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Abstract

Fluid motion driven by planetary libration may play a key role in maintaining the mag-
netism of synchronous planets and moons that are thermally or chemically non-convective.
We present a fully discrete finite element method on a triaxial ellipsoidal domain for simulat-
ing a three-dimensional nonlinear flow in a latitudinally librating triaxial ellipsoidal cavity, for
which the usual pseudo-spectral method with the poloidal-toroidal decomposition is difficult
because of non-spherical geometry. Stability of the time-dependent finite element solutions
with two different temporal schemes are studied, and their error estimates of optimal order
are established. The corresponding numerical simulation is implemented for the second-order
implicit scheme, offering an insight into the practical aspect of the proposed finite element
method.

Keywords Finite Element Method, Nonlinear Librating Flow, Triaxial Ellipsoids, Optimal
Error estimates

1 Introduction

The shape of many planets and moons is, to a first approximation, spherical. It is well known
that, however, because of the effect of rapid rotation as well as the interaction among the
Sun, planets and moons, many astrophysical bodies are non-spherical and in the shape of a
spheroid or a triaxial ellipsoid [18]. As a result of non-spherical geometry, planets and moons
are usually rotating non-uniformly and undergo forced libration [20]. It is recently revealed,
through an asymptotic analysis [27], that fluid motion in a synchronously rotating spheroidal
planet can resonate with planetary latitudinal libration, leading to a large amplitude O(E−1/2)
of the librationally driven flow, where the Ekman number E is extremely small for many rapidly
rotating planets. This suggests an alternative driving mechanism for dynamo action within the
planets and moons that are thermally or chemically non-convective. A libration-driven dynamo
is feasible because the two conditions for resonance – nearly synchronous rotation and small but
non-zero eccentricity of the shape – can be approximately met by some synchronous planets and
moons.

In comparison with spherical geometry, direct numerical simulation in triaxial ellipsoidal
geometry is both mathematically and computationally less tractable. Although triaxial ellip-
soidal geometry can be, in principle, accommodated by a coordinate transformation that maps
an ellipsoidal domain into the spherical domain [19] or by using complicated non-spherical coor-
dinates [23], there are computational disadvantages in the pseudo-spectral approximation with
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the poloidal-toroidal decomposition and, particularly, the mathematical equations resulting from
the coordinate transformation are highly complicated. Moreover, the harmonic expansion leads
to the global integration that requires an intensive global communication, making it less efficient
on modern massively parallel computers. It is thus desirable to seek an alternative numerical
method that is non-spectral and can be readily implemented on modern parallel computers for
solving the problem of fluid mechanics in librating triaxial ellipsoids.

The present study concerns with the theoretical aspects of finite element methods for sim-
ulating the three-dimensional nonlinear flow of a homogeneous fluid of viscosity ν driven by
latitudinal libration and confined within a triaxial ellipsoidal cavity. The triaxial ellipsoidal
cavity of arbitrary eccentricity E is described by

x2

a2
+

y2

a2(1 + E2)
+

z2

a2(1− E2)
= 1, (1)

where 0 < E < 1, which also defines Cartesian coordinates (x, y, z) used in the numerical
analysis. The ellipsoidal container rotates rapidly with an angular velocity Ω0 fixed in an inertial
frame and, at the same time, undergoes weak latitudinal libration with the libration vector Ωlat

which results in a periodic variation of the z-axis of the ellipsoid towards and away from its
mean direction. Through both viscous and topographic coupling between the container and
the interior fluid, latitudinal libration can drive fluid motion against viscous dissipation. There
are three key parameters that characterize the problem of librationally driven flow in triaxial
ellipsoidal cavities: the Ekman number E = ν/(a2Ω0), where Ω0 = |Ω0|, provides the measure
of relative importance between the typical viscous force and the Coriolis force, the eccentricity
E measures the degree of topographic coupling between the container and its interior fluid, and
the Poincaré number Po quantifies the strength of Poincaré force resulting from the libration.

For simulating fluid motion driven by latitudinal libration in triaxial ellipsoids, we shall
employ an EBE (Element-By-Element) finite element method that has been effectively used for
the numerical solution of the dynamo problem in spherical geometry [1]. While the practical
aspects of the finite element method, such as how to perform temporal discretization and spatial
tetrahedral discretization, have been discussed [2] (see also [3] for the finite element solution of
tidally driven flow in a rotating triaxial ellipsoid and [22] for the finite element dynamo), its key
theoretical properties, particularly the numerical stability of the finite element scheme and the
numerical error of the finite element solution, have not been studied for librationally driven flows
in triaxial ellipsoidal geometry. Such theoretical studies will be essential for the geophysical and
astrophysical application of the finite element method. The primary purpose of this paper is to
understand the theoretical aspects of the finite element method – which is based on the three-
dimensional triangulation of a triaxial ellipsoidal domain together with the velocity and pressure
being represented by continuous piecewise quadratic and linear finite elements – for simulating a
nonlinear flow in latitudinally librating triaxial ellipsoids. By providing a mathematical analysis
on the numerical stabilities and optimal error estimates of the finite element method, we build a
mathematically sound framework that is required for simulating a nonlinear flow in latitudinally
librating triaxial ellipsoids.

In what follows we shall begin by presenting the model and governing equations of the
numerical problem in Section 2. The theoretical problem of the finite element method is discussed
in Section 3 and Section 4. Numerical implementation of the second-order implicit scheme and
its results are discussed in Section 5 and the paper closes in Section 6 with a brief summary and
some remarks.
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2 Model and governing equations

Consider a homogeneous fluid of viscosity ν confined within a triaxial ellipsoidal cavity defined
by (1). Suppose that the ellipsoidal container rotates rapidly with an angular velocity Ω0 which
is fixed in the inertial frame and, at the same time, undergoes latitudinal libration with the
libration vector Ωlat which results in a periodic variation of the z-axis slightly towards and away
from the rotation axis Ω0. Motivated by its application to synchronous planets and moons, we
assume that the overall angular velocity, Ω = Ω0 + Ωlat, of the triaxial ellipsoidal container can
be expressed as

Ω = Ω0 + x̂Ω0Po sin (ω̂Ω0t) , (2)

where x̂ is a unit vector that is fixed in a frame of reference attached to the container, the
mantle frame of reference, and perpendicular to the angular velocity Ω0, and Po/ω̂ represents
the maximum angular displacement of latitudinal libration with 0 < ω̂ < 2. This study is
mainly concerned with the key mathematical properties of finite element method for simulating
librationally driven flow in a triaxial ellipsoidal cavity.

