Aex
i +B ey

i ,

instead of the traditionally used error vectorex
i as was done in [5]. This is

an important observation which leads to our improved results. To do so, we
define a new norm||| · |||:

|||v||| = (‖v1‖2 + ‖v2‖2
C)

1
2 , v = (v1, v2) ∈ Rn ×Rm.

With this norm we can show

Theorem 2.1 Under the assumptions (2.2) and (2.5), forδ < 1
3 we have

|||Ei+1||| ≤ ρ |||Ei|||, Ei = (
√
δA− 1

2 fi, e
y
i ) ∈ Rn ×Rm.(2.7)

The convergence rateρ (< 1) can be estimated by

ρ ≤
{√

δ + δ2 + δ for 0 ≤ γ ≤ 4δ
1+δ ,

γ(1+δ)−2δ+
√

[γ(1+δ)−2δ]2+4δ

2 for 4δ
1+δ < γ < 1

(2.8)

≤
{√

δ + δ2 + δ for 0 ≤ γ ≤ 4δ
1+δ ,

1 − 1
2(1 − γ)(1 + δ) for 4δ

1+δ < γ < 1.
(2.9)



338 Q. Hu, J. Zou

Proof. The inequality (2.8) was discovered and proved independently by
Cheng [10] and the authors [18]. However, for reader’s convenience, we
outline the main idea of the proof.
Let

BtA− 1
2 = U(Σ0 0)V t

be the singular value decomposition of the matrixBtA− 1
2 . Define

Q0 = Σ0U
tĈ−1UΣ0

and

F =
(−δ(I +Q0)

√
δQ0√

δQ0 (I −Q0)

)
.

It can be verified directly that

‖F‖ ≤ max
β∈σ(Q0)

|1 − δ − β(1 + δ)| +
√|1 − δ − β(1 + δ)|2 + 4δ

2
,

(2.10)

whereσ(Q0) is the spectrum of the matrixQ0. One can check that the
matrix Q0 has the same eigenvalues as the matrixĈ−1C. Thus we have
σ(Q0) ⊂ [1− γ, 1] by (2.5). Then we can showρ ≤ ‖F‖, and (2.8) follows
from (2.10).
We next show (2.9). Whenγ > 4δ/(1 + δ), we have

γ(1 + δ) − 2δ > 2δ > 0.

This with the condition thatγ < 1 leads to

γ(1 + δ) − 2δ +
√

[γ(1 + δ) − 2δ]2 + 4δ

< γ(1 + δ) − 2δ +
√

(1 − δ)2 + 4δ
= γ(1 + δ) − 2δ + 1 − δ

= 2 + (γ − 1)(1 + δ).

(2.9) follows then from this relation and (2.8). In particular, whenδ < 1
3 we

haveρ < 1. ��
Using Theorem 2.1, we can estimate the convergence rates of the errors

ex
i ande

y
i :
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Theorem 2.2 Under the assumptions (2.2) and (2.5), Algorithm 2.1 con-
verges for anyδ < 1

3 . Moreover, we have

‖ex
i ‖A ≤ (

√
1 + 4δ + ρ)ρi−1|||E0|||, i = 1, 2, · · ·(2.11)

and

‖ey
i ‖C ≤ ρi|||E0|||, i = 1, 2, · · · .(2.12)

Here the rate of convergenceρ has the following bounds:

ρ ≤
{
ρ− 1

2γ − 1
6γ

2 for 0 ≤ γ ≤ 4δ
1+δ ,

ρ− 3
2(δ + δ2) for 4δ

1+δ < γ < 1.
(2.13)

Proof. The estimate (2.12) is a direct consequence of (2.7). We next prove
(2.11). To do so, we start with the derivation of a useful expression for
A−1/2fi. Clearly, we can write

fi = Aex
i +Bey

i , Btxi+1 − g = −Btex
i+1,

this with (2.3) and (2.4) leads to

A
1
2 ex

i+1 = A
1
2 (ex

i − Ψ(fi)) = (A− 1
2 fi −A

1
2Ψ(fi)) −A− 1

2Bey
i

and

A− 1
2Bey

i+1 = A− 1
2B(ey

i + Ĉ−1Btex
i+1)

= A− 1
2B

[
ey
i + Ĉ−1BtA− 1

2

×
(
(A− 1

2 fi −A
1
2Ψ(fi)) −A− 1

2Bey
i

)]
= A− 1

2BĈ−1BtA− 1
2 (A− 1

2 fi −A
1
2Ψ(fi))

+(I −A− 1
2BĈ−1BtA− 1

2 )A− 1
2Bey

i .(2.14)

So we have

A− 1
2 fi+1 = A

1
2 ex

i+1 +A− 1
2Bey

i+1

= (I +A− 1
2BĈ−1BtA− 1

2 )(A− 1
2 fi −A

1
2Ψ(fi))

− (A− 1
2BĈ−1BtA− 1

2 )A− 1
2Bey

i .(2.15)

Because of (2.2), for any given natural numberi one can construct a sym-
metric and positive definiten× n matrixQAi such that

QAiΨ(fi) = fi
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and ∥∥∥∥I −Q
− 1

2
Ai AQ

− 1
2

Ai

∥∥∥∥ ≤ δ ,

see, for example, Lemma 9 of [3] for such a construction ofQAi. Thus we
have

Ψ(fi) = Q−1
Ai fi(2.16)

and ∥∥∥I −A
1
2Q−1

AiA
1
2

∥∥∥ ≤ δ.(2.17)

By means of (2.14)-(2.16), we can further write

A− 1
2 fi+1 = (I +A− 1

2BĈ−1BtA− 1
2 )(I −A

1
2Q−1

AiA
1
2 )A− 1

2 fi

− (A− 1
2BĈ−1BtA− 1

2 )A− 1
2Bey

i ,

or equivalently write (replacingi by i− 1)

A− 1
2 fi = (I + Q̃2)Q̃1iA

− 1
2 fi−1 − Q̃2A

− 1
2Bey

i−1

where

Q̃1i = I −A
1
2Q−1

AiA
1
2 and Q̃2 = A− 1

2BĈ−1BtA− 1
2 .

