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SUBSTRUCTURING PRECONDITIONERS
FOR SADDLE-POINT PROBLEMS

ARISING FROM MAXWELL’S EQUATIONS
IN THREE DIMENSIONS

QIYA HU AND JUN ZOU

Abstract. This paper is concerned with the saddle-point problems arising
from edge element discretizations of Maxwell’s equations in a general three
dimensional nonconvex polyhedral domain. A new augmented technique is
first introduced to transform the problems into equivalent augmented saddle-
point systems so that they can be solved by some existing preconditioned
iterative methods. Then some substructuring preconditioners are proposed,
with very simple coarse solvers, for the augmented saddle-point systems. With
the preconditioners, the condition numbers of the preconditioned systems are
nearly optimal; namely, they grow only as the logarithm of the ratio between
the subdomain diameter and the finite element mesh size.

1. Introduction

In the numerical simulation of electromagnetic models, one needs to repeatedly
solve the following system [8], [9], [11], [14], [25], [29], [30]:{

curl(α curl u) + γ0βu = f in Ω,
div(βu) = g in Ω,

(1.1)

with the following boundary condition:

(1.2) u× n = 0 on ∂Ω.

Here Ω is an open, simply connected and Lipschiz domain in R3, and n is the unit
outward normal vector on ∂Ω. The source functions f ∈ L2(Ω)3 and g ∈ L2(Ω)
satisfy the compatibility condition γ0 g = ∇ · f . The coefficients α(x) and β(x) are
two positive bounded functions in Ω. In applications, we have α(x)/β(x) = c(x)
with c(x) being the velocity of light. The constant γ0 is nonnegative, i.e., γ0 ≥ 0,
and it is allowed to be identically zero. It is this extreme case that causes the most
troublesome technical difficulty to be dealt with in the paper.
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For the numerical solution of the system (1.1)-(1.2), the edge finite element
methods have been widely used in recent years; see, for example, [8], [9], [21]. It
is important to note that the algebraic systems arising from the discretization by
the edge element methods are very different from the ones arising from the dis-
cretization by the standard nodal finite element methods. Thus the construction
of the nonoverlapping domain decomposition preconditioners for the nodal element
systems, which has been well developed for the second order elliptic problems in the
past two decades (see the survey article [32]), does not work for the edge element
discretization of the equations (1.1)-(1.2) in general, especially in three dimen-
sions. Recently, there has been a rapidly growing interest in domain decomposition
methods for solving Maxwell’s equations. A substructuring domain decomposition
method was discussed in [30] for Maxwell’s equations in two dimensions, and an
overlapping Schwarz method was studied in [13] and [29] for Maxwell’s equations in
three dimensions. Also, a nonoverlapping domain decomposition method with two
subdomains was proposed in [2] for Maxwell’s equations in three dimensions. To
our knowledge, there exists no work in the literature, which studies nonoverlapping
domain decomposition methods for Maxwell’s equations in three dimensions for the
case with general multiple subdomains. This paper intends to make an initial effort
in this direction, and certainly there are still many problems which remain open.
As we shall see, for the three-dimensional case with multiple nonoverlapping sub-
domains, not only the construction of the coarse subspace but also the estimates
of the condition numbers of the preconditioned systems are much more difficult
and technical than in the two-dimensional case or the three dimensional case with
overlapping subdomains.

We will propose an efficient substructuring preconditioner for the saddle-point
system arising from the edge element discretizations of the problem (1.1)-(1.2). The
most difficult technical issue here lies in the following observation: in the saddle-
point system, the block stiffness matrix corresponding to the operator curl(αcurl ·)
for the prime variable u is singular when γ0 = 0 in (1.1); in fact, it is positive
semi-definite. How to construct an efficient preconditioner for such saddle-point
systems is still an open problem. To overcome this difficulty, we shall first transform
the saddle-point system into another equivalent saddle-point problem whose block
stiffness matrix corresponding to the prime variable u is positive definite. The
corresponding Schur complement matrix of the saddle-point system can be well
preconditioned by some substructuring preconditioners. It will be shown that the
resulting preconditioned system has a nearly optimal condition number; namely, it
grows only as the logarithm of the ratio between the subdomain diameter and the
finite element mesh size.

The outline of the paper is as follows. In Section 2, we describe the edge element
discretization of the system (1.1)-(1.2) and introduce some basic formulae and defi-
nitions. The construction of nonoverlapping domain decomposition preconditioners
and the main results of the paper are discussed in Section 3. Section 4 presents a
series of auxiliary lemmata, which will be used to deal with the technical difficulties
in the estimates of the condition numbers in Section 5.

2. Edge element discretization and domain decomposition

This section is devoted to the introduction of the edge element discretization of
the system (1.1)-(1.2) and the nonoverlapping domain decomposition.
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2.1. Edge element discretization. The primary goal of this paper is to study
the edge element discretization of the equations (1.1)-(1.2) and then to solve the re-
sulting discrete system by a preconditioned iterative Uzawa method with a nonover-
lapping domain decomposition preconditioner. First, we shall state the weak for-
mulation of the equations. For this, we need the Sobolev space H(curl; Ω), a space
with all square integrable functions whose curl’s are also square integrable in Ω.
To cope with the boundary condition (1.2), we introduce the following subspaces
of H(curl; Ω):

H0(curl; Ω) =
{

v ∈ H(curl; Ω); v × n = 0 on ∂Ω
}
.

Now, by introducing a Lagrange multiplier p and integration by parts we derive
the following variational saddle-point problem associated with the system (1.1)-
(1.2):

Find (u, p) ∈ H0(curl; Ω)×H1
0 (Ω) such that

(2.1)

{
(αcurl u, curl v) + γ0(βu,v) + (∇p, βv) = (f ,v), ∀v ∈ H0(curl; Ω),
(βu,∇q) = (g, q), ∀q ∈ H1

0 (Ω).

Here and in what follows, (·, ·) denotes the scalar product in L2(Ω) or L2(Ω)3.
Next, we introduce the domain decomposition and the triangulation of the do-

main Ω, and then we discuss the edge element discretization of the saddle-point
problem (2.1).

Domain decomposition. We first decompose Ω into N nonoverlapping tetra-
hedral subdomains {Ωi}Ni , with each Ωi of size d (see [4] and [32]). The faces and
vertices of the subdomains will be denoted by f and v, respectively. The com-
mon face of the subdomains Ωi and Ωj is denoted by Γij . Also, Γ =

⋃
Γij , and

Γi = Γ∩ ∂Ωi. Γ will be called the interface. For definiteness, a unique unit normal
direction n is assigned on each face f of Γ, and this normal vector is used whenever
a unit normal direction is involved on any face in the subsequent analysis.

Finite element triangulation. We further divide each Ωi into smaller tetra-
hedral elements of size h so that elements from two neighboring subdomains have
an intersection which is either empty or a single nodal point or an edge or a face
on the interface Γ. Let Th be the resulting triangulation of the domain Ω, which
we assume is quasi-uniform. By Eh and Nh we denote the set of edges of Th and
the set of nodes in Th, respectively. Then the Nédélec edge element space, of the
lowest order, is a subspace of piecewise linear polynomials defined on Th (cf. [12]
and [22]):

Vh(Ω) =
{

v ∈ H0(curl; Ω); v |K∈ R(K), ∀K ∈ Th
}
,

where R(K) is a subset of all linear polynomials on the element K of the form:

R(K) =
{

a + b× x; a,b ∈ R3, x ∈ K
}
.

It is well known that for any v ∈ Vh(Ω), its tangential components are continuous
on all edges of each element in the triangulation Th. Moreover, each edge element
function v in Vh(Ω) is uniquely determined by its moments on each edge e of Th:{

λe(v) =
∫
e

v · teds; e ∈ Eh
}

where te denotes the unit vector on the edge e.
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Let {Le; e ∈ Eh} be the edge element basis functions of Vh(Ω) satisfying

λe′ (Le) =

{
1, if e′ = e ,

0, if e′ 6= e.

Then each function v in Vh(Ω) can be expressed as

v(x) =
∑
e∈Eh

λe(v)Le(x), x ∈ Ω.

By Zh(Ω) we denote the continuous piecewise linear finite element subspace of
H1

0 (Ω) associated with the triangulation Th. Then the saddle-point system (2.1)
may be approximated by the finite element problem: Find (uh, ph) ∈ Vh(Ω)×Zh(Ω)
such that
(2.2){

(αcurl uh, curl vh) + γ0(βuh,vh) + (∇ph, βvh) = (f ,vh), ∀vh ∈ Vh(Ω),
(βuh,∇qh) = (g, qh), ∀qh ∈ Zh(Ω).

2.2. Some edge element spaces and discrete operators. Before formulating
the domain decomposition preconditioner to be used for solving the system (2.2),
we introduce some useful notations and discrete operators.

Let G be either the entire interface Γ or the local interface Γi or a face f of
Γi. We shall frequently use the restrictions of the tangential components of the
functions in Vh(Ω) on G:

Vh(G) =
{
ψ ∈ L2(G)3; ψ = v × n on G for some v ∈ Vh(Ω)

}
.

The restrictions of Vh(Ω) on each subdomain Ωi is denoted by Vh(Ωi). The following
local subspaces of Vh(Ωi) and Vh(f) will be important to our analysis:

V 0
h (Ωi) =

{
v ∈ Vh(Ωi); v × n = 0 on Γi

}
,

V 0
h (f) =

{
Φ = v × n ∈ Vh(f); λe(v) = 0, ∀ e ⊂ ∂f ∩ Eh

}
.

