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Abstract
We derive and propose a family of new preconditioners for the saddle-point sys-
tems arising from the edge element discretization of the time-harmonic Maxwell’s
equations in three dimensions. With the new preconditioners, we show that the pre-
conditioned conjugate gradient method can apply for the saddle-point systems when
wave numbers are smaller than a positive critical number, while the iterative meth-
ods like the preconditioned MINRES may apply when wave numbers are larger than
the critical number. The spectral behaviors of the resulting preconditioned systems
for some existing and new preconditioners are analyzed and compared, and several
two-dimensional numerical experiments are presented to demonstrate and compare
the efficiencies of these preconditioners.
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1 Introduction

In this work, we investigate and compare some effective preconditioning solvers for
the following saddle-point system:

K
(

u

p

)
≡

(
A − k2M BT

B 0

)(
u

p

)
=

(
f

g

)
(1.1)

where u ∈ R
n, p ∈ R

m, A, M ∈ R
n×n, and B ∈ R

m×n, with m ≤ n. We assume
that K is non-singular, so B must be of full row rank. We are particularly interested
in the case where A is symmetric semi-positive definite, and dim(ker(A)) = m, that
is, A is maximally rank deficient [7, 8]. The matrix M is assumed to be symmetric
positive definite, and k is a given real number.

The saddle-point system of form (1.1) with a maximal rank deficientA arises from
many applications, including the numerical solution of time-harmonic Maxwell’s
equations [8, 9, 19] where k represents the wave number, the underdetermined norm-
minimization problems [2], and geophysical inverse problems; see more details in the
very recent paper [7]. This reference is a very inspiring and innovative work and has
developed a class of indefinite block preconditioners for the use with the conjugate
gradient (CG) method, which may converge rapidly under certain conditions when it
is applied for solving the general saddle-point system of form (1.1) with a vanishing
wave number (i.e., k = 0). It was also pointed out in [7] that the saddle-point sys-
tem under the aforementioned particular setting has not received as much attention
as other situations, for example, the case of a symmetric positive definite A. But as
it was demonstrated in [7] for the special case k = 0, when A is maximally rank
deficient, some nice mathematical structures may be revealed and adopted to help
construct efficient solution methods. The current work is initiated and motivated by
[7] and intends to develop further in this direction. We show that new efficient numer-
ical methods can be equally constructed for more general case with non-vanishing
wave numbers, i.e., k �= 0.

Though most results of this work apply also to the general saddle-point system
of form (1.1) with a maximal rank deficient A, we focus mainly on the saddle-point
system (1.1) that arises from time-harmonic Maxwell’s equations [4, 6, 11, 19]:⎧⎪⎪⎨

⎪⎪⎩

∇ × ∇ × u − k2u + ∇p = J in �,

∇ · u = ρ in �,

u × n = 0 on ∂�,

p = 0 on ∂�

(1.2)

where u is a vector field, p is the scalar multiplier, J is the given external source,
and ρ is the density of charge. � is a simply connected domain in R

3 with a con-
nected boundary ∂�, with n being its outward unit normal. The wave number k is
given by k2 = ω2εμ, where ω, ε, and μ are positive frequency, permittivity, and per-
meability of the medium, respectively. We assume that k2 is not an interior Maxwell
eigenvalue, but is allowed to be zero, and know the cases with appropriately small
and large frequencies are physically relevant in magnetostatics, wave propagation,
and other applications [8]. We refer to [3, chapter 11] for a survey on this topic. The
introduction of the Lagrange multiplier p in (1.2) may not be absolutely necessary
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for the general case k �= 0, for which the divergence constraint does not need to be
enforced directly and explicitly. That is, it is possible to solve directly for u using the
first equation in (1.2) with p = 0 mathematically [9], although it is still challenging
to design an efficient numerical solver for this indefinite system. The saddle-point
formulation (1.2) with the Lagrange multiplier p is stable and well-posed [6], and
especially it ensures the stability and Gauss’s law directly when k is small and may
better handle the singularity of the solution at the boundary of the domain [4, 6,
19]. More importantly, the mixed form (1.2) provides some extra flexibility on the
computational aspect [12–15] and leads to better numerical stability and more effi-
cient numerical solvers than the single system (1.2) without Lagrange multiplier (i.e.,
p = 0), as it was shown in [7, 8]. And this is also the main motivation and focus of
the current work.

After discretizing (1.2) by using the Nédélec elements of the first kind [16, 17]
for the approximation of the vector field u and the standard nodal elements for the
multiplier p, we derive the saddle-point system (1.1) of our interest, whereA ∈ R

n×n

corresponds now to the discrete version of the curl-curl operator, B ∈ R
m×n is a

discrete divergence operator, and M ∈ R
n×n is the vector mass matrix. We assume

that the coefficient matrix K in (1.1) and its leading block A− k2M (k �= 0) are both
non-singular, which is true when meshes are sufficiently fine [8].

For the special case of the saddle-point system (1.1), namely the system with the
vanishing wave number (k = 0):

A
(

u

p

)
≡

(
A BT

B 0

) (
u

p

)
=

(
f

g

)
, (1.3)

a very effective preconditioner of the form

P−1
0 =

(
(A + M)−1(I − BT L−1CT ) CL−1

L−1CT 0

)
(1.4)

was proposed in [7] for solving the saddle-point system (1.3). Here the matrix
L ∈ R

m×m is the discrete Laplacian, while C ∈ R
n×m is a sparse matrix, whose

columns span ker(A) and can be formed easily and explicitly using the gradients
of the standard nodal bases [7, 8]. It is important to verify that the preconditioned
system P−1

0 A is block diagonal [7]:

P−1
0 A =

(
(A + M)−1(A + BT L−1B) 0

0 I

)
.

Since both matrices A + M and A + BT L−1B are symmetric positive definite, we
can apply a CG-like method for the preconditioned system P−1

0 A in a non-standard
inner product, even though both A and P0 are indefinite.

For the more general case k �= 0, the block triangular preconditioners

Mη,ε =
[

A + (η − k2)M (1 − ηε)BT

0 εL

]
(1.5)

with double variable relaxation parameters η > k2 and ε �= 0 were studied in [5, 8,
23, 24].
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In this work, we construct some new preconditioners for the general saddle-point
system (1.1). As it was shown in [7] that the aforementioned preconditioner P−1

0
in (1.4) works very effectively for the special and simple case with vanishing wave
number (k = 0), we demonstrate that similar preconditioners can be constructed and
generalized also for the saddle-point linear system (1.1) with more general cases, i.e.,
the non-vanishing wave numbers k �= 0. And we will see analytically the spectral
distributions of these new preconditioners are quite similar to the ones of the existing
effective preconditioners (1.5). But the new preconditioners can be applied with the
CG iteration under a non-standard inner product although both the coefficient matrix
K and the new preconditioner are indefinite, and numerically they perform mostly
better and stabler than the existing preconditioners (1.5).

