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An adaptive edge element method is designed to approximate a quasilinear H (curl)-
elliptic problem in magnetism, based on a residual-type a posteriori error estimator and
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verify the validity of the theoretical results.
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1. Introduction

We are interested in developing an adaptive finite element method (AFEM) for the
numerical solution of the following nonlinear saddle point system, which arises from
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the applications of ferromagnetic materials (see Refs. B (4, 28 and [42)):
V x (v(x,|Vxu|)Vxu)=Ff inQ,
V-u=g in(, (1.1)
uxn=0 onJdf.

In this setting, u denotes a three-dimensional magnetic vector potential field, 2 C
R3 is a bounded polyhedral domain with a connected boundary 9€, n is the outward
unit normal on 9€). Furthermore, the given source terms are f € L*(Q) satisfying
V- f =0and g € L?(Q), which is often set to be zero in practical applications.
The nonlinear reluctivity function v : Q x R — R is the inverse of the magnetic
permeability where R denotes the set of all nonnegative numbers. We would like
to mention that v represents the nonlinear relation between the magnetic induction
B and the magnetic field H. In particular, this nonlinearity plays an important
role in modeling of ferromagnetic materials (see Ref. 28). The precise mathematical
properties of v are stated in Sec.

Edge elements (Ref. 32) are widely used in numerical simulation of Maxwell’s
equations thanks to its H (curl)-conformity. There exist various numerical analyses
in literature on the linearized problem associated with (1)) (see Refs. [0l [T3HI5]).
More recently, a mathematical and numerical analysis was given in Ref. [42] for the
optimal control of the quasilinear system ([IIl). We should underline that, due to
reentrant corners on 02 and jumps of the nonlinear coefficient v across interfaces
of different media, local singularities are expected in the solution of (L) (see
Refs. and [I7). Consequently, in terms of computing efficiency and accuracy,
the classical uniform mesh refinement strategy is not efficient for solving (LI)). To
improve numerical resolutions, AFEMs provide a promising effective tool. Based
on an a posteriori error estimator, depending on the discrete solution, the mesh
size and the given data, AFEM aims at producing a sequence of solutions with
equidistributed error at minimum computational cost. Therefore, the interest of this
paper lies in adaptive finite element approximations of (IIl). Generally speaking,
a standard adaptive algorithm consists of the following successive loops:

SOLVE — ESTIMATE — MARK — REFINE. (1.2)

Here, SOLVE yields a finite element approximation on the current mesh; ESTI-
MATE measures the discretization error in some appropriate norm by a relevant a
posteriori estimator; MARK selects some elements of the mesh to be subdivided;
REFINE generates a finer new mesh by local refinement of all marked elements and
their neighbors for conformity.

Since the seminal work by Babugka and Rheinboldt? in 1978, intensive develop-
ments have been made in the theory of AFEM over the past four decades (see Refs.[Il
and and the references therein). For edge element discretization of Maxwell’s
equations, we refer to Refs. [0, 9 20 and The convergence of AFEM was
first studied in Ref. [5l for a two-point boundary value problem, then in Ref. 19 for
multi-dimensional problems. Over the past two decades, the theory of AFEM in
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terms of convergence and decay rate has been widely investigated, e.g., for stan-
dard second-order elliptic problems Refs. [8, BT, [33 and 37 and for Maxwell system
Refs. [T1], 10} 20l 25| B7 and 47l

Although the theory of AFEM has reached a mature level for linear problems,
the relevant study for nonlinear problems is still at an early stage. Existing works
closely related to our current topic may be found in Refs. [7, [I8, 22] 23] and [39 for
quasilinear elliptic problems of p-Laplacian and strongly monotone type.

This paper is concerned with AFEM for the quasilinear saddle point magneto-
static Maxwell system (II)). We propose a residual-type a posteriori error estimator
consisting of element and face residuals associated with the discrete system of (L)
on the basis of the lowest order edge elements of Nédélec’s first family?2 Com-
pared with existing works for nonlinear elliptic problems, the great difficulty in
the current a posteriori error analysis lies in the saddle point structure and the
nonlinear curl-curl operator in ([ILI)). With several crucial and delicate analytical
strategies, we are still able to establish both the reliability and efficiency of the esti-
mator (Theorems Bl and B2)) for this nonlinear Maxwell system. More specifically,
our basic analysis makes a full use of the nonlinear properties of the reluctivity
function v (cf. 2)—-@3H)), an equivalent norm on the admissible space (Remark
1) and the Schéberl quasi-interpolation operator®® (Lemma [31). An adaptive
algorithm of the form (2] is proposed and proved to ensure the H (curl)-strong
convergence of the adaptive discrete solutions towards the solution of (IIl) (Theo-
rem [5:2) and a vanishing limit of the sequence of error estimators (Theorem [G3).
Our convergence analysis relies on a limiting saddle point problem resulting from
adaptively generated edge element spaces; see (53). We show the H (curl)-strong
convergence of the adaptive discrete solutions towards the solution of the limit-
ing problem (Theorem [B.]). Then, with the help of some existing techniques, we
prove in Lemma that the limiting solution satisfies (IL1), which in turn yields
the desired H (curl)-strong convergence of the adaptive discrete solutions (Theo-
rem[0.2]). The convergence result for the sequence of error estimators (Theorem [(.3))
is the consequence of Theorem [5.2] and the efficiency of the estimator.

We would like to make a further remark now about our main analysis in this
work. We follow basically the general analytical strategy for elliptic problems, but
there are several essential technical differences here due to the saddle point struc-
ture and the nonlinearity of v. For linear/nonlinear elliptic operators, the relevant
limiting space required in the convergence of adaptive methods is a proper subspace
of the corresponding admissible space, e.g. H'(£2), many properties for the limiting
variational system are inherited automatically from the standard variational the-
ory, particularly, the unique solvability of the limiting problem. However, this is not
trivial for the current nonlinear saddle point Maxwell problem because the related
continuous space X (see Sec.[2) does not contain the limiting space X o, (see Sec.[D)
on which the coercivity is required. We shall resort to a Poincaré-type inequality
(E2) over X o to overcome the difficulty. Further, a general approach to establish
a Cea-type lemma, which may directly lead to an auxiliary strong convergence as
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stated in Theorem [B.Ilin the case of elliptic problems, now fails due to the diver-
gence constraint in (II). This key component is now achieved by making use of
some elegant techniques from mixed element methods.

