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Abstract

We shall establish the convergence of an adaptive conforming finite element method for the
reconstruction of the distributed flux in a diffusion system. The adaptive method is based on a
posteriori error estimators for the distributed flux, state and costate variables. The sequence of
discrete solutions produced by the adaptive algorithm is proved to converge to the true triplet
satisfying the optimality conditions in the energy norm and the corresponding error estimator
converges to zero asymptotically.
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1 Introduction

The heat flux distributions are of significant practical interest in thermal and heat transfer prob-
lems, e.g., the real-time monitoring in steel industry [2] and the visualization by liquid crystal ther-
mography [17]. Considering its accurate distribution is rather difficult to obtain in some inaccessible
part of the physical domain, such as the interior boundary of nuclear reactors and steel furnaces,
engineers attempt to recover the heat flux from some measured data, which leads naturally to the
inverse problem of reconstructing the distributed heat flux from the measurements on the accessible
part of the boundary or the Cauchy problem for an elliptic/parabolic equation. Several numerical
methods have been proposed for this classical ill-posed problem, among which the least-squares for-
mulation [39] [41] [42] has received intensive investigations and has been implemented by means of
the boundary integral method [42] and the finite element method [39].

However, the story is far from complete from the viewpoint of numerical simulations. One main
challenge is to detect local features of unknown fluxes accurately and efficiently, particularly in the
presence of non-smooth boundaries and discontinuity or singularity in fluxes. Compared with the
finite element reconstruction over meshes generated by a uniform refinement, which often requires
formidable computational costs to achieve a high resolution, adaptive finite element methods (AFEM)
are clearly a preferable candidate to remedy the situation as it is able to retrieve the same result
with much fewer degrees of freedom.

A standard adaptive finite element method consists of successive loops of the form:

SOLVE→ ESTIMATE→ MARK→ REFINE. (1.1)

That is, one first solves the discrete problem for the finite element solution on the current mesh,
computes the related a posteriori error estimator, marks elements to be subdivided, and then refines
the current mesh to generate a new finer one.
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A major force to drive the process (1.1) is the module ESTIMATE, which relies on some com-
putable quantities (often called a posteriori estimation), formed by the discrete solution on the current
mesh and given data. Since the pioneer work [3], a posteriori error estimations have been extensively
investigated for finite element approximations of direct partial differential equations and the theory
has reached a mature level for elliptic systems; see the monographs [1] [6] [40] and the references
therein. As far as PDE-based inverse problems are concerned, there are also some important devel-
opments, e.g., [5] [8] [9] [10] [11] [12] [19] [21] [24]. But a vast amount of literature is available on
PDE-constrained optimal control problems; see [7] [22] [23] [25] [26] and references therein, although
inverse problems are quite different in nature due to the severe instability by data noise.

On the other hand, the study of AFEMs itself is also a research topic of great interest and has
made a substantial progress in the past decade. Specifically, the convergence and the computational
complexity of an AFEM have been analyzed in depth for the numerical solution of second order
boundary value problems; see [13] [14] [16] [18] [31] [32] [33] [35] [36]. But there are still no devel-
opments available for inverse problems. To our knowledge, the only related work is the one in [20]
and it studied the asymptotic error reduction property of an adaptive finite element approximation
for the distributed control problems with control constraints, where the adaptive algorithm requires
one extra step for some oscillation terms in the module MARK and the interior node property in the
module REFINE.

In this work, we shall fill in the gap and establish a first convergence result for an adaptive finite
element method for inverse problems, namely, we shall demonstrate that both the finite element
error (in some appropriate norm) and the estimator converge to zero when the AFEM is applied to
reconstruct the distributed flux on some inaccessible part of the boundary from partial measurements
on an accessible boundary part. Compared with [20] for an optimal control problem, the algorithm
studied here is of the same framework as the standard one for (direct) elliptic problems (e.g. [14] [33]),
particularly no more marking for oscillation terms as well as no interior node property is enforced in
the module MARK and the module REFINE, therefore it is advantageous to practical computations.
Our basic arguments follow some principles in [35] [32] for a class of linear direct boundary value
problems. In this sense, the current work may be viewed as an extension of [32] [35] for the AFEM
to inverse problems, but due to the nature of the inverse problem there are some essential technical
differences as mentioned below.

• The direct problems of some linear partial differential equations were considered in [32] [35],
while a nonlinear optimization problem for solving an inverse problem with the temperature
field (state) and the flux (control) coupled in a diffusion equation is the focus of this work,
which leads to a saddle-point system.

• In [32] [35] for linear direct problems, a key observation is the strong convergence of a sequence
of discrete solutions generated by the adaptive process (1.1) to some limit, which is a direct
consequence of the standard finite element convergence theory such as the Cea’s lemma [15].
In contrast, achieving such a result for the inverse problem is highly nontrivial. We shall view
the approximate fluxes generated by (1.1) as the minimizers to a discrete optimal system, and
employ some techniques from the nonlinear optimizations to establish the strong convergence
of the adaptive sequence to a minimizer of some limiting optimal system.

• The convergence was established in [35] by first demonstrating the weak vanishing limit of a
sequence of residuals associated with the adaptive solutions, then proving the strong limit of
the sequence of adaptive solutions is the exact solution. But this approach does not apply to
our current problem as the exact state and the limiting state depend on the exact flux and the
limiting flux respectively. As a remedy, we shall introduce an auxiliary state depending on the
limiting flux to help us realize the desired convergence.
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Our convergence theory are basically established in three steps. In the first step, we shall show
the sequence of discrete triplets (the approximate state, costate and flux) produced by the adaptive
algorithm converges strongly to some limiting triplet. Unlike for the direct problem of differential
equations, we need to deal with a nonlinear optimization system with PDE constraints; see section
4. In the second step, we will prove the limiting triplet is the exact one. To do so, we have to
consider and study the limiting behaviors of the residuals associated with the approximate state and
costate and introduce an auxiliary problem to resolve a technical difficulty; see section 5.2. Finally
in the last step, we will demonstrate that the error estimator has a vanishing limit. This will be the
consequence of the previous steps and the efficiency of the error estimator; see the proof of Theorem
5.2.

The rest of this paper is organized as follows. In section 2, we give a description of the flux
reconstruction problem and its finite element method. A standard adaptive algorithm based on an
existing residual-type a posteriori error estimator is stated in section 3. In section 4, we prove the
sequence of discrete triplets converges to some limiting triplet. The main results are presented in
section 5 and finally the paper is ended with some concluding remarks in section 6.

Throughout the paper we adopt the standard notation for the Lebesgue space L∞(G) and L2-
based Sobolev spaces Hm(G) for integer m ≥ 0 on an open bounded domain G ⊂ Rd. Related norms
and semi-norms of Hm(G) as well as the norm of L∞(G) are denoted by ‖ · ‖m,G, | · |m,G and ‖ · ‖∞,G
respectively. We use (·, ·)G to denote the L2 scalar product on G, and the subscript is omitted when
no confusion is caused. Moreover, we shall use C, with or without subscript, for a generic constant
independent of the mesh size and it may take a different value at each occurrence.