Applying the arithmetic-geometric mean inequality yields

‖A− 1
2 fi‖2 ≤ (1 + η)‖(I + Q̃2)Q̃1iA

− 1
2 fi−1‖2

+(1 + η−1)‖Q̃2A
− 1

2Bey
i−1‖2,(2.18)

whereη is any positive number. One can easily see that the matrixQ̃2 has
the same positive eigenvalues as the matrixĈ−1C. Hence, the assumption
(2.6) implies that the eigenvalues of̃Q2 are in the interval[0, 1]. Namely,
we have

‖Q̃2‖ ≤ 1, ‖I + Q̃2‖ ≤ 2,

this, with (2.18) and (2.17), leads to

‖A− 1
2 fi‖2 ≤ (1 + η)4δ2‖A− 1

2 fi−1‖2 + (1 + η−1)‖A− 1
2Bey

i−1‖2

= 4δ(1 + η)‖
√
δA− 1

2 fi−1‖2 + (1 + η−1)‖ey
i−1‖2

C .
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Takingη = 1/(4δ) above and using (2.7) we obtain

‖A− 1
2 fi‖ ≤ √

1 + 4δ ρi−1|||E0|||.
Now using the relation

A
1
2 ex

i = A− 1
2 fi −A− 1

2Bey
i ,

(2.11) follows immediately from (2.7) and the triangle inequality.
It remains to show (2.13). Let us first consider0 < γ ≤ 4δ/(1 + δ)).

We have

ρ− ρ = δ +
γ

2
+

√
4δ2 + γ2 + 4δ

2
− (

√
δ2 + δ + δ)

=
γ

2
+

√
4(δ2 + δ) + γ2 − √

4(δ2 + δ)
2

=
γ

2
+

γ2

2(
√

4(δ2 + δ) + γ2 +
√

4(δ2 + δ))
.(2.19)

Usingδ < 1/3 andγ < 1, we know√
4(δ2 + δ) + γ +

√
4(δ2 + δ) < 3.

This along with (2.19) yields

ρ− ρ >
γ

2
+
γ2

6
.(2.20)

Now consider the remaining case:4δ/(1 + δ) < γ < 1.We have

ρ− ρ = δ +
γ

2
+

√
(2δ)2 + γ2 + 4δ

2

−
{
γ

2
− δ(1 − γ

2
+

√
[γ(1 + δ) − 2δ]2 + 4δ

2

}
(2.21)

=
(
2 − γ

2

)
δ +

(2δ)2 + γ2 − [γ(1 + δ) − 2δ]2

2(
√

(2δ)2 + γ2 + 4δ +
√

[γ(1 + δ) − 2δ]2 + 4δ)
.

Let

f(γ) = (2δ)2 + γ2 − [γ(1 + δ) − 2δ]2,

it is easy to see that

f(γ) = γδ[4(1 + δ) − γ(2 + δ)]
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and

f ′(γ) = 2δ2 > 0.

Thus by the monotonicity off ,

f(γ) > f

(
4δ

1 + δ

)
=

16δ2

(1 + δ)2
.(2.22)

Moreover, usingδ < 1/3 andγ < 1 we have√
(2δ)2 + γ2 + 4δ +

√
[γ(1 + δ) − 2δ]2 + 4δ < 3.

This combining with (2.21)-(2.22) leads to

ρ− ρ >
3
2
δ +

16δ2

6(1 + δ)2
>

3
2
(δ + δ2),

which completes the proof of (2.13). ��
Remark 2.1The key points in the proof of Theorem 2.1 is the replacement
of the errorex

i by the residualfi and the use of the norm||| · |||. Then× n
matrixQAi used in the proof can be viewed as a preconditioner of thematrix
A (which is just the preconditioner̂A in [3] and the preconditionerQA in
[5]). However, this preconditioner changes with the iteration numberi. This
makes the norm used in [3] (involving‖ ·‖2

Â
) and the norm used in the proof

of Theorem 3.1 of [5] (involving‖ · ‖2
QA−A) not applicable here for the

analysis of the convergence of Algorithm 2.1, because the local contraction
of errors with a changing norm can not guarantee the global convergence of
the algorithm (refer to Theorem 4.2, [5]).

Remark 2.2The numerical results shown in [5] indicated that Algorithm
2.1 may still converge even if the condition (2.6) is not satisfied. It was seen
as a surprising phenomenon (see [5]). Now we would like to illustrate a bit
about this phenomenon. It can be verified directly by (2.10) that‖F‖ < 1
is equivalent to

|1 − δ − β(1 + δ)| < 1 − δ.

Thus,‖F‖ < 1 if and only if

β <
2(1 − δ)
1 + δ

, ∀β ∈ σ(Q0).(2.23)

Under the assumption (2.5), we can only obtainβmax ≤ 1. Hereβmax
denotes the maximal eigenvalue of the matrixQ0. Solving the inequality
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1 < 2(1−δ)
1+δ , we get δ <

1
3 , which means that the covergence condition

δ < 1
3 is sharp theoretically whenβmax = 1. However, if the preconditioner

Ĉ is not properly scaledβmax may be bounded far away from one (namely,
close to zero). In this case (e.g., see the example considerd in [5]), the
inequality (2.23) is also valid even ifδ is close to one. But the convergence
can be very slow (cf. [5]) because the assumption (2.5) holds only with the
γ close to one (note that0 < 1 − γ ≤ βmax). These facts indicate that the
afore-mentioned phenomenon is not too surprising.