The rest of the paper is arranged as follows. We develop in Section 2 an impor-
tant formula for computing the inverse ofK, based on which we propose in Section 3
a family of new preconditioners and compare their performance with some existing
preconditioners for the saddle-point system (1.1) with general wave numbers, then
study and compare the spectral properties of the preconditioned matrices. Several
two-dimensional numerical experiments are presented in Section 4 to demonstrate
the performance of the new preconditoners and their comparisons with some exist-
ing preconditioners. Finally, some concluding remarks are included in Section 5 to
summarize the main results of the paper and some possible future directions.

2 Computing the inverse ofK

We derive in this section some formulas for computing the inverse of the matrix K
in (1.1). To do so, we first recall some useful properties of the matrices A, B, M , L,
and C, which are introduced in Section 1.

Proposition 2.1 The matrices A, B, M , L, and C have the following properties [7,
8]:

(i) R
n = ker(A) ⊕ ker(B).

(ii) There exists a constant ᾱ > 0 independent of mesh size such that uT Au ≥
ᾱ uT Mu, ∀ u ∈ ker(B).

(iii) C = M−1BT , L = BM−1BT , AC = 0.
(iv) The inverse of A can be represented by

A−1 =
(

V CL−1

L−1CT 0

)
, (2.1)

where the diagonal block V is given by

V = (A + BT L−1B)−1(I − BT L−1CT ) = (A + BT L−1B)−1 − CL−1CT .
(2.2)

Now we are ready to derive an explicit formula for computing the inverse of the
general saddle-point matrix K in (1.1) with non-vanishing wave numbers k �= 0.
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Theorem 2.2 The inverse of K in (1.1) has the representation

K−1 =
(

T CL−1

L−1CT k2L−1

)
, (2.3)

where T satisfies

(A − k2M)T = I − BT L−1CT , BT = 0 . (2.4)

Proof We write K−1 as a perturbation of A−1 in the form

K−1 = A−1 +
(

X1 X2
X3 X4

)
, (2.5)

then using the fact that KK−1 = I , namely[
A +

( −k2M 0
0 0

)]
·
[
A−1 +

(
X1 X2
X3 X4

)]
= I ,

we obtain by a direct computation that

− k2M(V + X1) + AX1 + BT X3 = 0, (2.6)

− k2(BT L−1 + MX2) + AX2 + BT X4 = 0, (2.7)

BX1 = 0 , BX2 = 0. (2.8)

On the other hand, we can see directly from (2.1) and the identity AA−1 = I that

AV = I − BT L−1CT , BV = 0 . (2.9)

Then noting that V + X1 is the (1,1) block of K−1 from (2.5), we get from (2.8) and
(2.9) that

BT = B(V + X1) = 0.

Multiplying (2.6) by CT , we derive

−k2B(V + X1) + LX3 = 0,

which gives
X3 = k2L−1B(V + X1) = 0. (2.10)

Similarly, multiplying (2.7) by CT , we obtain

−k2(I + BX2) + LX4 = 0.

Combining this equality with the second relation in (2.8), we come to

X4 = k2L−1. (2.11)

Now we can substitute (2.11) into (2.7) to get

(A − k2M)X2 = 0 , (2.12)

which proves X2 = 0.
Noting that we have proved X3 = 0, then (2.6) reduces to −k2M(V + X1) +

AX1 = 0, or (A − k2M)(V + X1) = AV , which completes the desired proof.

The following result can help us understand the leading block T of the inverse of
K in (2.3).
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Theorem 2.3 The matrix A + ηBT L−1B − k2M is non-singular for any η �= k2,
and its null space is exactly the same as that of A for η = k2.

Proof By means of the result (i) in Proportion 2.1, we can write for any u ∈ R
n that

u = uA + uB , uA ∈ ker(A), uB ∈ ker(B). (2.13)

Using this decomposition, it is easy to see that if

(A + ηBT L−1B − k2M)u = 0,

then we have
(A − k2M)uB + ηBT L−1BuA − k2MuA = 0.

As the columns of C span the null space of A, there exists p ∈ R
m such that uA =

Cp. Using this and Proposition 2.1(iii), we can readily reduce the above identity to

(A − k2M)uB + (η − k2)BT p = 0.

Multiplying its both sides by CT and using Proposition 2.1(iii) again, we derive
BM−1BT p = 0, so is p = 0, leading to (A − k2M)uB = 0, or uB = 0. Hence we
have proved

u = uA + uB = Cp + uB = 0,

and also the non-singularity of the desired matrix A + ηBT L−1B − k2M .
Next, we consider the case with η = k2 and show two matrices A+k2BT L−1B −

k2M and A have the same null space. First, we assume u ∈ ker(A) and write u =
uA + uB as in (2.13), then the proof of the first part above shows that u = uA = Cp.
Using this and Proposition 2.1(iii), we can derive

(A + ηBT L−1B − k2M)u = (η − k2)BT p = 0.

Now if u is in the null space of A + k2BT L−1B − k2M , and we can still write
u = uA + uB as in (2.13), and follow the proof of the first part above for the non-
singularity of the matrix, but with η = k2 now, we can deduce (A − k2M)uB = 0.
This implies uB = 0, hence we know u = uA ∈ ker(A).

The following result introduces a very crucial parameter η to the expression of the
leading block T of the inverse of K in (2.3), and it can take an arbitrary value except
for η = k2.

Corollary 2.1 For any η �= k2, it holds that

T = (A + ηBT L−1B − k2M)−1
(
I − BT L−1CT

)

= (A + ηBT L−1B − k2M)−1 − 1

η − k2
CL−1CT . (2.14)

Proof Using the second relation, and then the first relation in (2.4), we readily see
that

(A + ηBT L−1B − k2M)T = (A − k2M)T = I − BT L−1CT ,
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which implies the first relation in (2.14). To see the second relation, we first use
the fact that AC = 0 from Proposition 2.1(iii), then use the first two relations in
Proposition 2.1(iii) to deduce

(A + ηBT L−1B − k2M)C = ηBT L−1BC − k2MC

= ηBT L−1(BM−1BT ) − k2BT

= (η − k2)BT .