2 Mathematical formulations

Let Ω ⊂ Rd (d = 2, 3) be an open and bounded polyhedral domain. The boundary Γ of Ω is
made up of two disjoint parts Γa and Γi such that Γ = Γa ∪ Γi, where Γa and Γi are the accessible
and inaccessible parts respectively. The governing diffusion system of our interest is of the form

−∇ · (α∇u) = f in Ω, (2.1)

α
∂u

∂n
+ γu = γua on Γa ; α

∂u

∂n
= −q on Γi, (2.2)

where n is the unit outward normal on Γ and the given data include the source f ∈ L2(Ω), the
ambient temperature ua ∈ L2(Γa), the heat transfer coefficient γ > 0 and the diffusivity coefficient
α > 0. For simplicity γ and α are both assumed to be constants, but it is straightforward to extend
all our analyses and results to the case when both are variable functions. The inverse problem is to
recover the distributed flux q, when the partial measurement data z of temperature u is available on
Γa. We note this problem is highly ill-posed since the Cauchy data z imposed on Γa is inevitably
contaminated with observation errors in practice [39]. To overcome this difficulty, we often formulate
it as a constrained minimization problem with the Tikhonov regularization:

min
q∈L2(Γi)

J (q) =
1

2
‖u(q)− z‖20,Γa

+
β

2
‖q‖20,Γi

, (2.3)

where u := u(q) ∈ H1(Ω) satisfies the variational formulation of (2.1)-(2.2):

a(u, φ) = (f, φ) + (γua, φ)Γa − (q, φ)Γi ∀ φ ∈ H1(Ω) (2.4)

and the constant β > 0 is the regularization parameter. Here a(·, ·) := (α∇·,∇·) + (γ·, ·)Γa is
a weighted inner product over H1(Ω) and its induced norm ‖ · ‖a is equivalent to the usual H1-
norm due to the Poincaré inequality. There exists a unique minimizer to the system (2.3)-(2.4) [39].
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Moreover, with a costate p∗ ∈ H1(Ω) involved, the minimizer (q∗, u∗(q∗)) is characterized by the
following optimality conditions [24]:

a(u∗, φ) = (f, φ) + (γua, φ)Γa − (q∗, φ)Γi ∀ φ ∈ H1(Ω) (2.5)

a(p∗, v) = (u∗ − z, v)Γa ∀ v ∈ H1(Ω), (2.6)

(βq∗ − p∗, w)Γi = 0 ∀ w ∈ L2(Γi). (2.7)

Next we introduce a finite element method to approximate the continuous problem (2.3)-(2.4). Let
Th be a shape-regular conforming triangulation of Ω̄ into a set of closed simplices, with the diameter
hT := |T |1/d for each element T ∈ Th. Let Vh be the usual H1-conforming linear element space
over Th, and Vh,Γi

:= Vh|Γi be the feasible discrete space for q. Then the minimization (2.3)-(2.4) is
approximated by

min
qh∈Vh,Γi

Jh(qh) =
1

2
‖uh(qh)− z‖20,Γa

+
β

2
‖qh‖20,Γi

, (2.8)

where uh := uh(qh) ∈ Vh solves the discrete problem

a(uh, φh) = (f, φh) + (γua, φh)Γa − (qh, φh)Γi ∀ φh ∈ Vh. (2.9)

As in the continuous case, there exists a unique minimizer to (2.8)-(2.9), and the minimizer q∗h ∈ Vh,Γi
,

the discrete state and costate u∗h ∈ Vh and p∗h ∈ Vh satisfy the optimality conditions:

a(u∗h, φh) = (f, φh) + (γua, φh)Γa − (q∗h, φh)Γi ∀ φh ∈ Vh (2.10)

a(p∗h, vh) = (u∗h − z, vh)Γa ∀ vh ∈ Vh, (2.11)

(βq∗h − p∗h, wh)Γi = 0 ∀ wh ∈ Vh,Γi
. (2.12)

3 A posteriori error estimation and an adaptive algorithm

In this section we review a residual-type a posteriori error estimate and a related adaptive algo-
rithm developed in [24]. For this purpose, some more notation and definitions are needed.

The collection of all faces (resp. all interior faces) in Th is denoted by Fh (resp. Fh(Ω)) and its
restriction on Γa and Γi by Fh(Γa) and Fh(Γi) respectively. The scalar hF := |F |1/(d−1) stands for
the diameter of F ∈ Fh, which is associated with a fixed normal unit vector nF in the interior of
Ω and nF = n on the boundary Γ. We use DT (resp.DF ) for the union of all elements in Th with
non-empty intersection with element T ∈ Th (resp.F ∈ Fh). Furthermore, for any T ∈ Th we denote
by ωT the union of elements in Th sharing a common face with T , while for any F ∈ Fh(Ω) (resp.
F ∈ Fh(Γa) ∪ Fh(Γi)) we denote by ωF the union of two elements in Th sharing the common face F
(resp. the element with F as an edge).

For any (φh, vh, wh) ∈ Vh × Vh × Vh,Γi
, we define two element residuals for each T ∈ Th by

RT,1(φh) = f + ∇ · (α∇φh) and RT,2(vh) = −∇ · (α∇vh) ,

and two face residuals for each face F ∈ Fh by

JF,1(φh, wh) =


[α∇φh · nF ] for F ∈ Fh(Ω),
γua − γφh − α∇φh · nF for F ∈ Fh(Γa),
−wh − α∇φh · nF for F ∈ Fh(Γi)

and

JF,2(vh, φh) =


[α∇vh · nF ] for F ∈ Fh(Ω),
φh − z − γvh − α∇vh · nF for F ∈ Fh(Γa),
−α∇vh · nF for F ∈ Fh(Γi),
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where [α∇φh · nF ] and [α∇vh · nF ] are the jumps across F ∈ Fh. Then for any Mh ⊆ Th, we
introduce the error estimator

η2
h(φh, vh, wh, f, ua, z,Mh) :=

∑
T∈Mh

η2
T,h(φh, vh, wh, f, ua, z)

:=
∑
T∈Mh

(η2
T,h,1(φh, wh, f, ua) + η2

T,h,2(vh, φh, z))

with
η2
T,h,1(φh, wh, f, ua) := h2

T ‖RT,1(φh)‖20,T +
∑
F⊂∂T

hF ‖JF,1(φh, wh)‖20,F

and
η2
T,h,2(vh, φh, z) := h2

T ‖RT,2(vh)‖20,T +
∑
F⊂∂T

hF ‖JF,2(vh, φh)‖20,F ,

and the following oscillation errors that involve the given data and the related elementwise projections:

osc2
h(f,Mh) :=

∑
T∈Mh

h2
T ‖f − f̄T ‖20,T ,

osc2
h(φh, wh,Sh) :=

∑
F∈Sh

hF ‖JF,1 − J̄F,1‖20,F ,

osc2
h(vh, φh,Sh) :=

∑
F∈Sh

hF ‖JF,2 − J̄F,2‖20,F

for some Mh ⊆ Th and Sh ⊆ Fh, where f̄T (resp. J̄F,1 and J̄F,2) is the integral average of f (resp.
JF,1 and JF,2) over T (resp. F ). When Mh = Th or Sh = Fh, Mh or Sh will be dropped in the
parameter list of the error estimator or the oscillation errors above.