3 New algorithm I: the nonlinear inexact Uzawa combined
with the steepest descent method

In general, the crucial assumption (2.5) is not so easy to fulfill as it requires
a good estimate on the maximum eigenvalue of the preconditioned Schur
complement̂C−1C in order to have the desired proper scaling ofĈ.Without
such a good estimate this assumption is not met or it is satisfied only with
someγ very close1, which may cause the divergence of the algorithm or
results in very slow convergence of the algorithm. Obtaining such a good
estimate of the eigenvalues is not very convenient or practical. In this and
next sections, we propose two new algorithms to avoid such estimates.
Our first idea is to introduce a relaxation parameterτ i in (2.4) such that

the norm

‖τ iĈ
−1gi − C−1gi‖2

C

is minimized, wheregi = Btxi+1 −g. If gi /= 0, the direct calculation gives

τ =
(gi, Ĉ

−1gi)
‖Ĉ−1gi‖2

C

=
(gi, Ĉ

−1gi)
(A−1BĈ−1gi, BĈ−1gi)

.

Since the action ofA−1 is not allowed,A−1BĈ−1gi will be then replaced
by Ψ(BĈ−1gi), which results in the following new algorithm:

Algorithm 3.1 (Nonlinear inexact Uzawa-steepest descent).
Givenx0 ∈ Rn and y0 ∈ Rm, the sequence{(xi, yi)} ⊂ Rn × Rm is
defined fori = 1, 2, · · · , by

Step 1. Computefi = f − (Axi +Byi) andΨ(fi), update

xi+1 = xi + Ψ(fi).(3.1)

Step 2. Computegi = Btxi+1 − g, di = Ĉ−1gi and

τi =

{
1
2

(gi,di)
(Ψ(Bdi),Bdi)

for gi �= 0;
1 for gi = 0.

(3.2)
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Update

yi+1 = yi + τi di.(3.3)

Remark 3.1It is clear that when bothfi andgi vanish, then the vectorsxi

andyi are the exact solution of the equation (1.1), and thus Algorithm 3.1
terminates.

For the sake of convenience, we introduce two parametersδ andδ0which
are the minimal positive numbers satisfying

‖A−1fi − Ψ(fi)‖A ≤ δ‖A−1fi‖A(3.4)

‖A−1Bdi − Ψ(Bdi)‖A ≤ δ0‖A−1Bdi‖A.(3.5)

Remark 3.2Note that the assumptions (3.4) and (3.5) are in fact conse-
quences of the assumption (2.2). So we can simply assume the condition
(2.2) instead of (3.4)-(3.5) and all the results in this and next sections hold.
We choose to formulate the above two conditions here so that we can see
how the convergence rate of Algorithm 3.1 depends more explicitly on the
accuracies of the two nonlinear inner iterations in both (3.1) and (3.3). The
evaluations ofA−1fi andA−1Bdi by the nonlinear iterationΨ can be dif-
ferent.

Let

κ = cond(Ĉ−1C), β =

√
1 − 4κ(1 − 2δ0)

(1 + κ)2(1 − δ0)2
,(3.6)

then we have

Theorem 3.1 Assume that the approximation parametersδ andδ0 satisfy
δ < 1

3 andδ0 < 1
2 , then Algorithm 3.1 converges. Moreover, we have

‖ex
i ‖A ≤ (

√
1 + 4δ + ρ̂)ρ̂i−1|||E0|||, i = 1, 2, · · ·(3.7)

and

‖ey
i ‖C ≤ ρ̂i|||E0|||, i = 1, 2, · · · .(3.8)

Here the rate of convergencêρ (< 1) can be estimated by

ρ̂ =

{√
δ + δ2 + δ for 0 < 1+β

2 ≤ 4δ
1+δ ;

1 − 1
4(1 − β)(1 + δ) for 4δ

1+δ <
1+β

2 < 1.
(3.9)
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Remark 3.3FromTheorem 3.1 we know that the convergence of Algorithm
3.1 is independent of the spectrum of the preconditioned Schur comple-
mentĈ−1C, and the convergence rate of this new algorithm depends only
on the condition numberκ, not necessary to have a proper scaling of the
preconditionerĈ and a good apriori estimate on the maximum and mini-
mum eigenvalues of̂C−1C. This seems to be an important advantage of the
new algorithm over the existing nonlinear inexact Uzawa algorithms. The
assumptions of Theorem 3.1 are natural and can be satisfied by the approxi-
mate inverse associated with the PCG iteration and the approximate inverse
defined by one sweep of a multigrid algorithm with a suitable smoother
(cf. [3,5,4] and [23]).

For the proof of Theorem 3.1 we need the following lemma:

Lemma 3.1 Assume that the condition (3.5) holds withδ0 < 1
2 . Then for

any given natural numberi there is a symmetric and positive definitem×m
matrixQBi such that

(i) Q−1
Bi gi = τiĈ

−1gi.
(ii) All eigenvalues of the matrixQ−1

BiC are in the interval[1−β
2 , 1].

Proof of Theorem 3.1.With Lemma 3.1, we can view the matrixQBi as the
preconditioner̂C for the Schur complementC, which satisfies the condition
(2.5) withγ = 1−β

2 . Thus Theorem 3.1 is a direct consequence of Theorems
2.1-2.2. Here we have to make use of the important fact that the norms
adopted in Theorems 2.1-2.2 are independent of the preconditionerĈ, in
comparison with [5]. ��
Proof of Lemma 3.1.It is easy to see that

(Ψ(BĈ−1gi), BĈ−1gi) = ‖Ĉ−1gi‖2
C + (Ψ(BĈ−1gi)

−A−1(BĈ−1gi), BĈ−1gi).(3.10)

Using the Cauchy’s inequality and (3.5), yields∣∣∣(Ψ(BĈ−1gi) −A−1(BĈ−1gi), BĈ−1gi)
∣∣∣

≤ ‖Ψ(BĈ−1gi) −A−1(BĈ−1gi)‖A ‖BĈ−1gi)‖A−1

≤ δ0‖A−1(BĈ−1gi)‖A ‖BĈ−1gi)‖A−1

= δ0‖Ĉ−1gi‖2
C .

