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AN ADAPTIVE EDGE ELEMENT METHOD AND ITS CONVERGENCE FOR
AN ELECTROMAGNETIC CONSTRAINED OPTIMAL CONTROL PROBLEM

Bowen Li1 and Jun Zou2,*

Abstract. In this work, an adaptive edge element method is developed for an H(curl)-elliptic con-
strained optimal control problem. We use the lowest-order Nédélec’s edge elements of first family and
the piecewise (element-wise) constant functions to approximate the state and the control, respectively,
and propose a new adaptive algorithm with error estimators involving both residual-type error esti-
mators and lower-order data oscillations. By using a local regular decomposition for H(curl)-functions
and the standard bubble function techniques, we derive the a posteriori error estimates for the proposed
error estimators. Then we exploit the convergence properties of the orthogonal 𝐿2-projections and the
mesh-size functions to demonstrate that the sequences of the discrete states and controls generated by
the adaptive algorithm converge strongly to the exact solutions of the state and control in the energy-
norm and 𝐿2-norm, respectively, by first achieving the strong convergence towards the solution to a
limiting control problem. Three-dimensional numerical experiments are also presented to confirm our
theoretical results and the quasi-optimality of the adaptive edge element method.
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1. Introduction

Many electromagnetic simulation problems involve the following H(curl)-elliptic equation [13,44]:

curl
(︀
𝜇−1curly

)︀
+ 𝜎y = f in Ω, (1.1)

where 𝜎 and 𝜇 are the electric permittivity and the magnetic permeability, respectively. This problem is also
encountered when the implicit time-stepping scheme is used for solving the full time-dependent Maxwell system
[31]. In this work, we are interested in a relevant optimal control problem, namely to find a specially designed
external current source profile so that the resulting electromagnetic field achieves an optimal target design. This
optimal control problem has direct applications in many areas, such as the induction heating, the magnetic
levitation and the electromagnetic material designs. We refer the readers to [12, 25, 63, 64] for some recent
results on the theory and applications of electromagnetic optimal control problems.
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The main purpose of this work is to design and analyse an adaptive edge element method for a class of optimal
control problems with the applied current density u being the control variable and the magnetic potential y
being the state variable. Let y𝑑 and u𝑑 be our target magnetic field and control, and U𝑎𝑑 denote the unbounded
closed convex admissible set: {︀

u ∈ L2(Ω); u ≥ 𝜓 a.e. in Ω
}︀
, (1.2)

where 𝜓 is some obstacle function with a certain regularity. Then we can write the control problem as a
constrained minimization problem: find a pair (y*,u*) ∈ H0(curl, Ω)×U𝑎𝑑 to minimize the quadratic objective
functional:

𝐽(y,u) :=
1
2
‖curl y− y𝑑‖20,Ω +

𝛼

2
‖u− u𝑑‖20,Ω, (1.3)

subject to the H(curl)-elliptic equation:

curl
(︀
𝜇−1curl y

)︀
+ 𝜎y = f + u in Ω. (1.4)

By considering a simple transformation ̃︀u = u − 𝜓, we may set 𝜓 in (1.2) to zero in our subsequent analysis
for the sake of simplicity, that is, the admissible set shall take the form:

U𝑎𝑑 :=
{︀
u ∈ L2(Ω); u ≥ 0 a.e. in Ω

}︀
.

In this work, we are interested in the numerical study of the practically important situation where the local
singularities may be expected for the solution to the optimal control problem (1.3) and (1.4), due to the possible
irregular geometry of the domain Ω, the (possibly large) jumps across the interface between two different physical
media and the non-smooth source terms (cf. [19, 20]). In these cases, one typically needs to solve the problem
on a very fine mesh to fully resolve the singularities, while it may be computationally expensive on account of
the exponential growth of the number of degrees of freedom (DoFs). To balance the computational cost and
the numerical accuracy, it has proved to be more promising to refine the mesh adaptively when the numerical
accuracy is insufficient.

The theory of adaptive finite element methods (AFEMs), due to the pioneer work of Babuška and Rheinboldt
[7] in 1978 for elliptic boundary value problems, has become very popular and well developed in the past four
decades; see [2, 48] and the references therein for an overview. The relevant research in the case of Maxwell’s
equations, which dated back to Beck et al. [10], has also reached a mature level nowadays (cf. [34, 53, 67, 68]).
However, the theory of AFEMs for PDE-constrained optimization problems is still a work in progress. Recently,
Gong and Yan [27] proved the convergence and quasi-optimality of AFEMs for an elliptic optimal control
problem with the help of the variational discretization and the duality argument, and in this setting there is no
need to mark the data oscillations as in [26, 29]. In [42, 43], the authors considered the elliptic optimal control
problems with integral control constraints and gave a rigorous proof of the convergence and the quasi-optimality.
People may find more recent advances on AFEMs for the control problems in [5, 11,28,38].

The first contribution towards the adaptive methods for optimal control problems of Maxwell’s equations
went back to Hoppe and Yousept [35]. An AFEM was designed for the same model problem (1.3), (1.4), and
the a posteriori error estimation was also presented, including the reliability and efficiency, with Nédélec’s edge
element approximations for both the control and the state. But the convergence of the adaptive method was
not established in [35]. Later, Pauly and Yousept [49] considered an optimal control problem of first-order
magnetostatic equations and presented the a posteriori error analysis. Meanwhile, Xu and Zou [61] considered
the adaptive approximation for an optimal control problem associated with an electromagnetic saddle-point
model and proved the convergence of discrete solutions.

The current work is a continuation and further improvement of the work [35], where a piecewise linear
H(curl)-conforming edge element was used to approximate the optimal control variable u. One crucial mo-
tivation of our work is based on the observation that the optimal control u* is generally of low regularity,
at most H1 (still under some reasonable conditions) (cf. Prop. 2.1). Therefore we can not expect a better
𝐿2-approximation accuracy of the control using any higher-order approximation than the piecewise constant
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one (i.e., the simplest, and also cheapest, approximation). Because of this, we shall use the piecewise constant
functions to approximate the control variable u, and propose a new adaptive algorithm with error indicators
incorporating the residual-type error estimators and the lower-order data oscillations. As pointed out in [39,40],
the precise structure of the admissible set and the way we discretize the distributed control problem are the
critical ingredients when designing an adaptive algorithm, which often influence the analysis of the resulting
AFEM essentially. It turns out that in our case here, due to the pointwise unilateral constraints in the admissible
set U𝑎𝑑, the inconsistency between the discrete spaces of the state and control as well as the low regularity
of the given data, the data oscillation plays an important role in the performance of the algorithm and has
to be considered in the error estimates (as well as the marking strategy) to guarantee the convergence of the
algorithm. We can readily notice that such a change in the approximation of the control can significantly reduce
the number of DoFs and make our algorithm much easier to implement than the algorithm in [35], while still
preserving the same numerical accuracy; see Section 5 for the detailed discussions and the implementation issue
on the algorithm. To theoretically justify the effectiveness of our adaptive algorithm, we use a Clément-type
quasi-interpolation operator established by Schöberl [53] and the bubble functions [2] to derive the a posteriori
error estimates (reliability and efficiency estimates) of the new error estimators. It is worth mentioning that
there is a technical issue in [35] when deriving the optimality system for the discrete optimization problem, that
is, the first-order optimality condition (2.8d) there cannot imply its complementarity condition (2.10) as the
edge element discretization was adopted for the control (hence part of the estimates provided in [35] needs some
necessary modifications). This is another motivation of the current work. Instead, in our a posteriori analysis, we
shall directly cope with the original forms of the first-order optimality conditions by using the contraction prop-
erties of 𝐿2-projections without the help of the complementarity problems (although they hold in our setting),
so that our estimates can be established in a rigorous manner. Apart from the aforementioned contributions
towards the algorithmic aspects, another main contribution of this work is the strong convergence of the finite
element solutions generated by the proposed adaptive method. This work appears to be the first one on the
convergence analysis of AFEMs applied to the electromagnetic optimal control problem involving a variational
inequality structure. In the finite element analysis provided in [63] for a quasilinear H(curl)-elliptic optimal
control problem, the discrete compactness of the Nédélec edge elements [36] is the main tool in establishing
strong convergence. However, the discrete compactness can only be applied to the discrete divergence-free se-
quence, and it is still unknown whether it is true for adaptively generated meshes. During the course of our
convergence analysis, we shall borrow some techniques from the nonlinear optimization to avoid the need of
discrete compactness and exploit some strategies with limiting spaces, which was initially adopted in [9] and
then developed systemically in [45]. To overcome the difficulties arising from the structure of the constraint set
and its discretization, we establish a convergence property of 𝐿2-projections associated with the meshes (cf.
Prop. 4.2), which connects the convergence behaviors of the adaptive meshes and the discrete spaces. It further
allows us to define a limiting optimization problem and characterize the limit point of the discrete controls
and states (cf. Thms. 4.4 and 4.5). Hereafter, we show that the maximal error estimators and the residuals
corresponding to the sequence of adaptive states and adjoint states vanish (cf. Lems. 4.6 and 4.7), where we use
a generalized convergence result of the mesh-size functions (cf. (4.4)), instead of introducing the buffer layer
(cf. [61]) between the meshes at different levels, so that our proof can be significantly simplified. By means
of these auxiliary results and again the properties of 𝐿2-projections, we are able to prove that the limit point
of the discrete triplets {(y*𝑘,p*𝑘,u*𝑘)} solves the variational inequality associated with the control problem (cf.
Thm. 4.8). Hence, the strong convergence of Algorithm 1, i.e., Theorem 4.1, follows immediately.

This work is organized as follows. In Section 2, we briefly review the electromagnetic optimal control problem
and consider its finite element approximation. Then we propose the a posteriori error estimator and design an
adaptive algorithm. We show that the error estimator is both reliable and efficient in Section 3. After that,
we address the issue of the convergence of the adaptive solutions in Section 4. Finally, some numerical results
are presented in Section 5 to illustrate the theoretical results and indicate the effectiveness and robustness of
the adaptive approach versus the uniform mesh refinement. We end this section with a shorthand notation:
𝑥 . 𝑦 for 𝑥 ≤ 𝐶𝑦 for some generic constant 𝐶 that is independent of the mesh size, but may depend on other
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quantities, e.g., 𝜎, 𝜇−1, 𝑓 and the shape regularity of the initial triangulation T0. If 𝑥 ≤ 𝐶𝑦 and 𝑥 ≥ 𝐶𝑦 hold
simultaneously, we denote it simply by 𝑥 ≈ 𝑦.

2. The optimal control problem and its discretization

We start by introducing the standard notation for Sobolev spaces and the involved physical parameters (cf.
[1,44]). Let Ω ∈ R3 be a bounded polyhedral domain with polyhedral Lipschitz subdomains Ω𝑖, 1 ≤ 𝑖 ≤ 𝑚, such
that

Ω𝑖 ∩ Ω𝑗 = ∅ for 𝑖 ̸= 𝑗 and Ω̄ =
𝑚⋃︁

𝑖=1

Ω̄𝑗 .