This implies

(A + ηBT L−1B − k2M)−1BT = 1

η − k2
C .

Using this and the first relation in (2.14), we readily see the second relation.

It is very interesting to see from the above relation that the matrix T that is inde-
pendent of the parameter η looks closely to depend on η. In conclusion, we obtain
from Theorem 2.2 and Corollary 2.1 the following formula for computing the inverse
of the matrix K in (1.1):

K−1 =
(

(A + ηBT L−1B − k2M)−1(I − BT L−1CT ) CL−1

L−1CT k2L−1

)
. (2.15)

This important explicit representation forms the basis in our construction of some
new preconditioners in the next section.

3 New preconditioners and their spectral properties

The formula (2.15) suggests us some natural preconditioners for the saddle-point
matrix K in (1.1) with the general non-vanishing wave numbers k �= 0. However, the
action of the (1,1) block of (2.15) can be very expensive to evaluate, since the matrix
BT L−1B is dense. To overcome the difficulty, we choose to replace the dense matrix
BT L−1B by the vector mass matrix M , as they are spectrally equivalent on the null
space ofA [8]. This leads to the following simplified preconditioner for the matrixK:

P−1 ≡
(

(A + ηM − k2M)−1(I − BT L−1CT ) CL−1

L−1CT k2L−1

)
. (3.1)

For the simple case with vanishing wave number (k = 0) and η = 1, the precon-
ditioner (3.1) reduces to the existing one P−1

0 in (1.4). We remark that the matrix
I −BT L−1CT in (3.1) is an oblique projector, which can be very helpful in the anal-
ysis of Maxwell-type problems (see, e.g., [20, 21]). To ensure the non-singularity of
the matrix A+ηM − k2M involved in (3.1), we can simply set the parameter η > k2

so that it becomes symmetric positive definite. And it is important to note that this
choice also guarantees the non-singularity of the entire matrix on the right-hand side
of (3.1), as discussed below.

Theorem 3.1 For any η > k2, the matrix on the right-hand side of (3.1) is non-
singular.
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Proof It is direct to check that the preconditioned matrix P−1K is given by

P−1K =
(

(A + ηM − k2M)−1(A + k2BT L−1B − k2M) + CL−1B 0
0 I

)
.

Using Proposition 2.1 (i), we can further write the (1, 1) block of the above matrix as

(A + ηM − k2M)−1(A + k2BT L−1B − k2M) + CL−1B

= (A + ηM − k2M)−1(A + k2BT L−1B − k2M)

+(A + ηM − k2M)−1(ηMCL−1B − k2MCL−1B)

= (A + ηM − k2M)−1(A + ηBT L−1B − k2M) ,

so the preconditioned system P−1K reads as

P−1K =
(

(A + ηM − k2M)−1(A + ηBT L−1B − k2M) 0
0 I

)
. (3.2)

We know that the leading block of P−1K in (3.2) is non-singular by Theorem 2.3,
hence the desired conclusion follows.

Note that A+ηM−k2M and its inverse are always symmetric positive definite for
η > k2. Actually, the original matrix A + ηBT L−1B − k2M can be also symmetric
positive definite as shown below.

Theorem 3.2 For any η > k2 and k2 < ᾱ, the matrix A + ηBT L−1B − k2M is
symmetric positive definite.

Proof For any u ∈ R
n, we can write u = uA + uB with uA ∈ ker(A) and uB ∈

ker(B). By Proposition 2.1, we know uT
AMuB = 0 and uT

ABT L−1BuA = uT
AMuA.

Therefore, we can derive

uT (A + ηBT L−1B − k2M)u

= uT
A(A + ηBT L−1B − k2M)uA + uT

B(A + ηBT L−1B − k2M)uB

= uT
A(ηBT L−1B − k2M)uA + uT

B(A − k2M)uB

= uT
B(A − k2M)uB + (η − k2)uT

AMuA . (3.3)

Noting that uT
BAuB ≥ ᾱuT

BMuB by Proposition 2.1(ii), we further deduce

uT (A + ηBT L−1B − k2M)u ≥ (ᾱ − k2)uT
BMuB + (η − k2)uT

AMuA > 0 ,

which proves our desired result.

Using the representation (3.2) and Theorem 3.2, we know for any η > k2 and
k2 < ᾱ that the preconditioned matrix P−1K is self-adjoint and positive definite with
respect to the inner product

〈x, y〉 = xT

(
A + ηM − k2M 0

0 I

)
y. (3.4)

Therefore, we can apply the CG iteration [1] in this special inner product for solving
the preconditioned system P−1K. But for larger wave numbers, namely k2 ≥ ᾱ,
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Theorem 3.2 does not ensure the positive definiteness of the preconditioned system,
so the CG iteration may fail theoretically. However, as we see in Section 4, this is not
the case numerically. Even if it fails, we may still apply the preconditioned MINRES
with the above non-standard inner product.

We know the convergence rates of the CG and MINRES can be reflected often
by the spectrum of the preconditioned system. For this purpose, we are going to
study the spectral properties of the preconditioned system P−1K. First, we present
an interesting observation that the symmetric positive definiteness of the matrix A +
ηBT L−1B − k2M depends in some sense only on the wave number k, not on η.

Theorem 3.3 For any two numbers η1, η2 > k2, A+η1B
T L−1B−k2M is symmetric

positive definite if and only if A + η2B
T L−1B − k2M is symmetric positive definite.

Proof For any η1 > k2, suppose thatA+η1B
T L−1B −k2M is not symmetric positive

definite. As this matrix is non-singular by Theorem 2.3, hence it is not symmetric semi-
positive definite. Therefore, there exists u ∈ R

n satisfying uT (A + η1B
T L−1B −

k2M)u < 0. But we can write u = uA + uB with uA ∈ ker(A) and uB ∈ ker(B).
Then we can see from (3.3) that uB �= 0 and uT

B(A − k2M)uB < 0. Now for any
η2 > k2,we can easily check uT

B(A+η2B
T L−1B−k2M)uB = uT

B(A−k2M)uB < 0,
hence A + η2B

T L−1B − k2M is not symmetric positive definite.

Next we present several results about the eigenvalues of the preconditioned matrix
P−1K.