The natural restriction operator from Vh(Γ) onto Vh(G) and the natural zero
extension operator from Vh(G) into L2(Γ)3 will be denoted as IG and ItG, respec-
tively. For a face f, it is easy to see that It

f
v ∈ Vh(Γ) if and only if v ∈ V 0

h (f), and
IG and ItG satisfy

〈IGΨ,Φ〉G = 〈Ψ, ItGΦ〉 ∀Ψ ∈ Vh(Γ), Φ ∈ Vh(G).

Here and hereafter, 〈·, ·〉G stands for the L2-inner product in L2(G) or L2(G)3, and
we will drop the subscript G when G = Γ. For simplicity, we shall often write
Itij = ItΓij .

For any face f of Ωi, we use fb to denote the union of all Th-induced (closed)
triangles on f, which have either one single vertex or one edge lying on ∂f, and f∂

to denote the open set f\fb; see Figure 1. For any subdomain Ωi, define

∆i =
⋃

f⊂Γi

fb, i = 1, · · · , N.

From now on, the notation e, with e ⊂ G ⊂ Γi, always means that e is an edge
of Th and lies on G.
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Figure 1. Face f, its boundary subset fb (union of white trian-
gles) and its interior subset f∂ (union of shaded triangles)

By definition, for any Φ ∈ Vh(Γi), there exists a v ∈ Vh(Ωi) such that Φ = v×n
on Γi. Thus we can write

(2.3) Φ(x) =
∑
e⊂Γi

λe(v)(Le × n)(x), x ∈ Γi.

Furthermore, for an open face f ⊂ Γi, we define an operator I0
f∂

: Vh(Γi) →
It
f
V 0
h (f) by

(2.4) (I0
f∂

Φ)(x) =
∑
e⊂f∂

λe(v)(Le × n)(x), x ∈ Γi,

and an operator I0
fb

by

(I0
fb

Φ)(x) =
∑
e⊂fb

λe(v) It
f
(Le × n)(x), x ∈ Γi.

Similarly, we define for any x ∈ Γi,

I0
f
Φ(x) =

∑
e⊂f

λe(v)It
f
(Le × n)(x); I0

∆i
Φ(x) =

∑
e⊂∆i

λe(v)(Le × n)(x) .

Though our main focus in this paper is on the edge element spaces, we shall
also make use of some nodal element spaces in the subsequent analyses. As defined
earlier, Zh(Ω) is the continuous piecewise linear finite element space of H1

0 (Ω)
associated with Th. The restrictions of Zh(Ω) on Γ and Γi, in each subdomain Ωi
and on each face f will be denoted by Zh(Γ), Zh(Γi), Zh(Ωi) and Zh(f), respectively.
The operator It

f
: Zh(f)→ L2(Γ) denotes the natural zero extension from f onto Γ.

For a subset G of Γi, we define a “local” subspace

Z0
h(G) = {v ∈ Zh(Γi); v = 0 at all nodes on Γi\G}.

For any open face f ⊂ Γi, the operators I0
f

: Zh(Γi) → Z0
h(f) and I0

∂f
: Zh(Γi) →

Z0
h(∂f) denote the following restriction operators:

I0
Gwh(xi) =

{
wh(xi), xi ∈ G ∩ Nh
0, xi ∈ (Γi \G) ∩ Nh

for G = f or ∂f and any wh ∈ Zh(Γi).
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We end this section with the introduction of two frequently used extension oper-
ators. With each subdomain Ωi, we define the local operator Ai : Vh(Ωi)→ Vh(Ωi)
by

(Aiu,v) = (αcurl u, curl v)Ωi + (αu,v)Ωi , ∀u, v ∈ Vh(Ωi) (i = 1, 2, · · · , N).

The first is the discrete Ai-extension operator Ri
h : Vh(Γi) → Vh(Ωi) defined as

follows: For any Φ ∈ Vh(Γi), Ri
hΦ satisfies Ri

hΦ× n = Φ on Γi and solves

(AiRi
hΦ,vh) = 0, ∀vh ∈ V 0

h (Ωi).

The second is the discrete harmonic extension operator Rih : Zh(Γi) → Zh(Ωi)
defined as follows: For any wh ∈ Zh(Γi), Rihwh ∈ Zh(Ωi) satisfies Rihw = wh on Γi
and solves

(∇Rihwh,∇vh) = 0, ∀ vh ∈ Zh(Ωi) ∩H1
0 (Ωi) .

3. Nonoverlapping domain decomposition methods

This section addresses how to solve the saddle-point problem (2.2) effectively.
For convenience, we introduce two operators Ā : Vh(Ω)→ Vh(Ω) and B : Zh(Ω)→
Vh(Ω) by

(Āuh,vh) = (αcurl uh, curl vh), ∀uh,vh ∈ Vh(Ω) ,
(Bph,vh) = (∇ph, βvh), ∀ ph ∈ Zh(Ω),vh ∈ Vh(Ω).

The dual operator Bt : Vh(Ω)→ Zh(Ω) of B can be defined by

(Btuh, qh) = (βuh,∇qh), ∀qh ∈ Zh(Ω).

Let f̄h ∈ Vh(Ω) and gh ∈ Zh(Ω) be the L2-projections of f and g. Then, the system
(2.2) can be written as{

(Ā+ γ0 β I)uh +Bph = f̄h,
Btuh = gh.

(3.1)

In recent years, there has been increasing interest in solving saddle-point prob-
lems like (3.1) by iterative methods; see, for example, [5], [6], [17], and [24]. But
the most existing methods require the stiffness matrix corresponding to the primal
variable uh above to be nonsingular, so they cannot be applied to solve the saddle-
point system (3.1) with γ0 = 0, as the operator Ā is singular in the space Vh(Ω).
To overcome this difficulty, we shall introduce another saddle-point system which
has the same solution as problem (3.1) when γ0 = 0, but which can be solved by
existing preconditioned iterative methods.

3.1. Augmented saddle-point system and Uzawa iterative methods. Let
Ĉ : Zh(Ω) → Zh(Ω) be symmetric and positive definite and chosen as a precondi-
tioner for the discrete Laplace operator on Zh(Ω). Define

A =
{
Ā+ γ0 β I if γ0 6= 0,
Ā+ r0BĈ

−1Bt if γ0 = 0 ,
fh =

{
f̄h if γ0 6= 0,
f̄h + r0BĈ

−1gh if γ0 = 0 ,

where r0 is some positive constant. One of the possible choices for r0 is the average
value of c(x) = α(x)/β(x).
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Clearly, the system (3.1) has the same solution as the augmented saddle-point
problem: {

Auh +Bph = fh,
Btuh = gh.

(3.2)

Let Â be a preconditioner for A. Since the operator A is symmetric and positive
definite, the system (3.2) can be solved by many existing iterative methods. Below
is a recently developed Uzawa-type algorithm with variable relaxation parameters
(see [17] and [18]):

Step 1. Choose a parameter ωi and compute

ui+1
h = uih + ωiÂ

−1[fh − (Auih +Bpih)].

Step 2. Choose a parameter τi and compute

pi+1
h = pih + τiĈ

−1(Btui+1
h − gh).

Remark 3.1. Some choices of the parameters ωi and τi are given in [17] and [18] to
ensure the convergence of the algorithm. Note the fact that

fh −Auih = f̄h − Āuih − r0B[Ĉ−1(Btuih − gh)]

in the case of γ0 = 0, so the value Ĉ−1(Btuih − gh) computed in Step 2 of the i-th
iteration can be used in Step 1 of the (i+ 1)-th iteration. That is, the newly added
term r0BĈ

−1Bt in the augmented saddle-point system (3.2) does not create any
extra cost in the above Uzawa algorithm as the action of Ĉ−1 is needed only once
at each iteration.

The convergence rate of the above Uzawa algorithm is completely determined
by the condition numbers κ(Â−1A) and κ(Ĉ−1BtÂ−1B); see [17] and [18] for the
detailed analyses. In the following we will construct an efficient preconditioner Â
which makes these two condition numbers to be nearly optimal.

3.2. Construction of the preconditioner Â. In the sequel, we shall frequently
use the notation <∼ and =∼ . For any two nonnegative quantities x and y, x <∼ y

means that x ≤ Cy for some constant C independent of mesh size h, subdomain
size d and the related parameters; x =∼ y means x <∼ y and y <∼ x.

The proofs of all results in this section will be given in Section 5.
Let Ã : Vh(Ω)→ Vh(Ω) be an operator defined by

(Ãu,v) = (αcurl u, curl v) + (αu,v), u,v ∈ Vh(Ω) .

Theorem 3.1. Let G(·) ≥ 1 be some given function, and let the operator Ĉ satisfy

(3.3) (β∇φ,∇φ) <∼ (Ĉφ, φ) <∼ G(d/h)(β∇φ,∇φ), ∀φ ∈ Zh(Ω) .

Then we have
1

G(d/h)
(Ãvh,vh) <∼ (Avh,vh) <∼ (Ãvh,vh), ∀vh ∈ Vh(Ω) .

With this theorem, it suffices to construct a preconditioner for Ã instead of A.
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We first define two subspaces of Vh(Ω):

V p(Ω) =
{

v ∈ Vh(Ω); v × n = 0 on Γ
}

=
N∏
k=1

V 0
h (Ωk),

V H(Ω) =
{

v ∈ Vh(Ω); v is the discrete Ai-extension of v|∂Ωi in each Ωi
}
.