Substituting the above inequality into (3.10) leads to

(1 − δ0)‖Ĉ−1gi‖2
C ≤ (Ψ(BĈ−1gi), BĈ−1gi) ≤ (1 + δ0)‖Ĉ−1gi‖2

C .
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Thus,

(gi, Ĉ
−1gi)

(1 + δ0)2‖Ĉ−1gi‖2
C

≤ τ̃i ≤ (gi, Ĉ
−1gi)

(1 − δ0)2‖Ĉ−1gi‖2
C

,(3.11)

where the parameter̃τi is defined by

τ̃i =
(gi, Ĉ

−1gi)
‖Ψ(BĈ−1gi)‖2

A

.

For τ > 0, let

F (τ) = ‖τĈ−1gi − C−1gi‖2
C .

Clearly,

F (τ) = ‖C−1gi‖2
C − 2τ(gi, Ĉ

−1gi) + τ2‖Ĉ−1gi‖2
C .(3.12)

It is easy to verify thatF (τ) is an increasing function for

τ ≥ (gi, Ĉ
−1gi)

‖Ĉ−1gi‖2
C

,

and is a decreasing function for

τ ≤ (gi, Ĉ
−1gi)

‖Ĉ−1gi‖2
C

.

Using this property and (3.11), we know

F (τ̃i) ≤ max
{
F

(
τ0i

1 + δ0

)
, F

(
τ0i

1 − δ0

)}
(3.13)

where

τ0i =
(gi, Ĉ

−1gi)
‖Ĉ−1gi‖2

C

.

On the other hand, it follows from (3.12) that

F

(
τ0i

1 + δ0

)
= ‖C−1gi‖2

C − 2(1 + δ0) − 1
(1 + δ0)2

(gi, Ĉ
−1gi)2

‖Ĉ−1gi‖2
C

=

{
1 − 2(1 + δ0) − 1

(1 + δ0)2
(gi, Ĉ

−1gi)2

‖Ĉ−1gi‖2
C ‖C−1gi‖2

C

}
‖C−1gi‖2

C .
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Letλmin andλmax denote respectively the minimal and maximal eigenval-
ues of thematrix̂C− 1

2CĈ− 1
2 . Thenusing thewell-knownmatrix-eigenvalue

inequality we obtain

(gi, Ĉ
−1gi)2

‖Ĉ−1gi‖2
C ‖C−1gi‖2

C

=
(Ĉ− 1

2 gi, Ĉ
− 1

2 gi)2

(Ĉ− 1
2CĈ− 1

2 (Ĉ− 1
2 gi), Ĉ− 1

2 gi) ((Ĉ− 1
2CĈ− 1

2 )−1(Ĉ− 1
2 gi), Ĉ− 1

2 gi)

≥ 4λmin λmax

(λmin + λmax)2
=

4κ
(1 + κ)2

.

Hence

F

(
τ0i

1 + δ0

)
≤

{
1 − 2(1 + δ0) − 1

(1 + δ0)2
4κ

(1 + κ)2

}
‖C−1gi‖2

C .(3.14)

Similarly we can show (note thatδ0 < 1
2 )

F

(
τ0i

1 − δ0

)
≤

{
1 − 2(1 − δ0) − 1

(1 − δ0)2
4κ

(1 + κ)2

}
‖C−1gi‖2

C .(3.15)

Now by the direct calculation, we have

2(1 + δ0) − 1
(1 + δ0)2

− 2(1 − δ0) − 1
(1 − δ0)2

=
(

1
1 − δ0

− 1
1 + δ0

) (
1

1 − δ0
+

1
1 + δ0

− 2
)

=
(

1
1 − δ0

− 1
1 + δ0

)
2δ20

1 − δ20
> 0,

namely,

2(1 − δ0) − 1
(1 − δ0)2

<
2(1 + δ0) − 1

(1 + δ0)2
,

which, together with (3.13)-(3.15), yields

F (τ̃i) ≤
{

1 − 2(1 − δ0) − 1
(1 − δ0)2

4κ
(1 + κ)2

}
‖C−1gi‖2

C

= β2‖C−1gi‖2
C .

Summarizing the above, we have proved

‖τ̃iĈ−1gi − C−1gi‖C ≤ β‖C−1gi‖C .
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It is clear thatβ < 1 whenδ0 < 1
2 . Hence by Lemma 9 of [3] we know that

there is a symmetric and positive definitem×m matrix Q̂Bi such that

Q̂−1
Bi gi = τ̃iĈ

−1gi

and ∥∥∥∥I − Q̂
− 1

2
Bi CQ̂

− 1
2

Bi

∥∥∥∥ ≤ β.