The rest of this paper is organized as follows. In Sec. 2] we briefly describe the
variational formulation of (II]) and its discretization based on the lowest order edge
elements of Nédélec’s first family32 Section [is devoted to reliability and efficiency
of a residual-based a posteriori error estimator, with the help of which, we propose
an adaptive algorithm in Sec. @l The convergence analysis is conducted in Sec.
Finally, we present numerical results as an illustration of our theoretical findings in
Sec.

Throughout this paper, we adopt the standard notation for the Lebesgue space
L>(G) and Sobolev spaces W™ P(G) for real number m on an open bounded set
G C R3. Related norms and semi-norms of H™(G) (p = 2) as well as the norm
of L*°(G) are denoted by [ - |G, | - |m,c and || - [[L=(q), respectively. We use
(-,-)¢ to denote the L?(G) scalar product, and the subscript is omitted when G' =
Q). Moreover, we shall use C, with or without subscript, for a generic constant
independent of the mesh size, and it may take a different value at each occurrence.

2. Variational Formulation
We first introduce some Hilbert spaces, operators and assumptions, which are
required in the subsequent analysis:
H(curl) = {v e L*(0) |V x v € L*(0)},
H(curl) = {v € H(curl) | y:(v) = 0},
X = {v € Hy(curl)| (v,Vq) =0 VYqe Hi(Q)},

where the curl-operator is understood in the distributional sense, and -4
H (curl) — Hié(aQ) denotes the tangential trace (see Ref. [24]). We focus on the
standard mixed variational formulation for (I): Find (u,p) € Ho(curl) x Hi ()
such that

{(u(zm |V xu|)V xu,V xv)+ (v,Vp) =(f,v) Vve Hycurl),
(u, Vq) = —(g.9) Vg e Hj(Q).

Our numerical analysis relies on the following regularity assumptions for the nonlin-
ear reluctivity function v : ) XRg — R. We should underline that these assumptions

are physically reasonable and typically considered for the mathematical model of
ferromagnetic materials (cf. Refs. B} 4 and 28§)).

(2.1)

Assumption 2.1 (Regularity assumption for v : Q x Rj — R). (i) For every
s € R, the function v(-, s) : @ — R is measurable.

(ii) For almost all & € €, the function v(z,-) : Ry — R is continuous. For every
piecewise constant y € L*(Q), the function v(-,|y(-)|) : @ — R is piecewise
wiee,
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(iii) There exist positive constants v1 and v such that

lim v(x,s) = vy for almost all x € Q, (2.2)
§—00

v <v(x,s) <wvg foralmost all x € Q and all s >0, (2.3)
(v(x,s)s —v(x,t)t)(s —t) > vi|s —t|> Vs,t >0 and almost all € Q.
(2.4)
(iv) There exists a constant 7 € [v3, 00) such that
lv(x,s)s —v(x, )t <D|s—1t| Vs,t>0andalmost allx € Q. (2.5)
We shall often need an operator A : Ho(curl) — Ho(curl)* defined by
(Av, D) := (v(x,|V xv|)V x v,V x 9) Vov,0€ Hpy(curl).
As shown in Lemma 2.2 of Ref. [42] (24 and (23) imply that
(Av — Ad,v —B) > 11|V x (v —9)||2 Vv, € Hoy(curl), (2.6)
[(Av — A, w)| < L||V x (v = 9)||o|V x w|o Vv,0,we Hy(curl), (2.7)
with L = 214 + . Thus, by virtue of the Poincaré-type inequality (see Ref. 27)
[vllo <C|V xwv|p VovelX, (2.8)
(298 implies that A : Hg(curl) — Hy(curl)* is strongly monotone on X i.e.
(Av — Ad,v — B) > Crrllv — 3|3y (eury V0,8 € X, (2.9)

with a constant Cj; > 0 depending only on v; and 2. Moreover, it is well known
that the inf-sup condition

sup (v, Vq)

> Cllglh Vg€ Hy(Q) (2.10)
0#veH(curl) ||UHH(curl)

is satisfied with a constant C' > 0 depending only on €. As a consequence of (2.7]),
239) and ZI0), the problem (ZI)) admits a unique solution (Proposition 23 in
Ref. 34), and there exists a positive constant C, independent of u, f and g, such
that

We note that, since V - f = 0, inserting v = V¢ into the first equation of (1))
implies that the Lagrangian multiplier vanishes, i.e. p = 0.

Remark 2.1. A direct consequence of ([ZJ) is that |V x o is equivalent to
the graph norm on X. Noting that X and VH{(2) are L?-orthogonal and
Hy(curl) = X & VH}(Q) (see Ref. 27), we may define an alternative norm equiv-
alent to the graph one on Hy(curl), namely, (||V x v||2 + [|[v°||2)'/2, where v° is
the L?-projection of v on VHE(Q).
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Let us now consider the discrete approximation of the problem (ZTI). Let 7y be
a shape regular conforming triangulation of € into closed tetrahedra such that for
every piecewise constant function y over 7o, the function v(-,|y(-)]) : @ — R is
piecewise W12 over Ty, and T be the set of all possible conforming triangulations
obtained from 7y by successive bisections (see Refs. 29 and[33)). One key property of
the refinement process ensures that all constants depending on the shape regularity
of any T € T are uniformly bounded by a constant only depending on the initial
mesh 7o (see Refs. 33 and [38)). Then, for any 7 € T, we introduce the lowest order
edge elements of Nédélec’s first family=2

Vi ={ve Hy(curl) |v|r =ar +br xz ar,br e R*VYT € T}.

For the numerical treatment of the Lagrange multiplier, we also need the standard
piecewise linear finite element space ST C Hg (), for which we know the following
inclusion relation (Ref. 27):

VS C V. (2.11)

The discrete problem of (1)) is now formulated: Find (ur,pr) € V7 x S5 such

that
(v(z,|V X ur|)V xur,V xv7) + (v7, V1) = (f, 1) VoreVr,
(2.12)
(ur,Var) =—(9,97) VY aqr €St

As in the continuous case, the unique solvability of the discrete problem (212 is
also true by virtue of Proposition 2.3 in Ref. 34, (Z4)), (1), the discrete Poincaré-
type inequality and the discrete inf-sup condition (see Refs. [0l and 27)

[vrllo < CIV xvrllo Vvre X7, (2.13)

v,V
sup o7, Var) > IVarllo VY qr € ST, (2.14)

0#Avr eV ”vTHH(curl)
where the constant only depends on 2 and the shape-regularity of 7, and
X7 :={vreVr|(vr,Vqr)=0Vqr € ST}
Moreover, there also holds the following stability result:

lwr || (eury < CUIFllo + [lgllo)-

The inclusion ([ZTIT]) allows v+ = V¢ in the first equation of (ZIZ). Then as in
the continuous case, thanks to V- f = 0 the Lagrangian multiplier ps also vanishes.