In the mantle frame of reference, the dynamics of latitudinally librational driven flow is
governed by the dimensional equations:

∂u

∂t
+ u · ∇u + 2Ω0 [ẑ + x̂Po sin (Ω0ω̂t)− ŷ (Po/ω̂) cos (Ω0ω̂t)]× u +

1

ρ
∇p

= ν∇2u + PoΩ2
0 [ω̂r× x̂ cos (Ω0ω̂t) + r× (ẑ× x̂) sin (Ω0ω̂t)] , (3)

∇ · u = 0, (4)

where r is the position vector, (x̂, ŷ, ẑ) denotes the corresponding unit vectors for the Cartesian
coordinates (x, y, z), p is a reduced pressure and u is the three-dimensional velocity field. The
final two terms on the right-hand side of (3) are known as the Poincaré force which results from
latitudinal libration and drives fluid motion. Employing the semi-axis a as the length scale, Ω−1

0

as the unit of time and ρa2Ω2
0 as the unit of pressure, the non-dimensional envelope of a triaxial

ellipsoidal cavity is then described by

x2

1
+

y2

1 + E2
+

z2

1− E2
= 1, (5)

while the non-dimensional governing equations are

∂u

∂t
+ u · ∇u + 2ẑ× u +∇p

= E∇2u + 2Po [(1/ω̂) ŷ × u cos (ω̂t)− x̂× u sin (ω̂t)]

+Po [ω̂r× x̂ cos (ω̂t) + r× (ẑ× x̂) sin (ω̂t)] , (6)

∇ · u = 0. (7)

Note that the centrifugal force is combined with all other conservative forces to form the reduced
pressure p. Librationally driven flow on the bounding surface, S, of the triaxial ellipsoidal cavity
(5) is at rest, requiring that

n̂ · u = 0 ; n̂× u = 0 (8)

where n̂ is the normal to S. The problem defined by (6) and (7) subject to the boundary
conditions (8) for triaxial ellipsoidal geometry (5) will be solved subject to the initial condition

u(r, 0) = u0(r)
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by a three-dimensional fully discrete finite element method.

3 Finite element method with first-order temporal scheme

3.1 Variational formulation and and finite element approximation

For sake of exposition, we rewrite the governing equations (6)-(7) in the form

∂u

∂t
+ u · ∇u + Z(ω̂, t)× u +∇p = E∇2u + f(ω̂, x, y, z, t) in Ω , (9)

∇ · u = 0 in Ω, (10)

where Ω is the triaxial ellipsoid formed by the interior of the triaxial ellipsoidal cavity (5), Z(ω̂, t)
and f(ω̂, x, y, z, t) are given respectively by

Z(ω̂, t) = 2
[
ẑ + Pox̂ sin(ω̂ t)− Poω̂−1ŷ cos(ω̂ t)

]
, (11)

f(ω̂, x, y, z, t) = P0

[
ω̂ r× x̂ cos(ω̂ t) + r× (ẑ× x̂) sin(ω̂ t)

]
. (12)

Then we introduce the following trilinear functional

d(w,u,v) =
1

2
{(w · ∇u,v)− (w · ∇v,u)} ∀w,u,v ∈ H1

0(Ω), (13)

where (·, ·) denotes the inner product in L2(Ω)3. Let L2
0(Ω) be the subspace of L2(Ω) with all

functions with a vanishing mean in Ω. Using the trilinear functional (13), we can easily derive
the variational formulation to the coupled system (9) and (10) governing the flow u and the
pressure p in the ellipsoid Ω: Find u ∈ L∞(0, T ;L2(Ω)3) ∩ L2(0, T ; H1

0(Ω)), p ∈ L2(0, T ;L2
0(Ω))

such that

(
∂u

∂t
,v) + E(∇u,∇v)− (p,∇ · v) + d(u,u,v) + (Z× u,v)

= (f ,v) ∀v ∈ L2(0, T ; H1
0(Ω)), (14)

−(∇ · u, q) = 0 ∀ q ∈ L2(0, T ;L2
0(Ω)). (15)

Now we are going to propose a fully discrete finite element approximation to the variational
system (14) and (15). We start with the partition of the time interval [0, T] and the triangulation
of the physical ellipsoidal domain Ω. We divide the time interval [0, T] into M equally spaced
subintervals using the following nodal points

0 = t0 < t1 < t2 < . . . < tM = T,

where tn = n τ for n = 0, 1, . . . ,M and τ = T/M . For any given discrete time sequence {un}Mn=0

with each un lying in L2(Ω) or L2(Ω)3, we define the first order backward finite differences and
the averages as follows:

∂τu
n =

un − un−1

τ
, ūn =

1

τ

∫ tn

tn−1

u(·, s) ds.