Now QBi = 2Q̂Bi is the desired matrix, since the matrixQ
−1
BiC has the

same eigenvalues as the matrixQ
− 1

2
Bi CQ

− 1
2

Bi . ��

4 New algorithm II: the nonlinear inexact Uzawa combined
with the conjugate gradient method

In the last section, we proposed a nonlinear inexact Uzawa combined with
the steepest descent method (Algorithm 3.1), which converges when a gen-
eral preconditioner is used for the Schur complement system and a general
nonlinear iteration is used for solvingAx = b involved in the inner iteration.
However, the steepest descent method converges with a reasonable rate only
when a good preconditioner is available for the Schur complement system.
This is the case when the saddle-point problem arises, for example, from the
Stokes problem, mixed finite element formulations of second order elliptic
problems [22], and domain decomposition methods with Lagrange multi-
pliers [17]. Without such a good preconditioner the method may converge
with a slow rate. This fact can be observed from the numerical experiments
shown in Sect. 5.
In this section, we propose another new algorithm which combines

the nonlinear inexact Uzawa algorithm with the conjugate gradient (CG)
method, in an effort to accelerate the nonlinear inexact Uzawa algorithm
when a good preconditioner is not available for the Schur complement sys-
tem.This is the casewhen the saddle-point problemsarise from theLagrange
multiplier formulations for optimization problems [16] and the parameter
identification [12] [19].
In the following, we will first derive a new nonlinear inexact Uzawa

algorithm and combine it with the CG method, then analyse the conver-
gence of the new algorithm and compare its convergence rate with that of
Algorithm 3.1, which uses the steepest descent method.
Foragivensequence{fi} ⊂ Rn, let{QAi}be thesequenceof symmetric

and positive definiten × n matrices satisfying (2.16) and (2.17), and set
Hi = BtQ−1

AiB. Clearly,Hi is also a symmetric and positive definitem×m
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matrix. For a given sequence{gi} ⊂ Rm, consider the linear system (with
the indexi fixed)

Hizi = gi.(4.1)

We intend to solve (4.1) for each fixed indexi by the PCG iteration with
the preconditioner̂C. This process is to find a sequence of approximate
solutions{ẑj

i } as follows:

initialize : ẑ0
i = 0, r̂0i = gi, p̂0

i = Ĉ−1gi, ĥ0
i = 0;

iterate forj = 1, 2, · · · :

ẑj
i = ẑj−1

i + τ̂ j
i p̂

j−1
i , τ̂ j

i = (r̂j−1
i ,p̂j−1

i )
(Hi p̂j−1

i ,p̂j−1
i )

,

ĥj
i = ĥj−1

i + τ̂ j
i Hi p̂

j−1
i ,

r̂j
i = gi − ĥj

i ,

p̂j
i = Ĉ−1r̂j

i − θ̂j
i p̂

j−1
i , θ̂j

i = (Ĉ−1r̂j
i ,Hip̂

j−1
i )

(Hi p̂j−1
i ,p̂j−1

i )
.

Note that one has the relation̂hj
i = Hi ẑ

j
i between the variableŝh

j
i andẑ

j
i

above, and each action ofHi involves the action ofQ
−1
Ai . In general it is

difficult to obtain the explicit form of the matrixQAi. Thus, it is important
and practical to use the inexact solverΨ(Bp̂j−1

i ) to replaceQ−1
AiBp̂

j−1
i . The

resulting iteration can be formulated as follows:

initialize : z0
i = 0, r0i = gi, p0

i = Ĉ−1gi, h0
i = 0;

iterate forj = 1, 2, · · · :

zj
i = zj−1

i + τ j
i p

j−1
i , τ j

i = (rj−1
i ,pj−1

i )
(Ψ(Bpj−1

i ),Bpj−1
i )

,

hj
i = hj−1

i + τ j
i B

tΨ(Bpj−1
i ),

rj
i = gi − hj

i ,

pj
i = Ĉ−1rj

i − θj
i p

j−1
i , θj

i = (BĈ−1rj
i ,Ψ(Bpj−1

i ))
(Ψ(Bpj−1

i ),Bpj−1
i )

.

For convenience, we useΦk(gi) to denote thekth iteratezk
i generated

from the above process.Φk defines a (nonlinear) mapping fromRm toRm,
andΦk(gi) can be regarded as an approximate solution of the system (4.1).
Note that wemay not haveΨ(Bb) = Q−1

AiBb for a vectorb ∈ Rm in general,
soΦk(gi) is not the true approximation generated by thek steps of PCG
iteration for (4.1).
We assume that there is a positive numberβk < 1 such that

‖Φk(gi) − zi‖Hi = ‖Φk(gi) −H−1
i gi‖Hi ≤ βk‖H−1

i gi‖Hi .(4.2)
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Then by Lemma 9 of [3], there is a symmetric and positive definitem×m
matrix Q̂ki, such thatQ̂

−1
ki gi = Φk(gi) and∥∥∥∥I − Q̂

− 1
2

ki HiQ̂
− 1

2
ki

∥∥∥∥ ≤ βk,

which implies

1
1 + βk

(Hiw,w) ≤ (Q̂kiw,w) ≤ 1
1 − βk

(Hiw,w) ∀ w ∈ Rm.(4.3)

On the other hand, it follows from (2.17) that

(1 − δ)(A−1w,w) ≤ (Q−1
Aiw,w) ≤ (1 + δ)(A−1w,w) ∀ w ∈ Rm.

This, together with (4.3), leads to

1 − δ

1 + βk
(C w,w) ≤ (Q̂kiw,w) ≤ 1 + δ

1 − βk
(C w,w).(4.4)

DefineQki = 2
1−δ Q̂ki. It is easy to see that

Q−1
ki gi =

1 − δ

2
Φk(gi),(4.5)

and

(1 − δ)(1 − βk)
2(1 + δ)

(Qkiw,w) ≤ (C w,w)

≤ (Qkiw,w) ∀ w ∈ Rm(4.6)

by using (4.4) and the fact thatβk < 1.

Based on (4.5) and Algorithm 2.1, we propose the following new algo-
rithm:

Algorithm 4.1 (Nonlinear inexact Uzawa–PCG method).
Givenx0 ∈ Rn and y0 ∈ Rm, the sequence{(xi, yi)} ⊂ Rn × Rm is
defined fori = 1, 2, · · · , by

Step 1. Computefi = f − (Axi +Byi) andΨ(fi), update

xi+1 = xi +Q−1
Ai fi = xi + Ψ(fi).(4.7)

Step 2. Computegi = Btxi+1 − g, anddki = Φk(gi), update

yi+1 = yi +Q−1
ki gi = yi +

1 − δ

2
dki.(4.8)

The inequality (4.6) indicates that the matrixQki satisfies the inequality
(2.5) withγk = 1+3δ+βk(1−δ)

2(1+δ) . Thus by Theorem 2.2 we obtain
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Theorem 4.1 Assume that (2.2) holds forδ < 1
3 , and (4.2) holds forβk < 1.

