
A Numerical Method for Reconstructing the Coefficient

in a Wave Equation

Yat Tin Chow∗ Jun Zou†

Abstract

We present a numerical method for reconstructing the coefficient in a wave equation
from a single measurement of partial Dirichlet boundary data. The original inverse problem
is converted to a nonlinear integral differential equation, which is solved by an iterative
method. At each iteration, one linear second-order elliptic problem is solved to update
the reconstruction of the coefficient, then the reconstructed coefficient is used to solve the
forward problem to obtain the new data for the next iteration. The initial guess of the
iterative method is provided by an approximate model. This model extends the approximate
globally convergent method proposed by Beilina and Klibanov, that has been well developed
for the determination of the coefficient in a special wave equation. Numerical experiments
are presented to demonstrate the stability and robustness of the proposed method with noisy
data.
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1 Introduction

We shall develop a numerical method for an inverse problem arising from reconstructing the
coefficient in the following wave equation

∂2u

∂t2
= ∇ · (µ∇u) in Rd × (0,∞), (1.1)

where u may be the displacement or pressure of some physical medium and the coefficient µ may
represent the physical properties of the medium. This inverse problem is involved when one tries
to identify the locations and physical properties of inhomogeneous media sitting inside a homo-
geneous background medium. Such a technique is very useful and may have several physical
applications. The wave model (1.1) may be considered as a special case of the time-dependent
transverse magnetic polarized wave scattering problem [13], or as a simplified acoustic wave
model for fluids with variable density and constant bulk modulus [5, 14, 15]. It may also be
viewed as a simplified model for the shear waves in a two-dimensional isotropic elastic medium
when the scalar displacement travels along the direction transversal to the medium. In recent
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years, some rapid identification techniques have been developed for solving the elastodynamic in-
verse problem, for instance, crack/fault identification techniques are developed for cracks having
free boundary condition using a reciprocity gap function [6, 7], and linear sampling techniques
are designed to locate inclusions in the isotropic elastic medium [4, 12]. In this work we shall
mainly focus on the inverse problem of reconstructing the coefficient µ in the model equation
(1.1), using some Dirichlet boundary data from a single measurement. We will develop a nu-
merical method based on the approximate globally convergent method proposed by Beilina and
Klibanov in [1], which will be referred to as the Beilina-Klibanov method.

The least-squares minimisation combined with a Tikhonov regularization is a popular tech-
nique to solve a multi-dimensional coefficient inverse problem (MCIP). However, this technique
may encounter a common barrier to numerical solutions of inverse problems, i.e., the iterative
optimization process may be trapped in the neighborhoods of some local minima. This difficulty
may be overcome when a good initial guess is available, but it may not be always convenient
and possible to achieve a reasonable initial guess. An intriguing and very challenging goal is to
construct a numerical method which would deliver a good approximation to the exact solution
without any a priori knowledge of a small neighborhood of this solution. The development of
the Beilina-Klibanov method aims to reach this goal by proposing a method which does not rely
on the construction of a least-squares functional, instead it makes full use of the structure of the
underlying forward model.

The Beilina-Klibanov method for MCIPs was first proposed in [1], and further developed in
many follow-up studies. The detailed developments of this method and its convergence analysis
are available in a recent monograph [3]. The main advantage of this method is that, within the
framework of a reasonable approximation, it delivers a good approximation to the true solution
without any advanced knowledge of a small neighborhood of this solution. Indeed, it is well
known that MCIPs are highly nonlinear and ill-posed. In the case of a single measurement, as
considered by the Beilina-Klibanov method and also in our current work, the amount of data is
minimized.

The Beilina-Klibanov method has been well developed so far only for the hyperbolic equation

c (x)
∂2u

∂t2
= ∆u (1.2)

with the unknown coefficient c (x) > 0, where c (x) is sitting outside all derivatives. The gov-
erning model equation (1.1) investigated in this work is quite different from (1.2) and more
challenging for its numerical inversions. This work explores the possibility to extend the Beilina-
Klibanov method to the wave equation (1.1).

The rest of the paper is arranged as follows. The forward and inverse problems of our interest
are introduced in section 2. A nonlinear integral differential equation is derived in section 3,
which is crucial to the first step of the new numerical reconstruction algorithm. In section 4 we
show how to obtain the first approximation to the so-called “tail function” and formulate our
new algorithm in section 5. Some numerical experiments are presented in section 6.