Lemma 3.4 For any η > k2, λ = 1 is an eigenvalue of (A + ηM − k2M)−1(A +
ηBT L−1B − k2M) with its algebraic multiplicity being m, and the rest of the
eigenvalues are bounded by

ᾱ − k2

ᾱ + η − k2
< λ < 1. (3.5)

Proof The result was proved in [8, Theorem 5.1] for η = 1 and k2 < 1. But our
desired results for an arbitrary positive η can be done similarly.

The following result is a direct consequence of Lemma 3.4 by using the formula
(3.2).

Theorem 3.5 For any η > k2, λ = 1 is an eigenvalue of the preconditioned matrix
P−1K with its algebraic multiplicity being 2m, and the rest of the eigenvalues are
bounded as in (3.5).

Now we like to make some spectral comparisons between the two preconditioned
systems generated by our new preconditioner P and the existing block triangular one
Mη,ε in (1.5) for the saddle-point matrixK. We first recall the following results from
[24, Theorem 2.6].
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Theorem 3.6 For any η > k2, both λ1 = 1 and λ2 = − 1
ε(η−k2)

are the eigenvalues

ofM−1
η,εK, each with its algebraic multiplicity m. And the rest of the eigenvalues are

bounded as in (3.5).

We see from Theorems 3.5 and 3.6 that the spectra of P−1K andM−1
η,εK are quite

similar, except that the latter has an extra eigenvalue λ2, with its algebraic multiplicity
being m. This will be also confirmed numerically in the next section.

The block triangular preconditionersMη,ε reduce to symmetric if we set ε = 1
η
:

Mη,1/η =
[

A + (η − k2)M 0
0 1

η
L

]
. (3.6)

This preconditioner was analyzed and applied in [8, 23] along with the minimal
residual (MINRES) iteration. We may observe from Theorems 3.5 and 3.6 that the
eigenvalues of our preconditioned matrix P−1K are a little better clustered than those

ofM−1
η,1/ηK as its eigenvalue λ2 is smaller than ᾱ−k2

ᾱ+η−k2
. But our new preconditioner

P can be applied with CG for k2 < ᾱ, and MINRES for k2 ≥ ᾱ. And more impor-
tantly, as we see from our numerical experiments in the next section, we can also
apply the new preconditioner P with CG even for k2 ≥ ᾱ and the convergence is still
rather stable, while CG with preconditioner Mη,ε in (3.6) breaks down most of the
time.

On the other hand, if we choose ε �= 1/η, the preconditioner Mη,ε is non-
symmetric, and the methods like the generalized minimal residual method should be
used, which are less economical than methods like CG or MINRES. Note that for
ε = − 1

η−k2
, we have λ2 = λ1, so λ = 1 is an eigenvalue ofM−1

η,εK with its algebraic

multiplicity being 2m, the same as for P−1K.
Now we consider the inner iterations associated with the new preconditioner P .

For any two vectors x ∈ R
n and y ∈ R

m, we can write

P−1
(

x

y

)
=

(
(A + ηM − k2M)−1(x − BT L−1CT x) + CL−1y

L−1CT x + k2L−1y

)

=
(

(A + ηM − k2M)−1x − 1
η−k2

CL−1CT x + CL−1y

L−1CT x + k2L−1y

)
.

So we need to solve two linear systems associated with the discrete Laplacian L and
one with A + (η − k2)M at each evaluation of the action of P−1. Many fast solvers
are available for solving these two symmetric and positive definite systems [10, 15].
We use the first form to implement the action of P−1. We know from Theorem 3.5
that a small difference η−k2 may result in a better convergence of the preconditioned
Krylov subspace methods. But if η−k2 is too small, the matrix A+(η−k2)M would
become nearly singular (we refer to [7, 8] for the discussion about the approximation
of the matrix (A + (η − k2)M)−1 to the pseudo-inverse of A when (η − k2) → 0).

We know that the parameter ᾱ depends only on the shape regularity of the mesh
and the approximation order of the finite elements used, and it is independent of the
mesh size [9, Theorem 4.7]. Numerically we may expect an upper bound for k2 that

290 Numerical Algorithms (2021) 86:281–302



Fig. 1 Mesh G1: n+m=187
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ensures the positive definiteness of A+ ηBT L−1B − k2M , and this bound should be
independent of the mesh size. We shall check this numerically in the next section.

4 Numerical experiments

In this section, we present several two-dimensional numerical experiments to demon-
strate and compare the spectral distributions of the preconditioned systems of the
saddle-point problem (1.1) with the existing preconditioner Mη,1/η in (1.5) and the
new one P in (3.1), as well as to compare the performance of these precondition-
ers. The edge elements of lowest order are used for the discretization of the system
(1.2) in a square domain �̄ =: {(x, y); −1 ≤ x ≤ 1, −1 ≤ y ≤ 1} or an L-shaped
domain (see Figs. 1 and 2). The square domain is partitioned using unstructured sim-
plicial meshes generated by EasyMesh [18], where the desired side lengths of the

Fig. 2 Mesh L1: n+m=185
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Fig. 3 Mesh U1: n+m=711

triangles that contain one of the vertices of the domain are set to be the same, result-
ing in a sequence of recursively refined meshes G1 through G5, and a corresponding
sequence of the saddle-point systems (1.1) of size m + n= 187, 437, 1777, 7217,
23,769 respectively. Similarly for the L-shaped domain, we apply the EasyMesh to
generate a sequence of recursively refined meshes L1 through L5, where the desired
side lengths of the triangles that contain the origin are one-tenth of the desired side
lengths of the triangles that contain other vertices of the domain, and a correspond-
ing sequence of the saddle-point systems (1.1) of size m + n= 185, 409, 1177, 5325,
29,277 respectively. To test the effect of the geometry of the domain and the irregular
meshes on the algorithms, we further generate a series of less spatially regular meshes
U1 through U5 on an irregular polygonal domain � (see Figs. 3 and 4 for the meshes
U1 and U4), resulting in a sequence of the saddle-point systems (1.1) with the total
degrees of freedom being m + n= 711, 1712, 4355, 9544, and 24,665 respectively.

We use MATLAB on a laptop (inter(R) Core(TM) i7-4510U CPU @ 2.00GHz,
2.60GHz, 4-GB RAM) to implement all numerical iterative solvers. The solver with
A+ (η − k2)M is achieved by PCG with the Hiptmair-Xu preconditioner [10], while
the solver with the discrete Laplacian L is realized by PCG with an incomplete
Cholesky factorization as a preconditioner.