Then Algorithm 4.1 converges. Moreover, we have

‖ex
i ‖A ≤ (

√
1 + 4δ + ρ̂k)(ρ̂k)i−1|||E0|||, i = 1, 2, · · ·(4.9)

and

‖ey
i ‖C ≤ (ρ̂k)i|||E0|||, i = 1, 2, · · · ,(4.10)

and the convergence ratêρk (< 1) can be estimated by

ρ̂k ≤
{√

δ + δ2 + δ for 0 ≤ βk ≤ 5δ−1
1−δ ,

1 − 1
4(1 − βk)(1 − δ) for 5δ−1

1−δ < βk < 1.
(4.11)

Remark 4.1One can easily see from (4.5)-(4.6) that Theorem 4.1 also holds
if the factor(1−δ)/2 in (4.8) is replacedbyanynumberα ∈ (0, 1/3). In fact,
the numerical results in Sect. 5 indicate that Algorithm 4.1 still converges
when the factor(1 − δ)/2 is replaced by12 . So Algorithm 3.1 is a special
case of Algorithm 4.1 withk = 1.

As noted in Remark 3.3, the first assumption of Theorem 4.1 holds when
the mappingΨ is properly defined. However, it is difficult to verify the
condition (4.2) in general. The followingpropositiongivesaconditionwhich
guarantees (4.2) when allHi’s are taken to be the same:

Proposition 4.1 Assume that there is a symmetric and positive definiten×n
matrixQA, such thatQ−1

A φ = Ψ(φ) foranyφ ∈ Rn. DefineH = BtQ−1
A B.

Then the following inequality holds for someβk < 1 :

‖Φk(gi) −H−1gi‖H ≤ βk‖H−1gi‖H .(4.12)

Proof.Under the assumption of Proposition 4.1,Φk(gi) is just the approxi-
mate solution generated by thek steps of PCG iteration for the linear system

H zi = gi.(4.13)

Thus, the parameterβk satisfying the relation (4.12) can be estimated by
(cf. [2])

βk = min

{
2

(√
κ∗ − 1√
κ∗ + 1

)k

,
κ∗ − 1
κ∗ + 1

}
< 1

with κ∗ =cond(Ĉ−1H). ��
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Remark 4.2The assumption in Proposition 4.1 is satisfied in some applica-
tions. For example, it is true when themappingΨ is defined by the precondi-
tioned Richardson iteration, which includes the standard multigrid sweeps.
To see this, for anyb ∈ Rn, recall the preconditioned Richardson itera-

tion for solving the system

Ax = b(4.14)

with the preconditioner̂A is

xi+1 = xi + Â−1(b−Ax), i = 1, 2, · · · .
If theeigenvaluesof̂A−1A is in the range0 < λ < 2, the iterationconverges.
Takingx0 = 0, we can easily see

xi+1 = x− (I − Â−1A)i+1x

=
i+1∑
j=1

(−1)j−1Cj
i+1(Â

−1A)jx

=
i+1∑
j=1

(−1)j−1Cj
i+1(Â

−1A)j−1Â−1 b .

This suggests us to defineQ−1
A as

Q−1
A =

i+1∑
j=1

(−1)j−1Cj
i+1(Â

−1A)j−1Â−1 =
(
I − (I − Â−1A)i+1

)
A−1 .

We can easily verify that the matrixQA is symmetric and positive definite,
and satisfies

Q−1
A b = xi+1 = Ψ(b) ∀ b ∈ Rn.

Note that ifA is the stiffness matrix which arises from the finite element
discretization of self-adjoint second order elliptic problems, then one can
chooseÂ−1 to be the operator corresponding to one V-cycle sweep ofmulti-
grid method [5] or the hierarchical basis multigrid method [3].

In the following we make some comparison between the convergence
rates of Algorithm 3.1 and Algorithm 4.1.

Proposition 4.2 Assume that the parametersδ, κ andβk in (2.2), (3.6) and
(4.2) satisfy

δ <
1
5
, κ = cond(Ĉ−1C) > 2, lim

k→∞
βk = 0
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respectively. Then Algorithm 4.1 converges faster than Algorithm 3.1 when
k is sufficiently large. But this may not be true for generalk ≥ 2.

Proof.We first show that the parameterβ in (3.6) is larger than1/3 when
κ > 2. It is easy to see that

1 − 2δ0
(1 − δ0)2

≤ 1,

and so

β ≥
√

1 − 4κ
(1 + κ)2

=
κ− 1
κ+ 1

>
1
3

whenκ > 2.
Now let ρ̂ andρ̂k be the convergence rates of Algorithm 3.1 and Algo-

rithm 4.1 (see Theorems 3.1 and 4.1). Sinceβ > 1
3 andδ <

1
5 , it is easy to

see

4δ
1 + δ

<
2
3
<

1 + β

2
< 1 and

5δ − 1
1 − δ

< 0 ≤ βk.

Then by (3.9) and (4.11) we have

ρ̂ = 1 − 1
4
(1 − β)(1 + δ) > 1 − 3

10
(1 − β)

and

ρ̂k = 1 − 1
4
(1 − βk)(1 − δ) < 1 − 1

5
(1 − βk).

Therefore one haŝρk < ρ̂ if

1
5
(1 − βk) >

3
10

(1 − β),

that is,

βk <
3
2
β − 1

2
.(4.15)

It is clear that whenβ > 1
3 the inequality (4.15) can be satisfied for largek.