2 The forward and inverse problems

In this work, we shall be concerned with the inverse problem of reconstructing the coefficient µ
in the wave equation (1.1). Consider an inhomogeneous medium Ω, an open bounded domain
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sitting in the homogeneous background Rd. We assume that the coefficient µ(x) is piecewise
C1-smooth such that

0 < β ≤ µ(x) ≤ µ0 in Rd; µ(x) = µ0 in Rd\Ω , (2.1)

or
µ0 ≤ µ(x) ≤ γ <∞ in Rd; µ(x) = µ0 in Rd\Ω . (2.2)

For sake of exposition, we assume that the incident plane wave propagates along some axis.
For definiteness, this propagating axis is specified to be x2-axis. Then we may complement
equation (1.1) with the following initial conditions:

u(x, 0) = 0 and
∂u

∂t
(x, 0) = δ(x2 − x02) (2.3)

where x02 ∈ R is a fixed point. Furthermore, it is reasonable for us to assume that the plane
wave is excited outside the inhomogeneous medium region Ω, namely Ω ∩ {x2 = x02} = ∅.

Alternatively, we may also consider the case where a plane wave is generated along a
line/plane {x2 = x02}, namely

∂2u

∂t2
= ∇ · (µ∇u) + δ(x2 − x02)r(t) in Rd × (0,∞), (2.4)

where r(t) is the source strength at time t. Correspondingly we can complement equation (1.1)
with the following initial conditions:

u(x, 0) = 0 and
∂u

∂t
(x, 0) = 0 . (2.5)

In the case of a uniform plane wave, it is known that the phase speed of the wave is
√
µ.

Condition (2.1) states a case when the inclusions concerned is with a lower wave speeds than
that of the background. On the other hand, condition (2.2) states a case when one detects some
inclusions having a faster wave speed than the background.

2.1 The forward problem in Laplace domain

The Beilina-Klibanov method is constructed based on the governing forward equation in the
pseudo-frequency domain. For this aim, we consider the Laplace transform of function u(x, t):

w(x, s) =

∫ ∞
0

u(x, t)e−stdt ∀ s > s (2.6)

where s is a positive constant such that the above integral converges. The parameter s is called
the pseudo-frequency. By applying the Laplace transform to the system (1.1) and (2.3) we obtain
the wave equation in the pseudo-frequency domain:

∇ · (µ∇w)− s2w = −δ(x2 − x02) ∀x ∈ Rd, s ≥ s. (2.7)

It was proved in [3] (Theorem 2.7.1) that lim
|x|→∞

w(x, s) = 0 if s is sufficiently large, when δ(x2−

x02) is replaced by a point source of the form δ(x− x0). In this work we shall assume that

lim
|x|→∞

[w(x, s)− w0(x, s)] = 0 ∀s > s, (2.8)
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for sufficiently large s, where w0 is the fundamental solution to the equation ∆w0 − s2w0 =
−δ(x2 − x02), namely

w0 (x, s) =
exp (−s |x2 − x02|)

2s
.

2.2 The inverse problem

We are now going to formulate the inverse problem of our interest in both the time domain and
the pseudo-frequency domain. Let Γ be a non-empty relatively open subset of ∂Ω, where we
shall assume that the solution u(x, t) is measured.

Inverse problem in time domain. Given the following measurement data:

u = g(x, t) on Γ× (0, T ) , (2.9)

determine the coefficient µ in the following wave system:

∂2u

∂t2
= ∇ · (µ∇u) in Rd × (0,∞), (2.10)

u(x, 0) = 0,
∂u

∂t
(x, 0) = δ(x2 − x02) . (2.11)

Inverse problem in pseudo-frequency domain. Given the following boundary data:

w(x, s) =

∞∫
0

g(x, τ)e−sτdτ =: φ(x, s) on Γ, (2.12)

determine the coefficient µ (x) in the following wave system in the pseudo-frequency domain:

∇ · (µ∇w)− s2w = −δ(x2 − x02) in Rd × (s,∞) , (2.13)

lim
|x|→∞

[w(x, s)− w0(x, s)] = 0 ∀s > s . (2.14)

The fact that the time interval is infinite in (2.12) is not a serious restriction. In fact, noting that
the kernel of the Laplace transform integral decays rapidly with τ → ∞, only a small portion
of the interval (0,∞) provides an essential contribution to this integral. Hence, only the data of
g(x, t) on this small portion are important or required in numerical reconstructions.