3. A Posteriori Error Estimate

This section deals with reliability and efficiency of a residual-type error estimator for
the problem ([ZI2). For this purpose, some more notation and definitions are needed.
The diameter of T' € T is denoted by hr := |T|/3. The collection of all faces (resp.
all interior faces) in 7 is denoted by Fr (resp. Fr(Q)). The scalar hp := |F|'/?



Math. Models Methods Appl. Sci. 2020.30:2799-2826. Downloaded from www.worldscientific.com
by CHINESE UNIVERSITY OF HONG KONG on 07/18/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

An adaptive edge element approzimation of a quasilinear H (curl)-elliptic problem 2805

stands for the diameter of I € F7, which is associated with a fixed normal unit
vector nyp in § with ng = n on the boundary 992. We use Dy (respectively, D)
for the union of all elements in 7 with non-empty intersection with element T € T
(respectively, ' € Fr). Furthermore, for any 7" € T (respectively, F' € Fr) we
denote by wr (respectively, wg) the union of elements in 7 sharing a common face
with T (respectively, with F' as a face).

For the solution w7 to the problem ([ZI2]), we define an element residual on any
T eT by

Rr:=f -V x (,|V xur|)V xur),
and two jumps across F' € Fr(Q)
Jpa = [ |V xur|)V xur) xnp], Jpz:=[ur- nrl.

For any M C T, we introduce the estimator

n%’(u77 f7g7M) = 77’%’,1(“77 .f?M) + n%’72(u7’7g7M)7 (31)
o (ur, £, M) = > 0z (ur, f,T)
TeM
= > (h%”RT”aT + ) hF||JF,1|3,F> ;o (32)
TeM FeoTNQ
7]3’,2(“7’797/\4) = Z 773’,2(“T797T)
TeM
= (h%ng|aT—+ > thJpgnaF>7 (3.3)
TeM FeoTnNQ

and the oscillation term osc%—(um L9, M) =3 rem osc%—(u7 fy9,T) with
oscr(u, f,9,T) := h7|[Rr — Rrl§ r + hzllg — 975 ¢
+ Y helldr = Teallf e
FeaTnQ

where Ry, gr and 7F’1 are the averages of Ry, g and Jp,; over T" and F', respec-
tively, namely Ry = [, Rrda/|T|, G = [, gda/|T| and Jp1 = [, Jpads/|F|. For
simplicity, if M =T we often write

nr(ur, f.9) =nr(ur, f.9,7).

To relate functions in Ho(curl) and H}(Q2) to discrete spaces V. and S,
respectively, we need a quasi-interpolation operator I5% : Hj(€2) — S7 (Ref. 36)

lg = I¥dllor < Chrlalpr, lla—IFdlor < Ch*lalipe ¥ a € HY(Q).
(3.4)

and the following local regular decomposition (see Theorem 1 in Ref. [35]).
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Lemma 3.1. There exists a quasi-interpolation operator II7- : Hy(curl) — Vi
such that for every v € Ho(curl) there exist z € H(Q) and ¢ € H}(Q) satisfying
v—II7v =24 Vo, (3.5)
with the stability estimates
hptllzllor +|2hr < CIV x0lly 5., bzt lelor +lehr < Clolly 5,,  (36)

where constant C depends only on the shape of the elements in the enlarged element
patch Dy := U{T" € T | T"N Dr # 0}, not on the global shape of domain Q or the
size of Drp.

We are now in a position to establish the reliability of the estimator in ([BI)) for
the error u — wy in H(curl)-norm.

Theorem 3.1. Let u and uy be solutions of problems 1) and [2I2), respec-
tively. Then there exists a constant C > 0, depending on v1, € and the shape-
regqularity of T, such that

|w— uTH%—I(curl) < 07727(“% I, 9) (3.7)

Proof. By virtue of ([Z0]) and p = p7 = 0, we take v = u— w7 in the first equation
of (1)), apply LemmaBIlwith v —II5v = 2+ V, use the first equation of (ZI2),
and perform an elementwise integration by parts to deduce that

|V x (u—ur)|p < (Au— Aur,u—ur)

(fru—ur)— (v, |V xur|)V xur,V x (u—ur))

= (_f7’U— %—’U)—(V(-,|V XuT|)VXUT7

V x (v —II57v))

(f,2+ Vo) = (v, |V xur|)V X ur,V x 2)
(fvz) - (V('7 |V X ’U/]’|)V X ’U/T,V X Z)

= > (Rr.2)r— >, (Jr1.2)F

TeT FeFr(Q)

> hrl|Rellorhyt|zllor
TeT

+ > w2 ITealoshyllzlo.r
FeFr(Q)

< CY nralur, £.1)(hg 1zl +12hr)
TET

IN
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(by the trace theorem; Ref. [40)
< O nralur, £, 1)V x (u—u7)l, 5,
D) TeT
Hence, it follows from the finite overlapping property of the patches Dy that
IV x (u = ur)llo < Cyra(ur, f). (3-8)

On the other hand, we make use of the error estimate ([B4) for the quasi-
interpolation operator I5¥ and the fact that V - uy =0 on each T' € T to deduce
from the second equation of (ZI) and (ZI2)) that

(u—ur,Vg) = —(9,9) = (ur, V) = —(9,0 = I¥q) — (ur, V(¢ IFq))
Y (00— IF)r— Y. (Jraq—IFq9r

TeT FeFr(Q)

< Cnrao(ur.g)lah Vg€ Hy(Q),

which implies
(u—ur, (u—ur)’) < Cnra(ur, g)|(w—ur)°|o,

where (u — u7)? is the L%-projection of uw — uy on VHE(Q). This clearly shows

[ —ur)°llo < Cur2(ur,9). (3.9)
A collection of (38), (39) and the norm equivalence in Remark 2] leads to the
desired estimate. O

We end this section by showing that the estimator in (BJ) is also efficient for
the error u — uy in H (curl)-norm.