If u(r, t) is a function which is continuous with respect to t, we shall often write un(·) = u(·, tn)
for n = 0, 1, . . . ,M .
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Next we introduce the triangulation of the ellipsoidal domain Ω. For sake of technical treat-
ments, we shall assume that the domain Ω is a closed convex polyhedron; the actual ellipsoidal
curved boundary case can be treated using some well-developed technicalities for curved bound-
aries (see., e.g., [4]) in combination with the finite element error estimates established here. Let
Th be a quasi-uniform triangulation of the polyhedral domain Ω, Vh ⊂ H1

0(Ω) and Ph ⊂ L2
0(Ω)

be respectively the continuous piecewise quadratic and linear finite element spaces associated
with Th. Using the first order semi-implicit scheme, we can now formulate the finite element
approximation of the system (14) and (15):

Find {unh} ⊂ Vh and {pnh} ⊂ Ph for 0 ≤ n ≤M such that u0
h = Ihu0 and

(∂τu
n
h,vh) + E(∇unh,∇vh)− (pnh,∇ · vh) + d(un−1

h ,unh,vh) (16)

+(Zn × unh,vh) = (fn,vh) ∀vh ∈ Vh

−(∇ · unh, qh) = 0 ∀ qh ∈ Ph. (17)

We end this section with a brief review of some existing results on finite element methods
for the standard Navier-Stokes equations and their convergence. For some basic finite element
approximations, we refer to the classic monographs [8, 26]. For the fully discrete finite element
approximation of the two-dimensional Navier-Stokes equations, we refer to [10] and [13] for
the first order semi-implicit and implicit/explicit temporal schemes and for the stability and
convergence under the restrictions τ ≤ C| lnh|−1 and τ ≤ C with the following regularity

(A1) u ∈ L∞(0, T ; H2(Ω)) and p ∈ L∞(0, T ;H1(Ω)).

But in this work we shall demonstrate the stability and optimal convergence of the finite element
solution (unh, p

n
h) to the first order semi-implicit scheme (16) and (17) in three dimensions,

imposing no restrictions on the time step size τ under the following regularities for the exact
solution (u, p):

(A2) u ∈ L∞(0, T ; H2(Ω)) ∩ L2(0, T ; H3(Ω)) and ut ∈ L2(0, T ; H1
0(Ω)), p ∈ L2(0, T ;H2(Ω)).

Remark. If domain Ω is sufficiently smooth, regularities in (A2) can be derived from the
Navier-Stokes equations and the regularities in (A1).

3.2 Auxiliary mathematical and numerical analysis tools

In this section we shall introduce a few important technical relations, inequalities and finite
element interpolation error estimates that are needed for our subsequent convergence analysis
for both the first-order temporal scheme in this section and the second-order temporal scheme in
next section. Throughout the paper, we shall frequently use C to stand for a generic constant,
that is independent of the mesh size h, the time stepsize τ and the relevant functions involved.

By direct computing, one can verify for all w,u,v ∈ H1
0(Ω) that

(Z(t)× u,u) = 0, d(w,u,u) = 0 , (18)

d(w,u,v) = (w · ∇u,v) +
1

2
((∇ ·w)u,v) , (19)

and the following inequalities

|d(w,u,v)| ≤ c ‖∇w‖0 ‖∇u‖0 ‖∇v‖0 ,
|d(w,u,v)| ≤ c

√
‖w‖0 ‖∇w‖0 ‖∇u‖0 ‖∇v‖0 . (20)
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While for all w,v ∈ H1
0(Ω) and u ∈ H2(Ω) ∩H1

0(Ω) we have

|d(w,u,v)| ≤ c ‖w‖0(‖u‖L∞ + ‖∇u‖L3) ‖∇v‖0 ,
|d(u,v,w)| ≤ c (‖u‖L∞ + ‖∇u‖L3)‖∇v‖0‖w‖0 . (21)

Here and hereafter, c is used to denote a general positive constant depending only on Ω.
The following two simple relations can be easily verified for any two vector-valued functions

u,v ∈ L2(Ω)3 and any two vectors a,b ∈ Rn:

(u− v,u) =
1

2
‖u‖20 −

1

2
‖v‖20 +

1

2
‖u− v‖20 ; |a× b| ≤

√
2|a| |b| .

Let Ih: L2(Ω)3 → V0h be the standard L2-projection. We shall need its following important
approximation properties [14]:

‖v − Ihv‖0,Ω + h‖∇(v − Ihv)‖0,Ω ≤ chi‖v‖i,Ω ∀v ∈ Hi(Ω) ∩V0 (22)

for i = 1, 2, 3, with V0 = {v ∈ H1
0(Ω);∇ · v = 0}.

Purely for some subsequent analysis, we shall often make use of the approximate divergence-
free finite element space V0h:

V0h = {vh ∈ Vh; (∇ · vh, qh) = 0 ∀qh ∈ Ph}.

We know from [14] that the pair (Vh, Ph) and V0h satisfy the following approximation properties:
Property (A). For each v ∈ Hi(Ω) ∩H1

0(Ω) with ∇ · v = 0 and q ∈ H i−1(Ω) ∩ L2
0(Ω) with

i = 1, 2, 3, there exist approximations πhv ∈ V0h and ρhq ∈ Ph such that

‖∇(v − πhv)‖0 ≤ c hi−1‖v‖i, ‖q − ρhq‖0 ≤ c hi−1‖q‖i−1.

As in most finite element analysis, the inverse inequality of the form [5]

‖∇vh‖0 ≤ c h−1‖vh‖0 ∀vh ∈ Vh (23)

and the following inf-sup condition [9]: for each qh ∈ Ph, there exists vh ∈ Vh,vh 6= 0 such that

d(vh, qh) ≥ β‖qh‖0‖∇vh‖0 (24)

will be very helpful. Here β is a positive constant depending only on Ω.
We end this section with the introduction of a discrete Gronwall inequality (see, e.g., [24]):

Let C0, an, bn, dn be nonnegative numbers with integer n ≥ 0 such that

am + τ
m∑
n=1

bn ≤ τ
m−1∑
n=0

dnan + C0, ∀m ≥ 1 , (25)

then the following estimate holds

am + τ

m∑
n=1

bn ≤ C0 exp(τ

m−1∑
n=0

dn), ∀m ≥ 1. (26)
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We emphasize that the Gronwall inequality (25) and (26) is an improved variant of the following
one: Let C0, an, bn, dn be nonnegative numbers with integer n ≥ 0 such that

am + τ

m∑
n=1

bn ≤ τ
m∑
n=0

dnan + C0, ∀m ≥ 1. (27)

If τ satisfies τdn < 1 for all 0 ≤ n ≤ m, then

am + τ
m∑
n=1

bn ≤ C0 exp(τ
m∑
n=0

(1− τdn)−1dn), ∀m ≥ 1. (28)

The right-hand side of (27) involves the term am so the resulting estimate (28) requires a time
restriction on τ , while (25) does not. Most existing results, see, e.g., [8] [9] [10] [13] [11] [12] [16]
[26], could only reduce their final error estimates to the case with the Gronwall inequality (27)
and (28). Instead we shall be able to manipulate the entire error estimate process in a way that
our error estimates can finally end with the case for the improved Gronwall inequality (25) and
(26). This is one of the key ingredients in our analysis that help us get rid of the time restriction
for all our error estimates.