3 A nonlinear integral differential equation

In this section we develop a numerical reconstruction method for the inverse problem we for-
mulated in section 2.2. To do so, we extend the basic idea of the Beilina-Klibanov method
developed for equation (1.2) to the wave equation (1.1) and derive a crucial integral differential
equation. Noting the fact that the line/plane {x2 = x02} is outside the inhomogeneous medium
region Ω, we obtain from (2.7) the equation

µ−1(s2w) = ∆w +∇ lnµ · ∇w in Ω .

If we define a new function v := (lnw)/s2, then v satisfies

∆v + s2|∇v|2 +∇ lnµ · ∇v =
1

µ
. (3.1)
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Clearly this equation may help us find the unknown µ when v is known. However, v is not
known a priori. Therefore we shall work out some technique to solve v first. This leads to a
fundamental integral differential equation which we intend to derive below.

The following asymptotic relation was established for the problem (3.1) under some appro-
priate conditions [1, 3]:∥∥∥∥∂ks v (x, s)− (−1)k

p (x)

sk+1

∥∥∥∥
C2+α(Ω)

= O

(
1

sk+2

)
as s→∞ (3.2)

for k = 0, 1 and some smooth function p in Ω̄. Now we introduce a function q = ∂sv. Using the
decay property of q = ∂sv in (3.2), we can write

v (x, s) = −
s∫
s

q(x, τ)dτ −
∞∫
s

q(x, τ)dτ := −
s∫
s

q(x, τ)dτ + V (x, s) (3.3)

for s >> 1, and V (x, s) satisfies

V (x, s) =
lnw (x, s)

s2 = v (x, s) . (3.4)

The parameter s above is called the truncated pseudo-frequency and will be viewed as the
regularization parameter in our new method. The fact that s can be treated as a regularization
parameter will be explained more in Section 6. The function V (x, s) is called the tail function.
Differentiating both sides of (3.1) with respect to s and using (3.3)-(3.4), we obtain

∆q − 2s2∇q ·
∫ s

s
∇q (x, τ) dτ + 2s2∇q · ∇V + 2s

∣∣∣∣∇ ∫ s

s
q (x, τ) dτ

∣∣∣∣2 (3.5)

−4s∇V ·
∫ s

s
∇q (x, τ) dτ + 2s|∇V |2 +∇ lnµ · ∇q = 0 ,

where q admits the boundary condition

q(x, s) = ψ (x, s) :=
∂

∂s

(
lnφ (x, s)

s2

)
on ∂Ω . (3.6)

Both q and V need to be solved in the equation (3.5). To do so, we follow [1, 3] to use the layer
stripping technique and approximate q and V iteratively in the pseudo-frequency direction. First
we partition the pseudo-frequency range [s, s] by

s = sN < sN−1 < ... < s3 < s2 < s1 < s0 = s

with a uniform stepsize h, then approximate q by a piecewise constant function with respect
to this partition, namely q(x, s) = qn(x) for s ∈ (sn, sn−1] for n = N,N − 1, · · · , 1. By setting
q0 = 0, we can naturally have the following approximation

s∫
s

∇q (x, τ) dτ ≈ (sn−1 − s)∇qn(x) + h

n−1∑
j=0

∇qj (3.7)
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for s ∈ (sn, sn−1). Now in (3.5), we replace q by its piecewise constant approximation and
the integral term by the approximation (3.7), then multiply both sides of the equation by a
Carleman weight function eλ(s−sn−1) for some λ >> 1 (to be selected), and then integrate the
resulting equation with respect to s over (sn, sn−1) to obtain

∆qn +A3,n |∇qn|2 −A1,n∇qn · h
n−1∑
j=0

∇qj +A1,n∇qn · ∇Vn (3.8)

+2h2A2,n

∣∣∣∣∣∣
n−1∑
j=0

∇qj

∣∣∣∣∣∣
2

− 4A2,n∇Vn · h
n−1∑
j=0

∇qj + 2A2,n |∇Vn|2 +∇ lnµ · ∇qn = 0,

where the coefficients A1,n, A2,n and A3,n have the following closed forms:

A1,n =

(∫ sn−1

sn

eλ(s−sn−1)ds

)−1(∫ sn−1

sn

(
2s2 − 4s(sn−1 − s)

)
eλ(s−sn−1)ds

)
,

A2,n =

(∫ sn−1

sn

eλ(s−sn−1)ds

)−1(∫ sn−1

sn

seλ(s−sn−1)ds

)
,

A3,n =

(∫ sn−1

sn

eλ(s−sn−1)ds

)−1(∫ sn−1

sn

(
−2s2(sn−1 − s) + 2s(sn−1 − s)2

)
eλ(s−sn−1)ds

)
.