Theorem 3.2. Let u and ur be solutions of problems (1)) and [ZI2)), respec-
tively. Then there exists a constant C' > 0, depending on L, the Lipschitz constant
in 7)), and the shape-regularity of T, such that

77%’(“‘7’7 f7g7T) < C(Hu - uT”%—I(curl;wT) + OSC%—(f7g7wT)) VT eT.
(3.10)

Proof. For any given T' € T, let by be the usual tetrahedral bubble function on
T (see Ref. @0). With v = vy = Ryby € H(l)(T) and p = 0 in the first equation of
@10, the standard scaling argument, the definition of Ry and integration by parts
imply

CIRr|3r < (Rr,vr)r = (Rr — Ry, vr)r + (Ry,vr)r
= (f -V x (l/(-, |V X u7-|)V X UT),'UT)T + (ET — RT,'UT)T
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=W, |Vxu))Vxu—v(,|Vxur|)V xur,V xvr)r
+ (Rr — Ry, vr)r
< Lju— UTHH(curl-,T)H’UTHH(curl;T) + [ Rr — RTHO,TH’UTHO,T,

which, together with the inverse estimate, the scaling argument and the triangle
inequality, yields

ChEIIRT |3 7 < 1w — urll3s cury.r + P71 R — Rrl[§ - (3.11)

For F € Fr (), we make use of the face bubble function bp (see Ref. [40]), which
vanishes on dwp, to construct vp = Jp1bp € H(l)(wp). By similar arguments, we
derive

CllTpallgr < (Tp1,ve)r = (Jr1,ve)r+ (Jra — Jp1,vF)F
= (Rr,vp)w, — (v(, |V xu|)V xu —v(-,|V xur|)V x ur,V
XVF)wp + (Jr1 — JF1,VF)F.
Then estimates |V X vplowr < Chpt|vellows < Chp? [T rllo.r, @II) and the

triangle inequality imply that

ChellTealdr < Y. (I = urlbreuzy + h3I1Rr — Rl )

Tewr
+hFHJF71 _jFJ”(?),F' (312)

For the error indicator hr||g|lo.r, taking ¢ = gr = grbr € H}(T) in the second
equation of (Z1]) and arguing as above, we obtain

HQHOT <|lu - “THOT"’h g — gT”OT (3.13)

Let Er(Jrz2) be a constant extension of Jpo along the normal np or —np to F.
Then using the second equation of (1) with ¢ = gr = Ep(Jp2)br € H(wr),
the estimates | Vqr|lowy < Chptllarllows < Chp*|Tr2llo.r, @I3) and similar
arguments, we obtain

C||JF2H0 r < (Jr2,qr)r = (U —u,Vqr)w, — (9,9F)wp

< Y Ju—urlor+hd> Y lglom)|Trallo.r.

Tewr Tewr
Hence,
ChellJr2lir < D (lu—ur|§r+hzllg —grl5 7). (3.14)
Tewr

Now we can see that the desired estimate (BI0) follows from (11 to I4). O
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4. Adaptive Algorithm

On the basis of the reliable and efficient a posteriori error estimator BI)—B3), we
now propose an adaptive algorithm for solving the quasilinear saddle point magne-
tostatic Maxwell system (LI)). In what follows, all dependences on triangulations
are indicated by the number of refinements k.

Algorithm 4.1.

(1) (INITTALIZATION) Set k := 0 and choose an initial conforming mesh 7, such
that v is piecewise W in its first variable.

(2) (SOLVE) Solve the discrete problem (ZI2) on 7, for u, € V.

(3) (ESTIMATE) Compute the error estimator ny(ug, f, g) defined in &I)-B3).

(4) (MARK) Mark a subset Mj, C T containing at least one element T € T; with
the largest local error indicator, i.e.

nk(uk7f7g7f):,lqlea%ink(uk7fvgvT)' (41)
(5) (REFINE) Refine each T' € M, by bisection to get Ti+1.
(6) Set k:=k+ 1 and go to Step (2).

It should be pointed out that several practical marking strategies, including
the maximum strategy (see Ref. [2]), the equidistribution strategy (see Ref. [21]), the
modified equidistribution strategy and Dérfler’s strategy™? satisfy the requirement
([@T)). Let us close this section by proving the following stability result for the error
estimator.

Lemma 4.1. Let {ux}72, be the sequence of discrete solutions by Algorithm 11
Then there holds

M (ur, f,9,T) < C(IV X upllowr + [uelows
+hr| fllor +hrlgllor) VT € Ty (4.2)
Proof. An elementary calculation, together with V x V x u; = 0 on each T' € Ty,
shows that
=V xw(x,|V xug|)V xug) = f — Ve, |V xug|) x (V xuy).
As v(-, |V x ug|) is piecewise W over Ty, we have
hr||[Rrllor < hrl fllor + Chr|V x uklor. (4.3)

For two jump terms across F € Fi(Q2) shared by T, T’ € T, the scaled trace
theorem, the inverse estimate and the assumption (Z3)) tell that

W2 T rallor < B2 (1Y x w)lrlor + (VY x w7 lo,r)
S CHV X ukHO,wF7 (44)
1| Tmallo.r < Cllukllowe- (4.5)
Then collecting ([3)—(E3) gives the desired estimate. O
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5. Convergence

This section is devoted to the convergence analysis of the adaptive Algorithm A1l
Our goal is to prove the strong H (curl)-convergence of the sequence of discrete
solutions {ux}72, generated by Algorithm ATl towards the exact solution of the
problem (21). Due to the special saddle-point nature of the current nonlinear
Maxwell system, we need to develop a very different argument from those for the
nonlinear elliptic problems in Refs. and in order to establish our desired
strong H (curl)-convergence. We start with a key limiting problem posed over the
following spaces:

Ve i= U Vi (in H(curl)-norm), S := U Sk (in H'-norm),
k>0 k>0

X ={veVs|(v,Vq) =0Vqe€ Sx},

where {V;.}7° ) and {S}32, are generated by Algorithm EIl The general idea of
using limiting spaces was used to analyze the convergence of an adaptive FEM in
Ref. |5 for an one-dimensional boundary value problem, and was then generalized
in Ref. 3Tl for linear elliptic problems. This general principle has been widely used
in the analysis of adaptive FEMs, but its realization is often very different with a
different problem. We can easily see from (ZTI1]) and the definitions of V o, and Sx
that

VSs C Ve, sup (v, Vo)

T — > IVdllo Vg€ Sx. (5.1)
0#vEV o HvHH(curl)

In addition, though we know X ., is generally not a subspace X, we demon-
strated that an important Poincaré-type inequality is still true on X (see
Lemma 5.1 in Ref. [41)

lvllo <C|V xv|lo Vve X (5.2)

with the constant C' only depending on € and the shape-regularity of 7p.
We can now study the following key limiting problem: Find (too, poo) € Voo X
S such that

{(V(a:7 [V X U] )V X U6, V X Vo) + (Woo, VDo) = (F1000) VU0 € Vo,

(uOO7VqOO):_(g7qOO) YV oo € Soo-
(5.3)

The same as for the system (2I]), we know the problem (3] admits a unique
solution thanks to (Z1), Z6), (E2) and (&I, and pos = 0. We first show the
following optimal estimate.