Obviously, Vh(Ω) has the orthogonal decomposition with respect to the inner prod-
uct (Ã·, ·):
(3.4) Vh(Ω) = V p(Ω)⊕ V H(Ω).

Furthermore, we define two subspaces of V H(Ω):

V ij(Ω) =
{

v ∈ V H(Ω); supp(v) ⊂ Ωij = Ωi ∪ Ωj ∪ Γij
}
,

V 0(Ω) =
{

v ∈ V H(Ω); λe(v) = 0 for each e ∈ f∂ with f ⊂ Γ
}
.

The subspace V 0(Ω) is called the coarse subspace. The introduction of such a
coarse subspace is based on the following consideration: for any vh ∈ Vh(Ω), its
tangential components are continuous on all cross-edges, namely, the edges which
are shared by more than two fine elements (in the two-dimensional case, the tan-
gential components have no definitions at the cross-points), but the moments on
the cross-edges are not sufficient to determine the values of the tangential trace
vh × n on these edges.

It is easy to see that the space Vh(Ω) has the (nondirect sum) decomposition

(3.5) Vh(Ω) = V p(Ω)⊕ (V 0(Ω) +
∑
Γij

V ij(Ω)).

Next, we define the corresponding solvers on the subspaces V p(Ω), V 0(Ω) and
V ij(Ω).

Let Âp : V p(Ω)→ V p(Ω) and Âij : V ij(Ω)→ V ij(Ω) be symmetric and positive
definite operators such that

(Âpv,v) =∼
N∑
k=1

(Akvk,vk)Ωk , ∀v ∈ V p(Ω),

where vk = v|Ωk for k = 1, 2, · · · , N and

(Âijv,v) =∼ (Aivi,vi)Ωi + (Ajvj ,vj)Ωj , ∀v ∈ V ij(Ω).

The global coarse solvers should be solvable in an efficient way on V 0(Ω), and
their constructions are much more tricky and technical than the local solvers. To
do so, we introduce the so-called tangential divergence divτ Φ of any Φ ∈ Vh(Γi),
as done in [1] and [2].

For ease of notation, we assume that α(x) = αi for x ∈ Ωi, with αi being
constants.

Then we define the coarse solver Â0 : V 0(Ω)→ V 0(Ω) as follows:

(Â0v,w) = h[1 + log(d/h)]

×
N∑
i=1

αi

{
〈divτ (v × n)|Γi , divτ (w × n)|Γi〉∆i + 〈v × n,w × n〉∆i

}
.
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Let Qp : V p(Ω) → V p(Ω), Q0 : Vh(Ω) → V 0(Ω) and Qij : Vh(Ω) → V ij(Ω)
denote the L2-projections. The preconditioner for Â can be defined as follows:

(3.6) Â−1 = Â−1
p Qp + Â−1

0 Q0 +
∑
Γij

Â−1
ij Qij .

For this preconditioner, we have

Theorem 3.2. The condition number of the preconditioned system can be estimated
by

(3.7) cond(Â−1A) <∼ G(d/h)[1 + log(d/h)]2.

Remark 3.2. It is known that divτ (Le × n)|Γi vanishes for any interior edge e of
Ωi. Moreover, we have divτ (Le × n)|Γi = (curl Le) · n|Γi for each e ⊂ Γi. Thus,
the entries of the stiffness matrix of Â0 are of the form:

h[1 + log(d/h)]
N∑
i=1

αi

{
〈(curl Le) · n, (curl Le′) · n〉∆i + 〈Le × n, Le′ × n〉∆i

}
,

e, e′ ∈
⋃
f⊂Γ

fb.

The coarse solver Â0 involves computations only on ∆i, a very small fraction of the
interface Γ. Also, Â0 is rather simple in comparison with coarse solvers in many
existing substructuring preconditioners for standard elliptic problems, where some
optimizations are involved [4], [32]. The preconditioner Â can be implemented as
in [4] and [32].

For the preconditioned Schur complement, we have

Theorem 3.3. The condition number of the preconditioned Schur complement sys-
tem can be estimated by

(3.8) cond(Ĉ−1BtÂ−1B) <∼ G(d/h)[1 + log(d/h)]2.

Remark 3.3. When Ĉ is chosen as the usual multigrid preconditioner, we have
G(d/h) = 1; when Ĉ is chosen as the substructuring preconditioner (see [4], [32]),
we have G(d/h) = [1 + log(d/h)]2.

4. Some auxiliary lemmata

As we shall see, the proof of Theorem 3.2, namely, the estimate of the condition
number for the preconditioned system, is very technical. This section presents some
basic properties of Sobolev spaces and some auxiliary lemmata, which will be used
to deal with the technical difficulties in the proof of Theorem 3.2.

4.1. Helmholz decomposition and edge element interpolation. Denote by
H(curl; Ωi) the restriction of H0(curl; Ω) on the subdomain Ωi. It is known that
the spaces H0(curl; Ω) and H(curl; Ωi) can be decomposed into (see [12])

H0(curl; Ω) = ∇H1
0 (Ω)⊕H⊥0 (curl; Ω) ,(4.1)

H(curl; Ωi) = ∇H1(Ωi)⊕H⊥(curl; Ωi),(4.2)

where

H⊥0 (curl; Ω) = {v ∈ H0(curl; Ω) : div v = 0},
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H⊥(curl; Ωi) = {v ∈ H(curl; Ωi) : div v = 0,v · n = 0 on Γi}.
It follows from (Theorem 4.3, [2]) thatH⊥0 (curl; Ω) ⊂ Hδ(Ω)3 for some 1/2 < δ < 1,
and

(4.3) ‖v‖δ,Ω <∼ ‖curl v‖0,Ω, ∀v ∈ H⊥0 (curl; Ω).

Since Ωi is a convex polyhedron, H⊥(curl; Ωi) ⊂ H1(Ωi)3 (see [12]). Moreover, we
have

(4.4) d−2‖v‖0,Ωi + |v|1,Ωi <∼ ‖curl v‖0,Ωi , ∀v ∈ H⊥(curl; Ωi).

Here and in what follows, for any given domain D and each integer m ≥ 0 we
use Hm(D) to denote the standard Sobolev space of real functions with their weak
derivatives of order up to m in the Lebesgue space L2(D), and we use ‖ · ‖m,D and
| · |m,D to denote its norm and semi-norm. For a fractional number s, the Sobolev
space Hs(Ω) is defined by the standard interpolation theory.

For a vh ∈ Vh(Ω), using (4.1) and (4.3) we can decompose vh as follows:

(4.5) vh = ∇p⊕w in Ω

where w ∈ H⊥0 (curl; Ω) ∩Hδ(Ω)3 for some δ > 1
2 and p ∈ H1

0 (Ω) solves

(∇p,∇q) = (vh,∇q), ∀q ∈ H1
0 (Ω) .

Similarly, for a vh ∈ Vh(Ωi), it follows from (4.2) and (4.4) that

(4.6) vh = ∇p⊕w in Ωi

where w ∈ H⊥(curl; Ωi) ∩H1(Ωi)3, and p ∈ H1(Ωi) solves

(∇p,∇q)Ωi = (vh,∇q)Ωi , ∀q ∈ H1(Ωi).

Next, we present some interpolation results related to the finite element space
Vh(Ω). We know from [3] (Lemma 4.7) that for any v ∈ Hδ(Ω) with curl v ∈
Lp(Ω)3 (δ > 1

2 and p > 2) we can define its interpolant rh v in Vh(Ω) by the
relation

λe(rhv) =
∫
e

v · teds, ∀ e ∈ Eh .

Lemma 4.1 can be found in [9]:

Lemma 4.1. Assume that w and curl w are both in Hδ(Ωi) for some δ > 1
2 .

Then,

(4.7) ‖rhw−w‖0,Ωi + ‖curl(rhw −w)‖0,Ωi <∼ h
δ(‖w‖δ,Ωi + ‖curl w‖δ,Ωi).

Lemma 4.2. For any vh ∈ Vh(Ω) which satisfies

(4.8) (βvh,∇qh) = 0, ∀qh ∈ Zh(Ω) ,

we have

(4.9) ‖β 1
2 vh‖0,Ω <∼ ‖β

1
2 curl vh‖0,Ω.

Proof. Let w ∈ H⊥0 (curl; Ω) be defined by (4.5). Then, we have (see [12])

(4.10) vh = rh∇p+ rhw = ∇ph + rhw,

with ph ∈ Zh(Ω). Since (βvh,∇ph) = 0, we infer from (4.10) that

‖β 1
2∇ph‖0,Ω ≤ ‖β

1
2 rhw‖0,Ω.
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This, together with (4.10), leads to

‖β 1
2 vh‖0,Ω ≤ ‖β 1

2∇ph‖0,Ω + ‖β 1
2 rhw‖0,Ω

<∼ ‖β 1
2 rhw‖0,Ω ≤ ‖β

1
2 w‖0,Ω + ‖β 1

2 (rhw −w)‖0,Ω.(4.11)

It follows from (4.3) that

(4.12) ‖β 1
2 w‖0,Ω <∼ ‖β

1
2 curl w‖0,Ω = ‖β 1

2 curl vh‖0,Ω.