It remains to show the second part of Proposition 4.2. Form Theorem 2.1
and the proof of Lemma 3.1, we know that the convergence rate of Algo-
rithm 4.1 is determined by the parameterβ̂k satisfying

‖Φk(gi) − C−1gi‖C ≤ β̂k‖C−1gi‖C , gi ∈ Rm,
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more accurately, it is determined by the value‖Φk(gi) −C−1gi‖C , i.e., the
error at thek-th iteration. Since the results generated by Algorithm 4.1 with
k = 1are the sameas the ones generated byAlgorithm3.1, for our purpose it
suffices to construct a counterexample to show that the following inequality
does not hold:

‖Φ2(gi) − C−1gi‖C < ‖Φ1(gi) − C−1gi‖C .(4.16)

In fact, we can show that (4.16) is not true whenĈ = C = I. By the
definition of Algorithm 4.1, we have

Φ2(gi) = z2
i = z1

i + τ2
i p

1
i ,

thus

‖Φ2(gi) − C−1gi‖2
C = ‖z2

i − gi‖2

= ‖z1
i − gi‖2 + 2τ2

i (z1
i − gi, p

1
i ) + (τ2

i )2 ‖p1
i ‖2.(4.17)

By the basic property of the CG method, we know(r1i , p
0
i ) = 0, which

implies

(r1i , p
1
i ) = (r1i , r

1
i − θ1

i p
0
i ) > 0,

and soτ2
i > 0 by the definition ofτ2

i . Now the desired conclusion follows
if we can find a matrixH such that(z1

i − gi, p
1
i ) > 0. Indeed, if this is true,

then it follows from (4.17) that

‖Φ2(gi) − C−1gi‖2
C > ‖z1

i − gi‖2 = ‖Φ1(gi) − C−1gi‖2
C ,

which negates (4.16). It remains to find such a matrixH. By the definition
of Algorithm 4.1,z1

i = τ1
i gi and

p1
i = r1i − θ1

i p
0
i = gi − τ1

i Hgi − θ1
i gi.

Therefore we have

(z1
i − gi, p

1
i ) = (τ1

i − 1)(gi, (1 − θ1
i )gi − τ1

i Hgi)

= (τ1
i − 1)

{
(1 − θ1

i )‖gi‖2 − τ1
i ‖gi‖2

H

}
= θ1

i (1 − τ1
i )‖gi‖2,(4.18)

where we have used the fact thatτ1
i = ‖gi‖2/‖gi‖2

H . By the definitions of
θ1
i , it is easy to verify that

θ1
i (1 − τ1

i ) =
(‖gi‖2 ‖Hgi‖2 − ‖gi‖4

H)(‖gi‖2 − ‖gi‖2
H)

‖gi‖6
H

.(4.19)
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By the Cauchy-Schwarz inequality,

‖gi‖2 ‖Hgi‖2 − ‖gi‖4
H > 0

provided thatH �= c I (c is a constant). Without loss of generality, we
assume that the first component ofgi is not zero, then define

H = diag(
3
4

1 1 · · · 1).

It is clear that

‖gi‖2 − ‖gi‖2
H > 0,

so we have from (4.19) thatθ1
i (1 − τ1

i ) > 0. This, together with (4.18),
leads to

(z1
i − gi, p

1
i ) > 0. ��

5 Numerical experiments

In this section, we apply our newly proposed Algorithm 3.1 and Algorithm
4.1, and someother existing algorithms, to solve the two-dimensional Stokes
problem and another system of purely algebraic equations. LetΩ be the unit
square domain inR2, andL2

0(Ω) be the set of all square integrable functions
overΩ with zero averages. LetH1(Ω) be the usual Sobolev space of order
one onΩ andH1

0 (Ω) be a space consisting of those functions inH1(Ω)
whose traces vanish on the boundary ofΩ.
Our first example is the generalized Stokes problem whose variational

formulation reads as follows:{
(µ∇u,∇v) − (p,∇·v) = (f, v), ∀v ∈ H1

0 (Ω)2,
(q,∇·u) = g, ∀q ∈ L2

0(Ω),
(5.1)

wheref ∈ L2(Ω) andµ ∈ L∞(Ω) with µ(x)≥c > 0 almost everywhere
in Ω.
We use one of thewell-known conforming Taylor-Hood elements, which

has been widely used in engineering, to solve the system (5.1). For any
positive integerN , we divideΩ intoN ×N subsquares, and seth = 1/N .
Such a triangulation ofΩ, with its elements being all squares, is denoted as
T h. LetXh ⊂ H1

0 (Ω) andMh ⊂ H1(Ω) ∩L2
0(Ω) be the usual continuous

Q2 andQ1 finite element spaces defined onT h respectively (cf. [7,13]).
The total number of unknowns for this finite element isn+m = 2(2N −
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Table 1. Number of iterations (Algorithm 3.1)

δ=0.1 δ=0.2

N 8 16 32 8 16 32
PCG 21 21 22 26 25 24
CG 22 24 24 31 31 30

1)2 +[(N +1)2 −1]. The finite element approximation of the above Stokes
system can be formulated as follows:

(µ(x)∇uh,∇v) − (ph,∇·v) = (f, v), ∀ v ∈ X2
h,(5.2)

(q,∇·uh) = 0, ∀ q ∈ Mh.(5.3)

It is known that theinf-sup condition is satisfied by the pair(X2
h,Mh)

(see [7]), thus the Schur complement matrixBtA−1B associated with the
system (5.2)-(5.3) has a condition number independent ofh. As in [6] and
[22], we take the variable coefficientµ to beµ = 1+x1x2 +x2