The right-hand side of (1.1), denoted by b, is set to be a vector with all components
being ones unless specified otherwise, and the zero vector is used as the initial guess

Fig. 4 Mesh U4: n+m=9544
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Table 1 Smallest eigenvalue of matrix Aη in magnitude with η = k2 + 1

Eigenvalues above the dotted line are positive: Aη is positive definite; eigenvalues under the dotted line
are negative: Aη is not positive definite

x(0) for all iterations. We run PCG [22] with our new preconditionerP for solving the
saddle-point system (1.1), and the preconditioned MINRES with the block triangu-
lar preconditioner Mη,1/η, and write these two methods as P-CG and M-MINRES
respectively in all tables. In all our numerical examples, the outer iterations are termi-
nated based on the criterion ‖b −Kx(k)‖2 ≤ 10−6‖b‖2, where x(k) is the kth iterate.
We take the parameter η = k2 + 1 and set the stopping criteria for all Laplacian
solvers (including both L-solvers and those Laplacian solvers inside the Hiptmair-
Xu preconditioner) to be a relative l2-norm error of the residual less than the same
tolerance, unless otherwise stated. The computing times (in seconds) may also be
listed, which include the times spent by the incomplete Cholesky factorizations for
all Laplacian solvers.

4.1 Numerical spectral analysis

We know from (3.2) and Theorem 3.2 that PCG can be applied with our new
preconditioner P under the special inner product defined in (3.4) if the matrix

Aη =
(

A + ηBT L−1B − k2M 0
0 Im

)

is symmetric positive definite. We shall conduct some experiments below to check the
positive definiteness of this matrix. For this purpose, we compute its smallest eigen-
values corresponding to different wave numbers. The results are shown in Tables 1
(with η = k2 + 1) and 2 (with various ηs).

Table 2 Smallest eigenvalues of matrix Aη in magnitude: all well bounded from zero

Mesh G1 G2 G3 G4 L1 L2 L3 L4

k = 4, η = 17 0.4677 0.4738 0.4776 0.4769 0.4787 0.4582 0.4758 0.4654

k = 4, η = 24 1.8963 −2.0601 −2.0846 −2.0966 −1.9134 −1.9650 −1.9311 −1.9705

k = 2, η = 5 0.4677 0.4738 0.4776 0.4769 −0.2541 −0.2640 −0.2705 −0.2692

k = 2, η = 6 0.5061 0.5310 0.5311 0.5338 −0.2540 −0.2640 −0.2705 −0.2692

293Numerical Algorithms (2021) 86:281–302



As we may see from Table 1 that on the meshes G2 through G4, the matrices Aη

are symmetric and positive definite with k = 0, 1, 1.55, but not positive definite for
k ≥ 1.6. Similarly, on the meshes L2 through L4, the matrices Aη are symmetric and
positive definite with k = 0, 1, 1.2, but not positive definite for k ≥ 1.25. Similar
observations can be made on the meshes U2 through U4. As predicted by Theo-
rem 3.2, the definiteness of Aη is independent of mesh size. This is indeed confirmed
by the results in Tables 1 and 2: once these smallest eigenvalues get stabilized on a
rather coarse mesh, they do not change much with further mesh refinements.

As we know, Aη is symmetric and positive definite for smaller k, i.e., k2 < ᾱ, thus
PCG can be applied with our new preconditioner P instead of MINRES, although
the original system K is indefinite. When k is larger, i.e., k2 ≥ ᾱ, the corresponding
preconditioned matrices are no longer positive definite, thenMINRES should be used
theoretically. However, our numerical experiments show that PCG does not fail even
for k2 ≥ ᾱ, in fact, PCG converges very well and stably for our numerical examples;
see some examples in Section 4.2. But this is not the case when PCG is applied with
the preconditionerMη,1/η. To see this, we have re-run all the experiments in Table 6,
but with the CG iteration now, instead of MINRES. In each of the 30 numerical
experiments, we have always experienced the case that one dividend becomes too
small, which causes the breakdown of the iterative process. The reasons behind are
simple: we need to divide by pT

k Kpk (with pk being the kth search direction) at the
kth CG iteration with preconditioner Mη,1/η, and to divide by pT

k Aηpk at the kth
CG iteration with the new preconditioner P , due to the existence of a special inner
product (3.4). Figure 5 shows the distributions of all the small eigenvalues (smaller
than 0.3) of the two matrices K and Aη for k = 4 (noting that most eigenvalues are
larger than 0.3, but not shown in the figure). We know these smaller and negative
eigenvalues contribute mainly to the breakdown of the iterations. As one can see from
the figure, K has many more small eigenvalues (the red part) than Aη (the blue part),
which explains clearly the strong instability of PCG with the preconditioner Mη,1/η
and the good stability of PCG with the new preconditioner P .

To check if we can apply PCG with the new preconditioner P on general meshes,
we further investigate the influence of the mesh size on the smallest eigenvalue of Aη

in magnitude. As confirmed by the results in Table 1, Table 2 verifies again that the
smallest eigenvalues of Aη in magnitude are basically independent of the mesh size,

0 100 200 300 400 500 600 700 800 900
−15

−10

−5

0

5

 

 

Fig. 5 Distributions of small eigenvalues (smaller than 0.3) of the coefficient matrix K (red part) and the
matrix Aη (blue part) on grid G3 for k = 4 and η = k2 + 1. There are many more eigenvalues close to
zero for K (red part) than for Aη (blue part)
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Fig. 6 Smallest eigenvalue of the matrix Aη in magnitude on grid L4 for k = 4 and η − k2 = 1, 2 · · · 20

so the mesh size can be very fine in order to resolve the highly oscillatory waves in
the high-frequency cases. And more importantly, these smallest eigenvalues are all
well separated from the origin. These observations suggest that we may also apply
PCG with the new preconditioner P for large wave numbers, and all our numerical
experiments in this section have demonstrated very good stability and convergence
of PCG with the new preconditioner P .