Theorem 5.1. Let us be the solution of ([B3) and {ur}>, be the sequence of
discrete solutions generated by Algorithm [ZIl Then

HUOO - ukHH(curl) < Cvklg{‘/k HUOO - vk”H(curl) — 0 as k — oo. (54)
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Proof. Let k € NU {0}, and we introduce the set
Xi(g) ={vr € Vi | (vx, Var) = —(9. Var) Var € Sy}

and X := X§(0). We point out that X(g) # 0 since up € X(g)-

Since uy, — wy, € Xy, for every wy, € Xj(g), we deduce from ([Z6), (Z7), (Z12),
Z13), B3, and pss = pr = 0 that there exists a constant Cps > 0, depending
only on vq, Q and the shape-regularity of 7Ty, such that

Cuallwr — w3 euer) < (At — Awy, g — wy)
= (Auy — Auo, up — wi) + (At — Awg, up, — wy)
= (Auy, — Awy, u, — wy)
< Ll|too — Wil Hcurd) |Ur — Wil Hcury Ywi € Xi(g),
which, together with the triangle inequality, gives
e =il < (14 57 i =il 59

For every vy € Vi, there exists a unique ¢ € Sj such that
(Vor, Var) = (uoo — vk, Vi) Vai € Sk
This solution satisfies
Vérllo < [uce — villE(cury)- (5.6)
Now, since (Vg +vi, Vi) = (Uoo, Vi) = — (g, gx) holds for all g, € Sk, it follows
that
Vor +vr € Xi(g),

therefore we may set wy = V¢ + vy in the right-hand side of (55) and use (5.6)
to obtain that

L
||uoo - ukHH(curl) S (1 + A—> (”uoo - kaH(curl) + HV¢HH(curl))
Cm

L
<2 (1 + ,\—> lewoe — vk”H(curl) Vo, € V.
Cum

In view of the density of | J k>0 Vi in V ., this inequality leads to the desired result.
O

By virtue of Theorem [5.1] it suffices to prove that u, is exactly the solution of
(1)) so that the convergence of {ux}72,, given by Algorithm [T follows. In doing
so, we split each T; by Algorithm 1] as follows:

=T T’ =T\T'" =] Dr, Q=] Dr.
1>k TeT;S TeT?
That is, 7, consists of all elements not refined after the kth iteration while all
elements in 7 are refined at least once after the kth iteration. It is easy to see
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77 - '7? forl < kand M, C 7;0. We also define a mesh-size function by, : @ — R
almost everywhere by hy(x) = hp for @ in the interior of an element 7' € Tj, and
hi(x) = hp for x in the relative interior of a face F' € Fj. Letting xi be the
characteristic function of Y, then the mesh-size function hg(x) has the property
(see Refs. [31] and [37)
Hm (|7 xRl e (@) = 0. (5.7)
k— o0
With the above preparations, we are now able to establish that the maximal error
indicator among all the marked elements at each adaptive loop converges to zero.

Lemma 5.1. Let {Ti, Vi, ur}i2, be the sequence of meshes, finite element spaces
and discrete solutions generated by Algorithm Bl and My, be the set of marked
elements over Ti,. Then

Jim  max m(ur, £,9,T) = 0. (5.8)

Proof. We denote by Tk the element with the largest error indicator among M.
As Ty, € T2, the local quasi-uniformity and (57) imply that

(w7, | < CITel < Ol ey — 0. (5.9)
By the stability estimate (£2)) and the triangle inequality,
M (uk, £,9,Ti) < C(IV X upllows + lurllows, +1F1o 5 +l9lloz)
<OV X toollows, + 1V X (ur = uoo)llo + [t 0,07,

+ [tk — woollo + 1 Fllo 7, + l9llo7,)-

Now the second and the fourth terms in the right-hand side go to zero by Theo-
rem [5I] The rest also go to zero due to ([ and the absolute continuity of || - ||
with respect to the Lebesgue measure. O

For every k € NU {0}, we introduce two linear bounded functionals R (uy) :
Hy(curl) — R and Ra(uy) : HH(Q) — R by
(Ri(ug),v) = (v(x,|V x ug|)V x ug, V xv) — (f,v) Vv e Hy(curl),
(5.10)
(Ra(ur), q) := (ur, V) +(9,9) Vaq € Hy(Q). (5.11)

Thanks to Theorem Bl and (23), the sequences {|Ri(ur)||my(curl)~ }oeo and
{IR2(ur)l| -1 ()} are bounded. Furthermore, since pr = 0 holds for every
k € NU {0}, it follows from (ZI2]) that

(Ri(ug),v)y =0 VveVyg, (Ra(ur),q)=0 Vqge Sk (5.12)
for every k € NU{0}.
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Lemma 5.2. The sequence of discrete solutions {u}72, generated by Algo-
rithm 1] satisfies

klim (Ri(ug),v) =0 Vv e Hpy(curl), (5.13a)

— 00

Jim (Ra(ug),q) =0 Vqe Hi(Q). (5.13b)
—00

Proof. We first prove (5.I3H). To this aim, for every k € N U {0}, we denote,
respectively, by I}, and I7* the standard nodal interpolation operator (see Ref. [12)
and the Scott-Zhang quasi-interpolation operator®® associated with Si. Let ¢ €
C5 (), 1 e NU{0}, and k € N with k > . By virtue of (512), we deduce that

[(Ra(uk), @) = [(ur, V(¢ — Ixq)) + (9,9 — Ikq)|
= |(uk, V(g — Ing — I;7(q — Ixq))) + (9,9 — Inq — I;7(q — Irq))|

<C Y mea(ur, g, T)llg — Inall1o,
TETk

< Clmk2(wn, 9, T\T)la — Tnallop +ne2(ue, 9. T g — Irdlly o)

with a constant C' > 0, independent of ¢, [ and k. We note that the first inequal-
ity above follows from the error estimates of I7* (cf. (34)) and the elementwise
integration by parts. Using the stability estimate ([@2), Theorem 5.1l and the error
estimate for I (see Ref. 12), we further derive

[(Ra(u), )| < Cillhill Lo a0 a2 + Comp 2 (wr, g, T,) g2, (5.14)

with two positive constants C; and C5 independent of ¢, [, and k. Now, let ¢ > 0.
In view of (5.7, there exists an index [, € N such that

Cthl”Loo(Q?)HqHQ < 6/2 Vi>l.. (515)

On the other hand, since 7;* C 7? C T for all k& > [, the marking property (@)
implies that

N2k, g, T,7) < A/ITT| max mg2(uk, g, T) < \/|T,| max ny(uk, f,9,T).
T€Tl+ TeM;

Therefore, by virtue of Lemma [B.1] if necessary, we may increase the index [, € N
such that
Conr2(ue, g, T )llall2 < €/2, (5.16)

holds for all k& > I > [.. Concluding from (GI4)-(510) we have verified that for
every positive real number € > 0 there exists an index [, € N such that

(Ra(ur),q)| <€ YqeCg () VE>I.