3.3 Error estimates of finite element solutions

In this section we establish the stability and error estimates of the discrete solution {unh, pnh} to
the finite element system (16) and (17).

First for the stability, we take vh = τunh in (16) and use (17) to derive

1

2
‖unh‖20 −

1

2
‖un−1

h ‖20 +
1

2
τ2‖∂τunh‖20 + E τ ‖∇unh‖20 ≤ τ‖fn‖0 ‖unh‖0 ,

then summing over n = 1, 2, · · · , k ≤ M and using the Poincaré and Young’s inequalities, we
obtain the stability estimate:

max
1≤n≤M

‖unh‖20 + τ
M∑
n=1

(
τ‖∂τunh‖20 + E‖∇unh‖20

)
≤ c(‖u0

h‖20 + E−1τ
M∑
n=1

‖fn‖20). (29)

Next, we demonstrate that the finite element solution {unh, pnh} to the system (16) and (17)
has the optimal error estimates.

Theorem 3.1 Let (u, p) be the solution to the variational system (14) and (15) with the regu-
larities (A2), and {(unh, pnh)} be the fully discrete solution to the finite element system (16) and
(17), then we have the following optimal error estimates

max
1≤n≤M

‖unh − un‖20 + τE
M∑
n=1

‖∇(unh − un)‖20 ≤ C(τ2 + h4) . (30)

Here C is a general positive constant depending on the data (E, T,u,Z, f ,Ω).
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Proof. It suffices to derive the estimate for unh − Ihu
n by using the relation

unh − un = (unh − Ihu
n) + (Ihu

n − un) (31)

and the triangle inequality and the projection approximation (22). So we will estimate εnh :=
unh − Ihu

n below.
Integrating both sides of (14) and (15) over the time interval (tn−1, tn) respectively, we

deduce for any v ∈ H1
0(Ω) and q ∈ L2(0, T ;L2

0(Ω)),

(∂τu
n,v) + E(∇ūn,∇v) − (p̄n,∇ · v) + (u · ∇u n,v) + (Z× u n,v)

= (f̄n,v), (32)

−(∇ · ūn, q) = 0 . (33)

Subtracting (32) from (16), we get the following equation for εnh:

(∂τε
n
h,vh) + E(∇εnh,∇vh)− (pnh − p̄n,∇ · vh)

= (fn − f̄n,vh) +
(
u · ∇u n − un−1

h · ∇unh,vh

)
+
(
Z× u n − Zn × unh,vh

)
+ E(∇(ūn − Ihu

n),∇vh) .

Taking vnh = τεnh, we obtain

1

2
‖εnh‖20 −

1

2
‖εn−1
h ‖20 + τE‖∇εnh‖20 =

10∑
i=1

(I)i

≡
∫ tn

tn−1

(t− tn−1)(ft(t), ε
n
h)dt−

∫ tn

tn−1

(t− tn−1)dt(u,u, ε
n
h)dt

+ τd(u(tn)− u(tn−1),u(tn), εnh) + d(u(tn−1)− Ihu(tn−1) + εn−1
h ,u(tn), εnh)

+ τd(un−1
h ,u(tn)− Ihu(tn), εnh) + τ(ρhp̄

n − p̄n,∇ · εnh)

+

∫ tn

tn−1

(t− tn−1)(Zt × u + Z× ut, ε
n
h)dt+ (Z(tn)× (u(tn)− Ihu(tn)), εnh)

− E

∫ tn

tn−1

(t− tn−1)(∇ut,∇εnh)dt+ Eτ(∇(u(tn)− Ihu(tn)),∇εnh). (34)

Now by some standard techniques and using the Poincaré and Young inequalities, we can derive
the following estimates for all the terms (I)1 to (I)10 in (34) except for (I)2 and (I)3:

(I)1 ≤ cτ
3
2 (

∫ tn

tn−1

‖ft‖20dt)
1
2 ‖εnh‖0 ≤

E

16
‖∇εnh‖20τ + cE−1τ2

∫ tn

tn−1

‖ft‖20dt,

(I)4 ≤ cτ‖εn−1
h ‖0‖u(tn)‖2‖∇εnh‖0

+ cτ‖∇(u(tn−1)− Ihu(tn−1))‖0‖∇u(tn)‖0‖∇εnh‖0

≤ E

16
‖∇εnh‖20τ + cE−1τ‖∇(u(tn−1)− Ihu(tn−1))‖20‖∇u(tn)‖20

+ cE−1τ‖εn−1
h ‖20‖u(tn)‖22,
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(I)5 ≤ ch−1τ‖εn−1
h ‖0‖∇(u(tn)− Ihu(tn))‖0‖∇εnh‖0

+ cτ‖∇(Ihu(tn−1)‖0‖∇(u(tn)− Ihu(tn))‖0‖∇εnh‖0

≤ E

16
‖∇εnh‖20τ + cE−1τ‖∇u(tn−1)‖0‖∇(u(tn)− Ihu(tn))‖20

+ cE−1τ‖εn−1
h ‖20‖u(tn)‖22,

(I)6 ≤ cτ‖p̄n − ρhp̄n‖0‖∇εnh‖0 ≤
E

16
‖∇εnh‖20τ + cE−1h4

∫ tn

tn−1

‖p‖22dt,

(I)7 ≤ cτ
3
2 (

∫ tn

tn−1

(|Zt|2‖u‖20 + |Z|2‖ut‖20)dt)
1
2 ‖∇εnh‖0

≤ E

16
‖∇εnh‖20τ + cE−1τ2

∫ tn

tn−1

(|Zt|2‖u‖20 + |Z|2‖ut‖20)dt,

(I)8 ≤ cτ |Z(tn)|‖u(tn)− Ihu(tn)‖0‖εnh‖0

≤ E

16
‖∇εnh‖20τ + cE−1τ |Z(tn)|2‖∇(u(tn)− Ihu(tn))‖20,

(I)9 ≤ cτ
3
2 (

∫ tn

tn−1

‖∇ut‖20dt)
1
2 ‖∇εnh‖0 ≤

E

16
‖∇εnh‖20τ + cE−1τ2

∫ tn

tn−1

‖∇ut‖20dt,

(I)10 ≤ cτ‖∇(u(tn)− Ihu(tn))‖0‖∇εnh‖0

≤ E

16
‖∇εnh‖20τ + cE−1τ‖∇(u(tn)− u(tn))‖20.