With the above preparations, we are now ready to present the upper and lower bounds for the
errors of the finite element solutions in terms of a residual-type estimator [24].

Theorem 3.1. Let (u∗, p∗, q∗) and (u∗h, p
∗
h, q
∗
h) be the solutions of (2.5)-(2.7) and (2.10)-(2.12) re-

spectively, then there exists a constant C depending on the shape-regularity of Th and the coefficients
α and γ, such that

‖u∗ − u∗h‖21 + ‖p∗ − p∗h‖21 + ‖q∗ − q∗h‖20 ≤ Cβ−2η2
h(u∗h, p

∗
h, q
∗
h, f, ua, z). (3.1)

Theorem 3.2. There exists a constant C depending on the shape-regularity of Th and the coefficients
α and γ, such that for any T ∈ Th,

η2
T,h(u∗h, p

∗
h, q
∗
h, f, ua, z) ≤ C(‖u∗ − u∗h‖20,ωT

+ ‖p∗ − p∗h‖20,ωT
+ ‖q∗ − q∗h‖20,∂T∩Γi

osc2
h(f, ωT ) + osc2

h(u∗h, q
∗
h, ∂T ) + osc2

h(p∗h, u
∗
h, ∂T )).

(3.2)

Based on the error estimators provided in Theorems 3.1 and 3.2 above, the following adaptive
algorithm was proposed for the flux reconstruction in [24]. In what follows the dependence on the
triangulations is indicated by the number k of the mesh refinements.

Algorithm 3.1. Given a parameter θ ∈ [0, 1] and a conforming initial mesh T0. Set k := 0.

1. (SOLVE) Solve the discrete problems (2.10)-(2.12) on Tk for (u∗k, p
∗
k, q
∗
k) ∈ Vk × Vk × Vk,Γi

.

2. (ESTIMATE) Compute the error estimator ηk(u
∗
k, p
∗
k, q
∗
k, f, ua, z).
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3. (MARK) Mark a subset Mk ⊂ Tk such that

∀ T ∈Mk ηT,k(u
∗
k, p
∗
k, q
∗
k, f, ua, z) ≥ θmax

T∈Tk
ηT,k(u

∗
k, p
∗
k, q
∗
k, f, ua, z). (3.3)

4. (REFINE) Refine each triangle T ∈Mk by the newest vertex bisection to get Tk+1.

5. Set k := k + 1 and go to Step 1.

A stopping criterion is normally included after step 2 to terminate the iteration, which is omitted
here for the notational convenience. The maximum strategy [3], one of the most common marking
criteria, is used in the module MARK and we will discuss more about other strategies in section 5.3. In
addition, the newest vertex bisection in the module REFINE guarantees the uniform shape-regularity
of {Tk} [28] [29] [30] [37] [38] [40]. In other words, all constants only depend on the initial mesh and
the given data but not on any particular mesh in the sequel. We point out a practically important
feature in our algorithm: the additional marking for oscillation errors and the interior node property
for the refinement are both not required, which are needed in the adaptive algorithm for an optimal
control problem in [20]. Finally, as the solution (u∗k, q

∗
k) ∈ Vk×Vk,Γi

is also the minimizer to problem
(2.8)-(2.9) with h = k, we shall view both of them as the same unless specified otherwise.

The adaptive Algorithm 3.1 was implemented and analysed in [24]. Several nontrivial numerical
examples were tested there, with different types of singular fluxes, including fluxes with large jumps,
shape-spike fluxes and dipole-like fluxes. From the numerical experiments we have observed that
Algorithm 3.1 is able to locate the singularities of fluxes accurately, with the desired local mesh
refinements around singularities. Moreover, all the examples in [24] have shown that Algorithm 3.1
ensures the convergence of the flux errors in L2-norm, even with essentially fewer degrees of freedom
than the uniform refinement. The aim of this work is to provide a rigorous mathematical justification
of the convergence of the adaptive finite element Algorithm 3.1.

4 A limiting triplet

In this section, we demonstrate the convergence of the sequence {(u∗k, p∗k, q∗k)} generated by Al-
gorithm 3.1. To this end, with {Vk} and {Vk,Γi

} induced by Algorithm 3.1, we define two limiting
spaces:

V∞ :=
⋃
k≥0

Vk (in H1-norm) and Q∞ :=
⋃
k≥0

Vk,Γi
(in L2-norm) .

We remark that V∞ and Q∞ are a closed subspace of H1(Ω) and L2(Γi) respectively. Then we
introduce a constrained minimization problem over Q∞:

min
q∈Q∞

J∞(q) =
1

2
‖u∞(q)− z‖20,Γa

+
β

2
‖q‖20,Γi

, (4.1)

where u∞ := u∞(q) ∈ V∞ satisfies the variational problem:

a(u∞, φ) = (f, φ) + (γua, φ)Γa − (q, φ)Γi ∀ φ ∈ V∞. (4.2)

Following the arguments of [39] for the system (2.3)-(2.4), we can show that there exists a unique
minimizer to the optimization problem (4.1)-(4.2).

Next we present the first result of this section, namely the sequence q∗k generated by Algorithm
3.1 converges strongly to the minimizer q∗∞ of problem (4.1)-(4.2). For the purpose we need some
auxiliary results.
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Lemma 4.1. Let {Vk × Vk,Γi
} be a sequence of discrete spaces generated by Algorithm 3.1. If the

sequence {qk} ⊂
⋃
k≥0 Vk,Γi

weakly converges to some q∗ ∈ Q∞ in L2(Γi), then there exists a subse-
quence {qm} with m = kn, such that for the sequence {um(qm)} ⊂

⋃
k≥0 Vk produced by (2.9) with h

replaced by m and u∞(q∗) ∈ V∞ generated by (4.2) with q = q∗ there holds

um(qm)→ u∞(q∗) in L2(Γ). (4.3)

Proof. Taking φk = uk(qk) in (2.9), we immediately know that ‖uk(qk)‖1 is uniformly bounded
independently of k and hence there exist a subsequence, denoted by {um(qm)} with m = kn, and
some u∗ ∈ H1(Ω) such that

um(qm)→ u∗ weakly in H1(Ω), um(qm)→ u∗ in L2(Γ). (4.4)

We only need to show u∗ = u∞(q∗). As V∞ is weakly closed, u∗ ∈ V∞. For any positive integer l,
when we choose m ≥ l, we know from (2.9) that

(α∇um(qm),∇φl) + (γum(qm), φl)Γa = (f, φl) + (γua, φl)Γa − (qm, φl)Γi ∀ φl ∈ Vl.