Let 𝐺 be an open bounded subset of Ω with the Lipschitz continuous boundary 𝜕𝐺 and n being its unit
outward normal vector. For any real 𝑠 > 0, we define the Hilbert space 𝐻𝑠(𝐺) (resp.H𝑠(𝐺) := 𝐻𝑠(𝐺, R3)) for
Sobolev scalar functions (resp. vector fields) of order 𝑠 with an inner product (·, ·)𝑠,𝐺 and a norm ‖·‖𝑠,𝐺. We
also introduce the spaces:

H(curl, 𝐺) = {v ∈ L2(𝐺); curl v ∈ L2(𝐺)} and H(div, 𝐺) = {v ∈ L2(𝐺); divv ∈ 𝐿2(𝐺)},

equipped with the norm ‖v‖curl,𝐺 = (‖v‖20.𝐺 + ‖curl v‖20,𝐺)1/2 and ‖v‖div,𝐺 = (‖v‖20.𝐺 + ‖divv‖20,𝐺)1/2, respec-
tively. Here and in what follows, a bold typeface is used to indicate a vector-valued function. The tangential
trace mapping 𝛾𝑡(u) := n× u and the normal trace mapping 𝛾𝑛(u) := u ·n are well-defined on H(curl, 𝐺) and
H(div, 𝐺), respectively. Then the zero tangential trace space can be introduced by

H0(curl, 𝐺) = {v ∈ H(curl, 𝐺); 𝛾𝑡(v) = 0 on 𝜕𝐺}.

We will also use the fractional order curl-space

H𝑠(curl, Ω) = {u ∈ H𝑠(Ω); curlu ∈ H𝑠(Ω)}, 𝑠 > 0, (2.1)

equipped with the norm ‖·‖𝐻𝑠(curl,Ω) := ‖·‖𝑠,Ω +‖curl·‖𝑠,Ω. In what follows, we write V for the most frequently
used Sobolev space H0(curl, Ω).

We are now well-prepared for the mathematical formulation of the control problem. In this work, we focus
on the following constrained minimization problem:

min
u∈U𝑎𝑑

𝐽(u) :=
1
2
‖curly(u)− y𝑑‖20,Ω +

𝛼

2
‖u− u𝑑‖20,Ω, (2.2)

where the state y(u) ∈ V is the solution to the variational system:

(𝜇−1curly, curl𝜑)0,Ω + (𝜎y,𝜑)0,Ω = (f + u,𝜑)0,Ω ∀ 𝜑 ∈ V. (2.3)

We assume that the given source term f ∈ L2(Ω) satisfies

f |Ω𝑖 ∈ H(div, Ω𝑖) and 𝛾𝑛(f) ∈ L2(𝜕Ω𝑖), 1 ≤ 𝑖 ≤ 𝑚, (2.4)

while the target magnetic field y𝑑 and the target control u𝑑 satisfy

y𝑑 ∈ H0(curl, Ω) and u𝑑 ∈ L2(Ω). (2.5)

We remark that although f is not in H(div) globally in Ω, namely f /∈ H(div, Ω), div f is well-defined on each Ω𝑖

(hence almost everywhere on Ω) by the assumption (2.4). In what follows, we write div f for
∑︀𝑚

𝑖=1 div f𝜒Ω𝑖
, by

abuse of notation, where 𝜒Ω𝑖 is the characteristic function of Ω𝑖. It is also clear that the weak divergence of f is
globally defined on Ω if and only if the jump of the normal trace [𝛾𝑛(f)]Γ across the interfaces Γ := ∪𝑚

𝑖=1𝜕Ω𝑖∖𝜕Ω
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vanishes. The physical parameters 𝜇 and 𝜎 are supposed to be polynomials on each subdomain Ω𝑖 (hence
piecewise polynomials on Ω) and satisfy 𝜇(𝑥) ≥ 𝜇0 > 0 and 𝜎(𝑥) ≥ 𝜎0 > 0. The real 𝛼 > 0 is a stabilization
parameter. We define the symmetric bilinear form 𝐵(·, ·) associated with the state equation (2.3):

𝐵(u, v) :=
(︀
𝜇−1curlu, curlv

)︀
0,Ω

+ (𝜎u, v)0,Ω.

It readily follows from the assumptions of the physical parameters that 𝐵 is continuous and coercive, thus
defining an inner product on H(curl, Ω) whose induced energy norm ‖·‖𝐵 :=

√︀
𝐵(·, ·) is equivalent to ‖·‖curl,Ω.

By the direct method in the calculus of variations (see, for instance, [58], Thms. 2.14–2.16) and noting that
the cost functional 𝐽(u) is weakly lower semicontinuous and strictly convex, we have that there always exists a
unique minimizer u* ∈ U𝑎𝑑 to the optimization problem. Then the first-order optimality condition yields(︀

curly(u*)− y𝑑, curly(u)− curly(u*)
)︀
0,Ω

+ 𝛼
(︀
u* − u𝑑,u− u*

)︀
0,Ω

≥ 0 ∀ u ∈ U𝑎𝑑, (2.6)

since 𝐽(u) is Fréchet differentiable. In what follows, we shall write y* for y(u*) for short. If we introduce the
adjoint state p ∈ V associated with y ∈ V by

𝐵(p,𝜑) =
(︀
curly− y𝑑, curl𝜑

)︀
0,Ω

∀ 𝜑 ∈ V,

equation (2.6) can be equivalently written as the following optimality system in terms of the state and the
adjoint state, as well as the control variable:⎧⎪⎪⎨⎪⎪⎩

𝐵(y*,𝜑) = (f + u*,𝜑)0,Ω ∀ 𝜑 ∈ V,

𝐵(p*,𝜑) =
(︀
curly* − y𝑑, curl𝜑

)︀
0,Ω

∀ 𝜑 ∈ V,(︀
p* + 𝛼

(︀
u* − u𝑑

)︀
,u− u*

)︀
0,Ω

≥ 0 ∀ u ∈ U𝑎𝑑.

(2.7a)

(2.7b)

(2.7c)

If we further define the Lagrange multiplier (or the adjoint control) for the variational inequality (2.7c):

−𝜆* = −p* − 𝛼(u* − u𝑑), (2.8)

then (2.7c) can be reformulated in a compact form:

−𝜆* ∈ 𝜕𝐼U𝑎𝑑(u*), (2.9)

where 𝜕𝐼U𝑎𝑑 is the subdifferential of the indicator function of the admissible set U𝑎𝑑 [33]. We remark that 𝜆* is
actually the Fréchet derivative of the functional 𝐽(u). We then conclude from (2.7c), or (2.9), that u* is nothing
else than the 𝐿2-projection of −p*

𝛼 + u𝑑 on U𝑎𝑑, i.e.,

u* = PU𝑎𝑑

(︂
−p*

𝛼
+ u𝑑

)︂
. (2.10)

Here and throughout this work, we denote by P𝐸 the 𝐿2-projection on the convex subset 𝐸 of L2(Ω). It is worth
mentioning that PU𝑎𝑑 in (2.10) can also be understood in the pointwise sense due to the unilateral form of U𝑎𝑑:

u* = max
{︂
0,−p*

𝛼
+ u𝑑

}︂
a.e. in Ω,

where the maximum is taken componentwise. We now end our discussion on the continuous optimal control
problem with some regularity results.

Proposition 2.1. Assume that 𝜎 is constant and Ω is convex or of class 𝐶1,1. If u𝑑 ∈ H1(Ω) and 𝑓 ∈ H(div, Ω),
then the triplet (y*,p*,u*) satisfying the optimality system (2.7a)–(2.7c) has the regularity: u*,y*,p* ∈ H1(Ω).
If we further assume that 𝜇 is constant, we have y*,p* ∈ H1(curl, Ω).
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Proof. It is clear that (2.7b) is equivalent to the following equation:

curl𝜇−1curlp* + 𝜎p* = curl
(︀
curly* − y𝑑

)︀
in Ω, n× p* = 0 on 𝜕Ω, (2.11)

in the distributional sense. By taking the divergence on both sides of (2.11), we have div(𝜎p*) = 0. Recall that
the space H0(curl, Ω) ∩H(div, Ω) is continuously imbedded in H1(Ω), if Ω is convex or of class 𝐶1,1 (cf. [6]).
Since 𝜎 is assumed to be constant, we readily see p* ∈ H0(curl, Ω)∩H(div, Ω) →˓ H1(Ω). Noting that PU𝑎𝑑 is a
continuous mapping from H1(Ω) to H1(Ω) (cf. [24], Sect. 5.10, [37]), we obtain from (2.10) and u𝑑 ∈ H1(Ω) that
𝑢* ∈ H1(Ω). Then using the fact that f+u* ∈ H(div, Ω), a similar argument applying to y* yields y* ∈ H1(Ω).

If we further assume that 𝜇 is constant, it follows from the equation (2.7a) and de Rham diagram ([44], (3.60))
that curly* belongs to the space H(curl, Ω)∩H0(div, Ω), which is also continuously imbedded in H1(Ω). Hence,
there holds curly* ∈ H1(Ω), which gives y* ∈ H1(curl, Ω) (see (2.1)). Similarly, we can conclude by (2.7b)
that p* ∈ H1(curl, Ω), under the assumption (2.5) that y𝑑 ∈ H0(curl, Ω). The proof is complete. �

Remark 2.2. The above result essentially relies on the regularity theory for Maxwell’s equations (cf. [3, 4, 60,
62]). Here, we consider the case where the coefficients are isotropic and constant, so that the proof is direct.
By using the recent result ([3], Thm. 1), one can similarly obtain the following generalization. Assume that
𝜇 is constant, 𝜎 ∈ 𝑊 1,3+𝛿(Ω) for some 𝛿 > 0 and Ω is of class 𝐶1,1. If u𝑑 ∈ H1(Ω) and 𝑓 ∈ H(div, Ω) hold
as above, then the solution (y*,p*,u*) to the optimality system (2.7a)–(2.7c) still satisfies u* ∈ H1(Ω) and
y*,p* ∈ H1(curl, Ω).

From the above discussion about the regularity, we can see that if there are no additional assumptions on
the physical coefficients, the given data and the domain Ω, the optimal control u* should generally be of low
regularity (less regular than H1). Hence we may expect from the standard (ℎ-version) FEM theory that on
uniform meshes, the simplest piecewise constant approximation can already achieve the optimal approximation
accuracy, and any higher-order approximations can not improve the numerical accuracy of the optimal control.
In fact, this is still true even if the optimal control u* has the H1-regularity, since we aim only at the 𝐿2-error
of the control variable. This is one of the main motivations of the current work. We would like to further remark
that if the solution is piecewise analytic (singularity is allowed on a lower dimensional manifold), one may use
general versions of FEM (e.g. ℎ𝑝-FEM) to get better convergence rate, even the exponential rate [8, 54, 56, 57]
(but the concrete design and implementation of such algorithms would be typically difficult and beyond the
scope of this work).

The rest of this section is devoted to the finite element discretization of the control problem. We consider a
family of conforming and shape regular triangulations {Tℎ} of Ω, which coincide with the partition Ω =

∏︀𝑚
𝑖=1 Ω𝑖

in the sense that Ω𝑖 =
⋃︀

𝑇⊂Ω𝑖
𝑇 . We set ℎ := max𝑇∈Tℎ

ℎ𝑇 , where ℎ𝑇 denotes the diameter of 𝑇 . We also refer
to Fℎ :=

⋃︀
{𝜕𝑇 ∩ Ω; 𝑇 ∈ Tℎ}, the set of all the interior faces, as the skeleton of the triangulation Tℎ. The

diameter of a face 𝐹 is denoted by ℎ𝐹 . In our algorithm, we use the lowest-order H(curl)-conforming edge
element space of Nédélec’s first family with zero tangential trace:

Vℎ =
{︀
vℎ ∈ H0(curl, Ω); vℎ|𝑇 = a𝑇 × x + b𝑇 with a𝑇 , b𝑇 ∈ R3, 𝑇 ∈ Tℎ

}︀
,

to approximate both the state and the adjoint state. For approximating the control variable, we employ the
simplest space of element-wise constant functions with respect to the triangulation Tℎ:

Uℎ =
{︀
uℎ ∈ L2(Ω); uℎ|𝑇 ∈ 𝑃0(𝑇 ), 𝑇 ∈ Tℎ

}︀
.