Using (3.6), we may impose the following Dirichlet condition for the solution qn in (3.8):

qn (x) = ψn (x) :=
1

h

(
lnw(x, sn−1)

s2
n−1

− lnw(x, sn)

s2
n

)
on ∂Ω. (3.9)

As the coefficient A3,n decays as λ→∞ [1, 3], we shall drop the second term in (3.8) from now
on. We remark that the tail function V in (3.5) is replaced by an approximation Vn in (3.8).

If the data is available only on the partial boundary Γ on ∂Ω, we may assume w takes the
value of the fundamental solution w0 on the rest of the boundary, i.e., ∂Ω\Γ. Thus the boundary
condition (3.9) changes to

qn|Γ = ψn (x) and qn|∂Ω\Γ =
1

h

(
lnw0(x, sn−1)

s2
n−1

− lnw0(x, sn)

s2
n

)
. (3.10)

This was done in a similar manner in [3] (section 6.8.5), and it is reasonable if the inclusions in
Ω do not essentially affect the propagation of the wave on the partial boundary ∂Ω\Γ. This is
the case of our interest in this work, where the backscattering data is collected along the partial
boundary Γ. The choice of the above boundary data will be justified numerically in Example 2
of section 6.

4 Approximation of the first tail

Now we discuss how to find the unknown functions qn and the approximate tail functions Vn in
(3.8). A natural idea is to update qn and Vn alternatively. We shall update function qn in an
inner iteration inside the domain Ω from equation (3.8), while update function Vn in an outer
iteration from the system (2.7)-(2.8) in the entire space Rd for each new iterate µn (x) of the
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unknown coefficient µ (x). Using equation (3.1), the coefficient µnew can be improved from µold

whenever qn, Vn and vn are available:

1

µnew (x)
= ∆vn(x, sn) + s2

n |∇vn(x, sn)|2 +∇(lnµold(x)) · ∇vn(x, sn). (4.1)

In order to update qn and Vn in (3.8), we need to find an appropriate initial approximation
V1,1(x, s) of the first tail V1(x, s). To do this, we set s = s in equation (3.5) to obtain

∆q + 2s2∇q · ∇V + 2s |∇V |2 +∇ lnµ · ∇q = 0 in Ω. (4.2)

From (3.4), we see that V (x, s) = lnw(x,s)
s2

= v (x, s). Clearly, we can also view the tail V (x, s)
as a function of x and s, and sometimes we may simply write V (x, s) when it is convenient. It
then follows from the asymptotic behaviors (3.2) that the tail function V (x, s) satisfies

∂ksV (x, s) = (−1)k
p(x)

sk+1
+O

(
1

sk+2

)
as s→∞ (4.3)

for k = 0, 1. So it is natural for us to propose the following initial approximation for the first
tail function V1:

V1,1(x, s) :=
p(x)

s
∀s ≥ s (4.4)

where p is a function of x to be determined. Under this approximate model, we can also suggest
an initial approximation of function q. Noting that the original functions q satisfies q = ∂sV ,
we may naturally define the approximation of function q by

q̃(x, s) := ∂sV1,1 (x, s) = ∂s

(
p(x)

s

)
= −p(x)

s2
∀s ≥ s. (4.5)

By substituting (4.4) and (4.5) into (4.2) we obtain

0 = ∆(−p(x)

s2 ) + 2s2∇(−p(x)

s2 ) · ∇(
p(x)

s
) + 2s

∣∣∣∣∇(
p(x)

s
)

∣∣∣∣2 +∇ lnµ · ∇(−p(x)

s2 ) ,

which gives
∆p = −∇ lnµ · ∇p . (4.6)

Noting the relations (3.6) and (4.5) we may impose the following boundary condition for p:

p = −s2ψ (x, s) on ∂Ω . (4.7)

Now it follows from (4.4) that the first initial tail V1,1(x, s) can be obtained by solving

∆V1,1(x) +∇ lnµ · ∇V1,1(x) = 0. (4.8)

If we assume only partial boundary data on Γ ⊂ ∂Ω, we may take the following boundary
condition for V1,1(x):