Letting m go to infinity and noting the convergence results in (4.4) as well as the weak convergence
of {qk}, we find

(α∇u∗,∇φl) + (γu∗, φl)Γa = (f, φl) + (γua, φl)Γa − (q∗, φl)Γi ∀ φl ∈ Vl.

As l and φl ∈ Vl are arbitrary, we further obtain

(α∇u∗,∇φ) + (γu∗, φ)Γa = (f, φ) + (γua, φ)Γa − (q∗, φ)Γi ∀ φ ∈ V∞,

which leads to the desired conclusion.

Lemma 4.2. Let {Vk × Vk,Γi
} be a sequence of discrete spaces generated by Algorithm 3.1. If the

sequence {qk} ⊂
⋃
k≥0 Vk,Γi

strongly converges to some q∗ ∈ Q∞ in L2(Γi), then for the sequence
{uk(qk)} ⊂

⋃
k≥0 Vk given by (2.9) with h replaced by k and u∞(q∗) ∈ V∞ given by (4.2) with q = q∗

there holds
uk(qk)→ u∞(q∗) in H1(Ω). (4.5)

Proof. We begin with an auxiliary discrete problem: Find uk(q
∗) ∈ Vk such that

a(uk(q
∗), φ) = (f, φ) + (γua, φ)Γa − (q∗, φ)Γi ∀ φ ∈ Vk. (4.6)

Subtracting (4.6) from (2.9) with φ = uk(qk) − uk(q∗) and using the trace theorem as well as the
norm equivalence we come to the estimate

‖uk(q∗)− uk(qk)‖1 ≤ C‖q∗ − qk‖0,Γi .

On the other hand, we note that (4.6) is a finite element approximation of (4.2) with q = q∗ ∈ Q∞,
so the Cea’s lemma admits an optimal approximation property

‖u∞(q∗)− uk(q∗)‖1 ≤ C inf
v∈Vk
‖u∞(q∗)− v‖1.

Finally, the desired convergence (4.5) is the consequence of the above two estimates and the density
of
⋃
k≥0 Vk in V∞.

Now we are in a position to show the first main result of this section.
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Theorem 4.1. Let {Vk×Vk,Γi
} be a sequence of discrete spaces generated by Algorithm 3.1, and {q∗k}

be the corresponding sequence of minimizers to the discrete problem (2.8)-(2.9) when finite element
spaces Vh and Vh,Γi

are replaced by Vk and Vk,Γi
(and functional Jh will be denoted by Jk accordingly).

Then the whole sequence {q∗k} converges strongly in L2(Γi) to the unique minimizer q∗∞ of the problem
(4.1)-(4.2).

Proof. The fact that ‖q∗k‖0,Γi is uniformly bounded implies there exist a subsequence, also denoted
by {q∗k} and some q∗ ∈ Q∞ such that

q∗k → q∗ weakly in L2(Γi). (4.7)

Then from Lemma 4.1, we know by extracting a subsequence with m = kn that

um(q∗m)→ u∞(q∗) in L2(Γa). (4.8)

On the other hand, for any q ∈ Q∞ there exists a sequence {ql} ⊂
⋃
l≥0 Vl,Γi

such that

lim
l→∞
‖ql − q‖0,Γi = 0, (4.9)

which, by Lemma 4.2 and the trace theorem, implies

lim
l→∞
‖ul(ql)− z‖20,Γa

= ‖u∞(q)− z‖20,Γa
. (4.10)

Choosing k ≥ l for sufficiently large l and noting the whole sequence {q∗k} are minimizers of Jk over
{Vk,Γi

}, we can derive

Jk(q∗k) ≤ Jl(ql) =
1

2
‖ul(ql)− z‖20,Γa

+
β

2
‖ql‖20,Γi

.

Then a collection of (4.7)-(4.10) gives

J∞(q∗) =
1

2
‖u∞(q∗)− z‖20,Γa

+
β

2
‖q∗‖20,Γi

≤ lim
m→∞

1

2
‖um(q∗m)− z‖20,Γa

+ lim inf
m→∞

β

2
‖q∗m‖20,Γi

≤ lim inf
m→∞

Jm(q∗m) ≤ lim sup
m→∞

Jm(q∗m) ≤ lim sup
k→∞

Jk(q∗k) ≤ lim sup
l→∞

Jl(ql) = J∞(q) ∀ q ∈ Q∞,

which indicates that q∗ = q∗∞ is the unique minimizer of the problem (4.1)-(4.2). Then the whole
sequence {q∗k} converges weakly to q∗∞. Moreover the choice q = q∗ in the above estimate yields
equality lim

m→∞
Jm(q∗m) = J∞(q∗) = inf J∞(Q∞) and it follows that lim

k→∞
Jk(q∗k) = inf J∞(Q∞) for

the whole sequence {q∗k}. Similarly, the strong convergence in (4.8) also holds true for the whole
sequence {u∗k(q∗k)}. These two facts guarantee that lim

k→∞
‖q∗k‖20,Γi

= ‖q∗∞‖20,Γi
, which, along with the

weak convergence, implies the strong convergence.

Like the continuous case, after we introduce a Lagrangian multiplier p∞ ∈ V∞ to relax the
constraint (4.2), the minimization problem (4.1) is recast as a saddle-point problem of the following
Lagrangian functional over V∞ × V∞ ×Q∞:

L(u∞, p∞, q) =
1

2
‖u∞ − z‖20,Γa

+
β

2
‖q‖20,Γi

− a(u∞, p∞) + (f, p∞) + (γua, p∞)Γa − (q, p∞)Γi .