Here and in what follows, 𝑃𝑘(𝑇 ) is the space of polynomials of degree ≤ 𝑘 over 𝑇 . The discrete admissible set
U𝑎𝑑

ℎ is then given by
U𝑎𝑑

ℎ := Uℎ ∩U𝑎𝑑 = {uℎ ∈ Uℎ; uℎ ≥ 0}.
With the help of these notions, we formulate the discrete optimal control problem:

minimize 𝐽(yℎ,uℎ) =
1
2
‖curlyℎ − y𝑑‖20,Ω +

𝛼

2
‖uℎ − u𝑑‖20,Ω (2.12)
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over (yℎ,uℎ) ∈ Vℎ ×U𝑎𝑑
ℎ

subject to 𝐵(yℎ,𝜑ℎ) = (f + uℎ,𝜑ℎ)0,Ω ∀ 𝜑ℎ ∈ Vℎ. (2.13)

As in the continuous case, the existence and uniqueness of the solution to the discrete system (2.12), (2.13) can
be guaranteed, and the corresponding optimality system reads as follows: find (y*ℎ,p*ℎ,u*ℎ) ∈ Vℎ ×Vℎ ×U𝑎𝑑

ℎ

by solving ⎧⎪⎪⎨⎪⎪⎩
𝐵(y*ℎ,𝜑ℎ) = (f + u*ℎ,𝜑ℎ)0,Ω ∀ 𝜑ℎ ∈ Vℎ,

𝐵(p*ℎ,𝜑ℎ) =
(︀
curly*ℎ − y𝑑, curl𝜑ℎ

)︀
0,Ω

∀ 𝜑ℎ ∈ Vℎ,(︀
Pℎp

*
ℎ + 𝛼

(︀
u*ℎ − u𝑑

ℎ

)︀
,uℎ − u*ℎ

)︀
0,Ω

≥ 0 ∀ uℎ ∈ U𝑎𝑑
ℎ ,

(2.14a)

(2.14b)

(2.14c)

where Pℎ denotes the 𝐿2-projection PUℎ
:

(Pℎv)𝑇 :=
1
|𝑇 |

∫︁
𝑇

v(x)dx : L2(Ω) → Uℎ, (2.15)

and the approximate target control u𝑑
ℎ in (2.14c) is given by Pℎu

𝑑. Similarly, we denote by yℎ(uℎ) the solution
to (2.13) and introduce the discrete reduced cost functional:

𝐽ℎ(u) :=
1
2
‖curlyℎ(uℎ)− y𝑑‖20,Ω +

𝛼

2
‖uℎ − u𝑑‖20,Ω,

then its Fréchet derivative is given by (one can actually show 𝜆*ℎ ∈ U𝑎𝑑
ℎ , i.e., 𝜆*ℎ ≥ 0; see (2.18))

𝜆*ℎ = Pℎp
*
ℎ + 𝛼(u*ℎ − u𝑑

ℎ)∈ Uℎ. (2.16)

We also see from (2.14c) and the relation PU𝑎𝑑
ℎ

= PU𝑎𝑑Pℎ that

u*ℎ = PU𝑎𝑑
ℎ

(︂
−p*ℎ

𝛼
+ u𝑑

)︂
= PU𝑎𝑑

(︂
−Pℎp

*
ℎ

𝛼
+ u𝑑

ℎ

)︂
, (2.17)

which directly implies a pointwise representation for the discrete optimal control:

u*ℎ = max
{︂
0,−Pℎp

*
ℎ

𝛼
+ u𝑑

ℎ

}︂
. (2.18)

3. Adaptive algorithm and the a posteriori error analysis

In this section, we give a complete discussion of the adaptive edge element method for solving the H(curl)-
elliptic control problem and derive the a posteriori error estimates. An adaptive finite element method typically
takes the successive loops:

SOLVE → ESTIMATE → MARK → REFINE,

where the a posteriori error estimation (module ESTIMATE) is the core step in the design of an adaptive
algorithm, through which we can extract the information on the error distribution. For our algorithm and anal-
ysis, we shall use the residual-type a posteriori error estimators in terms of numerically computable quantities,
which include the element residuals 𝜂𝑇 , 𝑇 ∈ Tℎ, and the face residuals 𝜂𝐹 , 𝐹 ∈ Fℎ:

𝜂2
𝑇 :=

∑︁
𝑖=1,2

(︁
𝜂
(𝑖)
𝑦,𝑇

)︁2

+
∑︁

𝑖=1,2,3

(︁
𝜂
(𝑖)
𝑝,𝑇

)︁2

, 𝜂2
𝐹 :=

∑︁
𝑖=1,2

(︁
𝜂
(𝑖)
𝑦,𝐹

)︁2

+
(︁
𝜂
(𝑖)
𝑝,𝐹

)︁2

, (3.1)
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where 𝜂
(𝑖)
𝑦,𝑇 and 𝜂

(𝑖)
𝑝.𝑇 are the element residuals defined by

𝜂
(1)
𝑦,𝑇 := ℎ𝑇 ‖f + u*ℎ − curl𝜇−1curly*ℎ − 𝜎y*ℎ‖0,𝑇 , 𝜂

(2)
𝑦,𝑇 := ℎ𝑇 ‖div(f− 𝜎y*ℎ)‖0,𝑇 ,

and

𝜂
(1)
𝑝,𝑇 := ℎ𝑇 ‖curly𝑑 + curl𝜇−1curlp*ℎ + 𝜎p*ℎ‖0,𝑇 , 𝜂

(2)
𝑝,𝑇 := ℎ𝑇 ‖div(𝜎p*ℎ)‖0,𝑇 , 𝜂

(3)
𝑝,𝑇 := ‖p*ℎ − Pℎp

*
ℎ‖0,𝑇 ,

while 𝜂
(𝑖)
𝑦,𝐹 and 𝜂

(𝑖)
𝑝,𝐹 are the face residuals defined by

𝜂
(1)
𝑦,𝐹 := ℎ

1/2
𝐹 ‖[𝛾𝑡(𝜇−1curly*ℎ)]𝐹 ‖0,𝐹 , 𝜂

(2)
𝑦,𝐹 := ℎ

1/2
𝐹 ‖[𝛾𝑛(f + u*ℎ − 𝜎y*ℎ)]𝐹 ‖0,𝐹 ,

𝜂
(1)
𝑝,𝐹 := ℎ

1/2
𝐹 ‖[𝛾𝑡(−𝜇−1curlp*ℎ + curly*ℎ)]𝐹 ‖0,𝐹 , 𝜂

(2)
𝑝,𝐹 := ℎ

1/2
𝐹 ‖[𝛾𝑛(𝜎p*ℎ)]𝐹 ‖0,𝐹 .

Here [·]𝐹 := ·|− − ·|+ stands for the jump across the face 𝐹 , where the subscripts ± denote the limits taken
from outside and inside 𝐹 ⊂ 𝜕𝑇 , respectively. We remark that it may not be easy to see how to define these
terms at the first glance, but we shall see that they are generated naturally in the reliability analysis. For ease
of exposition, we denote by

𝜂2
ℎ(𝑇 ) = 𝜂2

𝑇 +
1
2

∑︁
𝐹∈𝜕𝑇∩Ω

𝜂2
𝐹 ,

the residual-type error indicator associated with an element 𝑇 . We should note that there are no face residuals
on the boundary of domain since the state equation satisfies the homogeneous boundary condition. For the a
posteriori error estimates and the convergence analysis, a lower-order data oscillation related to u𝑑 is needed:

osc2
ℎ

(︀
u𝑑
)︀

:=
∑︁

𝑇∈Tℎ

osc2
𝑇

(︀
u𝑑
)︀
, osc𝑇

(︀
u𝑑
)︀

:= ‖u𝑑 − u𝑑
ℎ‖0,𝑇 , 𝑇 ∈ Tℎ.

Some higher-order data oscillations associated with y𝑑 and f shall also be involved:

osc2
ℎ

(︀
y𝑑
)︀

:=
∑︁

𝑇∈Tℎ

osc2
𝑇

(︀
y𝑑
)︀

with osc𝑇 (y𝑑) := ℎ𝑇 ‖curl
(︀
y𝑑 − y𝑑

ℎ

)︀
‖0,𝑇 , 𝑇 ∈ Tℎ,

and

osc2
ℎ(f) :=

∑︁
𝑇∈Tℎ

osc2
𝑇 (f)

with

osc𝑇 (f) := ℎ𝑇 ‖f− fℎ‖div,𝑇 +
∑︁

𝐹∈𝜕𝑇∩Ω

ℎ
1/2
𝐹 ‖[𝛾𝑛(f− fℎ)]𝐹 ‖0,𝐹 , 𝑇 ∈ Tℎ,

where we assume that y𝑑
ℎ ∈ Vℎ and fℎ ∈ Uℎ are some approximations of y𝑑 and f, respectively. In contrast to

the element residuals and face residuals associated with the discrete solutions, the data oscillation oscℎ

(︀
u𝑑
)︀

is
typically of lower order for a non-smooth target control u𝑑, and at most of 𝑂(ℎ), by the Poincaré inequality,
even if u𝑑 has a certain regularity. Meanwhile, the data oscillations oscℎ

(︀
y𝑑
)︀

and oscℎ(f) are of the same order
as the residuals, and shall be of higher order if the data y𝑑 and f have additional regularities. Therefore, we
could replace y𝑑 and f in the element residuals 𝜂

(𝑖)
𝑦,𝑇 , 𝑖 = 1, 2 and 𝜂

(1)
𝑝,𝑇 , as well as some face residuals, with y𝑑

ℎ

and fℎ for ease of implementation without any influence on the performance of the algorithm and any essential
change of the analysis.

As we shall see, since the inconsistent discrete spaces are used and no additional regularity assumptions are
added on the data, the lower-order data oscillations may have a significant contribution to the total error so that
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a single residual-type error estimator 𝜂ℎ is not enough to capture the error distribution accurately. Therefore, to
design an efficient adaptive algorithm for our problem, it is necessary to take into account the data oscillations
[26, 29]. In view of this, we introduce a new mixed error indicator, by incorporating the lower-order data
oscillation osc𝑇

(︀
u𝑑
)︀

into the residual-type error estimator 𝜂ℎ,

𝜂2
ℎ =

∑︁
𝑇∈Tℎ

𝜂2
ℎ(𝑇 ) with 𝜂2

ℎ(𝑇 ) = 𝜂2
ℎ(𝑇 ) + osc2

𝑇

(︀
u𝑑
)︀
. (3.2)

We are now in a position to present the algorithm (see Algorithm 1 below), based on the error estimator 𝜂ℎ.
In what follows, we shall use the iteration index 𝑘 to indicate the dependence of a variable or a quantity on a
particular mesh generated in the adaptive process, for instance, we write 𝜂𝑘(𝑇 ) for 𝜂ℎ(𝑇 ) to emphasize that we
are considering the error estimator 𝜂ℎ(𝑇 ) on the mesh T𝑘.