On the other hand, by using (21) and the following inequality

‖u‖L∞ + ‖∇u‖L3 ≤ c‖u‖2 ∀u ∈ H2(Ω) ∩H1
0(Ω), (35)

we can estimate (I)2 and (I)3 as follows:

(I)2 ≤ c

∫ tn

tn−1

(t− tn−1)[|d(ut,u, ε
n
h)|+ |d(u, εnh,ut)|]dt

≤ cτ
3
2 (

∫ tn

tn−1

‖ut‖20‖u‖22dt)
1
2 ‖∇εnh‖0

≤ E

16
‖∇εnh‖20τ + cE−1τ2

∫ tn

tn−1

‖ut‖20‖u‖22dt,

(I)3 ≤ cτ
3
2 (

∫ tn

tn−1

‖ut‖20dt)
1
2 ‖u(tn)‖2‖∇εnh‖0

≤ E

16
‖∇εnh‖20τ + cE−1τ2

∫ tn

tn−1

‖ut‖20‖u(tn)‖22dt .

Summing up (34) over n = 1 to n = m and using the above estimates for (I)1 to (I)10 and
the regularities (A2), lead us to the following bound:

‖εmh ‖20 + Eτ
m∑
n=1

‖∇εnh‖20 ≤ C(τ2 + h4)

∫ T

0

(
‖ft‖20 + ‖u‖20 + ‖ut‖21 + ‖p‖22

)
dt

+ Cτ
M∑
n=1

‖∇(u(tn)− Ihu(tn))‖20 + cE−1τ
m−1∑
n=1

‖u(tn+1)‖22‖εnh‖20. (36)
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Then applying the discrete Gronwall inequality to (36) and using (A2), we further deduce

‖εmh ‖20 + Eτ

m∑
n=1

‖∇εnh‖20 (37)

≤ C exp{cE−1τ

m−1∑
n=1

‖u(tn+1)‖22}
{
τ2 + h4 + τ

M∑
n=1

‖∇(u(tn)− Ihu(tn))‖20
}
.

But it follows easily that

τ‖∇(u(tn)− Ihu(tn))‖20 ≤ c(τ2 + h4)

∫ tn

tn−1

[‖∇ut‖20 + ‖u‖23]dt (38)

by writing u(tn) − Ihu(tn) = (u(tn) − ūn) + (ūn − Ihūn) + (Ihū
n − Ihu(tn)). Now the desired

estimate (30) follows from (31) by the triangle inequality, (37) and (38), and the projection
approximation (22). ]

4 Finite element method with second-order temporal scheme

In the previous section we have discussed a fully discrete finite element method with first-order
time marching scheme. But for our highly nonlinear libration system, the first-order scheme may
not be always sufficient to capture the accuracy of the flow in an effective and stable manner.
In this section we present a more accurate time discretization, the second order Crank-Nicolson
extrapolation scheme. The subsequent notations for the time and space discretizations as well
as the finite element spaces are all carried over from the previous section.

Now we are going to use the implicit second order Crank-Nicolson scheme for the linear
terms and the implicit second order extrapolation to deal with the nonlinear term. We shall
also write

ūn+1/2 =
1

τ

∫ tn+1

tn

u(s) ds , un+1/2 =
un+1 + un

2
, u

n+1/2
h =

un+1
h + unh

2

and

Tn(u) =
3

2
un − 1

2
un−1 or Tn(uh) =

3

2
unh −

1

2
un−1
h .

Using these approximations in time along with the same finite element approximations as used
in the previous section in space, we propose the following fully discrete finite element scheme
for the system (14) and (15):

Find {unh} ⊂ Vh, {pnh} ⊂ Ph for n = 0, 1, · · · ,M such that u0
h = Ihu0 and(

∂τu
n+1
h ,vh

)
+ E(∇u

n+1/2
h ,∇vh)− (p

n+1/2
h ,∇ · vh) (39)

+d
(
Tn(uh),u

n+1/2
h ,vh

)
+
(
Zn+1/2 × u

n+1/2
h ,vh

)
= (fn+1/2,vh) ∀vh ∈ Vh,

−(∇ · un+1/2
h , qh) = 0 ∀ qh ∈ Ph. (40)

It is easy to see that the scheme (39) and (40) just needs to solve a linear system at each time
step, and it will be shown to be second accurate in time.
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It is well-known [16] that for the fully implicit second order Crank-Nicolson scheme based
on the mixed finite element method, there is a restriction τ ≤ C on the time step size for the
convergence. While for the semi-implicit second order Crank-Nicolson extrapolation scheme,
there is also a restriction τ ≤ C on the time step size; see [11] for the 2D Navier-Stokes equations.
On the other hand, for the semi-implicit second order Crank-Nicolson extrapolation scheme
based on the stabilized finite element method, no restrictions are imposed on the time step
size but the convergence rate of the scheme is only of order O(τ

3
2 ) in time; see [12] for the 2D

Navier-Stokes equations.
To the best of our knowledge, this seems to be the first time to establish the optimal second

order convergence of the discrete solution (unh, p
n
h) to a linearized finite element system of the

Navier-Stokes equations in three dimensions, and more importantly, the optimal convergence rate
will be achieved without imposing any restriction on the time step size τ , under the following
reasonable assumptions on the regularities of the exact solution (u, p):

(A3)

{
u ∈ L∞(0, T ; H2(Ω)) ∩ L2(0, T ; H3(Ω)), p ∈ L2(0, T ;H2(Ω)),

ut ∈ L∞(0, T ; H1(Ω)) ∩ L2(0, T ; H2(Ω)), utt ∈ L2(0, T ; H1(Ω)).