The minimizer q∗∞ of (4.1) and the related state u∗∞ are determined by the following system:

a(u∗∞, φ) = (f, φ) + (γua, φ)Γa − (q∗∞, φ)Γi ∀ φ ∈ V∞ (4.11)

a(p∗∞, v) = (u∗∞ − z, v)Γa ∀ v ∈ V∞, (4.12)

(βq∗∞ − p∗∞, w)Γi = 0 ∀ w ∈ Q∞. (4.13)

Finally for the above system, we have the second main result of this section.
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Theorem 4.2. Let {Vk × Vk,Γi
} be a sequence of discrete spaces generated by Algorithm 3.1, then

the sequence {(u∗k, p∗k, q∗k)} of discrete solutions converges to (u∗∞, p
∗
∞, q

∗
∞), the solution of the problem

(4.11)-(4.13), in the following sense:

‖u∗k − u∗∞‖1 → 0, ‖p∗k − p∗∞‖1 → 0, ‖q∗k − q∗∞‖0,Γi → 0 as k →∞. (4.14)

Proof. The third convergence follows directly from Theorem 4.1. Then by Lemma 4.2 we obtain the
first result. It remains to show the second one. We introduce an auxiliary problem: Find p̃k ∈ Vk
such that

(α∇p̃k,∇v) + (γp̃k, v)Γa = (u∗∞ − z, v)Γa ∀ v ∈ Vk. (4.15)

Combining (2.11) and (4.15) with v = p̃k − p∗k and using the trace theorem as well as the norm
equivalence we obtain

‖p̃k − p∗k‖1 ≤ C‖u∗k − u∗∞‖1. (4.16)

On the other hand, it is not difficult to find that the problem (4.15) is a discrete version of (4.12).
Hence the Cea’s lemma gives

‖p∗∞ − p̃k‖1 ≤ C inf
v∈Vk
‖p∗∞ − v‖1. (4.17)

The desired result comes readily from (4.16), (4.17), the first convergence in (4.14) and the construc-
tion of V∞.

Remark 4.1. As a matter of fact, the convergence results in Theorem 4.2 have no connections with
any particular strategy adopted in the module MARK as in the case of linear elliptic problems [32]
[33] [35]. So other marking strategies work also here; see section 5.3 for details.

5 Convergence

In this section, we shall establish the convergence of Algorithm 3.1 in the following senses: (1) the
discrete solutions {(u∗k, p∗k, q∗k)} converge strongly to the true solution of the problem (2.5)-(2.7); (2)
the error estimator ηk converges to zero. With some properties of adaptively generated triangulations
and the error estimator stated in section 5.1, the proof of our main results is presented in section 5.2.
We will discuss the generalizations of the current arguments to other marking strategies in section
5.3.

5.1 Preliminaries

We first introduce a convenient classification of all elements generated during an adaptive algo-
rithm. For each mesh Tk, we define [35]:

T +
k :=

⋂
l≥k
Tl and T 0

k := Tk \ T +
k .

So T +
k consists of all elements not refined after the k-th iteration and the sequence {T +

k } satisfies
T +
l ⊂ T

+
k for all k > l. On the other hand, all elements in T 0

k are refined at least once after the
k-th iteration, that is to say for any T ∈ T 0

k , there exists l ≥ k such that T ∈ Tl but T ∈/ Tl+1.
Correspondingly, the domain Ω is split into two parts covered by T +

k and T 0
k respectively, i.e.

Ω̄ = Ω(T +
k ) ∪ Ω(T 0

k ) =: Ω+
k ∪ Ω0

k.

We also define a mesh-size function hk : Ω̄ → R+ almost everywhere by hk(x) = hT for x in the
interior of an element T ∈ Tk and hk(x) = hF for x in the relative interior of a face F ∈ Fk. It is
clear that the sequence {hk} given by Algorithm 3.1 strictly decreases on the region refined by the
newest vertex bisection. In fact, we have the following observations (Corollary 3.3, [35]).
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Lemma 5.1. Let χ0
k be the characteristic function of Ω0

k, then the definition of T 0
k implies that

lim
k→∞

‖hkχ0
k‖∞ = lim

k→∞
‖hk‖∞,Ω0

k
= 0 . (5.1)

In the subsequent convergence analysis, the sum of ηT,k,1 and ηT,k,2 over Tk will be split by T 0
k

and T +
k , and with the help of Lemma 5.1 and the local approximation properties of a classic nodal

interpolation operator [15], we are able to control the relevant residual in Ω0
k (see the proof of Lemma

5.3 below). For the remaining part, we have to resort to the marking strategy (3.3), which implies
that the maximal error indicator in Tk \ Mk is dominated by the maximal error indicator in Mk.
Therefore it is necessary to study only the convergence behavior of the latter.

Lemma 5.2. Let {Tk, Vk × Vk,Γi
, (u∗k, p

∗
k, q
∗
k)} be the sequence of meshes, finite element spaces and

discrete solutions produced by Algorithm 3.1 andMk the set of marked elements given by (3.3). Then
the following convergence holds

lim
k→∞

max
T∈Mk

ηT,k(u
∗
k, p
∗
k, q
∗
k, f, ua, z) = 0. (5.2)

Proof. Let T̃ be the element where the error indicator attains the maximum among Mk. As T̃ ∈
Mk ⊂ T 0

k , the local quasi-uniformity of Tk and Lemma 5.1 tell that

|D
T̃
| ≤ C|T̃ | ≤ C‖hdk‖∞,Ω0

k
→ 0 as k →∞. (5.3)

By means of a trace theorem, the inverse estimate and the triangle inequality, we can estimate the
error indicator η

T̃ ,k
:= (η2

T̃ ,k,1
+ η2

T̃ ,k,2
)1/2 as follows

η2
T̃ ,k,1

(u∗k, q
∗
k, f, ua) ≤ C(‖u∗k‖21,D

T̃
+ h

T̃
‖q∗k‖20,∂T̃∩Γi

+ h2
T̃
‖f‖2

0,T̃
+ h

T̃
‖ua‖20,∂T̃∩Γa

)

≤ C(‖u∗k − u∗∞‖21 + ‖u∗∞‖21,D
T̃

+ ‖q∗k − q∗∞‖20,Γi
+ h

T̃
‖q∗∞‖20,∂T̃∩Γi

+h2
T̃
‖f‖2

0,T̃
+ h

T̃
‖ua‖20,∂T̃∩Γa

) ,

η2
T̃ ,k,2

(p∗k, u
∗
k, z) ≤ C(‖p∗k‖21,D

T̃
+ ‖u∗k‖21,D

T̃
+ h

T̃
‖z‖2

0,∂T̃∩Γa
)

≤ C(‖p∗k − p∗∞‖21 + ‖p∗∞‖21,D
T̃

+ ‖u∗k − u∗∞‖21 + ‖u∗∞‖21,D
T̃

+ h
T̃
‖z‖2

0,∂T̃∩Γa
).

Now the result follows from (4.14), (5.3) and the absolute continuity of ‖ · ‖1 and ‖ · ‖0,Γ with respect
to the Lebesgue measure.

Remark 5.1. By inverse estimates we can deduce the following stability estimates for any T ∈ Tk:

ηT,k,1(u∗k, q
∗
k, f, ua) ≤ C(‖u∗k‖1,DT

+ ‖q∗k‖0,∂T∩Γi
+ ‖f‖0,T + ‖ua‖0,∂T∩Γa), (5.4)

ηT,k,2(p∗k, u
∗
k, z) ≤ C(‖p∗k‖1,DT

+ ‖u∗k‖1,DT
+ ‖z‖0,∂T∩Γa). (5.5)

Remark 5.2. From the proof of Lemma 5.2, we know that the maximum strategy (3.3) in the module
MARK is not utilized. Therefore this lemma is valid also for other markings.