On the other hand, following the proof of Lemma 3.2 in [9], we derive

‖β 1
2 (rhw −w)‖0,K <∼ h

δ(‖β 1
2 w‖Hδ(K) + ‖β 1

2 curl w‖Hδ(K))

<∼ ‖β
1
2 curlvh‖0,K , ∀K ∈ Th,

where we have also used (4.3) and the inverse inequality. This with (4.11) gives the
desired result. �

Lemma 4.3. For any vh ∈ Vh(Ωi), let w be defined as in (4.6). Then

(4.13) ‖rhw−w‖0,Ωi <∼ h‖curl vh‖0,Ωi .

Proof. For any element K ∈ Th, let x = FK x̂ = BK x̂ + bK be the affine mapping
between K and the reference element K̂. In K̂, define

ŵ = BtKw ◦ FK , v̂h = BtKvh ◦ FK .

Let r̂h be the interpolant on the reference element K̂. One can show that (cf. [9])

(4.14) ‖r̂hŵ − ŵ‖0,K̂ <∼ (‖ŵ‖2
δ,K̂

+ ‖ĉurl ŵ‖2
δ,K̂

)
1
2 .

Since ĉurl ŵ = ĉurl v̂h, we have

(4.15) ‖r̂hŵ − ŵ‖0,K̂ <∼ (‖ŵ‖2
1,K̂

+ ‖ĉurl v̂h‖20,K̂)
1
2 .

As the interpolation operator r̂h preserves constants, it follows by (4.15) that

‖r̂hŵ − ŵ‖0,K̂ <∼ (|ŵ|2
1,K̂

+ ‖ĉurl v̂h‖20,K̂)
1
2 .

Now, by the standard scaling technique we obtain

‖rhw−w‖20,K <∼ h‖r̂hŵ − ŵ‖2
0,K̂

<∼ h(|ŵ|2
1,K̂

+ ‖ĉurl v̂h‖20,K̂)
<∼ h2(|w|21,K + ‖curl vh‖20,K),

which, together with (4.4), immediately gives the desired result. �

Lemma 4.4. For any vh ∈ Vh(Ωi), let w be defined by (4.6) and let ph ∈ Zh(Ωi)
be defined by

(4.16) vh = rh(∇p⊕w) = ∇ph + rhw in Ωi.

Then we have

(4.17) |ph|1,Ωi <∼ ‖vh‖0,Ωi + max{h, d2} ‖curl vh‖0,Ωi .
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Proof. We know from (4.15) that for any K ∈ Th,

‖r̂hŵ‖20,K̂ <∼ ‖ŵ‖
2
1,K̂

+ ‖ĉurl v̂h‖20,K̂ .

Therefore, we have

‖rhw‖20,K <∼ h ‖r̂hŵ‖
2
0,K̂

<∼ h
2 ‖curl vh‖20,K + h2 |w|21,K + ‖w‖20,K ,

which with (4.4) leads to

‖rhw‖20,Ωi <∼ h2 ‖curl vh‖20,Ωi + h2 |w|21,Ωi + ‖w‖20,Ωi
<∼ max{h2, d4} ‖curl vh‖20,Ωi .

The desired estimate now follows from this and the triangle inequality

‖∇ph‖0,Ωi ≤ ‖vh‖0,Ωi + ‖rhw‖0,Ωi . �

4.2. Some scaled norms and their estimates. A large part of the condition
number estimates in Section 5 will be carried out on the subdomains, for which we
need some scaled norms. For the space H1(Ωi)3, we define a scaled norm by

‖v‖1,Ωi =
{
|v|21,Ωi + d−2‖v‖20,Ωi

} 1
2
, ∀v ∈ H1(Ωi)3,

while for the space H(curl; Ωi), we define its scaled norm by

‖u‖curl;Ωi =
{
‖curl u‖20,Ωi + d−2‖u‖20,Ωi

} 1
2

and for each λ ∈ H− 1
2 (Γi), we define

‖λ‖− 1
2 ,Γi

= sup
v∈H

1
2 (Γi)

〈λ, v〉Γi
‖v‖ 1

2 ,Γi

where
‖v‖ 1

2 ,Γi
= (|v|21

2 ,Γi
+ d−1‖v‖20,Γi)

1
2 .

The same notation will be used for the norms in the space H−
1
2 (Γi)3.

For any Φ ∈ Vh(Γi), recall that divτ Φ is the tangential divergence of Φ. We
know that divτ Φ ∈ H− 1

2 (Γi) (cf. [1], [2]). This leads to the following important
norm:

‖Φ‖XΓi
= d−1‖Φ‖− 1

2 ,Γi
+ ‖ divτ Φ‖− 1

2 ,Γi
.

The following two results about the norm ‖ · ‖XΓi
can be found in [1], [2] (using

the standard dilation from the reference domain):

Lemma 4.5. Let u ∈ Vh(Ωi), which satisfies u× n = Φ on Γi. Then

(4.18) ‖Φ‖XΓi
<∼ ‖u‖curl;Ωi .

Lemma 4.6. The discrete Ai-extension Ri
hΦ ∈ Vh(Ωi) satisfies

(4.19) ‖Ri
hΦ‖0,Ωi + ‖curl(Ri

hΦ)‖0,Ωi <∼ ‖Φ‖XΓi
.

The following results can be found in [10], while the factors dα are derived by
the standard scaling argument:
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Lemma 4.7. For any v ∈ H(curl; Ωi)∩H(div; Ωi), if v× n or v ·n is in L2(Γi),
then

|v| 1
2 ,Ωi

<∼ d
− 1

2 ‖v‖0,Ωi + d
1
2 ‖ div v‖0,Ωi + d

1
2 ‖curl v‖0,Ωi + ‖v · n‖0,Γi ,(4.20)

‖v · n‖0,Γi <∼ d
− 1

2 ‖v‖0,Ωi + d
1
2 ‖ div v‖0,Ωi + d

1
2 ‖curl v‖0,Ωi + ‖v × n‖0,Γi .

(4.21)

For any Φ ∈ Vh(Γi), let ω(Φ) ∈ H1(Ωi) be the weak solution of the problem

(4.22)


4ω(Φ) = 0 in Ωi,
∂ω(Φ)
∂n = − divτ Φ on Γi,∫

Ωi
ω(Φ)dx = 0.

Consider the equations

(4.23)


curl curl q(Φ)−∇div q(Φ) = ∇ω(Φ) in Ωi,
n× curl q(Φ) = Φ on Γi,
q(Φ) · n = 0 on Γi.

Lemma 4.8. Let q(Φ) ∈ H(curl; Ωi) be the solution of the equation (4.23), and
let w̃(Φ) = curl q(Φ). Then we have (1) n× w̃(Φ) = Φ on Γi; (2) w̃(Φ), curl w̃ ∈
H

1
2 +δ(Ωi) for some δ∈ [0, 1

2 ); (3)curl w̃(Φ)·n=− divτ Φ on Γi; (4)curl curl w̃(Φ)
= 0; (5) div w̃(Φ) = 0; and

‖w̃(Φ)‖0,Ωi <∼ ‖Φ‖− 1
2 ,Γi

+ d‖ divτ Φ‖− 1
2 ,Γi

,(4.24)

‖curl w̃(Φ)‖0,Ωi <∼ ‖ divτ Φ‖− 1
2 ,Γi

.(4.25)

Proof. The inferences (1) and (5) are obvious. It is shown in [1] that div q(Φ) = 0
and

‖∇ω(Φ)‖0,Ωi <∼ ‖ divτ Φ‖− 1
2 ,Γi

,

and so by (4.22) and (4.23) we obtain (3), (4) and (4.25). Since Φ|Γi ∈ Hδ(Γi)3

and divτ (Φ|Γi) ∈ Hδ(Γi) for any δ ∈ [0, 1
2 ), the inference (2) follows by (1), (3) and

Theorem 4.4 in [2]. Finally for (4.24), using (4.23) and Green’s formulas, we have
(note that div q(Φ) = 0)

‖curl q(Φ)‖20,Ωi = (∇ω(Φ),q(Φ))Ωi − 〈Φ,q(Φ)〉Γi .
Now (4.24) follows from the Cauchy-Schwarz inequality and (4.4). �

Lemma 4.9 plays a key role in the construction of our coarse solver.

Lemma 4.9. For any Φ ∈ Vh(Γi) satisfying

(4.26) ‖Φ‖− 1
2 ,Γi

+ ‖ divτ Φ‖− 1
2 ,Γi

<∼ h
1
2 [1 + log(d/h)]

1
2 (‖Φ‖0,Γi + ‖ divτ Φ‖0,Γi) ,

we have

(4.27) ‖Ri
hΦ‖0,Ωi +‖curl Ri

hΦ‖0,Ωi <∼ h
1
2 [1 + log(d/h)]

1
2 (‖Φ‖0,Γi +‖ divτ Φ‖0,Γi).

Proof. Let w̃(Φ) ∈ Hδ(Ωi), also with curl w̃ ∈ Hδ(Ωi) for some δ > 1
2 , be defined

as in Lemma 4.8. It follows from Lemma 4.8(1) that rhw̃(Φ) × n = Φ on Γi. By
the minimum energy property of the discrete Ai-extension, we have

‖Ri
hΦ‖0,Ωi + ‖curl(Ri

hΦ)‖0,Ωi ≤ ‖rhw̃(Φ)‖0,Ωi + ‖curl(rhw̃(Φ))‖0,Ωi .
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It suffices to prove
(4.28)
‖rhw̃(Φ)‖0,Ωi + ‖curl(rhw̃(Φ))‖0,Ωi <∼ h

1
2 [1 + log(d/h)]

1
2 (‖Φ‖0,Γi + ‖ divτ Φ‖0,Γi).