Algorithm 1. Adaptive edge element method.
1: Specify a shape regular initial mesh T0 on Ω and set the iteration index 𝑘 := 0.
2: (SOLVE) Compute the numerical solution (y*𝑘,p*𝑘 u*𝑘) to the discrete optimality system (2.14a)–(2.14c) on the mesh

T𝑘.
3: (ESTIMATE) Compute the error estimator 𝜂𝑘(𝑇 ) defined in (3.2) for each element 𝑇 ∈ T𝑘.

4: (MARK) Mark a subset M𝑘 ⊂ T𝑘 containing at least one element ̃︀𝑇𝑘 that satisfies

𝜂𝑘

(︁
̃︀𝑇𝑘

)︁
= max

𝑇∈T𝑘

𝜂𝑘(𝑇 ). (3.3)

5: (REFINE) Refine elements in M𝑘 and other necessary elements by bisection to generate the smallest conforming
mesh T𝑘+1 with T𝑘+1 ∩M𝑘 = ∅.

6: Set 𝑘 = 𝑘 + 1 and go to Step 2 until the preset stopping criterion is met.

Several further remarks concerning each module in Algorithm 1 are in order. First, in the module SOLVE, we
are required to solve a large-scale quadratic optimization problem with discretized PDE-constraints efficiently.
It is nowadays a very active research area, and many high-performance algorithms and preconditioners have
been developed for this purpose (cf. [16, 50–52,55]).

Second, to guarantee the convergence of the algorithm, we only need the condition (3.3) in the module
MARK that the marked elements contain an element with the largest error indicator, which can be met by
many popular marking strategies, such as the maximum strategy [7], the equidistribution strategy [23] and the
Dörfler’s strategy [21]. In our numerical experiments (see Sect. 5), we shall use the Dörfler’s strategy to select
the marked elements M𝑘 with minimal cardinality such that for a given 𝜃 ∈ (0, 1), there holds∑︁

𝑇∈M𝑘

𝜂2
𝑘(𝑇 ) ≥ 𝜃

∑︁
𝑇∈T𝑘

𝜂2
𝑘(𝑇 ). (3.4)

Third, we only include the data oscillation oscℎ

(︀
u𝑑
)︀

in the definition of 𝜂ℎ since it is a lower-order term that
may provide a dominant error contribution among all the data oscillations. On the other hand, the behavior of
the optimal control u* relies largely on the properties of the obstacle function 𝜓, whose information is further
transferred to u𝑑. We hence expect that the approximation ability of Uℎ associated with the current mesh Tℎ

for u𝑑 can directly influence the performance of our AFEM; see also [26,29] for related discussions. In the case
where 𝜓 is a constant function and u𝑑 = 0, oscℎ

(︀
u𝑑
)︀

vanishes and 𝜂ℎ becomes the standard residual-type error
estimator 𝜂ℎ.

Finally, for the module REFINE, all elements of M𝑘 are bisected at least once, and some additional elements
in T𝑘∖M𝑘 may also need to be subdivided in order to generate a sequence of uniformly shape regular and
conforming meshes {T𝑘}𝑘≥0; see [17] and Section 4 of [48] for the detailed mesh refinement algorithm and the
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necessary assumptions on the initial triangulation T0. Such a refinement process ensures that all the generic
constants involved in the inequalities below depend only on the shape regularity of the initial mesh and the
given data.

We shall next present the a posteriori error analysis based on the error estimator 𝜂ℎ (3.2), including both the
reliability and efficiency estimates, which is similar in spirit to the ones given in [35,53], but with several main
difficulties and differences as stated in the introduction, especially those caused by the inconsistency between
the discrete spaces of the state and control.

3.1. Reliability

In this section, we show that the error estimator 𝜂ℎ is reliable in the sense that it can provide an upper bound
for the total error between the true solution and the numerical solution:

‖y*ℎ − y*‖curl,Ω + ‖p*ℎ − p*‖curl,Ω + ‖u*ℎ − u*‖0,Ω.

For this purpose, following [53], we introduce a helpful quasi-interpolation operator Πℎ. We start with the
definition of the extended neighborhood ̃︀Ω𝑇 for an element 𝑇 ∈ Tℎ and fix some notations. Recall that the
neighborhood Ωv of a vortex v is defined as the union of all the elements that contain the vertex v, and the
extended neighborhood of a vertex v is given by ̃︀Ωv :=

⋃︀
v′∈Ωv

Ωv′ . We define the extended neighborhood of an
element 𝑇 by ̃︀Ω𝑇 =

⋃︀
v∈𝑇

̃︀Ωv. An important consequence of the uniformly shape regularity of {Tℎ} is that the
cardinality of ̃︀Ω𝑇 is uniformly bounded (cf. [48], Sect. 4.3):

max
𝑇∈Tℎ

#̃︀Ω𝑇 ≤ 𝐶(T0). (3.5)

The corresponding converse fact is that the collection of extended neighborhoods ̃︀Ω𝑇 , 𝑇 ∈ Tℎ, covers each
element in Tℎ finite times uniformly:

max
𝑇∈Tℎ

#
{︁

𝑇 ′ ∈ Tℎ; 𝑇 ∈ ̃︀Ω𝑇 ′

}︁
≤ 𝐶(T0). (3.6)

Here the constants 𝐶(T0) only depend on the initial mesh T0.

Lemma 3.1 ([53], Thm. 1). There exists an interpolation operator Πℎ : H0(curl, Ω) → Vℎ such that for any
u ∈ H0(curl, Ω), u−Πℎu has the decomposition:

u−Πℎu = ∇𝜙 + z,

with 𝜙 ∈ 𝐻1
0 (Ω), z ∈ H1

0(Ω). Moreover, the following estimates hold

ℎ−1
𝑇 ‖𝜙‖0,𝑇 + ‖∇𝜙‖0,𝑇 . ‖u‖0,̃︀Ω𝑇

, (3.7)

ℎ−1
𝑇 ‖z‖0,𝑇 + ‖∇z‖0,𝑇 . ‖curlu‖0,̃︀Ω𝑇

. (3.8)

Since the optimal state y* and adjoint state p* satisfy the coupled system (2.7a)–(2.7c), the Galerkin orthog-
onality, which is important for the a posteriori error analysis for the linear boundary value problems, does not
hold here. To compensate it, we introduce the intermediate state and adjoint state, y(u*ℎ) and p(u*ℎ), by the
equations:

𝐵(y(u*ℎ),𝜑) = (f + u*ℎ,𝜑) ∀ 𝜑 ∈ V, (3.9)

𝐵(p(u*ℎ),𝜓) =
(︀
curly(u*ℎ)− y𝑑, curl𝜓

)︀
∀ 𝜓 ∈ V. (3.10)

If we use the variational discretization for the control variable, we can derive the following error equivalence
(cf. [27, 30]):

‖y(u*ℎ)− y*ℎ‖curl,Ω + ‖p(u*ℎ)− p*ℎ‖curl,Ω ≈ ‖y*ℎ − y*‖curl,Ω + ‖p*ℎ − p*‖curl,Ω + ‖u*ℎ − u*‖0,Ω,
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which allows us to directly conclude the reliability of the error estimator from the known result concerning
Maxwell’s equations ([53], Cor. 2). If we use the edge element discretization for the control as in [35], the above
error equivalence still holds, up to the data oscillation oscℎ

(︀
u𝑑
)︀
. However, this is not the case in our algorithm

since the discrete spaces of the control and state variables are different. Instead, we have the following result.

Lemma 3.2. Let the triplets (y*,p*,u*) and (y*ℎ,p*ℎ,u*ℎ) be the solutions to (2.7a)–(2.7c) and (2.14a)–(2.14c),
respectively. Then it holds that

‖y*ℎ − y*‖curl,Ω + ‖p*ℎ − p*‖curl,Ω + ‖u*ℎ − u*‖0,Ω

. ‖y(u*ℎ)− y*ℎ‖curl,Ω + ‖p(u*ℎ)− p*ℎ‖curl,Ω + ‖Pℎp
*
ℎ − p*ℎ‖0,Ω + oscℎ

(︀
u𝑑
)︀
.

Proof. By the well-posedness of the H(curl)-elliptic variational problem, we have

‖y* − y(u*ℎ)‖curl,Ω . ‖u− u*ℎ‖0,Ω, (3.11)
‖p* − p(u*ℎ)‖curl,Ω . ‖curly* − curly(u*ℎ)‖0,Ω . ‖u− u*ℎ‖0,Ω, (3.12)

which, combined with the triangle inequality, reduce the proof of the lemma to the estimate of ‖u*ℎ − u*‖0,Ω.
In view of (2.10) and (2.17), we get

‖u* − u*ℎ‖20,Ω ≤
(︁
u* − u*ℎ,−p* − Pℎp

*
ℎ

𝛼
+ u𝑑 − u𝑑

ℎ

)︁
0,Ω

, (3.13)

by the contraction property of 𝐿2-projections ([15], Prop. 5.3). Moreover, we can deduce, by taking 𝜑 =
p* − p(u*ℎ) in (3.9) and 𝜓 = y* − y(u*ℎ) in (3.10), that

(u* − u*ℎ,p* − p(u*ℎ))0,Ω = ‖curly* − curly(u*ℎ)‖20,Ω ≥ 0. (3.14)

Combining (3.14) with (3.13) helps us obtain

‖u*ℎ − u*‖0,Ω . ‖Pℎp
*
ℎ − p*ℎ‖0,Ω + ‖p*ℎ − p(u*ℎ)‖0,Ω + ‖u𝑑

ℎ − u𝑑‖0,Ω,

which completes the proof of the lemma. �

With the above preparations, we are now ready to prove the reliability of the error estimator.

Theorem 3.3. Let the triplets (y*,p*,u*) and (y*ℎ,p*ℎ,u*ℎ) be the solutions to the continuous and discrete op-
timality systems (2.7a)–(2.7c) and (2.14a)–(2.14c), respectively. Then we have the following reliability estimate:

‖y*ℎ − y*‖curl,Ω + ‖p*ℎ − p*‖curl,Ω + ‖u*ℎ − u*‖0,Ω . 𝜂ℎ. (3.15)

Proof. By Lemma 3.2, it suffices to estimate ‖y(u*ℎ) − y*ℎ‖curl,Ω + ‖p(u*ℎ) − p*ℎ‖curl,Ω to obtain the reliability
estimate (3.15). We first consider the estimate for the state variable y. Let ey be y(u*ℎ) − y*ℎ, and recall the
norm equivalence: ‖v‖𝐵 ≈ ‖v‖curl,Ω. We can derive, by the Galerkin orthogonality,

‖ey‖2curl,Ω ≈ 𝐵(ey, ey −Πℎey) = (f + u*ℎ − 𝜎y*ℎ, ey −Πℎey)0,Ω −
(︀
𝜇−1curly*ℎ, curl(ey −Πℎey)

)︀
0,Ω

. (3.16)

A direct application of Lemma 3.1 gives us the decomposition: ey−Πℎey = ∇𝜙+z with 𝜙 ∈ 𝐻1
0 (Ω), z ∈ H1

0(Ω).
Substituting it into (3.16) and using integration by parts for each 𝑇 , we have

(f + u*ℎ − 𝜎y*ℎ,∇𝜙 + z)0,Ω −
(︀
𝜇−1curly*ℎ, curl(∇𝜙 + z)