In conclusion, (BI3D) follows from this result along with the density of C§°(£2) in
H{(2) and the boundedness of {||Ra,x(wk)|| z-1(0) Hrzo-
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We now prove (5I3a)). To this aim, for a given v € C{°(2), we set w :=
v — v € Hy(curl; ), where I is the curl-conforming Nédélec interpolant (cf.
Ref. 27) associated with V.. Then, by virtue of (F3), there exist z € Hp(Q) and
¢ € H}(Q) such that w — IIjw = z + V. Invoking (EIZ), we deduce that

(R1(ug),v) = (R1(ug),v — Ixv) = (Ry(ug), w — IMjw) = (R1(ux),z+ V).
(5.17)

As V - f =0, we can easily find that
(Ri(ug), V) = 0. (5.18)

Applying (5I]) to (5I7) and using an elementwise integration by parts, the trace
theorem as well as the estimate ([B:6]), and recalling w = v —IIv, we further derive
that

(Ri(ug),v) = (Ri(uy), 2)

- _ Z(RT,z)T— Z (Jr1,2)F

TETs FEFL(Q)
< N hrllRrloshz lzlor + Y. hZITrallorhy ] 2l0r
TETk FeFL(Q)
<C > WIRrI3r+ D helldrald o) 2 (hpt 2lor + 217)
TET FCoTNn
<C > WIRrIZr+ D heldrild 22V x (v - )l 5, -
TET FCoTNnQ

with a constant C' > 0, independent of k and v. We now define a buffer layer of
elements between 7; and 7 for k,l € N with k£ > [

T ={T e T\T," |TNT' #0VT €T, }.
We know from 7;% C 7,7 C Ti and the uniform shape-regularity of {7} that
T < 1T (5.19)

with constant C' depending only on the initial mesh 7y, and Dr C Q) for any
T € T\(T;H UTE)). Splitting Ty, into 7,7 U TY, and Tp \ (7,7 UTY)) for k> 1, and
noting that UTen \(THUTE ) BT - Q?, we can further proceed to derive

(R (ur), 0)| <C > mpa (g, £, TV x (v —T0)l, 5,
TETk

< Clma (wr, £, TAT T U TV x (v = Tkw) o,

+ 1 (ur, £, T U TRV x (v = ) o),
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which, along with the stability estimate (2] in Lemma 1], Theorem .1l and the
interpolation error estimate for IIy (see Ref. [I5]), implies

[(Ra(ur), v)| < Csllhull oo gy [0ll2 + Canpa (u, £, T UTE) [0ll2. (5.20)

As before, the property (B.7) allows the first term to be small enough for sufficiently
large I. Using (&1 and (5I9), we have

e (e, £, TP UT) < I+ 1T max g1 (uk, f,T)
T o

€T, UT,
S C |7;+| THEl%/)l(k nk,l(ukv f)T)

This and (E8) indicate that the second term in the right-hand side of (&20) is
also small for all k > [ after fixing a sufficiently large [. It follows from (E20) and
these two facts that limy_, o (R1(u),v) = 0 for any v € C° (). Then the density
argument gives the first convergence. O

Remark 5.1. In the above proof, the key idea is a split of €2 into two parts: Q?
and Q?’ Over the former we use local approximation properties of Iy, IT; and (B.7)
while the marking property (@Il applies to the latter for k& > 1

) < + T).
me(ug, £,9,7,7) < Cy/IT] ITIg%nk(umﬁm )

From this and (5.8]), we find that there holds for a fixed iteration I
lim 7y, (uk, f,9,7,") = 0.
k—oo

Recalling that the Lagrange multiplier p associated with (21I) vanishes since
the right-hand f is divergence-free, we can now conclude a crucial auxiliary result
using the two lemmas above.

Lemma 5.3. The solution uo, € Ho(curl) of ([B3) solves the original quasilinear
Mazwell system

{(z/(:c, IV X Uo|)V X U, V X v) = (f,v) Vv e Hy(curl),

(5.21)
(Uos; V) = —(9,q) Vq e HL(Q).

Proof. We first prove the second variational equality in (5.2I)). For any q € H}(Q),
it follows from (E.IT]) that for every k € N,

(oo, V) +(9,0) = (too — U, Vq) + (Ra(us), q)-
Then, taking the limit & — oo, we get from Theorem [E.1] and (5.I3D)) that
(o0, V@) +(g,9) = lim ((ueo — u, V) + (Ra(ur), q)) =0,

so the second variational equality of ([Z.21]) is valid.
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Next, let v € Hy(curl). In view of (BI0) and (53) along with po, = 0, it holds
for every k € N that
|(V(2, |V X Uso|)V X U, V X v) — (f,v)] = [{(AUus — Aui,v) + (R1(ug), v)|
< LHUk - uOO”H(curl)”v”H(curl)
@D
+[(Ra(ur), v)-
Then, taking the limit & — oo, it follows from Theorem b1l and (&13a) that
(2, [V X U] )V X Uoo, V X v) = (f, ),

which completes the proof. O

Now the following strong convergence is a consequence of Lemma B3] and
Theorem .11

Theorem 5.2. The sequence of discrete solutions {ui}j, generated by Algo-
rithm[Z1] converges strongly with respect to the H (curl)-topology towards the solu-
tion u € Ho(curl) of 21J).

We end this section with the desired vanishing property of the estimators gen-
erated by our adaptive algorithm.

Theorem 5.3. The sequence {n,(ur, f,9)}32, of the estimators generated by Algo-
rithm 1] converges to zero.