By (4.2), w̃(Φ) can be decomposed as follows:

(4.29) w̃(Φ) = ∇p(Φ)⊕w(Φ), w(Φ) ∈ H⊥(curl; Ωi)

with p(Φ) satisfying the equations (cf. Lemma 4.8(5))
4p(Φ) = div w̃(Φ) = 0 in Ωi,
∂p(Φ)
∂n = w̃(Φ) · n on Γi,∫

Ωi
p(Φ)dx = 0.

We have by Lemma 4.1 that

‖rhw(Φ)−w(Φ)‖0,Ωi + ‖curl(rhw(Φ)−w(Φ))‖0,Ωi <∼ h
1
2 ‖curl w(Φ)‖ 1

2 ,Ωi
.

This implies

‖rhw(Φ)‖0,Ωi + ‖curl(rhw(Φ))‖0,Ωi
<∼ ‖w(Φ)‖0,Ωi + ‖curl w(Φ)‖0,Ωi + h

1
2 ‖curl w(Φ)‖ 1

2 ,Ωi
.(4.30)

Using (4.29), we see that

‖w(Φ)‖0,Ωi + ‖curl w(Φ)‖0,Ωi ≤ ‖w̃(Φ)‖0,Ωi + ‖curl w̃(Φ)‖0,Ωi ,
which, together with (4.25) and (4.24), yields

(4.31) ‖w(Φ)‖0,Ωi + ‖curl w(Φ)‖0,Ωi <∼ ‖Φ‖− 1
2 ,Γi

+ ‖ divτ Φ‖− 1
2 ,Γi

.

By (4.20), (4.29) and Lemma 4.8[(4),(3)], we derive

‖curl w(Φ)‖ 1
2 ,Ωi

= ‖curl w̃(Φ)‖0,Ωi + |curl w̃(Φ)| 1
2 ,Ωi

<∼ d−
1
2 ‖curl w̃(Φ)‖0,Ωi + ‖curl w̃(Φ) · n‖0,Γi

<∼ d−
1
2 ‖ divτ Φ‖− 1

2 ,Γi
+ ‖ divτ Φ‖0,Γi.

Substituting this inequality and (4.31) into (4.30), gives

‖rhw(Φ)‖0,Ωi +‖curl(rhw(Φ))‖0,Ωi <∼ ‖Φ‖− 1
2 ,Γi

+‖ divτ Φ‖− 1
2 ,Γi

+h
1
2 ‖ divτ Φ‖0,Γi.

This, together with (4.26), leads to
(4.32)
‖rhw(Φ)‖0,Ωi + ‖curl(rhw(Φ))‖0,Ωi <∼ h

1
2 [1 + log(d/h)]

1
2 (‖Φ‖0,Γi + ‖ divτ Φ‖0,Γi).

On the other hand, it follows by Lemma 4.8(2) that (w̃(Φ) · n)|Γi ∈ Hδ(Γi).
Thus, from the definition of p(Φ) we infer that p(Φ) ∈ H

3
2 +δ(Ωi) and ∇p(Φ) ∈

H
1
2 +δ(curl; Ωi). Let πh : C(Ωi) → Zh(Ωi) be the nodal interpolation operator

associated with Th. Then, rh(∇p(Φ)) = ∇(πhp(Φ)), and so

‖rh(∇p(Φ))−∇p(Φ)‖0,Ωi <∼ h
1
2 ‖p(Φ)‖ 3

2 ,Ωi

<∼ h
1
2 (‖4p(Φ)‖0,Ωi + ‖∂p(Φ)

∂n
‖0,Γi) = h

1
2 ‖w̃(Φ) · n‖0,Γi .

Hence,

(4.33) ‖rh(∇p(Φ))‖0,Ωi <∼ ‖∇p(Φ)‖0,Ωi + h
1
2 ‖w̃(Φ) · n‖0,Γi .
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By (4.29) and (4.24), we have

(4.34) ‖∇p(Φ)‖0,Ωi ≤ ‖w̃(Φ)‖0,Ωi <∼ ‖Φ‖− 1
2 ,Γi

+ ‖ divτ Φ‖− 1
2 ,Γi

.

Then it follows by (4.21), Lemma 4.8[(5),(1)] and (4.24)-(4.25) that

‖w̃(Φ) · n‖0,Γi <∼ d−
1
2 ‖w̃(Φ)‖0,Ωi + d

1
2 ‖curl w̃(Φ)‖0,Ωi + ‖w̃(Φ)× n‖0,Γi

<∼ d−
1
2 (‖Φ‖− 1

2 ,Γi
+ ‖ divτ Φ‖− 1

2 ,Γi
) + ‖Φ‖0,Γi .

Plugging this and (4.34) into (4.33) and using (4.26) yield

‖rh(∇p(Φ))‖0,Ωi <∼ h
1
2 [1 + log(d/h)]

1
2 (‖Φ‖0,Γi + ‖ divτ Φ‖0,Γi).

This, together with (4.29), (4.32) and the fact that curl(rh∇p(Φ)) = 0, gives
(4.28). �

4.3. Some estimates with the norms ‖ · ‖1/2,Γi, ‖ · ‖−1/2,Γi and ‖ · ‖∗,Fb. This
section summarizes the results which will be used in the condition number estimates
in Section 5. Detailed proofs are omitted here but can be found in [19] and [20].

For any subdomain Ωi, by Wi we denote the set of the edges of Ωi, which also
belong to at least two other local interfaces Γj , j 6= i. For any given subset G of
Γi and a function ϕ ∈ L2(G), we use γ

G
(ϕ) to denote the average value of ϕ on G.

For any ϕ ∈ Zh(Γi), we define πi0ϕ ∈ Zh(Γi) as follows:

(4.35) πi0ϕ(x) =

{
ϕ(x), for x ∈ Wi ∩Nh,
γ

f
(ϕ), for x ∈ f ∩ Nh (f ⊂ Γi).

It is easy to see that It
f
(ϕ− πi0ϕ) = I0

f
(ϕ− γf(ϕ)) for any f ⊂ Γi, and we have

Lemma 4.10. For any ϕ ∈ Zh(Γi) and any f ⊂ Γi, we have (cf. [4] [32] [19])

‖ϕ‖0,∂f
<∼ [1 + log(d/h)]

1
2 ‖ϕ‖ 1

2 ,Γi
,(4.36)

‖I0
f
ϕ‖ 1

2 ,Γi
<∼ [1 + log(d/h)]‖ϕ‖ 1

2 ,Γi
,(4.37)

|I0
∂f
ϕ| 1

2 ,f
<∼ [1 + log(d/h)]

1
2 ‖ϕ‖ 1

2 ,Γi
,(4.38)

|It
f
(ϕ− πi0ϕ)| 1

2 ,Γi
<∼ [1 + log(d/h)]|ϕ| 1

2 ,Γi
.(4.39)

For any face f of Γi, we introduce a quantity (not a norm) on fb as follows:

‖Φ‖∗, fb =
{∑
e∈fb

‖v‖20,e
} 1

2
, ∀Φ = (v × n)|Γi ∈ Vh(Γi).

Lemma 4.11. Let f be a given face of Ωi. Then for any vh ∈ Zh(Ωi)3 we have

(4.40) ‖vh × n‖∗, fb <∼ [1 + log(d/h)]
1
2 ‖vh‖ 1

2 ,Γi
,

while for any vh ∈ Vh(Ωi) with w defined as in (4.6) we have

‖(rhw)× n‖∗, fb <∼ [1 + log(d/h)]
1
2 ‖curl vh‖0,Ωi ,(4.41)

d−2‖rhw‖20,Ωi <∼ [1 + log(d/h)]|‖curl vh‖20,Ωi .(4.42)
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Lemma 4.12. For any Φ ∈ Vh(Γi) and any face f of Γi, we have (cf. [2] [19])

‖Φ‖0,Γi <∼ h−
1
2 ‖Φ‖− 1

2 ,Γi
, ‖I0

fb
Φ‖0,f <∼ h

1
2 ‖Φ‖∗, fb ,(4.43)

‖I0
f∂

Φ‖− 1
2 ,Γi

<∼ [1 + log(d/h)]‖Φ‖− 1
2 ,Γi

+ h
1
2 ‖Φ‖∗, fb ,(4.44)

‖I0
fb

Φ‖− 1
2 ,f

<∼ h
1
2 [1 + log(d/h)]

1
2 ‖I0

fb
Φ‖0,f.(4.45)

Lemma 4.13. Let ϕ ∈ L2(Γi) be piecewise constant with respect to the Th-induced
triangulation Th,i on Γi. Then we have ‖ϕ‖0,Γi <∼ h

− 1
2 ‖ϕ‖− 1

2 ,Γi
.

Lemma 4.14. For any Φ = v × n ∈ Vh(Γi), we have

(4.46) ‖ divτ (I0
f
Φ)‖− 1

2 ,Γi
<∼ [1 + log(d/h)]‖ divτ Φ‖− 1

2 ,Γi
+ [1 + log(d/h)]

1
2 ‖Φ‖∗,fb ,

while for any v0 ∈ V 0(Ω), let Φi0 = (v0 × n)|Γi ∈ Vh(Γi). Then we have

(4.47) ‖Φi0‖− 1
2 ,Γi

+‖ divτ Φi0‖− 1
2 ,Γi

<∼ h
1
2 [1+log(d/h)]

1
2 (‖Φi0‖0,Γi+‖ divτ Φi0‖0,Γi).