4.1 Error estimates of finite element solutions

In this section we establish the error estimate of the discrete solutions {unh, pnh} to the finite
element system (39) and (40). For this, we first derive the stability estimates for {unh, pnh}. By

choosing vh = τu
n+1/2
h in (39) we obtain

1

2
‖un+1

h ‖20 −
1

2
‖unh‖20 + E τ ‖∇u

n+1/2
h ‖20 ≤

E

2
‖∇unh‖20 + Cτ‖fn+1/2‖20 ,

then summing over n = 1, 2, · · · , k ≤M , we come to the stability estimate:

max
1≤n≤M

‖unh‖20 + E

M∑
n=1

τ ‖∇u
n+1/2
h ‖20 ≤ C(‖u0

h‖20 +
M∑
n=1

τ‖fn‖20) . (41)

Now we are ready to demonstrate the optimal error estimate of the finite element solutions
{unh, pnh} to the system (39) and (40), second order accurate in both space and time.

Theorem 4.1 Let (u, p) be the solution to the variational system (14) and (15) with the regu-
larities (A3), and {(unh, pnh)} be the fully approximate solution to the finite element system (39)
and (40). Then we have the following optimal error estimates

max
1≤n≤M

‖unh − un‖20 + τE
M∑
n=1

‖∇(unh − un)‖20 ≤ C(τ4 + h4) . (42)

Proof. Similarly as we argued in the proof of Theorem 3.1, it suffices to estimate the error
εnh = unh − Ihu

n. To derive the equation satisfied by εnh, we integrate both sides of (14) and (15)
over the time interval (tn, tn+1) respectively to deduce for any v ∈ H1

0(Ω) and q ∈ L2
0(Ω),

(∂τu
n+1,v) + E(∇ūn+1/2,∇v)− (p̄n+1/2,∇ · v) + (u · ∇u n+1/2,v)

+ (Z× u n+1/2,v) = (f̄n+1/2,v) , (43)

−(∇ · ūn+1/2, q) = 0. (44)
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Subtracting (43) from (39) yields the equation for the error function εnh:

(∂τε
n+1
h ,vh) + E(∇εn+1/2

h ,∇vh)− (p
n+1/2
h − p̄n+1/2,∇ · vh)

= (fn+1/2 − f̄n+1/2,vh) +
(
u · ∇u n+1/2 − Tn(uh) · ∇u

n+1/2
h ,vh

)
+
(
Z× u n+1/2 − Zn+1/2 × u

n+1/2
h ,vh

)
+ (∂τ (un+1 − Ihu

n+1),vh)

+E(∇(ūn+1/2 − Ihu
n+1/2),∇vh) .

Taking vnh = τε
n+1/2
h in the above equation, we can rewrite it as follows:

1

2
‖εn+1
h ‖20 −

1

2
‖εnh‖20 + τE‖∇εn+1/2

h ‖20 ≡
12∑
i=1

(I)i

=
1

2

∫ tn+1

tn

(t− tn)(tn+1 − t)(ftt, εn+1/2
h )dt

− 1

2

∫ tn+1

tn

(t− tn)(tn+1 − t)(Ztt × u + 2Zt × ut + Z× utt, ε
n+ 1

2
h )

+
τ

4
((Z(tn+1)− Z(tn))× (u(tn+1)− u(tn)), ε

n+ 1
2

h )

+ τ(Zn+ 1
2 × (un+ 1

2 − Ihun+ 1
2 ), ε

n+ 1
2

h )

− E

2

∫ tn+1

tn

(t− tn)(tn+1 − t)(∇utt,∇ε
n+ 1

2
h )dt+ Eτ(∇(un+ 1

2 − Ihun+ 1
2 ),∇εnh)

+ τ(ρhp̄
n+ 1

2 − p̄n+ 1
2 ,∇ · εn+ 1

2
h )− 1

2

∫ tn+1

tn

(t− tn)(tn+1 − t)dtt(u,u, ε
n+ 1

2
h )dt

+
τ

4
d(u(tn+1)− u(tn),u(tn+1)− u(tn), εnh)

+
τ

2
d(u(tn+1 − 2u(tn) + u(tn−1),un+ 1

2 , ε
n+ 1

2
h )

+τd(Tn(u)−IhTn(u) + Tn(εh),un+ 1
2 , ε

n+ 1
2

h )+τd(Tn(uh),un+ 1
2−Ihun+ 1

2 , ε
n+ 1

2
h ) . (45)
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By some standard techniques, we can estimate (I)1 to (I)7 as