Proof. We split the estimator as
i (wn, £,9) = ni(w, £,9.T7) + ni(we, £.9. TAT) (5.22)
for k > I. The local lower bound (BI0) allows
(e, £.9, TAT ) < Cllw = wrlFeurny + 0sci (£, 9, T\T))-

Since Ry is the best L2-projection of Ry onto the constant space over T, V x V x
up, = 0 and v(-, |V x uy|) is W1 in the first variable,

hr||Rr — Rrllor < hrllf — Vv(, |V x ug]) x (V x ug)|or
< hrllfllor + [IVV|| Lo b IV X ukllor
< Chr(||fllo,r + IV x ukllo,r)-
Likewise,
hrllg = grllor < hrllgllo.r-

We denote by [-] the average of [] over F, by (-, |V x uy|) the average of v(-, |V x
ug|) over T € wp. Then we apply the scaled trace theorem and the Poincaré
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inequality and using the fact that |V x ug| is a piecewise constant over T to deduce
that

hl2 1 Tpn = Trallor < 0> Y (v —72)(V x uglr) x npllo.r

Tewr

<C D (v =vrlem) + hell VYl e @)V X ukllor

Tewr

S C Z hTHV X ’ukH()}T.
Tewr
Noting the uniform boundedness of |V x ug||o in terms of k from Theorem 5.2 and
using the relation (.22]), we can arrive at

nl%(ukv f7g) S C(U}%(Umfvgﬂf) + ||u - uk”%—l(curl) + HhZHQLOO(Q?))

Now by ([G7), the third term in the right-hand side tends to zero as I — co. Thanks
to Remark [BJ]and Theorem 52l we may fix a large [ and choose a suitable k > [ such
that the first term and the second term in the right-hand side are also sufficiently
small. This leads to the conclusion. O

6. Numerical Experiments

Based on the underlying regularity assumption (Assumption 2T]), we construct an
example for the nonlinear reluctivity function. Let us note that this example is
merely academic and it is used to demonstrate the numerical performance of our
adaptive algorithm more accurately as we know the exact solution analytically. We

introduce the function

v:R— RT, V(s):l—m. (6.1)

Obviously, this function satisfies

<v(s) <1l VseR.

N | =

Slggo v(s)=1 and

Furthermore, it is easy to verify that the function £ : R — R, &£(s) := v(s)s,
25 + 552 4 1

TCES Then, straightforward
s

is continuously differentiable with &'(s) =
computations yield that

1 34

<y < =

5 <&(s) < 39 Vs eR,
and consequently the mean value theorem implies for all s, € R that

1 34
(€(s) —€@)(s =) 2 5(s = 1)* and [¢(s) = &(1)] < 3515~ t-

Therefore, the reluctivity function (G satisfies Assumption [ZI1 We specify the
computational domain €2 to be an L-shaped domain, defined by

0 :=(-1,1) x (=1,1) x (0,1)\]0, 1] x [0,1] x [0,1]. (6.2)
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In view of (62, the function
9:Q =R, Y(x)=sin(rr)sin(rzs) sin(rxs) (6.3)
is of class H}(Q) such that Vi € Ho(curl). For this reason, setting
f=0 and g:=AY=—37%0,

the solution of (LI)) is then obtained by the gradient field w = V¢. With this
analytical solution, we shall test the numerical performance of our adaptive Algo-
rithm BTl To this aim, we implemented Algorithm [Tl in a Python script using
the open source software FEniCSBY Here, the step SOLVE of Algorithm A1 was
carried out using the Kacanov iteration:

(1) Set n =1 and choose uggj eVr,.
(2) Solve the linear system for u%) eV

(v(|V x U%il)DV X u%),V X vr,) + (’UTk,Vp%))
(u%)7V(In) =—(9,97.) Vqr. € St..

(3) It Hu%:) - u%71)|\H(Cur1) < 1078, STOP; otherwise set n = n + 1 and go to
Step (2).

For our numerical experiments, we used zero initial data, and the linear system
[64)) was solved by the build-in preconditioned MinRes solver of FEniCS.

In the step MARK of Algorithm EI] elements of the simplicial triangulation
Tr are marked for refinement based on the information provided by the proposed
a posteriori error estimator ng(ug, f,9) = n7.(uk, f,9,Tr) (cf. BI)-B3) for its
definition). Here, we employ Dorfler’s strategy™ with the associated bulk criterion
6 = 0.6. Thereafter, all marked elements are subdivided by the build-in bisection
algorithm of FEniCS. Finally, we stop Algorithm [LT]if the number of the degrees of
freedom (DoF) in the finite element space V7, exceeds a given maximum number
DoF*, which is set to DoF* = 4 - 10° for the first example and DoF* = 1-10° for
the second one.

In Fig.[I we present the exact error ||u — U || gr(cur1) resulting from the uniform
mesh refinement compared with the one based on the adaptive mesh refinement
using the proposed error estimator 7y (ug, f,g). Observing Fig. [[I we may infer a
better numerical performance of the adaptive method over the standard uniform
mesh refinement. This can be more quantitatively clarified by evaluating the exper-
imental rate of convergence (ERC) using two consecutive discrete solutions and
DoF
log(|lu — u|| B (curt)) — log(l|u — wp—1 | F(cur)

log(DoF}) — log(DoFj_1)
The values of ERC}, for the uniform and adaptive refinement methods with various
values for DoF}, are depicted in Tables[Iland 2] respectively. These results reconfirm

ERCy, =
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10°

Exact error

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000
DoF

Fig. 1. Exact error for uniform (dash line) and adaptive mesh refinement (straight line).

Table 1. Experimental rate of convergence for the adaptive refinement

method.

DoFy, 156093 244497 1405368 2143814 3204062
[[uw — ukHH(CUﬂ) 0.3624 0.2993 0.1735 0.1357 0.1057
ERCyg — 0.4263 0.3118 0.5819 0.6218

Table 2. Experimental rate of convergence for the uniform refine-
ment method.

DoF, 1700 12136 91472 709792 5591360
[u— urllf(eury  1.3814 08007 0.4166  0.2104 _ 0.1055
ERC}, —  0.3780 0.3167 03428  0.3352

the better convergence of the adaptive algorithm over the standard uniform mesh
refinement, but the improvement may not be seen so significant as the exact solution
is smooth, without any singularities, which are the main targets of the adaptive
method.