The estimate in the following lemma indicates that the norm ‖I0
f
Φ‖XΓi

cannot
be bounded by ‖Φ‖XΓi

only (compare with the estimate (4.37)).

Lemma 4.15. Let w and vh be the same as specified in Lemma 4.3, and let Φ =
rhw × n on Γi. Then, for any face f ⊂ Γi we have

(4.48) ‖I0
f∂

Φ‖XΓi
<∼ [1 + log(d/h)](‖Φ‖XΓi

+ ‖curl vh‖0,Ωi).

We end this section with some relation between the edge element space Vh(Ωi)
and the nodal element space Zh(Ωi):

Lemma 4.16. Let t be an edge of Ωi. For any q ∈ Zh(Ωi), if it vanishes on t, then
its gradient ∇q ∈ Vh(Ωi) and λe(∇q) = 0 for any fine edge e ⊂ Eh ∩ t.

5. Proofs of the main results

5.1. Proof of Theorem 3.1. For any vh ∈ Vh(Ω), we first decompose it as follows:

(5.1) vh = ∇qh ⊕wh,

where qh ∈ Zh(Ω) solves

(β∇qh,∇ψh) = (βvh,∇ψh), ∀ψh ∈ Zh(Ω)

and wh is orthogonal to ∇qh in the scalar product (β·, ·). By Cauchy-Schwarz
inequality,

(5.2) ‖β 1
2∇qh‖0,Ω ≤ ‖β

1
2 vh‖0,Ω.

Moreover, we apply Lemma 4.2 for wh to obtain

(5.3) ‖β 1
2 wh‖0,Ω <∼ ‖β

1
2 curl wh‖0,Ω = ‖β 1

2 curl vh‖0,Ω.

Let J : Zh(Ω)→ Zh(Ω) be the operator defined by

(5.4) (Jφh, ψh) = (β∇φh,∇ψh), ∀φ, ψ ∈ Zh(Ω).

Then, by the definitions of qh, Bt and J , we have

(β∇qh,∇qh) = (βvh,∇qh) = (Btvh, qh)
= (Jqh, J−1Btvh) = (β∇qh,∇(J−1Btvh))
= (βvh,∇(J−1Btvh)) = (Btvh, J−1Btvh).
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Therefore, we derive

(5.5) (BJ−1Btvh,vh) = (β∇qh,∇qh).

This, together with (5.2), leads to

(BJ−1Btvh,vh) ≤ (βvh,vh).

Now it follows from (3.3) that

(Avh,vh) <∼ (αcurl vh, curl vh) + r0(BJ−1Btvh,vh)
≤ (αcurl vh, curl vh) + r0(βvh,vh)
<∼ (Ãvh,vh).(5.6)

On the other hand, using (5.5), (5.3) and (3.3) yields

(αvh,vh) = r0(βvh,vh) = r0[(β∇qh,∇qh) + (βwh,wh)]
<∼ r0[(BJ−1Btvh,vh) + (βcurl vh, curl vh)]
<∼ max{1, G(d/h)}(Avh,vh) <∼ G(d/h)(Avh,vh),

and so
(Ãvh,vh) <∼ G(d/h)(Avh,vh).

This, together with (5.6), gives the desired result. �

5.2. Proof of Theorem 3.2. This subsection is devoted to the estimate of the
condition number of the preconditioned system Â−1A; see (3.7). The following
lemma reduces this task to the estimates of two positive constants C1 and C2. This
framework can be regarded as a variant of the additive Schwarz theory associated
with the space decomposition (3.5) (refer to [27] and [31]), and the proof is stan-
dard (cf. [15] and [28]). Here, we have used the orthogonality between V p(Ω) and
V H(Ω) = V 0(Ω) +

∑
Γij

V ij(Ω).

Lemma 5.1. Assume that the following two conditions hold:
(i) For any v ∈ V H(Ω) there is a decomposition

v = v0 +
∑
Γij

vij

with v0 ∈ V 0(Ω) and vij ∈ V ij(Ω), such that

(5.7) (Â0v0,v0) +
∑
Γij

(Âijvij ,vij) ≤ C1(Ãv,v).

(ii) For any w0 ∈ V 0(Ω) and wij ∈ V ij(Ω), we have

(5.8) (Ã(w0 +
∑
Γij

wij), w0 +
∑
Γij

wij) ≤ C2

{
(Â0w0,w0) +

∑
Γij

(Âijwij ,wij)
}
.

Then we have the following estimate

cond(Â−1Ã) ≤ C1C2.

By this lemma and Theorem 3.1, we obtain

cond(Â−1A) ≤ C1C2G(d/h).

For the proof of Theorem 3.2, it suffices to estimate the constants C1 and C2 in
Lemma 5.1.
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To do so, we first introduce some notation. For any vh ∈ V H(Ω), let vih = vh|Ωi .
From the discussions in Subsection 4.1, there exist pi ∈ H1(Ωi), pih ∈ Zh(Ωi) and
wi ∈ H1(Ωi)3 such that

vih = ∇pi ⊕wi ,(5.9)

vih = ∇pih + rhwi = ∇pih + wi
h(5.10)

with wi
h = rhwi ∈ Vh(Ωi). By (5.9) and (5.10), we know

(5.11) curl wi
h = curl wi = curl vih.

We are now ready to show Theorem 3.2 using Lemma 5.1 and to divide the proof
into four steps.

Step 1: Establish a suitable decomposition for vh ∈ V H(Ω).
We introduce pih0 ∈ Zh(Ωi) and wi

h0 ∈ Vh(Ωi) by

pih0 = Rihπ
i
0(pih|Γi), wi

h0 = Ri
hI

0
∆i

(wi
h × n)|Γi , i = 1, · · · , N.

Define
Φi0 = (∇pih0 + wi

h0)× n|Γi
and

Φ0 =
√
αi√

αi +√αj
Φi0 +

√
αj√

αi +√αj
Φj0 on Γij ⊂ Γ.

Set Φ = (vh × n)|Γ. It follows from Lemma 4.16 that (Φ0 − Φ)|Wi = 0 for every
i. Thus, Φ0 is defined uniquely on all the edges of the interface Γ. In particular,
Φ0 equals Φ on these edges. Define v0 ∈ V 0(Ω) such that v0|Ωi is the discrete
Ai-extension of Φ0|Γi . For each Γij ⊂ Γ define vij ∈ Vij(Ω), such that

(vij × n)|Γij = (vh − v0)× n|Γij .
It is easy to see that

vh = v0 +
∑
Γij

vij in Ω.

Step 2: Derive the estimate

(5.12) (Â0v0,v0) <∼ [1 + log(d/h)]2(Ãvh,vh).

We first estimate the term h[1 + log(d/h)]
N∑
i=1

αi‖ divτ (v0 × n)|Γi‖20,∆i
.

By Lemma 6.2 in the Appendix and by the triangle inequality, we obtain for
f = Γi ∩ Γj that

‖ divτ (v0 × n)|Γi‖0,fb <∼ ‖ divτ (vih × n)|Γi‖0,fb

+ ‖
√
αi√

αi +√αj
divτ I0

f∂
(wi

h × n)|Γi +
√
αi√

αi +√αj
divτ I0

f∂
(wj

h × n)|Γj‖0,fb

<∼ ‖ divτ (vih × n)|Γi‖0,Γi +
√
αi√

αi +√αj
‖ divτ I0

f∂
(wi

h × n)|Γi‖0,fb

+
√
αj√

αi +√αj
‖ divτ I0

f∂
(wj

h × n)|Γj‖0,fb .

(5.13)

By Lemma 4.13 and the inequality (2.11) in [1], we have

(5.14) ‖ divτ (vih × n)|Γi‖0,Γi <∼ h
− 1

2 ‖ divτ (vih × n)|Γi‖− 1
2 ,Γi

<∼ h
− 1

2 ‖curl vih‖0,Ωi .
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Moreover, similarly to the proof of Lemma 4.14 (see [19]), one can show

‖ divτ I0
f∂

(wi
h × n)|Γi‖0,fb <∼ h−

1
2 ‖wi

h × n‖∗,fb ,

‖ divτ I0
f∂

(wj
h × n)|Γi‖0,fb <∼ h−

1
2 ‖wj

h × n‖∗,fb .

Substituting these two estimates and (5.14) into (5.13) and using Lemma 4.11 lead
to

h‖ divτ (v0 × n)|Γi‖20,fb <∼ ‖curl vih‖20,Ωi

+ [1 + log(d/h)]
{( √

αi√
αi +√αj

)2

‖curl vih‖20,Ωi +
( √

αj√
αi +√αj

)2

‖curl vjh‖
2
0,Ωj

}
.

A similar estimate holds on Γj as well. Then using αi + αj < (
√
αi + √αj)2, we

derive

h
{
αi‖ divτ (v0 × n)|Γi‖20,fb + αj‖ divτ (v0 × n)|Γj‖20,fb

}
<∼ [1 + log(d/h)]

{
αi‖curl vih‖20,Ωi + αj‖curl vjh‖20,Ωj

}
.