)︀
0,Ω

=
∑︁

𝑇∈Tℎ

−(div f, 𝜙)0,𝑇 +
(︀
f + u*ℎ − 𝜎y*ℎ − curl𝜇−1curly*ℎ, z

)︀
0,𝑇

+ (div(𝜎y*ℎ), 𝜙)0,𝑇
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+
∑︁

𝐹∈Fℎ

([𝛾𝑛(f + u*ℎ − 𝜎y*ℎ)]𝐹 , 𝜙)0,𝐹 +
(︀[︀

𝛾𝑡(𝜇−1curly*ℎ)
]︀
𝐹
, z
)︀
0,𝐹

. (3.17)

To proceed, by the scaled trace inequality ([48], Cor. 6.1):

‖𝑤‖0,𝐹 . ℎ
−1/2
𝐹 ‖𝑤‖0,𝑇 + ℎ

1/2
𝐹 ‖∇𝑤‖0,𝑇 for 𝐹 ∈ 𝜕𝑇, 𝑤 ∈ 𝐻1(𝑇 ), (3.18)

and estimates (3.7) and (3.8), we obtain from (3.16) and (3.17) and the definitions of the error estimators,

‖ey‖2curl,Ω .
∑︁

𝑇∈Tℎ

(︁
𝜂
(1)
𝑦,𝑇 + 𝜂

(2)
𝑦,𝑇

)︁
‖ey‖curl,̃︀Ω𝑇

+
∑︁

𝑇∈Tℎ

∑︁
𝐹∈𝜕𝑇∩Ω

(︁
𝜂
(1)
𝑦,𝐹 + 𝜂

(2)
𝑦,𝐹

)︁
‖ey‖curl,̃︀Ω𝑇

. (3.19)

By the property (3.6), the desired estimate follows from (3.19) and the Cauchy’s inequality:

‖y(u*ℎ)− y*ℎ‖curl,Ω . 𝜂ℎ. (3.20)

The error ep := p(u*ℎ)− p*ℎ for the adjoint state can be analysed similarly. We note

‖ep‖2curl,Ω ≈𝐵(ep, ep −Πℎep) + 𝐵(ep, Πℎep),

and write ep −Πℎep = ∇𝜙 + z by Lemma 3.1. Then some elementary calculations give us that

𝐵(ep, ep −Πℎep) = 𝐵(p(u*ℎ)− p*ℎ,∇𝜙 + z)

.
(︀
curly*ℎ − y𝑑 − 𝜇−1curlp*ℎ, curl z

)︀
0,Ω

− (𝜎p*ℎ,∇𝜙 + z)0,Ω + ‖y*ℎ − y(u*ℎ)‖curl,Ω‖ep‖curl,Ω.

Moreover, by equations (2.14b) and (3.10), we have

|𝐵(ep, Πℎep)| . ‖y*ℎ − y(u*ℎ)‖curl,Ω‖ep‖curl,Ω.

Then we can derive by using integration by parts and the above estimates that

‖ep‖2curl,Ω .
(︀
curly*ℎ − y𝑑 − 𝜇−1curlp*ℎ, curl z

)︀
0,Ω

− (𝜎p*ℎ,∇𝜙 + z)0,Ω + ‖y*ℎ − y(u*ℎ)‖curl,Ω‖ep‖curl,Ω

=
∑︁

𝑇∈Tℎ

(−curly𝑑 − curl𝜇−1curlp*ℎ − 𝜎p*ℎ, z)0,𝑇 + (div(𝜎p*ℎ), 𝜙)0,𝑇

−
∑︁

𝐹∈Fℎ

([𝛾𝑡(curly*ℎ − 𝜇−1curlp*ℎ)]𝐹 , z)0,𝐹 − ([𝛾𝑛(𝜎p*ℎ)]𝐹 , 𝜙)0,𝐹

+ ‖y*ℎ − y(u*ℎ)‖curl,Ω‖ep‖curl,Ω,

which, by (3.20), the trace inequality (3.18) and Lemma 3.1, gives

‖p(u*ℎ)− p*ℎ‖curl,Ω . 𝜂ℎ. (3.21)

Combining estimates (3.20) and (3.21) with Lemma 3.2 and the definition of 𝜂ℎ completes the proof
of (3.15). �

3.2. Efficiency

In this section, we consider the efficiency estimate, which is another aim of the a posteriori error analysis. For
this, we need the so-called bubble functions, which plays a similar role to the cut-off functions and can help us
estimate the local errors. As we shall see soon, when we deal with the divergence parts of the residual-type error
estimator 𝜂ℎ (i.e., 𝜂(2)

𝑦,𝑇 , 𝜂(2)

𝑝,𝑇 , 𝜂(2)

𝑦,𝐹 and 𝜂(2)

𝑝,𝐹 ), the higher-order bubble functions have to be used to ensure the
vanishing boundary traces of some terms. Moreover, the curl structures in the right-hand sides of the adjoint
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equations (2.7b) and (2.14b) also need our special and careful treatment. These important points were not
addressed in [35].

For the reader’s convenience, we next briefly review the definition of the bubble functions and some basic
results, see [2, 59] for a comprehensive introduction of this topic. We define the bubble function for an element
𝑇 ∈ Tℎ by 𝑏𝑇 (x) = 256Π4

𝑖=1𝜆
𝑇
𝑖 (x), x ∈ 𝑇 , where 𝜆𝑇

𝑖 , 1 ≤ 𝑖 ≤ 4, are the barycentric coordinate functions
associated with four vertices of 𝑇 ∈ Tℎ. Similarly, the bubble function for a face 𝐹 ∈ Fℎ is given by 𝑏𝐹 |𝑇 (x) =
27Π3

𝑖=1𝜆
𝐹
𝑖 (x), x ∈ 𝑇 ∈ 𝜔𝐹 . Here, 𝜔𝐹 := {𝑇 ∈ Tℎ; 𝐹 ⊂ 𝜕𝑇} is the element pair for a face 𝐹 ∈ Fℎ, and 𝜆𝐹

𝑖 are
the barycentric coordinate functions associated with the vertices of the face 𝐹 ∈ Fℎ, which can be naturally
extended to 𝜔𝐹 . To extend the face residuals defined on 𝐹 to 𝜔𝐹 , we introduce the extension operator as follows.
We first define the operator 𝐸̂ : 𝐶(𝐹 ) → 𝐶(𝑇 ) on the reference element 𝑇 in R3 by

𝐸̂[𝑝](𝑥̂, 𝑦, 𝑧) := 𝑝(𝑥̂, 𝑦),

where 𝐹 is the face of 𝑇 lying on the (𝑥̂, 𝑦)-plane. By using the affine mapping 𝐹𝑇 (x̂) = 𝐴𝑇 x̂+a𝑇 : 𝑇 → 𝑇 ∈ 𝜔𝐹 ,
the general extension operator 𝐸 : 𝐶(𝐹 ) → 𝐶(𝜔𝐹 ) can be introduced by

𝐸[𝑝]|𝑇 = 𝐸̂[𝑝 ∘ 𝐹𝑇 ] ∘ 𝐹−1
𝑇 , 𝑇 ∈ 𝜔𝐹 , (3.22)

where the mappings 𝐹𝑇 , 𝑇 ∈ 𝜔𝐹 , are chosen such that 𝐹 is mapped to 𝐹 and 𝐸[𝑝] is well-defined on 𝜔𝐹 and
continuous. The next lemma summarizes the important properties of the bubble functions, which can be easily
verified by the equivalence of norms in a finite-dimensional linear space and the standard scaling argument.

Lemma 3.4. Let 𝑘 be a positive integer and 𝑠 be a positive real number. For any 𝑇 ∈ Tℎ and 𝐹 ∈ Fℎ, there
holds

‖𝜑‖0,𝑇 . ‖𝑏𝑠
𝑇 𝜑‖0,𝑇 ≤ ‖𝜑‖0,𝑇 , ‖𝜙‖0.𝐹 . ‖𝑏𝑠

𝐹 𝜙‖0.𝐹 ≤ ‖𝜙‖0,𝐹 , (3.23)

for all 𝜑 ∈ 𝑃𝑘(𝑇 ) and 𝜙 ∈ 𝑃𝑘(𝐹 ), and

ℎ
1/2
𝐹 ‖𝜙‖0,𝐹 . ‖𝑏𝑠

𝐹 𝐸(𝜙)‖0,𝑇 . ℎ
1/2
𝐹 ‖𝜙‖0,𝐹 , (3.24)

for 𝑇 ∈ 𝑤𝐹 and 𝜙 ∈ 𝑃𝑘(𝐹 ).

We are now in a position to state and prove the main result of this section.

Theorem 3.5. Let the triplets (y*,p*,u*) and (y*ℎ,p*ℎ,u*ℎ) be the solutions to the continuous and discrete
optimality systems (2.7a)–(2.7c) and (2.14a)–(2.14c), respectively, and the multipliers 𝜆* and 𝜆*ℎ be given by
(2.8) and (2.16). Then we have the efficiency estimate:

𝜂ℎ . ‖y*ℎ − y*‖curl,Ω + ‖p*ℎ − p*‖curl,Ω + ‖u*ℎ − u*‖0,Ω + ‖𝜆*ℎ − 𝜆
*‖0,Ω

+ oscℎ

(︀
y𝑑
)︀

+ oscℎ(f) + oscℎ

(︀
u𝑑
)︀
. (3.25)

Before we start our proof, we remark that it is necessary to consider the error of the multiplier ‖𝜆*ℎ−𝜆
*‖0,Ω

here in order to estimate 𝜂ℎ, in comparison with [35], since the additional error estimator 𝜂(3)

𝑝,𝑇 is included in
𝜂ℎ. We start with the following local efficiency estimate:

𝜂
(3)
𝑝,𝑇 = ‖p*ℎ − p* + p* − Pℎp

*
ℎ‖0,𝑇

≤ ‖𝜆* − 𝜆*ℎ − 𝛼
(︀
u* − u*ℎ − u𝑑 + u𝑑

ℎ

)︀
‖0,𝑇 + ‖p*ℎ − p*‖0,𝑇

≤ ‖p* − p*ℎ‖0,𝑇 + ‖𝜆* − 𝜆*ℎ‖0,𝑇 + 𝛼
(︀
‖u* − u*ℎ‖0,𝑇 + osc𝑇

(︀
u𝑑
)︀)︀

,



2026 B. LI AND J. ZOU

by the definitions of 𝜆*, 𝜆*ℎ and 𝜂
(3)
𝑝,𝑇 and the triangle inequality. Our proof proceeds by establishing more

local efficiency estimates for 𝜂𝑇 , which are divided into the following four groups of estimates, for 𝑇 ∈ Tℎ and
𝐹 ∈ Fℎ, ⎧⎨⎩ 𝜂

(1)
𝑦,𝑇 . ℎ𝑇 ‖u* − u*ℎ‖0,𝑇 + ‖y* − y*ℎ‖curl,𝑇 + osc𝑇 (f),

𝜂
(1)
𝑝,𝑇 . ‖p

* − p*ℎ‖curl,𝑇 + ‖y* − y*ℎ‖curl,𝑇 + osc𝑇

(︀
y𝑑
)︀
,⎧⎨⎩ 𝜂

(2)
𝑦,𝑇 . ‖u

* − u*ℎ‖0,𝑇 + ‖y* − y*ℎ‖0,𝑇 + osc𝑇 (f),

𝜂
(2)
𝑝,𝑇 . ‖p

* − p*ℎ‖0,𝑇 ,⎧⎨⎩ 𝜂
(1)
𝑦,𝐹 . ℎ𝑇 ‖u* − u*ℎ‖0,𝑤𝐹

+ ‖y* − y*ℎ‖curl,𝑤𝐹
+ 𝜂

(1)
𝑦,𝑇+ + 𝜂

(1)
𝑦,𝑇− ,

𝜂
(1)
𝑝,𝐹 . ‖p

* − p*ℎ‖curl,𝑤𝐹
+ ‖y* − y*ℎ‖curl,𝑤𝐹

+ 𝜂
(1)
𝑝,𝑇+ + 𝜂

(1)
𝑝,𝑇− ,⎧⎨⎩ 𝜂

(2)
𝑦,𝐹 . ‖u

* − u*ℎ‖0,𝑤𝐹
+ ‖y* − y*ℎ‖0,𝑤𝐹

+ 𝜂
(2)
𝑦,𝑇+ + 𝜂

(2)
𝑦,𝑇− + osc𝑇+(f),

𝜂
(2)
𝑝,𝐹 . ‖p

* − p*ℎ‖0,𝑤𝐹
+ 𝜂

(2)
𝑝,𝑇+ + 𝜂

(2)
𝑝,𝑇− ,

where 𝑇+ and 𝑇− are two elements in 𝜔𝐹 with 𝐹 = 𝑇+ ∩ 𝑇−.