V1,1(x) =
lnw

(
x, s2

)
s2 on Γ and V1,1(x) =

lnw0 (x, s)

s2 on ∂Ω\Γ, (4.9)

where w0 is the fundamental solution. From the above we see that we can obtain an initial
approximate tail V1,1 from the system (4.8)-(4.9) for some initial guess of µ.
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5 A numerical reconstruction algorithm

In this section we propose a new numerical reconstruction algorithm for the reconstruction of
the coefficient µ (x) in (1.1) based on the derivations in sections 3.2-3.3, more accurately on
the equations (3.1), (3.8)-(3.9) and (4.8)-(4.9). We see from (3.1) that function µ (x) can be
reconstructed inside the sampling domain Ω. But we need to solve the problem (2.7)-(2.8) in the
entire space Rd to update the tail function. For the purpose we will extend each approximation
of µ from Ω onto the entire space Rd. As the background medium is homogeneous with a
constant coefficient µ0, we will do the extensions naturally by the constant function µ0.

Now we are ready to formulate our reconstruction algorithm. The reconstruction is proceeded
in a larger computational domain G such that Ω ⊂ G.

Reconstruction Algorithm

Step 0. Choose an initial guess µ0, two stopping tolerances ε1, ε2, stepsize h, and set µ1,0 := µ0;
Step 1. Solve the system (4.8)-(4.9) for the initial tail function V1,1. Set q0 := 0, n := 1, k := 1.
Step 2. Solve the system (3.8) and (3.10) for qn,k with µ := µn,k−1 and Vn := Vn,k;

Update vn,k (based on (3.3) and its approximation similar to (3.7)):

vn,k = −hqn,k − h
n−1∑
j=0

qj + Vn,k.

Compute µn,k from the equation (4.1), and extend it from Ω onto G.
Step 3. Solve the problem (2.7) for wn,k+1 with coefficient µ := µn,k;

Update the tail function Vn,k+1 (x) = (lnwn,k+1(x, s))/s2 .
If ‖Vn,k+1 − Vn,k‖ > ε1, set k := k + 1 and GOTO Step 2;
Otherwise set Vn+1,1 := Vn,k+1, µn := µn,k and µn+1,0 := µn, qn := qn,k;
If ‖µn − µn−1‖ ≤ ε2, STOP; otherwise set n := n+ 1, k := 1, GOTO Step 2.

Remark 1 In our algorithm, (4.1) is used for the reconstruction of images µn,k. This step
may cause a possible loss of regularity of the image at each iteration. In order to minimize any
possible impact of successive loss of regularity, we smooth the image µn,k by convolving it with a
standard mollifier K vanishing outside the unit sphere B1(0) (with a given ε > 0)

µ̃n,k (x) :=
1

εd

∫
Rd

K

(
x− y
ε

)
µn,k(y)dy . (5.1)

6 Numerical experiments

In this section we present a few numerical examples to test the performance of the newly proposed
Reconstruction Algorithm in section 5. We choose the computational domain and the sampling
domain to be G = [0, 1]2 and Ω = [0.25, 0.75]2 respectively, and the exact coefficient µ to be
1 in the homogeneous background of G, and inhomogeneous in the sampling domain Ω. We
then place a few inhomogeneous inclusions inside the sampling domain Ω and apply the new
algorithm to recover the inhomogeneities in Ω.

Before we start the inversion process, we need to first solve the forward problem (1.1) on
the entire space Rd to generate the observation data. To do so, we should truncate the infinite
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domain Rd, approximated by a finite computational domain G, and introduce some boundary
conditions on the artificial boundaries of G. We separate the boundary ∂G in two parts, ∂1G =
({x2 = 1} ∪ {x2 = 0}) ∩ G and ∂2G = ({x1 = 1} ∪ {x1 = 0}) ∩ G, and apply the first-order
absorbing boundary conditions on ∂1G [11]. We choose the incident plane wave that propagates
in x2-direction, and use the homogenous Neumann boundary condition on ∂2G. This leads us
to solve the following system for the expected measurement data:

∂2u

∂t2
= ∇ · (µ∇u) + δ(x2 − x02)r (t) in G× (0, T ),

u(x, 0) =
∂u

∂t
(x, 0) = 0 in G, (6.1)

∂u

∂ν
− ∂u

∂t
= 0 on ∂1G,

∂u

∂ν
= 0 on ∂2G

where we set T = 2, x02 ∈ (0.75, 1), and r(t) to be (with ω = 1/5)

r(t) =

{
sin(2π

ω t) if t ∈ (0, ω) ,

0 if t > ω.