We end this section with some more numerical results to show the influence of
the difference η − k2 on the smallest eigenvalue of Aη and the clustering of the
eigenvalues of the preconditioned system P−1K. Figure 6 shows the influence of the
difference η − k2 on the smallest eigenvalue of Aη in magnitude. A larger η − k2

makes the smallest eigenvalue of Aη bigger in magnitude. Figure 7 plots the eigen-
distribution of the preconditioned matrix P−1K on mesh G3 with a different wave
number k. We can see from the figure that the eigenvalues for k = 0 and 1 are well
bounded, and there are only a few eigenvalues that lie between 0.22 and 0.8, while
all the remaining eigenvalues stay in the range 0.8 and 1. These results are consistent
with our theoretical prediction (see Theorem 3.5). For k = 2, 4, we see nega-
tive eigenvalues: the higher the wave number is, the less clustered the eigenvalues
are.
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Fig. 7 Distributions of smallest (27) eigenvalues of the preconditioned matrix P−1K on grid G3 (from
left to right: k = 0, 1, 2, 4, with η = k2 + 1)
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4.2 Basic numerical performance

We have shown in Tables 3 and 4 the numbers of iteration and the overall execution
times for the two methods, P-CG and Mη,1/η-MINRES, with different meshes and
wave numbers, using the same tolerance 10−6 for all inner solvers associated with
both A+ (η−k2)M and the discrete Laplacian L. As we may observe from the table,
the required numbers of iteration for the new method P-CG are generally smaller
than those forMη,1/η-MINRES, and this is consistent with our theoretical prediction
in Section 3. ButMη,1/η-MINRES takes mostly about 19 ∼ 50%more times thanP-
CG. We also observe that the required numbers of iteration are basically independent
of mesh size, and this is a very desired property in application. These experiments are
done to make a general comparison between these two methods, and more efficient
Laplacian solvers should be used in applications.

Next, we conduct some numerical experiments to find the effects of inexact inner
solvers with A + (η − k2)M and the discrete Laplacian L on the performance of the
preconditioners, when the tolerance for the Laplacian solvers inside the Hiptmair-
Xu preconditioners is set to be fixed at 10−1. The results are shown in Tables 5

Table 3 Meshes G1 to G5 and η = k2 + 1

k 0 1.0 1.55 1.6 2 4

Mesh G1

P-CG 5 (0.6802) 6 (0.7485) 11 (1.2736) 11 (1.268) 11(1.2619) 25 (2.6965)

M-MINRES 7 (0.8907) 9 (1.1619) 15 (1.6414) 15 (1.6309) 14 (1.5287) 31 (3.2299)

Ratio 1.3095 1.5523 1.2888 1.2863 1.2114 1.1978

Mesh G2

P-CG 5 (0.949) 7 (1.1789) 12 (1.9092) 12 (1.8898) 11 (1.7518) 28 (4.1755)

M-MINRES 7 (1.2051) 9 (1.4634) 15 (2.3171) 15 (2.261) 15 (2.2492) 31 (4.4716)

Ratio 1.2698 1.2414 1.2137 1.1965 1.2839 1.0709

Mesh G3

P-CG 5 (1.9158) 6 (2.1352) 11 (3.5818) 11 (3.6182) 11 (3.5805) 25 (7.5431)

M-MINRES 8 (2.7483) 9 (2.9572) 15 (4.6596) 15 (4.6461) 14 (4.337) 31 (9.0741)

Ratio 1.4346 1.385 1.3009 1.2841 1.2113 1.203

Mesh G4

P-CG 5 (6.2827) 6 (7.2006) 9 (10.3151) 9 (10.2293) 11 (12.1859) 24 (25.2278)

M-MINRES 7 (8.1305) 9 (10.0955) 12 (13.2987) 12 (13.0848) 14 (15.0183) 29 (29.4057)

Ratio 1.2941 1.402 1.2892 1.2791 1.2324 1.1656

Mesh G5

P-CG 5 (32.9871) 6 (37.8760) 9 (53.7789) 9 (53.6557) 11 (63.9640) 23 (127.2520)

M-MINRES 7 (43.0383) 8 (48.4078) 12 (69.4350) 12 (69.3690) 14 (79.6365) 29 (156.8750)

Ratio 1.3047 1.2781 1.2911 1.2929 1.2450 1.2328

Rows for P-CG andM-MINRES: numbers of iteration (execution times); rows for Ratio: ratios between
the times spent by two methods
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Table 4 Meshes L1 to L5 and η = k2 + 1

k 0 1.0 1.2 1.25 2 4

Mesh L1

P-CG 5 (0.8006) 7 (1.0285) 9 (1.2749) 8 (1.1593) 10 (1.3678) 25 (3.3425)

M-MINRES 8 (1.1821) 9 (1.3191) 12 (1.7786) 10 (1.3660) 15 (1.9633) 31 (3.8042)

Ratio 1.4765 1.2826 1.3951 1.1783 1.4353 1.1382

Mesh L2

P-CG 6 (1.3000) 7 (1.3541) 9 (1.7064) 8 (1.5272) 12 (2.2195) 28 (4.8256)

M-MINRES 8 (1.5563) 9 (1.6863) 12 (2.1860) 10 (1.8770) 15 (2.7282) 32 (5.4724)

Ratio 1.1972 1.2454 1.2810 1.2290 1.2292 1.1340

Mesh L3

P-CG 5 (1.8053) 7 (2.1953) 9 (2.7333) 8 (2.5120) 12 (3.5724) 25 (7.0046)

M-MINRES 8 (2.5005) 9 (2.7071) 11 (3.2302) 11 (3.3899) 15 (4.2672) 31 (8.4044)

Ratio 1.3851 1.2331 1.1818 1.3495 1.1945 1.1998

Mesh L4

P-CG 5 (5.3455) 7 (6.9149) 8 (7.7637) 8 (7.7648) 12 (11.0665) 24 (21.0020)

M-MINRES 8 (7.7230) 9 (8.5107) 12 (11.0335) 12 (11.0477) 15 (13.4594) 31 (26.6709)

Ratio 1.4448 1.2308 1.4212 1.4228 1.2162 1.2699

Mesh L5

P-CG 5 (53.0033) 7 (69.6419) 8 (78.3754) 8 (78.5196) 10 (95.8931) 26 (231.7050)

M-MINRES 8 (78.9650) 9 (87.1453) 10 (95.7683) 10 (95.6296) 13 (121.6840) 30 (261.2080)

Ratio 1.4898 1.2513 1.2219 1.2179 1.2690 1.1273

Rows for P-CG and M
η, 1

η
-MINRES: numbers of iteration (execution times); rows for Ratio: ratios

between the times spent by two methods

and 6, from which we may observe that the execution times on the lower triangular
part are smaller than the times on the upper triangular part, which shows that a good
pair of tolerance strategies for the two inner solvers would be a looser tolerance for
the solver with A + (η − k2)M and a tighter tolerance for the solver with L. Indeed,
we know the solver with A+ (η−k2)M is much more expensive than the solver with
L. This good pair of tolerance strategies may be taken later for more comparisons.