Proof. We give the proof of the above four groups of inequalities by the following four steps.

(1) We start with 𝜂(1)

𝑦,𝑇 and readily see by the triangle inequality that

𝜂
(1)
𝑦,𝑇 ≤ ℎ𝑇 ‖fℎ + u*ℎ − curl𝜇−1curly*ℎ − 𝜎y*ℎ‖0,𝑇 + osc𝑇 (f). (3.26)

It is clear that 𝑏𝑇 vanishes on 𝜕𝑇 , and hence we can define zℎ := 𝑏𝑇 (fℎ + u*ℎ − curl𝜇−1curly*ℎ − 𝜎y*ℎ) ∈
H0(curl, Ω). Using the estimate (3.23) with 𝜑 = fℎ + u*ℎ − curl𝜇−1curly*ℎ − 𝜎y*ℎ and 𝑠 = 1/2, we obtain

‖fℎ + u*ℎ − curl𝜇−1curly*ℎ − 𝜎y*ℎ‖20,𝑇 ≈ (fℎ + u*ℎ − curl𝜇−1curly*ℎ − 𝜎y*ℎ, zℎ)0,𝑇

= (fℎ − f, zℎ)0,𝑇 + (u*ℎ − u*, zℎ)0,𝑇 + 𝐵(y* − y*ℎ, zℎ). (3.27)

By estimates (3.26) and (3.27), and the inverse inequality:

‖zℎ‖curl,𝑇 . ℎ−1
𝑇 ‖zℎ‖0,𝑇 ,

as well as the norm equivalence: ‖zℎ‖0,𝑇 ≈ ‖fℎ + u*ℎ − curl𝜇−1curly*ℎ − 𝜎y*ℎ‖0,𝑇 , we can derive

𝜂
(1)
𝑦,𝑇 . ℎ𝑇 ‖u* − u*ℎ‖0,𝑇 + ‖y* − y*ℎ‖curl,𝑇 + osc𝑇 (f).

The estimate of 𝜂(1)

𝑝,𝑇 is similar. We note

𝜂
(1)
𝑝.𝑇 . ℎ𝑇 ‖curly𝑑

ℎ + curl𝜇−1curlp*ℎ + 𝜎p*ℎ‖0,𝑇 + osc𝑇

(︀
y𝑑
)︀
, (3.28)

and define zℎ := 𝑏𝑇 (curly𝑑
ℎ + curl𝜇−1curlp*ℎ + 𝜎p*ℎ) ∈ H0(curl, Ω). Then a similar estimate as above

gives

‖curly𝑑
ℎ + curl𝜇−1curlp*ℎ + 𝜎p*ℎ‖20,𝑇 . (curly𝑑

ℎ + curl𝜇−1curlp*ℎ + 𝜎p*ℎ, zℎ)0,𝑇

.
(︀
curly𝑑 + curl𝜇−1curlp*ℎ + 𝜎p*ℎ, zℎ

)︀
0,𝑇

− (curly*, curl zℎ)0,𝑇

+
(︀
curly𝑑

ℎ − curly𝑑, zℎ

)︀
0,𝑇

+ (curl(y* − y*ℎ), curl𝑧ℎ)0,𝑇

(3.29)
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. ‖curly𝑑
ℎ − curly𝑑‖0,𝑇 ‖zℎ‖0,𝑇 + ‖y*ℎ − y*‖curl,𝑇 ‖zℎ‖curl,𝑇

+ ‖p*ℎ − p*‖curl,𝑇 ‖zℎ‖curl,𝑇 , (3.30)

where in (3.29) we have used (curly*ℎ, curl zℎ)0,𝑇 = 0 from the fact that y*ℎ is a first-order polynomial on
𝑇 , and in (3.30) we have used(︀

curly𝑑 + curl𝜇−1curlp*ℎ + 𝜎p*ℎ, zℎ

)︀
0,𝑇

− (curly*, curl zℎ)0,𝑇

= 𝐵(p*ℎ − p*, zℎ) . ‖p*ℎ − p*‖curl,𝑇 ‖zℎ‖curl,𝑇 .

Further applying the inverse estimate for ‖zℎ‖curl,𝑇 in (3.30) and recalling (3.28), we come to

𝜂
(1)
𝑝,𝑇 . ‖p

* − p*ℎ‖curl,𝑇 + ‖y* − y*ℎ‖curl,𝑇 + osc𝑇

(︀
y𝑑
)︀
.

(2) Define zℎ := div(fℎ − 𝜎y*ℎ)𝑏2
𝑇 with ‖zℎ‖0,𝑇 ≈ ‖div(fℎ − 𝜎y*ℎ)‖0,𝑇 . It is clear that ∇zℎ is a polynomial on 𝑇

and vanishes on the boundary 𝜕𝑇 , which gives ∇zℎ ∈ H0(curl, Ω). By a direct calculation, we have

(div(fℎ − 𝜎y*ℎ), zℎ)0,𝑇 = (div(fℎ − 𝜎y*ℎ + u*ℎ), zℎ)0,𝑇

= (div(f− 𝜎y*ℎ + u*ℎ), zℎ)0,𝑇 + (div(fℎ − f), zℎ)0,𝑇

= (−𝜎y* + 𝜎y*ℎ + u* − u*ℎ,∇zℎ)0,𝑇 + (div(fℎ − f), zℎ)0,𝑇 , (3.31)

where we have used the following observation in the last equality:

𝐵(y*,∇zℎ) = (𝜎y*,∇zℎ)0,Ω = (f + u*,∇zℎ)0,Ω,

which is from (2.7a) with the test function 𝜑 = ∇zℎ. Again, by Lemma 3.4 and the inverse estimate, we
can derive from the definition of 𝜂(2)

𝑦,𝑇 and (3.31) that

𝜂
(2)
𝑦,𝑇 . ‖u

*
ℎ − u*‖0,𝑇 + ‖y*ℎ − y*‖0,𝑇 + osc𝑇 (f).

Likewise, for 𝜂(2)

𝑝,𝑇 , taking zℎ = div(𝜎p*ℎ)𝑏2
𝑇 and observing from (2.7b):

(𝜎p*,∇zℎ)0,Ω =
(︀
curly* − y𝑑, curl∇zℎ

)︀
0,Ω

= 0,

we can derive, by almost the same arguments as above, that

𝜂
(2)
𝑝,𝑇 . ‖p

* − p*ℎ‖0,𝑇 .

(3) Since the lowest-order edge element is used for the discretization, curly*ℎ is a piecewise constant vector.
Then 𝛾𝑡(𝜇−1curly*ℎ) is a polynomial defined on 𝐹 and can be extended to 𝑤𝐹 by the extension operator
𝐸 introduced in (3.22). Define

zℎ := 𝑏𝐹 𝐸
(︀[︀

𝛾𝑡

(︀
𝜇−1curly*ℎ

)︀]︀
𝐹

)︀
∈ H0(curl, Ω).

By the estimate (3.23) and integration by parts over 𝜔𝐹 , we have(︁
𝜂
(1)
𝑦,𝐹

)︁2

= ℎ𝐹 ‖
[︀
𝛾𝑡

(︀
𝜇−1curly*ℎ

)︀]︀
𝐹
‖20,𝐹 ≈ ℎ𝐹

(︀[︀
𝛾𝑡

(︀
𝜇−1curly*ℎ

)︀]︀
𝐹
, zℎ

)︀
0,𝐹

= ℎ𝐹

(︀
curl𝜇−1curly*ℎ + 𝜎y*ℎ − f− u*ℎ, zℎ

)︀
0.𝑤𝐹

− ℎ𝐹

(︀
𝜇−1curly*ℎ − 𝜇−1curly*, curl zℎ

)︀
0,𝑤𝐹

+ ℎ𝐹 (u*ℎ − u*, zℎ)0,𝑤𝐹
+ ℎ𝐹 (𝜎y* − 𝜎y*ℎ, zℎ)0,𝑤𝐹

. (3.32)
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The estimate (3.24) and the inverse estimate give us

ℎ
1/2
𝐹 ‖

[︀
𝛾𝑡

(︀
𝜇−1curly*ℎ

)︀]︀
𝐹
‖0,𝐹 ≈ ‖zℎ‖0,𝑤𝐹

, ‖curl zℎ‖0,𝑤𝐹
. ℎ−1

𝐹 ‖zℎ‖0,𝑤𝐹
. (3.33)

Combining (3.33) with the formula (3.32), we get

𝜂
(1)
𝑦,𝐹 . 𝜂

(1)
𝑦,𝑇+ + 𝜂

(1)
𝑦,𝑇− + ‖y*ℎ − y*‖curl,𝑤𝐹

+ ℎ𝐹 ‖u*ℎ − u*‖0,𝑤𝐹
.

For 𝜂(1)

𝑝,𝐹 , let zℎ := 𝑏𝐹 𝐸
(︀[︀

𝛾𝑡

(︀
−𝜇−1curlp*ℎ + curly*ℎ

)︀]︀
𝐹

)︀
. By similar calculations, it follows that(︁

𝜂
(1)
𝑝,𝐹

)︁2

≈ ℎ𝐹

(︀[︀
𝛾𝑡

(︀
−𝜇−1curlp*ℎ + curly*ℎ

)︀]︀
𝐹
, zℎ

)︀
0,𝐹

= ℎ𝐹

(︀
−curl𝜇−1curlp*ℎ − curly𝑑 − 𝜎p*ℎ, zℎ

)︀
0,𝑤𝐹

− ℎ𝐹

(︀
−𝜇−1curlp*ℎ + curly*ℎ − y𝑑, curl zℎ

)︀
0,𝑤𝐹

+ ℎ𝐹 (𝜎p*ℎ, zℎ)0,𝑤𝐹
(3.34)

= ℎ𝐹

(︀
−curl𝜇−1curlp*ℎ − curly𝑑 − 𝜎p*ℎ, zℎ

)︀
0,𝑤𝐹

+ ℎ𝐹 𝐵(p*ℎ − p*, zℎ)

+ ℎ𝐹 (curl(y* − y*ℎ), curl zℎ)0,𝜔𝐹
, (3.35)

where we have used (curl curly*ℎ, zℎ)0,𝑇 = 0 for 𝑇 ∈ 𝜔𝐹 in (3.34). Then, by the inverse estimate and
Lemma 3.4, a direct estimate leads to

𝜂
(1)
𝑝,𝐹 . 𝜂

(1)
𝑝,𝑇+ + 𝜂

(1)
𝑝,𝑇− + ‖p* − p*ℎ‖0,𝑤𝐹

+ ‖y*ℎ − y*‖curl,𝑤𝐹
.