5.2 Main results

Now we turn our attention to the main results of this work. It is not difficult to know that once
we can prove the solution triplet (u∗∞, p

∗
∞, q

∗
∞) to the system (4.11)-(4.13) is the exact solution triplet

(u∗, p∗, q∗) to the system (2.5)-(2.7) in some appropriate norm, then our expected first convergence
result, namely the sequence of discrete solutions {(u∗k, p∗k, q∗k)} generated by Algorithm 3.1 converges
strongly to the true solution of the problem (2.5)-(2.7), will follow immediately from Theorem 4.2.
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To do so, we shall first show the two residuals with respect to u∗k as well as p∗k have weak vanishing
limits for u∗∞ and p∗∞ (see Lemmas 5.3 and 5.4). It is worth noting that compared with the case of the
direct boundary value problems, the inverse problem under consideration involves a major difficulty,
i.e., u∗ and u∗∞ are determined by different fluxes q∗ and q∗∞ respectively. To overcome the difficulty,
we define an auxiliary pair (u(q∗∞), p(q∗∞)) through (2.5)-(2.6) with q∗ replaced by q∗∞. Then we will
show that the pair (u(q∗∞), p(q∗∞)) is the same as the limiting pair (u∗∞, p

∗
∞).

As stated above, the first two residuals with respect to u∗k(q
∗
k) and p∗k(q

∗
k) are defined by

〈R(u∗k), φ〉 := (f, φ) + (γua, φ)Γa − (q∗k, φ)Γi − a(u∗k, φ) ∀ φ ∈ H1(Ω),

〈R(p∗k), v〉 := (u∗k − z, v)Γa − a(p∗k, v) ∀ v ∈ H1(Ω).

Since {q∗k} is a converging sequence of minimizers by Theorem 4.1, it is uniformly bounded in
L2(Γi), so are {u∗k} and {p∗k} in H1(Ω) by means of (2.10) and (2.11). Thus, we know {R(u∗k)} and
{R(p∗k)} are two sequences of uniformly bounded linear functionals in H1(Ω)′, namely there exist
two constants independent of k such that

‖R(u∗k)‖H1(Ω)′ ≤ Cun1, ‖R(p∗k)‖H1(Ω)′ ≤ Cun2. (5.6)

In addition, we can easily observe from (2.10) and (2.11) that

〈R(u∗k), v〉 = 0 and 〈R(p∗k), v〉 = 0 ∀ v ∈ Vk. (5.7)

Using these relations, we can establish the following weak convergence.

Lemma 5.3. The sequence {(u∗k, p∗k, q∗k)} produced by Algorithm 3.1 satisfies

lim
k→∞
〈R(u∗k), φ〉 = 0, lim

k→∞
〈R(p∗k), φ〉 = 0 ∀ φ ∈ H1(Ω) . (5.8)

Proof. We prove only the first result by borrowing some techniques from [35], as the second conver-
gence can be done in the same manner. We easily see that T +

l ⊂ T
+
k ⊂ Tk for k > l. This implies

Ω0
l = Ω(Tk \ T +

l ) :=
⋃
{T ∈ Tk, T ∈/ T +

l } and any refinement of Tk does not affect any element in
T +
l . Now we set Ω∗l :=

⋃
{T ∈ Tk, T ∩Ω0

l 6= ∅} and Ω×k :=
⋃
{T ∈ Tk, T ∩Ω+

l 6= ∅}, and write Ik and
Iszk for the Lagrange and Scott-Zhang interpolations respectively associated with Vk [15] [34]. Then
for any ψ ∈ C∞(Ω̄), we can derive for w = ψ − Ikψ ∈ H1(Ω) by using the orthogonality (5.7) and
elementwise integration by parts that

|〈R(u∗k), ψ〉| = |〈R(u∗k), ψ − Ikψ〉| = |〈R(u∗k), w − Iszk w〉|

≤ C
∑
T∈Tk

ηT,k,1(u∗k, q
∗
k, f, ua)‖ψ − Ikψ‖1,DT

= C
( ∑
T∈Tk\T +

l

ηT,k,1(u∗k, q
∗
k, f, ua)‖ψ − Ikψ‖1,DT

+
∑
T∈T +

l

ηT,k,1(u∗k, q
∗
k, f, ua)‖ψ − Ikψ‖1,DT

)
. (5.9)

Using (5.4) and the uniform boundedness of ‖u∗k‖1 and ‖q∗k‖0,Γi , we have( ∑
T∈Tk\T +

l

η2
T,k,1(u∗k, q

∗
k, f, ua)

)1/2 ≤ C(‖u∗k‖1 + ‖q∗k‖0,Γi + ‖f‖0 + ‖ua‖Γa) ≤ C̃ (5.10)

where C̃ is independent of k. Furthermore, we can apply the local interpolation error estimate for
Ik [15] and the monotonicity of the mesh-size function hk to obtain

‖w − Ikψ‖1,Ω∗l ≤ C‖hl‖∞,Ω∗l ‖ψ‖2, ‖ψ − Ikψ‖1,Ω×k ≤ C‖hl‖∞,Ω×k ‖ψ‖2 ≤ C‖ψ‖2. (5.11)
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Now it follows readily from (5.9)-(5.11) and the local quasi-uniformity of Tl that for any k > l,

|〈R(uk), ψ〉| ≤ C1‖ψ‖2‖hl‖∞,Ω0
l

+ C2‖ψ‖2
( ∑
T∈T +

l

η2
T,k,1(u∗k, q

∗
k, f, ua)

)1/2
. (5.12)

To proceed our estimation, we can choose for any given ε > 0 some sufficiently large l by using
Lemma 5.1 such that

‖hl‖∞,Ω0
l
≤ ε

2C1‖ψ‖2
. (5.13)

In addition, the marking strategy (3.3) and Lemma 5.2 ensure that

lim
k→∞

max
T∈Tk\Mk

ηT,k(u
∗
k, p
∗
k, q
∗
k, f, ua, z) ≤ lim

k→∞
max
T∈Mk

ηT,k(u
∗
k, p
∗
k, q
∗
k, f, ua, z) = 0,

which, together with T +
l ∩Mk = ∅, implies

lim
k→∞

max
T∈T +

l

ηT,k(u
∗
k, p
∗
k, q
∗
k, f, ua, z) = 0.

Therefore, we can choose K > l for some fixed l such that when k ≥ K,

max
T∈T +

l

ηT,k,1(u∗k, q
∗
k, f, ua) ≤ max

T∈T +
l

ηT,k(u
∗
k, p
∗
k, q
∗
k, f, ua, z) ≤

ε

2C2‖ψ‖2
|T +
l |
− 1

2 . (5.14)

Then we can see from (5.12)-(5.14) that 〈R(uk), ψ〉 is controlled by ε for any k ≥ K and ψ ∈ C∞(Ω̄),
i.e.,

lim
k→∞
〈R(u∗k), ψ〉 = 0 ∀ ψ ∈ C∞(Ω̄). (5.15)

This gives the first convergence in (5.8) by the density of C∞(Ω̄) in H1(Ω).