(I)1 ≤ cτ
5
2 (

∫ tn+1

tn

‖ftt‖20dt)
1
2 ‖εn+ 1

2
h ‖0 ≤

Eτ

16
‖∇εn+ 1

2
h ‖20 +

cτ4

E

∫ tn+1

tn

‖ftt‖20dt,

(I)2 ≤ cτ
5
2 (

∫ tn+1

tn

[|Ztt|2‖u‖20 + |Zt|2‖ut‖20 + |Z|2‖utt‖20]dt)
1
2 ‖εn+ 1

2
h ‖0

≤ E

16
‖∇εn+ 1

2
h ‖20τ + cE−1τ4

∫ tn

tn−1

[‖u‖20 + ‖ut‖20 + ‖utt‖20]dt,

(I)3 ≤ cτ

∫ tn+1

tn

|Zt|dt
∫ tn+1

tn

‖ut‖0dt‖ε
n+ 1

2
h ‖0

≤ E

16
‖∇εn+ 1

2
h ‖20τ + cE−1τ4

∫ tn+1

tn

‖ut‖20dt,

(I)4 ≤ cτ |Zn+ 1
2 |‖un+ 1

2 − Ihun+ 1
2 ‖0‖ε

n+ 1
2

h ‖0

≤ E

16
‖∇εn+ 1

2
h ‖20τ + cE−1τ‖∇(un+ 1

2 − Ihun+ 1
2 )‖20,

(I)5 ≤ Eτ
5
2 (

∫ tn+1

tn

‖∇utt‖20dt)
1
2 ‖∇εn+ 1

2
h ‖0

≤ E

16
‖∇εn+ 1

2
h ‖20τ + cEτ4

∫ tn+1

tn

‖∇utt‖20dt,

(I)6 ≤ cτ‖∇(un+ 1
2 − Ihun+ 1

2 )‖0‖∇ε
n+ 1

2
h ‖0

≤ E

16
‖∇εn+ 1

2
h ‖20τ + cE−1τ‖∇(un+ 1

2 − Ihun+ 1
2 )‖20,

(I)7 ≤ cτh2‖∇εn+ 1
2

h ‖0‖p̄n+ 1
2 ‖2 ≤

E

16
‖∇εn+ 1

2
h ‖20τ + cE−1h4

∫ tn+1

tn

‖p‖22dt .

For (I)8 to (I)12 in (45) we can estimate using the definition of the trilinear function d(·, ·, ·) and
its estimates:

(I)8 ≤ cτ
5
2 (

∫ tn+1

tn

[‖utt‖20‖u‖22 + ‖ut‖22‖ut‖20]dt)
1
2 ‖∇εn+ 1

2
h ‖0

≤ E

16
‖∇εn+ 1

2
h ‖20τ + cE−1τ4

∫ tn

tn−1

[‖utt‖20‖u‖22 + ‖ut‖22‖ut‖20]dt,

(I)9 ≤ cτ‖∇εn+ 1
2

h ‖0(

∫ tn+1

tn

‖∇ut‖0dt)2

≤ E

16
‖∇εn+ 1

2
h ‖20τ + cE−1τ4 sup

0≤t≤T
‖∇ut(t)‖20

∫ tn+1

tn

‖∇ut‖20dt,

(I)10 ≤ cτ
5
2 ‖∇εn+ 1

2
h ‖0‖un+ 1

2 ‖2(

∫ tn+1

tn−1

‖utt‖20dt)
1
2

≤ E

16
‖∇εn+ 1

2
h ‖20τ + cE−1τ4 sup

0≤t≤T
‖u(t)‖22

∫ tn+1

tn

‖utt‖20dt,
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(I)11 ≤ cτ‖∇εn+ 1
2

h ‖0(‖∇(Tn(u)− IhTn(u))‖0‖∇un+ 1
2 ‖0 + ‖Tn(εh)‖0‖un+ 1

2 ‖2)

≤ E

16
‖∇εn+ 1

2
h ‖20τ + cE−1τ‖∇(Tn(u)− IhTn(u))‖20‖∇un+ 1

2 ‖20

+cE−1τ‖Tn(εh)‖20‖un+ 1
2 ‖22,

(I)12 ≤ cτ(h−1‖Tn(εh)‖0 + ‖∇Tn(Ihu)‖0)‖∇(un+ 1
2 − Ihun+ 1

2 )‖0‖∇ε
n+ 1

2
h ‖0

≤ E

16
‖∇εn+ 1

2
h ‖20τ + cE−1τ‖Tn(εh)‖20‖un+ 1

2 ‖22

+cE−1τ‖∇Tn(u)‖20‖∇(un+ 1
2 − Ihun+ 1

2 )‖20.

Summing up (45) from n = 1 to n = m − 1 and using the previous estimates for (I)1 to (I)12

and the regularities (A3) we obtain

‖εmh ‖20 + Eτ

m∑
n=1

‖∇εnh‖20

≤ C(τ4 + h4)

∫ T

0
[‖ftt‖20 + ‖u‖20 + ‖p‖22 + ‖ut‖22 + ‖∇utt‖20]dt

+ Cτ

M−1∑
n=1

[‖∇(Tn(u)− IhTn(u))‖20 + ‖∇(un+ 1
2 − Ihun+ 1

2 )‖20]

+ τ
m−1∑
n=1

dn‖εnh‖20 , (46)

where we write dM−1 = cE−1(‖u(tM )‖22 + ‖u(tM−1)‖22), and

dn = cE−1(‖u(tn+2)‖22 + ‖u(tn+1)‖22 + ‖u(tn)‖22)

for n = 1, · · · ,M − 2. Now applying the discrete Gronwall inequality to (46) and using the
regularities (A3), we deduce

‖εmh ‖20 + Eτ

m∑
n=1

‖∇εnh‖20

≤ exp{τ
m−1∑
n=1

dn}
{
C(τ4 + h4)

×
∫ T

0
[‖ftt‖20 + ‖u‖20 + ‖p‖22 + ‖ut‖22 + ‖∇utt‖20]dt

+Cτ
M∑
n=1

[‖∇(Tn(u)− IhTn(u))‖20 + ‖∇(un+ 1
2 − Ihun+ 1

2 )‖20]
}

≤ C(τ4 + h4)

∫ T

0
[‖ftt‖20 + ‖u‖20 + ‖p‖22 + ‖ut‖22 + ‖∇utt‖20]dt

+Cτ
M∑
n=1

[‖∇(Tn(u)− IhTn(u))‖20 + ‖∇(un+ 1
2 − Ihun+ 1

2 )‖20]. (47)
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But the last two terms in (47) can be estimated by using the approximation property (22) of
projection Ih as follows:

τ‖∇(un+ 1
2 − Ihun+ 1

2 )‖20
≤ 3τ

{
‖∇(un+ 1

2 − ūn+ 1
2 )‖20 + ‖∇(ūn+ 1

2 − Ihūn+ 1
2 )‖20 + ‖∇(Ihū

n+ 1
2 − Ihun+ 1

2 )‖20
}

≤ c(τ4 + h4)

∫ tn+1

tn

[‖∇utt‖20 + ‖u‖23]dt, (48)