(4) For 𝜂
(2)
𝑦,𝐹 , we define zℎ := 𝑏2

𝐹 𝐸([𝛾𝑛(fℎ + u*ℎ − 𝜎y*ℎ)]𝐹 ). It is easy to see that ∇zℎ ∈ H0(curl, Ω). Taking
𝜑 = ∇zℎ in (2.7a) gives

(f + u* − 𝜎y*,∇zℎ)0,𝑤𝐹
= 0. (3.36)

We note by the triangle inequality that

𝜂
(2)
𝑦,𝐹 ≤ ℎ

1/2
𝐹 ‖[𝛾𝑛(fℎ + u*ℎ − 𝜎y*ℎ)]𝐹 ‖0,𝐹 + ℎ

1/2
𝐹 ‖[𝛾𝑛(f− fℎ)]𝐹 ‖0,𝐹 . (3.37)

Then we have, again by the property of the bubble functions (3.23) and integration by parts over 𝜔𝐹 ,

‖[𝛾𝑛(fℎ + u*ℎ − 𝜎y*ℎ)]𝐹 ‖
2
0,𝐹 ≈ ([𝛾𝑛(fℎ + u*ℎ − 𝜎y*ℎ)]𝐹 , zℎ)

0,𝐹

. (div(f− 𝜎y*ℎ), zℎ)0,𝑤𝐹
+ ([𝛾𝑛(fℎ − f)]𝐹 , zℎ)

0,𝐹

+ (f + u*ℎ − 𝜎y*ℎ,∇zℎ)0,𝜔𝐹
, (3.38)

where we can use (3.36) to rewrite the last term as

(f + u*ℎ − 𝜎y*ℎ,∇zℎ)0,𝜔𝐹
= (u*ℎ − u*,∇zℎ)0,𝑤𝐹

+ (𝜎y* − 𝜎y*ℎ,∇zℎ)0,𝑤𝐹
. (3.39)

Therefore, we obtain from (3.37) to (3.39), the Cauchy’s inequality, applying the inverse estimate to
‖∇zℎ‖0,𝜔𝐹

and the trace inequality to ‖zℎ‖0,𝐹 (cf. (3.18)) that

𝜂
(2)
𝑦,𝐹 . ‖u

* − u*ℎ‖0,𝑤𝐹
+ ‖y* − y*ℎ‖0,𝑤𝐹

+ 𝜂
(2)
𝑦,𝑇+ + 𝜂

(2)
𝑦,𝑇− + osc𝑇+(f),

where we have used the trivial bound that ℎ
1/2
𝐹 ‖[𝛾𝑛(f− fℎ)]𝐹 ‖0,𝐹 ≤ osc𝑇+(f). The estimate for 𝜂(2)

𝑝,𝐹 follows
from the same (even simpler) argument. In fact, we can define zℎ = 𝑏2

𝐹 𝐸([𝛾𝑛(𝜎p*ℎ)]𝐹 ), which implies
∇zℎ ∈ H0(curl, Ω) and, by (2.7b), (𝜎p*,∇zℎ)0,Ω = 0. Then, a typical calculation gives

‖[𝛾𝑛(𝜎p*ℎ)]𝐹 ‖
2
0,𝐹 ≈ ([𝛾𝑛(𝜎p*ℎ)]𝐹 , zℎ)

0,𝐹
= (div(𝜎p*ℎ), zℎ)0,𝑤𝐹

+ (𝜎p*ℎ − 𝜎p*,∇zℎ)0,𝑤𝐹
,

which yields, by Lemma 3.4 and the inverse estimate,

𝜂
(2)
𝑝,𝐹 . ‖p

* − p*ℎ‖0,𝑤𝐹
+ 𝜂

(2)
𝑝,𝑇+ + 𝜂

(2)
𝑝,𝑇− .

Theorem 3.5 follows now by adding up the above local efficiency estimates over all 𝑇 ∈ Tℎ. �
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4. Convergence

We devote this whole section to establish our main result that the sequence of adaptively generated finite
element solutions {(y*𝑘,p*𝑘,u*𝑘)}𝑘≥0 converges strongly to the true solution (y*,p*,u*).

Theorem 4.1. Let {(y*𝑘,p*𝑘,u*𝑘)}𝑘≥0 be the sequence of discrete triplets generated by the adaptive Algorithm 1
and (y*,p*,u*) be the solution to the system (2.7a)–(2.7c). Then we have the strong convergences:

lim
𝑘→∞

‖y*𝑘 − y*‖curl,Ω = 0, lim
𝑘→∞

‖p*𝑘 − p*‖curl,Ω = 0 and lim
𝑘→∞

‖u*𝑘 − u*‖0,Ω = 0. (4.1)

As already pointed out in the introduction, the first step of the proof of convergence is the introduction of
a limiting minimization problem that characterizes the limit of the discrete solutions to the system (2.14a)–
(2.14c) while the second step is to show that the solution to the limiting problem actually coincides with the
one to (2.7a)–(2.7c). To do so, let us first state some helpful auxiliary results on the convergence behavior of the
adaptive meshes {T𝑘}𝑘≥0. We associate each triangulation T𝑘 with a mesh-size function ℎ𝑘 ∈ 𝐿∞(Ω), defined
by ℎ𝑘|𝑇 = ℎ𝑇 for 𝑇 ∈ T𝑘. Thanks to the monotonicity of {ℎ𝑘}𝑘≥0, we are allowed to define a limiting mesh-size
function by the pointwise limit: ℎ𝑘(x) → ℎ∞(x), as 𝑘 →∞. It is also known that the pointwise convergence of
{ℎ𝑘} can be further improved to the uniform convergence ([48], Lem. 4.2):

lim
𝑘→∞

‖ℎ𝑘 − ℎ∞‖∞,Ω = 0. (4.2)

We should note that ℎ∞(x) ̸≡ 0 in general. If ℎ∞(x) > 0 at some point x, there is an element 𝑇 containing x
and an index 𝑘(x) depending on x such that 𝑇 ∈ T𝑙 for all 𝑙 ≥ 𝑘(x). This observation motivates us to split T𝑘

into two classes of elements:
T +

𝑘 :=
⋂︁
𝑙≥𝑘

T𝑙 and T 0
𝑘 := T𝑘∖T𝑘

+. (4.3)

T +
𝑘 consists of the elements in T𝑘 that are not refined after the 𝑘th iteration, while T 0

𝑘 ⊂ T𝑘 contains the
elements that are refined at least once in the subsequent iterations. We are thus allowed to decompose the
domain Ω into two parts: Ω+

𝑘 :=
⋃︀

𝑇∈T +
𝑘

𝑇 and Ω0
𝑘 :=

⋃︀
𝑇∈T 0

𝑘
𝑇 . A direct application of (4.2) and the uniform

shape regularity of {T𝑘} yields the following result (cf. [48], Cor. 7.1):

lim
𝑘→∞

‖ℎ𝑘‖∞,̃︀Ω0
𝑘

= 0, (4.4)

where ̃︀Ω0
𝑘 :=

⋃︀
𝑇∈T 0

𝑘

̃︀Ω𝑇 is the extended neighborhood of Ω0
𝑘. We remark that this uniform convergence result

for the mesh-size functions is crucial for our subsequent analysis. We next give an interesting characterization
of the limiting behavior of 𝐿2-projections {P𝑘}𝑘≥0 := {PU𝑘

}𝑘≥0 with the help of the convergence property
of the adaptive meshes {T𝑘}𝑘≥0, which establishes a connection between the limit of mesh-size functions, the
𝐿2-projections and the limiting problem that we shall propose and deal with in the next section.

Proposition 4.2. Let {P𝑘}𝑘≥0 be the orthogonal 𝐿2-projections (defined by (2.15)) associated with the adaptive
meshes {T𝑘}𝑘≥0 generated by Algorithm 1. Then for each f ∈ L2(Ω), the limit of the sequence {P𝑘f}𝑘≥0,
denoted by P∞f, exists as 𝑘 → ∞. Furthermore, the corresponding limiting operator P∞ is also an orthogonal
𝐿2-projection with the range and kernel given by

ran(P∞) = U∞ :=
⋃︁
𝑘≥0

U𝑘

𝐿2

and ker(P∞) = U⊥
∞. (4.5)

Proof. It suffices to show that the limit of the sequence {P𝑘f} exists for all f ∈ C∞
𝑐 (Ω) (infinitely differentiable

vector-valued functions with compact support in Ω), by the facts that the operators {P𝑘} are uniformly bounded
and the space C∞

𝑐 (Ω) is dense in L2(Ω). Given two iteration indices 𝑘1, 𝑘2 with 𝑘2 > 𝑘1, define T 0
𝑘1,𝑘2

:=
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T𝑘1∖(T𝑘1 ∩T𝑘2), which is a subset of T 0
𝑘1 consisting of the elements that are refined between the 𝑘1th iteration

and 𝑘2th iteration. We then have, by the equivalent definition of P𝑘 in (2.15),

‖P𝑘1f− P𝑘2f‖20,Ω =
⃦⃦⃦ ∑︁

𝑇∈T 0
𝑘1,𝑘2

∑︁
𝑇𝑖⊂𝑇,𝑇𝑖∈T𝑘2

(︂
1
|𝑇 |

∫︁
𝑇

f(x)dx− 1
|𝑇𝑖|

∫︁
𝑇𝑖

f(x)dx
)︂

𝜒𝑇𝑖

⃦⃦⃦2

0,Ω

=
∑︁

𝑇∈T 0
𝑘1𝑘2

∑︁
𝑇𝑖⊂𝑇,𝑇𝑖∈T𝑘2

(︂
1
|𝑇 |

∫︁
𝑇

f(x)dx− 1
|𝑇𝑖|

∫︁
𝑇𝑖

f(x)dx
)︂2

|𝑇𝑖|,

where 𝜒𝑇𝑖 is the characteristic function of 𝑇𝑖. Recalling the limiting behavior of mesh-size functions {ℎ𝑘} in
(4.4), we have that for any 𝛿 > 0, there exists an index 𝑘(𝛿) depending on 𝛿 such that for all 𝑘 > 𝑘(𝛿), there
holds ‖ℎ𝑘‖∞,̃︀Ω0

𝑘
≤ 𝛿. Combining it with the uniform continuity of f, we have that for any 𝜀 > 0, there exists an

index 𝑘(𝜀, 𝛿) depending on 𝜀 and 𝛿 such that for any integers 𝑘1, 𝑘2 satisfying 𝑘2 > 𝑘1 > 𝑘(𝜀, 𝛿), and for any
elements 𝑇 ∈ T 0

𝑘1,𝑘2
, 𝑇𝑖 ∈ T𝑘2 with 𝑇𝑖 ⊂ 𝑇 , it holds that⃒⃒⃒⃒

1
|𝑇 |

∫︁
𝑇

f(x)dx− 1
|𝑇𝑖|

∫︁
𝑇𝑖

f(x)dx
⃒⃒⃒⃒
≤ 𝜀.