The forward problem (6.1) is solved in the computational domain G with the given coefficient µ
by using the explicit second order central difference scheme in time but the piecewise linear finite
element method in space. The finite element method is used here for the space discretization
of the system (6.1) as it is more convenient to handle possible jumps of the given coefficient
µ in the system [8]. System (6.1) is solved in G with a very fine mesh of ∆x = 1/256 and a
very small time step ∆t = 5× 10−4. Then the values of the solution to the forward problem on
Γ = {(x1, x2); x2 = 0.25, 0.25 ≤ x1 ≤ 0.75} are taken as the measurement data. 16 measurement
points are taken along the boundary Γ for the collection of measurement data. To test the
robustness of the reconstruction algorithm against noise, we introduce some multiplicative noise
to the data along Γ in the time domain:

uδ(x, t) = u(x, t) + ε ζ(x, t)u(x, t) ∀x ∈ Γ, t ∈ (0, T ) (6.2)

where ε is the noise level, and ζ(t) is a random variable uniformly distributed in [−1, 1]. We
shall take ε = 5% in our numerical tests unless specified otherwise.

The pseudo-frequency boundary data is obtained by taking the Laplace transform of the noisy
data uδ(x, t) as in (2.12). The Laplace transform is performed numerically using rectangular
quadrature rule with a small time stepsize ∆t = 5 × 10−4. No filter is introduced during
the collection of boundary data or the process of integration for the Laplace transform. The
pseudo-frequency stepsize is chosen to be h = 0.05. From our numerical tests we have observed
an optimal pseudo-frequency interval [4, 6], namely s = 4 and s = 6.

We then take the pseudo-frequency boundary data to solve the inverse problem with our
newly proposed inversion algorithm. Subproblems (2.7), (3.8)-(3.10), and (4.8)-(4.9) involved
in our algorithm, which are all time independent, are solved using the second order central
difference scheme with a mesh size ∆x = 1/32, since the coefficients µn during the iteration are
smooth due to the smoothing step (5.1). As it is well known that the considered inverse problem
is highly nonlinear and ill-posed, it cannot be solved using a mesh which is too fine due to the
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presence of noise in the observed data. From our numerical experiments, we observe that mesh
size finer than 1/32 makes the inverse problem more unstable and ill-conditioned, leading to the
approximate solutions with less accuracy, while the choice of the mesh size for 1/32 seems to
give reasonable reconstructions.

Next we present the reconstruction results for three test problems. In all the tests the
inclusions are small rectangles with side length 0.1 and width 0.125 sitting inside the sampling
region Ω.

Example 1. We have a single inclusion sitting in the center of the domain Ω, with its coeffi-
cient being µ(x) = 0.5, see Figure 1 (left). Figure 1 (right) shows the numerically reconstructed
image, with a relative L2-norm error of 7.35%. As we can see, both the location of the inclusion
and the magnitude of µ are recovered quite well, in view of the strong nonlinearity and severe
ill-posedness of the inverse problem.
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Figure 1: Exact image (left) and reconstructed image (right) for Example 1.

Example 2. We have the same inclusion as in Example 1, but it is placed very close to the
right boundary of the sampling domain; see Figure 2 (left). The reconstruction image is shown
in Figure 2 (right), with a relative L2-norm error of 4.30%. The same as in Example 1, both
the location of the inclusion and the magnitude of µ are recovered quite well.
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Figure 2: Exact image (left) and reconstructed image (right) for Example 2.
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Next, we would like to use this example to illustrate and investigate the effects of the choice
of various parameters involved on numerical reconstructions.

Effect of parameter s̄. s̄ is referred to as a regularization parameter in section 3. Theoret-
ically speaking, the asymptotic formula (3.2) tells that, as the pseudo-frequency s grows larger

and larger, the term (−1)k p(x)
sk+1 shall better approximate the term ∂ks v for k = 0, 1. Hence the

approximate model (4.8)-(4.9), which is derived based on this approximation and gives the first
initial guess for V1 required in our inversion algorithm, should be more and more accurate as s
goes larger. In general, we should expect better reconstruction with higher pseudo-frequency.
However, with a rapid decreasing of the kernel e−st in the Laplace transform, a quadrature
rule with very high order (thus very expensive and often more unstable numerically, especially
against the noise) is needed to do the Laplace transform numerically when the cut-off vale s̄
becomes very large. Therefore we should take s̄ appropriately and not take it to be too large.
In this sense, s̄ can be viewed as a regularization parameter in our inversion algorithm.