1 −x2
2/2, and

know that the corresponding matrixA is block diagonal with two copies of
the stiffness matrix associated with the bilinear form(µ(x)∇· ,∇· ) on the
diagonal. Therefore, ifµ = 1, it can be solved by the fast Poisson solver. It
is natural to choose this fast solverÂ as the preconditioner ofA. It is clear
that

0.5 (Âz, z) ≤ (Az, z) ≤ 2.5 (Âz, z),(5.4)

thus the matrixÂ−1A is well-conditioned, and so is the matrixBtÂ−1B.
In this case, we can choose for Algorithm 3.1̂C = I andΨ defined by
the CG method (without preconditioning) or the PCG method with the pre-
conditionerÂ for A. For all the numerical results shown below, the inner
nonlinear iteration is terminated whenΨ satisfies

‖φ−AΨ(φ)‖/‖φ‖ ≤ δ

for a given vectorφ ∈ Rm. And the outer iteration of Algorithm 3.1 termi-
nates when

ε = ‖Mvi − b‖/‖Mv0 − b‖ ≤ 1.0 × 10−5(5.5)

with vi = (xi yi)t, v0 = (x0 y0)t andb = (f g)t. Thenumber of iterationsof
Algorithm 3.1 is listed in Table 1, where we can see the rate of convergence
independent of mesh sizeh.
In comparison with Algorithm 3.1, we tried to solve the Stokes system

also by Algorithm 4.1 with the same preconditioners as above. The number
of iterations for differentk is listed in Table1′.
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Table 1′. Number of iterations (Algorithm 4.1) PCG inner iteration,δ = 0.1

N k=2 k=5 k=10 k=20

8 102 60 30 16
16 19 28 45 28
32 19 18 27 20

We can see from Table1′ that Algorithm 3.1 outperforms Algorithm 4.1
in this example, and Algorithm 3.1 shows a more stable and consistent
convergence history than Algorithm 4.1. The results are reasonable as Al-
gorithm 3.1 should perform better than Algorithm 4.1 when a good precon-
ditionerĈ is available for the Schur complementC. Indeed, the precondi-
tionerh2Ĉ = h2I is spectrally equivalent toC (and the two algorithms are
invariant under constant scalings).
It can be verified by (5.4) that̂C = 2I satisfies the assumption (2.5)

(cf. [6]). Thus we can also apply Algorithm 2.1 to solve the system (5.2)-
(5.3). However, the resulting convergence is very slow for this example
because the parameterγ defined by (2.5) is close to one. For example,129
iterations are needed to reach the same tolerance as (5.5) whenN = 8 and
Ψ is defined by the CG iteration withδ = 0.1.
We can also use the diagonal preconditioner with diagonal blockÂ and

Ĉ = h2I (spectrally equivalent toC) to solve the system (5.2)-(5.3) by the
minimum residual method. Unfortunately, its convergence seems slow. For
example,65 iterations are needed to reach the same tolerancewhenN = 16.
Our second example is a system of purely algebraic equations.We define

the matricesA = (aij)n×n andB = (bij)n×m (n ≥ m) in (1.1) as follows:

aij =

{
i+ 1, i = j,
1, |i− j| = 1,
0, otherwise;

bij =
{

15j, i = j + n−m,
0, otherwise.

The preconditionerŝA = (aij)n×n andĈ = (cij)n×m are defined by

aij =
{
i, i = j,
0, otherwise; cij =

{
i2 + 3, i = j,
0, otherwise.

The right-hand side vectorsf andg are defined such that the exact solutions
x andy are the vectors with all components being1.
We solve the corresponding system (1.1) by Algorithm 3.1 with the

preconditioner̂C andΨ defined byNc iterations of the CGmethod (without
preconditioner) and the PCGmethod with the preconditionerÂ. Algorithm
3.1 terminates when the errorε ≤ 1.0 × 10−4, the resulting number of
iterations is given in Table 2.
To compare Algorithm 3.1 with Algorithm 4.1 for this example, we

solved the considered system again by Alg. 4.1. The numerical experiments
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Table 2. Numbers of iteration (Algorithm 3.1)

n = 200, m = 150 n = 400, m = 300 n = 800, m = 600

PCG(Nc = 2) 18 18 19
CG(Nc = 6) 18 19 20

Table 3. Number of iterations PCG(Nc=2) inner iteration,Ĉ = I

(n,m) Algorithm 3.1 Algorithm 4.1
k=1 k=2 k=5 k=10 k=20

(200,150) 297 138 93 47 20
(400,300) 254 163 94 40 23
(800,600) 364 147 78 38 21

Table 4. Number of iterations CG(Nc = 6) inner iteration,Ĉ = I

(n,m) Algorithm 3.1 Algorithm 4.1
k=1 k=2 k=5 k=10 k=20

(200,150) 318 179 82 39 21
(400,300) 387 166 86 43 23
(800,600) 362 166 81 50 26

indicate that both algorithms have almost the same number of iterationswith
the preconditioner̂C andΨ defined as above, even when the factor1−δ

2 in
(4.8) is replaced by12 . So the detailed number of iterations is omitted here.
To further compare the performance of both algorithms in the case with a
very bad preconditioner̂C, we takeĈ = I, the worst preconditioner forC,
namely without any preconditioning. Tables 3 and 4 below listed the number
of iterations in this case.
Tables 3 and 4 above indicate that Algorithm 4.1 is more efficient in the

case with a very bad preconditionerĈ for the Schur complementC.
We also tried to use Algorithm 2.1 to solve the considered system, but

the numerical experiments indicate that this algorithm is divergent for this
example. In fact, the assumption (2.5) is not satisfied with the given pre-
conditionerĈ. Also note that it is not easy to achieve a good estimate on
the minimal generalized eigenvalue of the preconditionerĈ with respect
to the matrixBtA−1B in this case (except that the action ofA−1 is al-
lowed), then there seems no direct way to solve the considered system using
Algorithm 2.1.
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