Furthermore, we show in Table Bl the exact error ||u — up|| g (curry and the esti-
mator n(uk, f,g) at each adaptive discretization level. In particular, the numerical
results illustrate our theoretical findings concerning the reliability of the proposed
estimator (Theorem [B]) and the convergence of Algorithm ET] (Theorem B.2)). In
the last column of Table Bl we report the effectivity index

L — e (ur, f,9)
u— uk“H(curl)

According to our numerical results, we find that I, &~ 5, which shows a reliable and
accurate prediction of the exact energy error by our a posterior error estimator.
Figure 2 displays the adaptive mesh after 15 refinement steps in Algorithm ET]
over which the computed solution w5 is depicted in Fig. B (left). For comparison,
the exact solution u = V4 is visualized in Fig. Bl (right).
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Table 3. Convergence history and effectivity index.

k DoF ”u _uk”H(curl) nk(ukaf’ g) Iy

0 1700 1.3814 7.7770 5.6299
1 2372 1.3213 7.3392 5.5543
2 3416 1.1753 6.4422 5.4813
3 5549 0.9272 5.2076 5.6162
4 8000 0.7692 4.4217 5.7482
5 15116 0.7298 3.7953 5.2003
6 26346 0.6503 3.2883 5.0562
7 39028 0.4994 2.7918 5.5901
8 61774 0.4026 2.2942 5.6982
9 98444 0.3890 2.0323 5.2251
10 156093 0.3624 1.7892 4.9378
11 244497 0.2993 1.5761 5.2669
12 371258 0.2177 1.2741 5.8539
13 566179 0.1994 1.1120 5.5763
14 896464 0.1935 0.9791 5.0590
15 1405368 0.1735 0.8738 5.0374
16 2143814 0.1357 0.7454 5.4914
17 3204062 0.1057 0.6184 5.8480

Fig. 2. Adaptive mesh and its cross section generated by Algorithm 1] for k& = 15.

6.1. A test with a jumping nonlinear coefficient and unknown
solution

We present now a test case involving jump discontinuities (with respect to the space
variable) in the nonlinear magnetic reluctivity. More precisely, let us consider

1 1

) — XJ[0,1] (@)m,

UZQXR—)R+7 V($,8):1—X[07l]($1)m
(6.5)
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Fig. 3. Computed solution w15 on the adaptive mesh (left) and the exact solution w (right).

where x(o,1) : R — R denotes the characteristic function of the interval [0, 1]. As in
the first example, the reluctivity function (6. satisfies Assumption 211 Further-
more, we choose the data

g=0 and f=(0,0,100x.), (6.6)

where y,, denotes the characteristic function of the subset w := {x € Q | 23 + 23 <
10~3}. We note that the function f is not continuous but divergence-free as its third
component is independent of z3. Differently from the previous example, the solution
of ([T cannot be described analytically. Moreover, due to the non-convex structure
of the computational domain, the jump discontinuities of the nonlinear permeability
[©3) and the non-smoothness of the given data (G.6]), a smooth solution cannot be
expected. In general, the solution enjoys only the regularity property H(curl) N
H?*(Q) for some s € (0.5,1) and may feature strong singularities (see Refs.
and[I7)). To deal with this issue, our adaptive edge element method may be useful for
predicting the behavior of the unknown solution and capturing its local singularities.
Figure [ depicts the chosen initial mesh (k = 0) and the adaptive meshes generated
by Algorithm [AT] for different levels &k = 5,10, 15 with the bulk criterion 6 = 0.3
in Dorfler’s strategy™ It is notable that a local refinement mainly occurs in the
concave edge of 2. Due to the choice of f, this behavior is not surprising. Next,
in Fig. Bl we plot the computed solution w15 on the finest adaptive mesh (DoF =
1.471919 - 10%) generated by Algorithm Al Indeed, we observe that the solution is
mainly concentrated in the concave edge of €2 and vanishes outside this region.
Since the true solution for this example is unknown, we consider u,.r = uis
as the reference solution to test the convergence behavior of the adaptive method,
including the experimental rate of convergence (ERCy) and the associated efficiency
index (Iy). The numerical results are depicted in Table [l Similar to the previous
example, we observe a convergence behavior of both the error and the estimator
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% ‘A‘
L
"

Fig. 4. Adaptive meshes generated by Algorithm 1] for k = 0, 5, 10, 15.

towards zero for increasing k, which is in agreement with Theorems and
Also, a reliable prediction of the error by the estimator is confirmed by the efficiency
index of about 5. Nonetheless, differently from the first example, we monitor a lower
experimental order of convergence. This behavior is not surprising due to the poor
regularity and the non-smoothness detected in the solution. Lastly, Table[H provides
the convergence history for the uniform mesh refinement strategy. It is notable
that the adaptive method exhibits a significantly better numerical performance.
In particular, by comparing the last rows in Tables @] and Bl the accuracy of the
adaptive method with a less number of DoF turns out to be 21 times better than
the uniform mesh refinement strategy.

Based on the previous two numerical tests, we may safely conclude a reasonable
numerical performance of Algorithm [Tl In particular, the newly proposed adaptive
algorithm seems to be competitive for dealing with the possible non-smoothness and
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Fig. 5. Computed solution w5 on the finest adaptive mesh.
Table 4. Convergence history for the adaptive mesh refinement method.
k DoF  |Jtrer — UpllEH(cur)y Mk (ur, £, 9) Iy, ERCy,
10 20698 0.035612 0.173881 4.88268 —

11 45099 0.023059 0.112236 4.86727  0.124690
12 120536 0.016823 0.079759 4.74110  0.126012
13 274592 0.011287 0.060594 5.36816  0.237656
14 594234 0.007092 0.047992 6.76737  0.512425

Table 5.  Convergence history for the uni-
form mesh refinement strategy.

DoF ”uref — uk”H(curl) ERCy
1700 1.053573 —
12136 0.279670 0.674790
91472 0.194514 0.179768
709792 0.157557 0.102842
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singularities in the solution of the nonlinear saddle point magnetostatic Maxwell

system (CT)).

7. Concluding Remarks

We have derived an adaptive edge element method for the numerical solution of
the quasilinear saddle point magnetostatic Maxwell system (). Our main the-
oretical results include the establishment of the reliability and efficiency of the
error estimator (3I)-(B3) and the H (curl)-strong convergence of the discrete solu-
tions generated by the new adaptive Algorithm [£J] Numerical tests have confirmed
these theoretical findings. Our future efforts may include the extension of the adap-
tive method to some other related problems, such as the optimal control problem
associated with the system (IZI)) and the nonlinear hyperbolic evolution Maxwell
equations, which are truly challenging and related to many real-world applications,
such as those in high-temperature superconductivity (see Refs. and [44)) and
electromagnetic shielding (Ref. 45]).
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