In order to sort out the best choice of s̄, numerical experiments have been conducted to
observe the effects of different choices of s̄ on the numerical reconstructions, with s̄ varying among
s̄ = 10, 9, 8, ..., 3, 2, 1; see Table 1 and Figure 3. We can see that the numerical construction
becomes less accurate when s̄ increases over 6. It is the best when s̄ is from 4 to 6. When s̄ is
down to 3, the approximation (4.8)-(4.9) is inaccurate for V1, leading to a poor reconstruction
by our proposed method. For s̄ = 1, 2, the iterations do not even converge due to the fact that
the approximation (4.8)-(4.9) is far from being accurate.

s̄ relative L2-norm error minimum value of µ in the recovered inclusion
10 6.91% 0.7308
9 7.28% 0.7418
8 7.17% 0.7266
7 6.93% 0.6988
6 6.24% 0.6399
5 4.30% 0.4069
4 5.68% 0.5388
3 10.30% 0.3428

1, 2 diverge diverge

Table 1: Relative L2-norm error and recovered µ for Example 2, with s̄ = 10, 9, ..., 1.
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Figure 3: Reconstructed images for Example 2, with s̄ = 10, 9, ..., 3, from (a) to (h) respectively.

Effect of the choice of ad-hoc boundary data. The ad-hoc boundary data (3.10) and
(4.9) are frequently used in the inverse wave problem [1, 2, 3]. We have performed numerical
simulations to compare the reconstructions by our proposed method with two different sets of
observed boundary data:

(A1) full boundary data, namely the observation data on the entire boundary ∂Ω;
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(A2) backscattering data on Γ combined with the ad-hoc boundary data (3.10), (4.9) on ∂Ω\Γ.

The reconstructions are shown in Table 2 and Figure 4, from which we can see that the
reconstructions with two set of observed boundary data do not present much difference. This
indicates that the ad-hoc boundary data (3.10), (4.9) do not affect the numerical reconstruction
results much, while the backscattering data plays a major role.

boundary data relative L2-norm error minimum value of µ in the recovered inclusion
(A1) 4.38% 0.4090
(A2) 4.30% 0.4069

Table 2: Relative L2-norm error and recovered µ for Example 2, with boundary data (A1) and
(A2).
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Figure 4: Reconstructed images for Example 2 with boundary data (A1) (left) and (A2) (right).

Effect of the number of measurement points. To see the effect of the number of
measurement points on the numerical reconstruction, we take the number of the measurement
points on Γ to be 2n + 1, with n = 2, 3, .., 5. We observe from Table 3 and Figure 5 that the
reconstructed images are of less accuracy if fewer measurement points are used: the size, position
and contrast of the recovered inclusion are all less accurate. As the number of points grows, the
resolutions of the reconstructions increase. Moreover, the size and the location of the inclusion
as well as the contrast becomes more accurate as more number of points are taken.

number of measurement points relative L2-norm error minimum value of µ in the recovered inclusion
5 8.09% 0.7817
9 7.49% 0.6988
17 4.30% 0.4069
33 4.61% 0.5003

Table 3: Relative L2-norm error and recovered µ for Example 2, with 2n+1 measurement points
for n = 2, 3, .., 5.
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Figure 5: Reconstructed images for Example 2 with 2n + 1 measurement points, n = 2, 3, .., 5,
from (a) to (d) respectively.

Effect of the choice of boundary conditions for the forward problem. For the
inversion process, we need to first solve the forward problem (1.1) on the entire space Rd to gen-
erate the observation data. To do so, we should truncate the infinite domain Rd, approximated
by a finite computational domain G, and introduce some boundary conditions on the artificial
boundaries of G. Most numerical tests are based on the boundary conditions specified in (6.1).
Next, we shall test and compare the effects of the choice of the following two different sets of
boundary conditions for the equation (1.1):

(B1) absorbing boundary conditions on the top and bottom boundaries and Neumann con-
ditions on the left and right boundaries of the computational domain G, as specified in
(6.1);

(B2) absorbing boundary condition on the top boundary and Neumann conditions on the
remaining boundaries of the computational domain G.