This yields

h[1 + log(d/h)]
N∑
i=1

αi‖ divτ (v0 × n)|Γi‖20,∆i

(5.15)

= [1 + log(d/h)]
∑

Γij⊂Γ

h
{
αi‖ divτ (v0 × n)|Γi‖20,fb + αj‖ divτ (v0 × n)|Γj‖20,fb

}
<∼ [1 + log(d/h)]2

N∑
i=1

αi‖curl vih‖20,Ωi .

Next, we estimate the term h[1 + log(d/h)]
N∑
i=1

αi‖v0 × n‖20,∆i
.

From the definition of v0 and the triangle inequality, we have (f = Γij)

‖v0 × n‖0,fb <∼
√
αi√

αi +√αj
(‖∇pih0 × n‖0,fb + ‖wi

h0 × n‖0,fb)

+
√
αj√

αi +√αj
(‖∇pjh0 × n‖0,fb + ‖wj

h0 × n‖0,fb).(5.16)

By Lemma 6.2 (see the Appendix) and (4.36), we can deduce

‖∇pih0 × n‖0,fb <∼ h−
1
2 ‖pih − γf(pih)‖0,∂f

<∼ h−
1
2 [1 + log(d/h)]

1
2 ‖pih − γf(pih)‖ 1

2 ,Γi

<∼ h−
1
2 [1 + log(d/h)]

1
2 |pih| 12 ,Γi

<∼ h−
1
2 [1 + log(d/h)]

1
2 |pih|1,Ωi .(5.17)

Similarly, we have

(5.18) ‖∇pjh0 × n‖0,fb <∼ h
− 1

2 [1 + log(d/h)]
1
2 |pjh|1,Ωj .

On the other hand, it follows from (4.43) and Lemma 4.11 that

‖wi
h0 × n‖0,fb <∼ h

1
2 [1 + log(d/h)]

1
2 ‖curl vih‖0,Ωi
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and
‖wj

h0 × n‖0,fb <∼ h
1
2 [1 + log(d/h)]

1
2 ‖curl vjh‖0,Ωj .

Plugging these and (5.17) and (5.18) into (5.16) yields

‖v0 × n‖0,fb <∼ h−
1
2 [1 + log(d/h)]

1
2 [

√
αi√

αi +√αj
(|pih|1,Ωi + ‖curl vih‖0,Ωi)

+
√
αj√

αi +√αj
(|pjh|1,Ωj + ‖curl vjh‖0,Ωj )].

Thus (f = Γij),

h[1 + log(d/h)]
N∑
i=1

αi‖v0 × n‖20,∆i
= h[1 + log(d/h)]

∑
f⊂Γ

(αi + αj)‖v0 × n‖20,fb

<∼ [1 + log(d/h)]2

×
∑

Γij⊂Γ

[αi(|pih|1,Ωi + ‖curl vih‖0,Ωi) + αj(|pjh|1,Ωj + ‖curl vjh‖0,Ωj )]

= [1 + log(d/h)]2
N∑
i=1

αi(|pih|1,Ωi + ‖curl vih‖0,Ωi).

This, together with (5.15) and (4.17), leads to (5.12).
Step 3: Prove the estimate

(5.19)
∑
Γij

(Âijvij ,vij) <∼ [1 + log(d/h)]2(Ãvh,vh).

Since vih = vjh on Γij , we have

vh =
√
αi√

αi +√αj
vih +

√
αj√

αi +√αj
vjh on Γij .

Hence, vij on Γij can be written as

vij =
√
αi√

αi +√αj
∇(pih − pih0)× n +

√
αj√

αi +√αj
∇(pjh − p

j
h0)× n

+
√
αi√

αi +√αj
(wi

h −wi
h0)× n +

√
αj√

αi +√αj
(wj

h −wj
h0)× n.

Define

piij = RihItij
{ √

αi√
αi +√αj

(pih − pih0)|Γij +
√
αj√

αi +√αj
(pjh − p

j
h0)|Γij

}
∈ Zh(Ωi),

wi
ij = Ri

hI
t
ij

{ √
αi√

αi +√αj
(wi

h −wi
h0)× n|Γij +

√
αj√

αi +√αj
(wj

h −wj
h0)× n|Γij

}
∈ Vh(Ωi),

viij = ∇piij + wi
ij ∈ Vh(Ωi).

One can verify by Lemma 4.16 that

viij × n = vij × n on Γi.
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Thus, we obtain by the minimum curl-energy property of the discrete Ai-extension
that

(Ai(vij |Ωi),vij |Ωi)Ωi ≤ (Aiviij ,v
i
ij) = ‖α 1

2 curl wi
ij‖20,Ωi + ‖α 1

2 viij‖20,Ωi
<∼ αi(‖∇p

i
ij‖20,Ωi + ‖curl wi

ij‖20,Ωi + ‖wi
ij‖20,Ωi).

(5.20)

As pih0 = πi0(pih|Γi) on Γi, we have

Itij [(p
i
h − pih0)|Γij ] = I0

ij(p
i
h|Γi − πi0(pih|Γi)) .

Then using (4.39) and the trace theorem, we obtain

‖∇piij‖20,Ωi = |piij |21,Ωi <∼ |(p
i
ij |Γij )|21

2 ,Γi

<∼ |
√
αi√

αi +√αj
I0
ij(p

i
h|Γi − πi0(pih|Γi))|21

2 ,Γi
+ |

√
αj√

αi +√αj
I0
ij(p

j
h|Γj − π

j
0(pjh|Γj ))|212 ,Γj

<∼ [1 + log(d/h)]2
{( √

αi√
αi +√αj

)2

|pih|21
2 ,Γi

+
( √

αj√
αi +√αj

)2

|pjh|212 ,Γj
}

<∼ [1 + log(d/h)]2
{( √

αi√
αi +√αj

)2

|pih|21,Ωi +
( √

αj√
αi +√αj

)2

|pjh|
2
1,Ωj

}
.

(5.21)

We next estimate wi
ij . It follows by Lemma 4.6 that

‖curl wi
ij‖20,Ωi + ‖wi

ij‖20,Ωi <∼ ‖(w
i
ij × n)|Γi‖2XΓi

<∼ ‖
√
αi√

αi +√αj
Itij [(w

i
h −wi

h0)× n|Γij ]‖2XΓi

+ ‖
√
αj√

αi +√αj
Itij [(w

j
h −wj

h0)× n|Γij ]‖2XΓj
.(5.22)

For each (open) common face f = Γij shared by Ωi and Ωj , it follows from the
definitions of wi

h0 that

λe(wi
h −wi

h0) =
{

0, if e ⊂ fb,
λe(wi

h), if e ⊂ f∂ .

Then we derive by using Lemma 4.15 that

‖
√
αi√

αi +√αj
Itij [(w

i
h −wi

h0)× n|Γij ]‖2XΓi

= (
√
αi√

αi +√αj
)2‖I0

f∂
[(wi

h × n)|Γij ]‖2XΓi

<∼ [1 + log(d/h)]2(
√
αi√

αi +√αj
)2(‖wi

h × n‖2XΓi
+ ‖curl vih‖20,Ωi).

(5.23)

On the other hand, for the term wi
h × n we have by Lemma 4.5 and (5.9) that

‖wi
h × n‖2XΓi

<∼ ‖wi
h‖2curl;Ωi

= ‖curl wi
h‖20;Ωi + d−2‖wi

h‖20;Ωi

= ‖curl vih‖20;Ωi + d−2‖wi
h‖20;Ωi .
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Combining this with (5.23) and using Lemma 4.11 give

‖
√
αi√

αi +√αj
Itij [(w

i
h −wi

h0)× n|Γij ]‖2XΓi

<∼ [1 + log(d/h)]2(
√
αi√

αi +√αj
)2‖curl vih‖20,Ωi .

A similar estimate holds on Γj as well. Substituting these inequalities into (5.22)
yields

‖curl wi
ij‖20,Ωi + ‖wi

ij‖20,Ωi
<∼ [1 + log(d/h)]2[(

√
αi√

αi +√αj
)2‖curl vih‖20,Ωi + (

√
αj√

αi +√αj
)2‖curl vjh‖20,Ωj ].

With this estimate, (5.20) and (5.21), we come to

(Ai(vij |Ωi),vij |Ωi)Ωi

<∼ [1 + log(d/h)]2αi[(
√
αi√

αi +√αj
)2(|pih|21,Ωi + ‖curl vih‖20,Ωi)

+ (
√
αj√

αi +√αj
)2(|pjh|21,Ωj + ‖curl vjh‖20,Ωj )].

(5.24)

Similarly, we have

(Aj(vij |Ωj ),vij |Ωj )Ωj

<∼ [1 + log(d/h)]2αj [(
√
αi√

αi +√αj
)2(|pih|21,Ωi + ‖curl vih‖20,Ωi)

+ (
√
αj√

αi +√αj
)2(|pjh|21,Ωj + ‖curl vjh‖20,Ωj )].

Summing this inequality with (5.24) and noting that

αi + αj < (
√
αi +

√
αj)2,

we obtain

(Âijvij ,vij) <∼ [1 + log(d/h)]2[αi(|pih|21,Ωi + ‖curl vih‖20,Ωi)
+αj(|pjh|

2
1,Ωj + ‖curl vjh‖

2
0,Ωj )]

or

(5.25)
∑
Γij

(Âijvij ,vij) <∼ [1 + log(d/h)]2
N∑
i=1

αi(|pih|21,Ωi + ‖curl vih‖20,Ωi).