Table 5 Numbers of iteration and execution times of P-CG on grid L4 with k = 0, η = 1 and different
tolerances for the inner solvers with A + (η − k2)M (listed on the left side) and L (listed on the top)

1e−5 1e−4 1e−3 1e−2 1e−1

1e−5 5 (2.0808) 5 (2.1045) 5 (2.1666) 6 (2.3585) 13 (4.5092)

1e−4 5 (1.6821) 5 (1.6615) 5 (1.6706) 6 (2.0957) 13 (3.9118)

1e−3 5 (1.3027) 5 (1.3421) 5 (1.3220) 6 (1.5743) 13 (3.0280)

1e−2 7 (1.1731) 6 (1.1331) 6 (1.1461) 6 (1.1881) 13 (2.3217)

1e−1 8(0.7564) 9 (0.7813) 8 (0.7640) 7 (0.8225) 13 (1.5585)

Tolerance of Laplacian solvers inside the Hitmair-Xu preconditioner is set to 1e−1
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Table 6 Numbers of iteration and execution times of M
η, 1

η
-MINRES on grid L4 with k = 0, η = 1, and

different tolerances for the inner solvers with A + (η − k2)M (listed on the left) and L (listed on the top)

1e−5 1e−4 1e−3 1e−2 1e−1

1e−5 8 (2.9245) 8 (3.0198) 9 (3.1409) 10 (3.5018) 21 (7.5691)

1e−4 8 (2.4044) 8 (2.4364) 9 (2.6340) 10 (2.9974) 21 (5.8159)

1e−3 8 (1.7549) 8 (1.7433) 9 (2.0404) 10 (2.3071) 21 (4.5918)

1e−2 10 (1.4443) 10 (1.4053) 9 (1.3736) 10 (1.6640) 21 (3.5088)

1e−1 18 (1.2268) 18 (1.2463) 15 (0.9492) 17 (1.1446) 21 (2.0830)

Tolerance of Laplacian solvers inside the Hitmair-Xu preconditioner is set to 1e−1

Table 7 lists the ratios between the times spent byMη,1/η-MINRES and P-CG from
Tables 5 and 6, and confirms that the new method P-CG has a clear advantage over
the method Mη,1/η-MINRES.

We may recall from Tables 5 and 6 that both the P-CG and Mη,1/η-MINRES
methods perform best with the tolerance pair (1e−1, 1e−5) for the inner solvers with
A + (η − k2)M and L respectively for the parameters k = 0 and η = 1. In Table 8,
we show some more experiments to further investigate this phenomenon. We can see
from this table that the methods perform best with the tolerance pair (1e−1,1e−5) for
k = 0, 1, 1.2, or 1.25. But for k = 4, one may need a relatively tighter inner solver.
And again, this table confirms that the new method P-CG has a clear advantage over
the method Mη,1/η-MINRES.

4.3 Experiments for non-trivial geometries and less spatially regular meshes

In this subsection, we present some numerical results on irregular meshes U1 through
U5 (see Figs. 3 and 4 for U1 and U4 respectively). We first recall from the numer-
ical spectral results shown in Table 1 for U2 through U4, similarly to the regular
meshes L2 through L4 or G2 through G4, we observe that the positive definiteness of
the matrix Aη can be determined by the comparison of k2 with a mesh-independent
critical value, as suggested by Theorem 3.2.

Then we have conducted the experiments to compare the performance of the two
methods, P-CG and Mη,1/η-MINRES, on the irregular meshes U1 through U5. The
numbers of iteration and the overall execution times of the two methods are shown

Table 7 Ratios between times
taken by Mη,1/η-MINRES and
P-CG as listed in Tables 6 and 5

1e−5 1e−4 1e−3 1e−2 1e−1

1e−5 1.4054 1.4349 1.4497 1.4848 1.6786

1e−4 1.4294 1.4664 1.5767 1.4303 1.4868

1e−3 1.3471 1.2990 1.5435 1.4655 1.5164

1e−2 1.2311 1.2402 1.1985 1.4005 1.5113

1e−1 1.6219 1.5952 1.2425 1.3915 1.3365
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Table 9 Meshes U1 to U5 and η = k2 + 1

k 0 0.75 0.8 1 2 4

Mesh U1
P-CG 7 (0.7492) 10 (1.018) 10 (1.0288) 10 (1.0335) 20 (1.9001) 59 (5.2988)
M-MINRES 9 (0.9153) 12 (1.3417) 12 (1.1973) 12 (1.2099) 20 (1.8728) 70 (6.3153)
Ratio 1.2218 1.318 1.1638 1.1707 0.9857 1.1918

Mesh U2
P-CG 7 (1.054) 10 (1.3704) 10 (1.411) 10 (1.3915) 19 (2.4406) 66 (7.9437)
M-MINRES 9 (1.2544) 12 (1.5561) 12 (1.5747) 12 (1.5871) 20 (2.5195) 67 (7.9125)
Ratio 1.1901 1.1355 1.116 1.1406 1.0323 0.9961

Mesh U3
P-CG 6 (2.18) 9 (3.0904) 10 (3.3467) 10 (3.3281) 19 (5.9447) 65 (18.3948)
M-MINRES 9 (3.0537) 12 (3.7377) 12 (3.7001) 12 (3.6424) 22 (6.052) 66 (17.5027)
Ratio 1.4008 1.2095 1.1056 1.0945 1.0181 0.9515

Mesh U4
P-CG 7 (5.5643) 9 (6.7966) 9 (6.6811) 9 (6.7945) 17 (11.6895) 59 (38.1788)
M-MINRES 9 (7.146) 11 (8.0544) 12 (8.3088) 12 (8.8649) 21 (14.2766) 67 (40.6807)
Ratio 1.2842 1.1851 1.2436 1.3047 1.2213 1.0655

Mesh U5
P-CG 7 (19.8287) 9 (25.7299) 9 (23.9108) 13 (33.5189) 23 (57.343) 59 (146.2211)
M-MINRES 9 (26.6412) 12 (32.3105) 12 (39.6709) 17 (41.3345) 29 (69.131) 66 (156.1844)
Ratio 1.3436 1.2558 1.6591 1.2332 1.2056 1.0681

Rows for P-CG andM-MINRES: numbers of iteration (execution times); rows for Ratio: ratios between
the times spent by two methods