Remark 5.3. One may see from the second estimate in (5.14) that for a fixed l,

lim
k→∞

ηk(u
∗
k, p
∗
k, q
∗
k, f, ua, z, T +

l ) = 0. (5.16)

This observation will be used in the subsequent proof of Theorem 5.2.

Lemma 5.3 yields a important direct consequence. Indeed, we know from (4.14) that for any
φ ∈ H1(Ω) and v ∈ H1(Ω),

〈R(u∗∞), φ〉 := (f, φ) + (γua, φ)Γa − (q∗∞, φ)Γi − a(u∗∞, φ) = lim
k→∞
〈R(u∗k), φ〉 ,

〈R(p∗∞), v〉 := (u∗∞ − z, v)Γa − a(p∗∞, v) = lim
k→∞
〈R(p∗k), v〉 .

Then the application of Lemma 5.3 leads readily to the following results about the vanishing residuals
associated with u∗∞(q∗∞) and p∗∞(q∗∞).

Lemma 5.4. The solution of the problem (4.11)-(4.13) satisfies

〈R(u∗∞), φ〉 = 0 and 〈R(p∗∞), φ〉 = 0 ∀ φ ∈ H1(Ω). (5.17)

To continue our analysis, we now introduce two auxiliary continuous problems:
Find u(q∗∞) ∈ H1(Ω) and p(q∗∞) ∈ H1(Ω) such that

a(u(q∗∞), φ) = (f, φ) + (γua, φ)Γa − (q∗∞, φ)Γi ∀ φ ∈ H1(Ω) , (5.18)

a(p(q∗∞), v) = (u(q∗∞)− z, v)Γa ∀ v ∈ H1(Ω). (5.19)
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Lemma 5.5. For the solution (u∗∞, p
∗
∞, q

∗
∞) of the problem (4.11)-(4.13) and the solutions u(q∗∞),

p(q∗∞) of the problems (5.18) and (5.19), there hold that

u∗∞ = u(q∗∞) and p∗∞ = p(q∗∞) in H1(Ω). (5.20)

Proof. The Poincaré inequality, (5.18) and Lemma 5.4 yield that

C‖u(q∗∞)− u∗∞‖1 ≤ sup
‖φ‖1=1

a(u(q∗∞)− u∗∞, φ) = sup
‖φ‖1=1

〈R(u∗∞), φ〉 = 0,

so the first equality is proved. Then the second equality in (5.20) follows from the first result, (5.19)
and the following estimates:

C‖p(q∗∞)− p∗∞(q∗∞)‖1 ≤ sup
‖v‖1=1

a(p(q∗∞)− p∗∞, v) = sup
‖v‖1=1

{
(u(q∗∞)− z, v)Γa − a(p∗∞, v)

}
= sup
‖v‖1=1

{
(u∗∞(q∗∞)− z, v)Γa − a(p∗∞, v)

}
= sup
‖v‖1=1

〈R(p∗∞), v〉 = 0.

Now we are ready to present the first main result in this paper.

Theorem 5.1. Let (u∗, p∗, q∗) be the solution of the problem (2.5)-(2.7). Then Algorithm 3.1 produces
a sequence of discrete solutions (u∗k, p

∗
k, q
∗
k) which converge to (u∗, p∗, q∗) in the following sense

lim
k→∞

‖u∗ − u∗k‖1 = 0, lim
k→∞

‖p∗ − p∗k‖1 = 0, lim
k→∞

‖q∗ − q∗k‖0,Γi = 0. (5.21)

Proof. We first show q∗ = q∗∞, which, together with Theorem 4.2, leads to the third convergence. By
means of the definition of Q∞ in section 4, the trace theorem and the density of

⋃
k≥0 Vk in V∞, it is

not difficult to get p∗∞|Γi ∈ Q∞. Then there exists a sequence {pk} ⊂
⋃
k≥0 Vk such that pk → p∗∞ in

H1(Ω), which, together with the trace theorem, allows

pk|Γi → p∗∞|Γi in L2(Γi).

Thus we have from (2.7) and (4.13) that

βq∗ = p∗, βq∗∞ = p∗∞ on Γi. (5.22)

On the other hand, we deduce from (2.5)-(2.6) and (5.18)-(5.19) that

a(u(q∗∞)− u∗, φ) = (q∗ − q∗∞, φ)Γi ∀ φ ∈ H1(Ω), (5.23)

a(p(q∗∞)− p∗, v) = (u(q∗∞)− u∗, v)Γa ∀ v ∈ H1(Ω). (5.24)

By taking φ = p(q∗∞)− p∗ and v = u(q∗∞)− u∗ respectively in (5.23) and (5.24), we derive

‖u(q∗∞)− u∗‖20,Γa
= (q∗ − q∗∞, p(q∗∞)− p∗)Γi .

With (5.22), we are further led to

β‖q∗ − q∗∞‖20,Γi
+ ‖u(q∗∞)− u∗‖20,Γa

= (q∗ − q∗∞, βq∗ − βq∗∞ + p(q∗∞)− p∗)Γi

=(q∗ − q∗∞, p(q∗∞)− p∗∞)Γi ≤ ‖q∗ − q∗∞‖0,Γi‖p(q∗∞)− p∗∞‖0,Γi , (5.25)

which, together with the second equality in (5.20), implies

‖q∗ − q∗∞‖0,Γi ≤ β−1‖p(q∗∞)− p∗∞‖0,Γi ≤ Cβ−1‖p(q∗∞)− p∗∞‖1 = 0.
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So the last convergence in (5.21) holds thanks to Theorem 4.2. Moreover, it follows directly from
(5.23) that

u(q∗∞) = u∗ in H1(Ω). (5.26)

Now the first convergence in (4.14) and the first equality in (5.20) yield the first result in (5.21), i.e.,
u∗k → u∗∞ = u∗ in H1(Ω) as k →∞. Similarly, we can show using (5.24) and (5.26) that p(q∗∞) = p∗ in
H1(Ω), then the desired second convergence in (5.20) follows from Theorem 4.2 and Lemma 5.5.

With the help of Theorem 5.1 and the local efficiency (3.2), we are ready to establish the second
main result of this paper.

Theorem 5.2. The sequence {ηk(u∗k, p∗k, q∗k, f, ua, z)} of the estimators generated by Algorithm 3.1
converges to zero.