This, together with (4.17), implies∑
Γij

(Âijvij ,vij) <∼ [1 + log(d/h)]2
N∑
i=1

αi(‖curl vih‖20,Ωi + ‖vih‖20,Ωi)

= [1 + log(d/h)]2
N∑
i=1

(Aivih,v
i
h)Ωi

= [1 + log(d/h)]2(Ãvh,vh).

The estimates (5.12) and (5.19) indicate that the constant C1 in (5.7) can be
bounded by C[1 + log(d/h)]2.
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Step 4: Estimate the constant C2 in (5.8).
Using the triangle inequality, (4.47) and Lemma 4.9 yields

(Ã(w0 +
∑
Γij

wij), w0 +
∑
Γij

wij)

<∼ (Ãw0,w0) + (Ã
∑
Γij

wij ,
∑
Γij

wij)

<∼ (Â0w0,w0) +
N∑
k=1

(Ak(
∑
Γij

wij)|Ωk , (
∑
Γij

wij)|Ωk)Ωk .(5.26)

It is easy to see that
N∑
k=1

(Ak(
∑
Γij

wij)|Ωk , (
∑
Γij

wij)|Ωk)Ωk

=
N∑
k=1

∑
Γij

(Ak(wij |Ωk),
∑
Γij

(wij |Ωk))Ωk

<∼
N∑
k=1

∑
Γij⊂Γk

(Ak(wij |Ωk),wij |Ωk)Ωk .

As each face Γij is shared by only two subdomains Ωi and Ωj , we have

N∑
k=1

(Ak(
∑
Γij

wij)|Ωk , (
∑
Γij

wij)|Ωk)Ωk
<∼
∑
Γij

(Âijwij ,wij).

This, together with (5.26), indicates that the constant C2 in (5.8) is bounded by a
constant independent of h and d. �

5.3. Proof of Theorem 3.3. One can verify that (cf. [5])

(BtÃ−1Bq, q) = sup
v∈Vh(Ω)

(v, Bq)2

(Ãv,v)
, q ∈ Zh(Ω).

By the definitions of B, we have

(v, Bq) = r0(βv,∇q) =∼ (αv,∇q),

so we have

(5.27) (BtÃ−1Bq, q) =∼ sup
v∈Vh(Ω)

(αv,∇q)2

(Ãv,v)
, q ∈ Zh(Ω).

If we choose v = ∇q, then (Ãv,v) = (α∇q,∇q), and

(5.28) (BtÃ−1Bq, q) ≥ (α∇q,∇q)2

(α∇q,∇q) = ‖α 1
2∇q‖0,Ω.

On the other hand, by the Cauchy-Schwarz inequality and the definition of Ã we
obtain

(αv,∇q)2

(Ãv,v)
≤
‖α 1

2 v‖20,Ω · ‖α
1
2∇q‖20,Ω

‖α 1
2 v‖20,Ω

= ‖α 1
2∇q‖20,Ω, ∀v ∈ Vh(Ω).



58 QIYA HU AND JUN ZOU

Thus by (5.27) we have

(BtÃ−1Bq, q) <∼ ‖α
1
2∇q‖20,Ω.

This, together with (5.28), leads to

(BtÃ−1Bq, q) =∼ ‖α
1
2∇q‖20,Ω, ∀q ∈ Zh(Ω).

Therefore, we infer from (3.3) that

cond(Ĉ−1BtÃ−1B) <∼ G(d/h),

which, together with Theorem 3.2, yields (3.8). �

6. Appendix

Lemma 6.1. For any pih ∈ Zh(Ωi), let pih0 = Rihπ
i
0(pih|Γi) ∈ Zh(Ωi). We have

(6.1) ‖∇pih0 × n‖0,fb <∼ h
− 1

2 ‖pih − γf(pih)‖0,∂f, f ⊂ Γi.

Proof. Let G be a fine triangle in fb, and let Ai (i = 1, 2, 3) be the vertices of G.
Without loss of generality, we assume that A1, A2 ∈ ∂f. Let K be the element of
Ωi which has a face G, and let A4 ∈ Ωi be another vertex of K. Let λi(x, y, z)
denote the nodal basis function at the node Ai. Then

pih(x, y, z) =
4∑

k=1

pih(Ak)λk(x, y, x), ∀(x, y, z) ∈ K.

By the definition of pih0, we have

pih0 − γf(pih) =
2∑

k=1

(pih(Ak)− γf(pih))λk + â4λ4 on K.

It follows from Lemma 4.16 that ∇λ4 × n = 0 on G. Thus,

(6.2) ∇pih0 × n|G = ∇(pih0 − γf(pih))× n|G =
2∑

k=1

(pih(Ak)− γf(pih))∇λk × n|G.

It can be verified that

‖∇λk × n‖0,G <∼ 1, k = 1, 2,

which, together with (6.2), yields

‖∇pih0 × n‖0,G <∼
2∑

k=1

|pih(Ak)− γf(pih)|.

Summing this over all G ⊂ fb leads to

‖∇pih0 × n‖20,fb <∼
∑
A∈∂f

|pih(A)− γf(pih)|2 ,

where A denotes a node of the fine mesh on ∂f. Now, (6.1) follows from the
equivalence between the L2-norm and the discrete L2-norm on ∂f. �
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Lemma 6.2. Let v0 ∈ V 0(Ω) be defined as in subsection 5.2. Then we have the
identity

divτ (v0 × n)|Γi = divτ (vih × n)|Γi
−
∑
f⊂Γi

[
√
αi√

αi +√αj
divτ I0

f∂
(wi

h × n)|Γi +
√
αi√

αi +√αj
divτ I0

f∂
(wj

h × n)|Γj ].(6.3)

Proof. It is easy to see that

∇pih0 + wi
h0 = vih +∇(pih0 − pih) + wi

h0 −wi
h,

∇pjh0 + wj
h0 = vjh +∇(pjh0 − p

j
h) + wj

h0 −wj
h.

Let f = Γij . Then we have directly by the definition of v0 that

(v0 × n)|f =
√
αi√

αi +√αj
(vih × n)|f +

√
αj√

αi +√αj
(vjh × n)|f

+
√
αi√

αi +√αj
∇(pih0 − pih)× n|f +

√
αj√

αi +√αj
∇(pjh0 − p

j
h)× n|f

+
√
αi√

αi +√αj
(wi

h0 −wi
h)× n|f +

√
αj√

αi +√αj
(wj

h0 −wj
h)× n|f.(6.4)

But note that vih × n = vjh × n on f. Then
√
αi√

αi +√αj
(vih × n) +

√
αj√

αi +√αj
(vjh × n) = vih × n on f.

This implies

(6.5)
∑
f⊂Γi

It
f
[
√
αi√

αi +√αj
(vih × n)|f +

√
αj√

αi +√αj
(vjh × n)|f] = (vih × n)|Γi .

Again noting the fact that

(pih0 − pih)− (RihIt
f
(pih0 − pih)|f) = 0 on f ,

(pjh0 − p
j
h)− (RihIt

f
(pjh0 − p

j
h)|f) = 0 on f ,

we derive by Lemma 6.1 that
√
αi√

αi +√αj
∇(pih0 − pih)× n|f +

√
αj√

αi +√αj
∇(pjh0 − p

j
h)× n|f

=
√
αi√

αi +√αj
(∇RihIt

f
(pih0 − pih)|f)

× n|f +
√
αj√

αi +√αj
(∇RihIt

f
(pjh0 − p

j
h)|f)× n|f

=
[
∇RihIt

f

( √
αi√

αi +√αj
(pih0 − pih)|f +

√
αj√

αi +√αj
(pjh0 − p

j
h)|f

)]
× n|f.

Hence,

∑
f⊂Γi

It
f
[
√
αi√

αi +√αj
∇(pih0 − pih)× n|f +

√
αj√

αi +√αj
∇(pjh0 − p

j
h)× n|f]

= [∇Rih
∑
f⊂Γi

It
f
(

√
αi√

αi +√αj
(pih0 − pih)|f +

√
αj√

αi +√αj
(pjh0 − p

j
h)|f)]× n|Γi .

(6.6)
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In addition, it is easy to see that∑
f⊂Γi

It
f
[
√
αi√

αi +√αj
(wi

h0 −wi
h)× n|f +

√
αj√

αi +√αj
(wj

h0 −wj
h)× n|f]

= −
∑
f⊂Γi

[
√
αi√

αi +√αj
I0
f∂

(wi
h × n)|Γi +

√
αj√

αi +√αj
I0
f∂

(wj
h × n)|Γj ].

(6.7)

Summing (6.4) over f ⊂ Γi and using (6.5)-(6.7) yield

(v0 × n)|Γi =
∑
f⊂Γi

It
f
(v0 × n)|f = (vih × n)|Γi

+
[
∇Rih

∑
f⊂Γi

It
f

( √
αi√

αi +√αj
(pih0 − pih)|f +

√
αj√

αi +√αj
(pjh0 − p

j
h)|f

)]
× n|Γi

−
∑
f⊂Γi

[
√
αi√

αi +√αj
I0
f∂

(wi
h × n)|Γi +

√
αj√

αi +√αj
I0
f∂

(wj
h × n)|Γj ].

Now (6.3) follows from the fact that divτ (∇qh×n)|Γi = 0 for any qh ∈ Zh(Ωi). �
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