Table 10 Meshes U1 to U5, with η = k2 + 1 and randomly generated right-hand sides

k 0 0.75 0.8 1 2 4

Mesh U1
P-CG 7 (0.7605) 10 (1.0301) 10 (1.0354) 10 (1.0468) 20 (2.0831) 59 (5.4389)
M-MINRES 9 (0.8946) 12 (1.1807) 12 (1.265) 12 (1.1841) 20 (2.0013) 69 (6.0542)
Ratio 1.1762 1.1463 1.2218 1.1312 0.9608 1.1131

Mesh U2
P-CG 7 (1.0199) 10 (1.3646) 10 (1.4556) 10 (1.3907) 18 (2.3448) 66 (8.0441)
M-MINRES 9 (1.2591) 12 (1.6478) 12 (1.5936) 12 (1.5427) 21 (2.5964) 68 (7.9414)
Ratio 1.2345 1.2075 1.0948 1.1093 1.1073 0.9872

Mesh U3
P-CG 7 (2.3734) 9 (2.859) 10 (3.0765) 10 (3.117) 19 (5.7769) 62 (17.538)
M-MINRES 9 (2.7132) 12 (3.7343) 12 (4.0946) 12 (3.4991) 22 (7.1118) 72 (19.8068)
Ratio 1.1432 1.3061 1.3309 1.1226 1.2311 1.1294

Mesh U4
P-CG 7 (5.1162) 9 (6.3297) 9 (6.5258) 9 (6.2415) 18 (11.6957) 62 (38.9867)
M-MINRES 9 (6.5882) 11 (8.0213) 11 (8.2975) 12 (8.1823) 18 (11.5939) 67 (42.5028)
Ratio 1.2877 1.2672 1.2715 1.311 0.9913 1.0902

Mesh U5
P-CG 7 (21.9416) 9 (29.1238) 9 (27.5198) 9 (28.6648) 17 (48.6905) 59 (157.6150)
M-MINRES 9 (25.8734) 11 (30.1301) 11 (28.5676) 11 (29.8763) 21 (51.3032) 66 (164.8363)
Ratio 1.1792 1.0346 1.0381 1.0423 1.0537 1.0458

Rows for P-CG andM-MINRES: numbers of iteration (execution times); rows for Ratio: ratios between
the times spent by two methods
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in Table 9 when the right-hand side functions are chosen to be all ones and Table 10
when the the right-hand side functions are generated randomly. We observe again that
the required numbers of iteration for the proposed new method P-CG are generally
smaller than those for Mη,1/η-MINRES, which justifies our theoretical results in
Section 3, and the required numbers of iteration are basically independent of the
mesh size. We can also find that when k2 is smaller than or near the critical value,
the iteration performance of the P-CG is always better than Mη,1/η-MINRES, and
when k2 is relatively bigger than the critical value, P-CG still performs better than
Mη,1/η-MINRES in most cases.

5 Concluding remarks

Based on some special properties and structures of the saddle-point system arising
from the edge element discretization of the time-harmonic Maxwell’s equations, we
have derived a family of new preconditioners for general non-vanishing wave num-
bers. Several nice properties of the new preconditioners are presented and the spectral
estimates of the corresponding preconditioned systems are established. It is important
to note that the preconditioned systems are symmetric positive definite with respect
to a special inner product for wave numbers that are smaller than a positive critical
value, so the PCG iteration can be applied with the new preconditioners for solving
the preconditioned systems. When wave numbers are larger than the critical value,
our theory does not ensure the convergence of the PCG, but MINRES can then be
applied with the new preconditioners; moreover, our various numerical experiments
have shown that the PCG also works very effectively and stably. The performances
of the new preconditioners and some existing effective preconditioners are compared
through several numerical examples, and the results indicate a clear advantage of the
new preconditioners in terms of the stability and computing times when the exact or
inexact inner solvers are considered.

We may recall that all the analyses and results in this work have been conducted
for the time-harmonic Maxwell’s equation (1.2) that can be viewed as a simpli-
fied Maxwell system in a vacuum. But the new preconditioners may be extended
to the time-harmonic Maxwell’s equations in a homogeneous medium, where the
corresponding electric permittivity and magnetic permeability are smooth variable
functions. This extension can be realized by combining the analyses in this work
with the corresponding results of Proposition 2.1 to the homogeneous medium, which
were established in [15].

Furthermore, we emphasize that all the analyses and results in this work are based
on the use of the exact inner solvers involved in the new preconditioners. But it is
more realistic in applications to replace the exact inner solvers by inexact ones. Then
most of our results in this work may not be true. It is an important topic to explore
whether it is possible to extend our results to the cases with inexact inner solvers.

Acknowledgments The authors would like to thank the anonymous referees for their many insightful and
constructive comments and suggestions that have helped us improve the structure and results of the paper
essentially.

301Numerical Algorithms (2021) 86:281–302



Funding information The research of this project was financially supported by the National Natural
Science Foundation of China under grants 11571265 and 11471253. The work of J. Zou was substantially
supported by Hong Kong RGC General Research Fund (Project 14304517) and NSFC/Hong Kong RGC
Joint Research Scheme 2016/17 (Project N CUHK437/16).

References

1. Ashby, S.F., Manteuffel, T.A., Saylor, P.E.: A taxonomy for conjugate gradient methods. SIAM J.
Numer. Anal. 27, 1542–1568 (1990)

2. Benzi, M., Golub, G.H., Liesen, J.: Numerical solutions of saddle point problems . Acta Numerica 14,
1–137 (2005)

3. Boffi, D., Brezzi, F., Fortin, M.: Mixed finite element methods and applications, Vol. 44 of Springer
series in computational mathematics. Springer, Berlin (2013)

4. Chen, Z., Du, Q., Zou, J.: Finite element methods with matching and nonmatching meshes for
Maxwell equations with discontinuous coefficients. SIAM J. Numer. Anal. 37, 1542–1570 (2000)

5. Cheng, G.-H., Huang, T.-Z., Shen, S.-Q.: Block triangular preconditioners for the discretized time-
harmonic Maxwell equations in mixed form. Comput. Phys. Commun. 180, 192–196 (2009)

6. Demkowicz, L., Vardapetyan, L.: Modeling of electromagnetic absorption/scattering problems using
hp-adaptive finite elements. Comput. Methods Appl. Mech. Engrg. 152, 103–124 (1998)

7. Estrin, R., Greif, C.: On nonsingular saddle-point systems with a maximally rank deficient leading
block. SIAM J. Matrix Anal. Appl. 36, 367–384 (2015)
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