τ‖∇(Tn(u)− IhTn(u))‖20
= τ‖∇[(un+ 1

2 − un+ 1
2 − Tn(u))− Ih(un+ 1

2 − un+ 1
2 − Tn(u)))‖20

≤ 3τ‖∇un+ 1
2 − Ihun+ 1

2 )‖20 + 3τ‖∇
∫ tn+1

tn

(ut − Ihut)dt‖20

+ 3τ‖∇
∫ tn

tn−1

(ut − Ihut)dt‖20

≤ c(τ4 + h4)

∫ tn+1

tn

[‖∇utt‖20 + ‖ut‖22 + ‖u‖23]dt. (49)

Now the desired estimate (42) follows from (31) by the triangle inequality, (47)–(49), and the
projection approximation (22). ]

5 Numerical simulations

5.1 Triaxial ellipsoidal tetrahedral mesh

The essential strategy for generating a tetrahedral mesh suitable for a triaxial ellipsoidal cavity
is first to construct a spherical tetrahedral mesh [6] which is then deformed into a triaxial
ellipsoidal geometry by introducing the eccentricity E as a geometric parameter of the triaxial
ellipsoidal mesh. More precisely, all nodes (xi, yi, zi) in a spherical tetrahedral mesh within the
unit sphere satisfying

x2
i + y2

i + z2
i = r2

i , 0 < ri ≤ 1,

can be transformed by

xEi = xi, yEi = yi
√

1 + E2, zEi = zi
√

1− E2

such that the deformed nodes (xEi , y
E
i , z
E
i ) satisfy

(xEi )2 +
(yEi )2

1 + E2
+

(zEi )2

1− E2
= r2

i , 0 < ri ≤ 1.

For the purpose of resolving the thin viscous boundary layer, we can construct more nodes in
the vicinity of the bounding surface of the triaxial ellipsoidal cavity by stretching the spherical
mesh points (xi, yi, zi) radially before the deformation, for example,xiyi

zi

 =
1

ri
sin
(π

2
ri

)2/3

xiyi
zi

 .
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Figure 1: Kinetic energy, Ekin(t), obtained with the implicit scheme is shown as a function of
the scaled time (T = 2π/ω̂) at a fixed E = 0.5 for E = 10−4, ω̂ = 1.2 and Po = 0.3.

The spherical mesh itself begins with approximating the sphere by an icosahedron which is then
further divided into 20 identical tetrahedra based on its 20 triangular facets and the center of the
sphere. This initial tetrahedral mesh is then refined recursively by subdividing each of the tetra-
hedra into eight subtetrahedra. The three-dimensional tetrahedralization of the triaxial ellipsoid
produces a finite element mesh that does not have pole or central numerical singularities. When
E is very close to 1, representing a highly flatted triaxial ellipsoidal disk, an alternative meshing
algorithm should be used. This is because a regular shaped tetrahedron after transformation
may become too stretched and, consequently, lead to a poor finite element approximation. In
this case, a general mesh generation algorithm based on the Delaunay triangulation can be
employed instead.

5.2 Implementation and results

In the previous studies [2, 27], an explicit Crank-Nicolson scheme was employed for numerical
simulation, which may result in numerical instabilities in the strongly nonlinear regime and,
thus, limit the size of time steps in numerical integration. On the basis of the present study,
we implement the second-order implicit Crank-Nicolson scheme, defined by the finite element
system (39) and (40), in a new finite element code for triaxial ellipsoidal geometry.

After implementation, we have simulated a number of nonlinear solutions using the new
implicit code in a triaxial ellipsoidal cavity with E = 0.5. Figure 1 shows the time-dependent
kinetic energies, Ekin(t), defined as

Ekin(t) =
1

2Ω

∫
Ω
|u(r, t)|2dΩ,
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(a) (b)

Figure 2: (a) Isosurface of the radial component of the flow and (b) isosurface of the latitudinal
component for E = 0.5, E = 10−4, ω̂ = 1.2 and Po = 0.3.

for a nonlinear librating flow as a function of time for Po = 0.3 and E = 10−4, where
∫

Ω denotes
the integral over the triaxial ellipsoidal cavity. The corresponding spatial structure of the flow is
depicted in Figure 2. It reveals that the numerical solutions obtained with the implicit scheme are
consistent with both the analytical solution [27] and the numerical solution based on the explicit
scheme [2]. However, the new numerical code using the implicit Crank-Nicolson scheme is much
more efficient, being numerically stable with larger time steps. Moreover, since the nonlinear
effect taking place in the Ekman boundary layer plays an essential role in generating the mean
flow, the implicit Crank-Nicolson scheme would help capture the boundary-layer nonlinear effect
more accurately.

6 Concluding remarks

As a result of rapid rotation and interaction between planets and stars, many planetary bodies
are in the shape of a triaxial ellipsoid. This paper presents the theoretical analysis for a finite
element method that can be used to compute nonlinear time-dependent librating flows confined
in librating triaxial ellipsoidal cavities with arbitrary eccentricity 0 ≤ E < 1, providing a math-
ematical foundation for the geophysical and astrophysical application of the numerical method.
It can be readily extended to other problems of geophysical and astrophysical fluid dynamics,
such as tidally or precessionally driven flow, in non-spherical geometry.

In comparison to the spectral method, the finite element method is based on the three-
dimensional triangulation of a triaxial ellipsoidal domain with the velocity and pressure being
represented by continuous piecewise quadratic and linear finite elements. We have discussed the
stability properties of the finite element solution and estimated the numerical errors of the finite
element approximation. We have also implemented the second-order implicit scheme which is
then used to simulate several nonlinear flows a triaxial ellipsoid. To authors’ best knowledge,
this paper represents the first theoretical study on a finite element scheme for simulating a
nonlinear librating flow in triaxial ellipsoidal geometry.

The numerical scheme presented in this paper would be also suitable for simulating dynamo
action taking place in nearly synchronous planets and moons that are thermally or chemically
non-convective. Although it is widely accepted that thermal or chemical buoyancy within plan-
etary fluid cores drives planetary dynamo, exceptional cases may exist for certain planets, such
as Mercury and Ganymede, which may require an alternative mechanism of sustaining their
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dynamo action. An extension of a similar theoretical study to include both the magnetic field
on the flow and the dynamo action in a librating triaxial ellipsoid would be challenging.
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