The reconstructions are shown in Table 4 and Figure 6, from which we can see there are
no essential differences between the reconstructions from these two different sets of boundary
conditions.
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boundary conditions relative L2-norm error minimum value of µ in the recovered inclusion

(B1) 4.30% 0.4069

(B2) 4.35% 0.4693

Table 4: Relative L2-norm error and recovered µ for Example 2, with boundary conditions (B1)
and (B2).
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Figure 6: Reconstructed images for Example 2, with two different boundary conditions (B1)
(left) and (B2) (right).

Effect of the value of coefficient µ in the inclusion. In this test we shall see the effect
of the value of coefficient µ in the inclusion on the quality of numerical reconstructions. We
take the same configuration of the inclusion as in Example 2, but with different coefficient µ
inside the inclusion, and the numerical results are shown in Table 5 and Figure 7. These results
indicate that the quality of the reconstruction for both the location and the values of µ in the
inclusions does not deteriorate much if the values of µ in the inclusion differ from the one in the
background only by a few times in magnitude.

exact µ in the inclusion relative L2-norm error minimum value of µ in the recovered inclusion

3/4 3.63% 0.7826

1/2 4.30% 0.4069

1/3 8.04% 0.3674

1/4 10.06% 0.2883

Table 5: Relative L2-norm error and recovered µ, with exact µ = 3
4 ,

1
2 ,

1
3 ,

1
4 inside the inclusion.
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Figure 7: Exact images with µ = 3
4 ,

1
2 ,

1
3 ,

1
4 inside the inclusion (left) and the respectively

reconstructed images (right).

Effect of the medium noise on numerical reconstructions. Finally, we come to test
the effect of the medium noise on numerical reconstructions. We introduce some multiplicative
medium noise to the coefficient µ in Example 2 as follows:

µδ(x) = µ(x) (1 + ε ζ(x)) ∀x ∈ G , (6.3)

where ε = 5% is the noise level, and ζ(x) is a random variable uniformly distributed in [−1, 1];
see Figure 8 (left). The forward data is then calculated by solving (6.1) with coefficient µδ.
Then multiplicative noise is added to the data u(x, t) along Γ in the time domain as in (6.2) and
is taken to solve the inverse problem with our newly proposed algorithm. The reconstruction
of the medium coefficient is given in Figure 8 (right) and Table 6. We can see that, although
the reconstruction of the medium is contaminated by 5% medium noise and is worse than the
original reconstruction, the overall profile still stands out quite clearly, and both the location
and the contrast of the inclusion is still reconstructed with certain accuracy.

relative L2-norm error minimum value of µ in the recovered inclusion

Exact medium µ 4.30% 0.4069

Noisy medium µδ 8.82% 0.3806

Table 6: Relative L2-norm error and recovered coefficient for Example 2, with exact media µ
and noisy µδ respectively.
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Figure 8: Image of noisy medium µδ (left) and reconstructed image (right) for Example 2.

Example 3. This example considers two inclusions, which are placed separately on a row in
the sampling domain Ω, with their coefficient values being µ = 0.33 and µ = 0.5 respectively. see
Figure 9 (left). The reconstructed inclusions are shown in Figure 9 (right), with a relative L2-
norm error of 11.04%. We can see that both the locations and abnormalities of two inclusions are
recovered with an acceptable accuracy, considering the high nonlinearity and severe ill-posedness
of the inverse problem and a 5% multiplicative noise in the data.
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Figure 9: Exact image (left) and reconstructed image (right) for Example 3.

Convergence rate and iterative counts. As our last test, we shall see a bit more on
the convergence rate and iteration counts of our proposed inversion algorithm in the aforemen-
tioned 3 examples. Table 7 shows the iteration counts of our proposed algorithm for the 3
aforementioned examples. From these data, we can see that the average number of outer loops
to achieve convergence is about 10 to 12. Convergence speed is also investigated by considering
the relative residual of the n-th iterate µn when compared with the measured data (with 5%
noise); see Figure 10. Although the considered inverse problem is highly nonlinear and severely
ill-posed, we can still see the sublinear convergence in all the examples.
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example outer loops average inner loops per outer loop

1 12 4.5

2 10 7.9

3 10 9

Table 7: Iteration counts of the new inversion algorithm for the 3 examples
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Figure 10: Relative residual with respect to number of outer loops for Examples 1 (left), 2
(middle) and 3 (right).
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