Proof. We split the estimator for k ≥ l as in the proof of Lemma 5.3 that

η2
k(u
∗
k, p
∗
k, q
∗
k, f, ua, z) = η2

k(u
∗
k, p
∗
k, q
∗
k, f, ua, z, Tk \ T +

l ) + η2
k(u
∗
k, p
∗
k, q
∗
k, f, ua, z, T +

l ). (5.27)

It follows from (2.10)-(2.11) and the strong convergence of {q∗k} that ‖u∗k‖1, ‖p∗k‖1 and ‖q∗k‖0,Γi are all
uniformly bounded above by a constant Cstab. Summing up the lower bound (3.2) over all elements
in Tk \ T +

l , we obtain

η2
k(u
∗
k, p
∗
k, q
∗
k, f, ua, z, Tk \ T +

l ) ≤ C
∑

T∈Tk\T +
l

(
‖u∗ − u∗k‖20,ωT

+ ‖p∗ − p∗k‖20,ωT
+ ‖q∗ − q∗k‖20,∂T∩Γi

+ osc2
k(f, ωT ) + osc2

k(u
∗
k, q
∗
k, ∂T ) + osc2

h(p∗k, u
∗
k, ∂T )

)
≤ C

(
‖u∗ − u∗k‖21 + ‖p∗ − p∗h‖20 + ‖q∗ − q∗h‖20,Γi

+ max
T∈Tk\T +

l

hT (‖f‖20 + ‖ua‖20,Γi
+ ‖z‖20,Γa

+ ‖u∗k‖21 + ‖p∗k‖21 + ‖q∗k‖20,Γi
)
)
,

≤ C
(
‖u∗ − u∗k‖21 + ‖p∗ − p∗h‖20 + ‖q∗ − q∗h‖20,Γi

+ max
T∈Tk\T +

l

hT (‖f‖20 + ‖ua‖20,Γi
+ ‖z‖20,Γa

+ C2
stab)

)
,

where we used the facts that f̄T , J̄F,1 and J̄F,2 are the best L2-projections onto constant spaces
and hF ≤ ChT for any F ∈ ∂T ∩ Fh(Γ). To complete the proof, we recall that maxT∈Tk\T +

l
hT ≤

‖hl‖∞,Ω0
l
→ 0 as l → ∞ by Lemma 5.1 and the monotonicity of hk, and the convergences in (5.21)

and (5.16), hence we can require two terms in (5.27) to be smaller than any given positive number
once we fix a large l and choose k sufficiently large.

5.3 Generalizations to other marking strategies

In this section we shall extend the convergence results of Algorithm 3.1 established in the previous
section 5.2 to the cases when the marking criterion (3.3) in Algorithm 3.1 is replaced by three other
popular marking strategies, i.e., the equidistribution strategy, the modified equidistribution strategy
and the practical Dörfler strategy.

By carefully reviewing the previous analysis, it is not difficult to discover that Theorems 4.1-4.2
and Lemmas 5.1-5.2 are all independent of any specific marking strategy, and the maximum strategy
(3.3) is only used in the proof of Lemma 5.3 for the condition

max
T∈Tk\Mk

ηT,k(u
∗
k, p
∗
k, q
∗
k, f, ua, z) ≤ max

T∈Mk

ηT,k(u
∗
k, p
∗
k, q
∗
k, f, ua, z) (5.28)

to hold. Therefore, it suffices for us to check whether this condition (5.28) is satisfied also by the
aforementioned three strategies.
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The equidistribution strategy. Given a parameter θ ∈ [0, 1] and a tolerance TOL, this strategy
selects a subset Mk of all such elements T ∈ Tk to mark, which satisfies

η
T,k

(u∗k, p
∗
k, q
∗
k, f, ua, z) ≥ θTOL/

√
|Tk|. (5.29)

In practice, if ηk(u
∗
k, p
∗
k, q
∗
k, f, ua, z) ≤ TOL, the adaptive algorithm is terminated. It is easy to

verify that whenever ηk(u
∗
k, p
∗
k, q
∗
k, f, ua, z) > TOL the element with the maximal error indicator is

always included in Mk according to (5.29). Hence, (5.28) holds for the equidistribution strategy.
Then arguing as in Theorem 5.2 for the case of the maximum strategy, we have the following similar
conclusion.

Theorem 5.3. Let (u∗, p∗, q∗) be the solution of the problem (2.5)-(2.7) and {(u∗k, p∗k, q∗k)} be a
sequence of discrete solutions produced by Algorithm 3.1 with (5.29) in place of (3.3) in the module
MARK. Then for a given tolerance TOL, the following inequality holds after a finite number of
iterations:

ηk(u
∗
k, p
∗
k, q
∗
k, f, ua, z) ≤ TOL . (5.30)

The modified equidistribution strategy. Given a parameter θ ∈ [0, 1], this strategy selects a
subset Mk of all such elements T ∈ Tk to mark, which satisfies

η
T,k

(u∗k, p
∗
k, q
∗
k, f, ua, z) ≥ θηk(u∗k, p∗k, q∗k, f, ua, z)/

√
|Tk|. (5.31)

With this marking strategy, the convergence results (5.21) and Theorem 5.2 still hold true for Algo-
rithm 3.1 since we may easily observe that the modified equidistribution strategy satisfies (5.28).

The practical Dörfler strategy. Given a parameter θ ∈ (0, 1], this strategy marks a subset Mk

of elements in Tk that satisfy

ηk(u
∗
k, p
∗
k, q
∗
k, f, ua, z,Mk) ≥ θηk(u∗k, p∗k, q∗k, f, ua, z), (5.32)

min
T∈Mk

ηT,k(u
∗
k, p
∗
k, q
∗
k, f, ua, z) ≥ max

T∈Tk\Mk

ηT,k(u
∗
k, p
∗
k, q
∗
k, f, ua, z). (5.33)

We can easily verify that (5.33) ensures the condition (5.28), so the convergence results (5.21) and
Theorem 5.2 still follow.

Concluding remarks

We have investigated a new adaptive finite element method for distributed flux reconstruction
proposed recently in [24]. It has been demonstrated that as the algorithm proceeds the adaptive
sequence of the discrete triplets generated by the algorithm converges to the true flux in L2-norm,
the true state and costate variables in H1-norm and the relevant sequence of estimators also has
a vanishing limit. The latter guarantees that the adaptive algorithm may stop within any given
tolerance after a finite number of iterations. For the sake of convenience, convergence results are
established in the case of the maximum strategy in the module MARK and then extended to other
more practical marking strategies.

In the course of the convergence analysis, we have employed some techniques from nonlinear
optimizations to derive an important auxiliary result: the sequence of adaptive triplets generated by
the algorithm converges strongly to some limiting triplet. We believe there exist similar results for
other inverse problems in terms of output least-squares formulations with PDE constraints, so may
follow the same line to study their related AFEMs.

The convergence theory developed here may be extended to some nonlinear inverse problems
such as the reconstruction of the Robin coefficient on an inaccessible part of the boundary from some
accessible boundary measurement data on the basis of an adaptive finite element method.
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