We hence have that {P𝑘f} is a Cauchy sequence in L2(Ω). Then it follows from the completeness of L2(Ω) that
the limit of {P𝑘f} exists. We have proved that for any f ∈ L2(Ω), P∞𝑓 is well-defined, which further allows us
to define the bounded linear operator P∞ on L2(Ω), by the uniform boundedness principle. We now show that
P∞ is an orthogonal 𝐿2-projection with the property (4.5). To do so, we first observe that for any g ∈ L2(Ω),
it holds that

(P∞f, g)0,Ω = lim
𝑛→∞

(P𝑘f, g)0,Ω = lim
𝑛→∞

(P𝑘g, f)0,Ω = (f, P∞g)0,Ω,

which implies that P∞ is self-adjoint. On the other hand, we have

‖
(︀
P2
∞ − P∞

)︀
f‖0,Ω = ‖

(︀
P2
∞ − P𝑘P∞ + P𝑘P∞ − P2

𝑘 + P𝑘 − P∞
)︀
f‖0,Ω

≤ ‖(P∞ − P𝑘)(P∞f)‖0,Ω + ‖P𝑘‖‖(P∞ − P𝑘)f‖0,Ω

+ ‖(P𝑘 − P∞)f‖0,Ω → 0 as 𝑘 → 0,

that is, P2
∞ = P∞. Thus, we can conclude that P∞ is an orthogonal 𝐿2-projection. To characterize its range

and kernel, we denote by P the orthogonal projection associated with the closed space U∞ defined in (4.5).
By definition, there holds ran(P) = U∞ and ker(P) = U⊥

∞. We readily see from the definition of P∞ that
ran(P∞) ⊂ U∞, since every element in ran(P∞) can be approximated by a sequence from

⋃︀
𝑘≥0 U𝑘. Conversely,

to prove U∞ ⊂ ran(P∞), we note that for any f ∈ U𝑛, P𝑘f = f holds for each 𝑘 ≥ 𝑛. Then, letting 𝑘 →∞ gives
us

P∞f = lim
𝑛→∞

P𝑘f = f,

which indicates U𝑛 ⊂ ran(P∞). Since 𝑛 is arbitrary, we readily see
⋃︀

𝑘≥0 U𝑘
𝐿2

⊂ ran(P∞). The proof is
complete. �

4.1. The limiting problem

In order to find the limit point of the discrete triplets {(y*𝑘,p*𝑘,u*𝑘)}𝑘≥0, we first define several limiting spaces
as the closure of the union of discrete spaces at each level:

V∞ :=
⋃︁
𝑘≥0

V𝑘

H(curl)

, U𝑎𝑑
∞ :=

⋃︁
𝑘≥0

U𝑎𝑑
𝑘

𝐿2

. (4.6)
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which immediately implies U𝑎𝑑
∞ = U∞ ∩U𝑎𝑑, where the space U∞ is defined in (4.5). Since U𝑎𝑑

∞ is a convex
subset of L2(Ω), it is closed in the weak topology if and only if it is closed in the strong topology induced by
the norm. We hence have the following key lemma.

Lemma 4.3. Let u𝑘 ∈ U𝑎𝑑
𝑘 , 𝑘 ≥ 0, be a sequence weakly converging to a u in L2(Ω). Then u ∈ U𝑎𝑑

∞ holds.

We now consider the following limiting problem defined on the limiting spaces:

minimize 𝐽(y∞,u∞) =
1
2
‖curly∞ − y𝑑‖20,Ω +

𝛼

2
‖u∞ − u𝑑‖20,Ω (4.7)

over (y∞,u∞) ∈ V∞ ×U𝑎𝑑
∞

subject to 𝐵(y∞,𝜑∞) = (f + u∞,𝜑∞)0,Ω ∀ 𝜑∞ ∈ V∞. (4.8)

The existence and uniqueness of the minimizer to the above problem can be obtained by the standard arguments
as the continuous and discrete cases, and the reduced cost functional for the limiting problem is defined by

𝐽∞(u∞) :=
1
2
‖curly∞(u∞)− y𝑑‖20,Ω +

𝛼

2
‖u∞ − u𝑑‖20,Ω,

where y∞(u∞) denotes the solution to the equation (4.8) with the source u∞. The rest of this subsection is
devoted to proving that the limit point of {(y*𝑘,p*𝑘,u*𝑘)}𝑘≥0 exists and happens to be the solution to the limiting
optimization problem. As pointed out in the introduction, to compensate the lack of the discrete compactness,
we shall investigate the weak limit of the sequence {u*𝑘}𝑘≥0 first, and then improve it to the strong convergence;
see the next two theorems.

Theorem 4.4. Suppose that {(u*𝑘,y*𝑘)}𝑘≥0 is the sequence of discrete optimal controls and states generated by
Algorithm 1, and (u*∞,y*∞) is the optimal control and state to the limiting optimization problem (4.7) and (4.8).
Then, we have the following weak convergences: as 𝑘 →∞,

u*𝑘
𝑤
⇀ u*∞ in L2(Ω) and y*𝑘

𝑤
⇀ y*∞ in H0(curl, Ω).

Proof. Our proof starts with a simple but important observation that the sequence {u*𝑘} is bounded, which is
not a trivial fact due to the unboundedness of U𝑎𝑑. Indeed, for a fixed u ∈ U𝑎𝑑, we have

𝛼

2
‖u*𝑘 − u𝑑‖20,Ω ≤ 𝐽𝑘(u*𝑘) ≤ 𝐽𝑘(P𝑘u) =

1
2
‖curly𝑘(P𝑘u)− y𝑑‖20,Ω +

𝛼

2
‖P𝑘u− u𝑑‖20,Ω

. ‖u‖20,Ω + ‖y𝑑‖20,Ω + ‖u𝑑‖20,Ω,

which gives the boundedness of {u*𝑘} in L2(Ω). Then the boundedness of {y*𝑘} follows immediately. Hence, by
the Banach-Alaoglu theorem, we can extract a subsequence {(y*𝑘𝑛

,u*𝑘𝑛
)}𝑛≥1 of {(y*𝑘,u*𝑘)}𝑘≥0 such that u*𝑘𝑛

𝑤
⇀ w

in L2(Ω) and y*𝑘𝑛

𝑤
⇀ y in H(curl, Ω), as 𝑛 tends to infinity, which further implies that {y*𝑘𝑛

} and {curly*𝑘𝑛
}

weakly converge to y and curly, respectively, in L2(Ω) (since H(curl, Ω) is continuously imbedded in L2(Ω)
and curl is a bounded linear operator from H(curl, Ω) to L2(Ω)). Moreover, Lemma 4.3 yields w ∈ U𝑎𝑑

∞ . Noting
V𝑙 ⊂ V𝑘𝑛

for 𝑙 ≤ 𝑘𝑛 and that there holds

𝐵(y*𝑘𝑛
, v𝑙) = (f + u*𝑘𝑛

, v𝑙)0,Ω for 𝑙 ≤ 𝑘𝑛 and v𝑙 ∈ V𝑙, (4.9)

we let 𝑛 tend to infinity in (4.9) and obtain, by the weak convergences of {u*𝑘𝑛
} and {y*𝑘𝑛

},

𝐵(y, v𝑙) = (f + w, v𝑙)0,Ω for all 𝑙 ≥ 0 and v𝑙 ∈ V𝑙.

Since
⋃︀

𝑙≥0 V𝑙 is dense in V∞, we readily have

𝐵(y, v∞) = (f + w, v∞)0,Ω ∀ v∞ ∈ V∞ (4.10)
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which means that (y,w) satisfies the constraint (4.8) of the limiting problem, that is, y = y∞(w).
We claim that w is the minimizer u*∞ of the cost functional 𝐽∞ over the set U𝑎𝑑

∞ , namely,

𝐽∞(w) ≤ 𝐽∞(u∞) ∀ u∞ ∈ U𝑎𝑑
∞ , (4.11)

which, by (4.10), also implies that the weak limit y of the sequence {y*𝑘𝑛
} is y*∞. To prove the claim, we first

note

𝐽∞(w) =
1
2
‖curly∞(w)− y𝑑‖20,Ω +

𝛼

2
‖w− u𝑑‖20,Ω

≤ lim inf
𝑛→∞

1
2
‖curly*𝑘𝑛

− y𝑑‖20,Ω + lim inf
𝑛→∞

𝛼

2
‖u*𝑘𝑛

− u𝑑‖20,Ω = lim inf
𝑛→∞

𝐽𝑘𝑛
(u*𝑘𝑛

), (4.12)

by the uniform boundedness principle and the weak converges of {curly*𝑘𝑛
} and {u*𝑘𝑛

} to curly∞(w) and w in
L2(Ω). Clearly, by (4.12) and the fact that u*𝑘𝑛

is the minimizer of 𝐽𝑘𝑛 over U𝑎𝑑
𝑘𝑛

, there holds, for any sequence,
u𝑘 ∈ U𝑎𝑑

𝑘 , 𝑘 ≥ 0,
𝐽∞(w) ≤ lim inf

𝑛→∞
𝐽𝑘𝑛

(u*𝑘𝑛
) ≤ lim sup

𝑛→∞
𝐽𝑘𝑛

(u*𝑘𝑛
) ≤ lim sup

𝑘→∞
𝐽𝑘(u𝑘). (4.13)

We next prove an auxiliary fact that for any u∞ ∈ U𝑎𝑑
∞ and a sequence u𝑘 ∈ U𝑎𝑑

𝑘 for 𝑘 ≥ 0, if ‖u𝑘−u∞‖0,Ω → 0
as 𝑘 →∞, then

lim
𝑘→∞

‖y∞(u∞)− y𝑘(u𝑘)‖curl,Ω = 0, (4.14)

which readily gives
lim

𝑘→∞
𝐽𝑘(u𝑘) = 𝐽∞(u∞). (4.15)

This fact (4.15), along with (4.13), completes our proof of the claim (4.11). To prove (4.14), we note, by the
assumption,

lim sup
𝑘→∞

‖y∞(u∞)− y𝑘(u𝑘)‖curl,Ω ≤ lim sup
𝑘→∞

(‖y∞(u∞)− y𝑘(u∞)‖curl,Ω + ‖y𝑘(u∞)− y𝑘(u𝑘)‖curl,Ω)

. lim sup
𝑘→∞

( inf
v𝑘∈𝑉𝑘

‖y∞(u∞)− v𝑘‖curl,Ω + ‖u∞ − u𝑘‖0,Ω) = 0,

where we have used the Galerkin orthogonality and the density of
⋃︀

𝑘≥0 V𝑘 in V∞.
By the above arguments, we can conclude that for any subsequence {(u*𝑘𝑛

,y*𝑘𝑛
)}𝑛≥1 of {(u*𝑘,y*𝑘)}𝑘≥0, we can

extract a subsequence weakly converging to (u*∞,y*∞) in L2(Ω) ×H0(curl, Ω), which immediately yields the
weak convergence of the whole sequence {(u*𝑘,y*𝑘)}𝑘≥0:

u*𝑘
𝑤
⇀ u*∞ in L2(Ω) and y*𝑘

𝑤
⇀ y*∞ in H0(curl, Ω), as 𝑘 →∞.

The proof is complete. �

Thanks to the above results, we are ready to show the main theorem of this subsection.

Theorem 4.5. Under the same assumptions as in Theorem 4.4, there holds

lim
𝑘→∞

‖u*𝑘 − u*∞‖0,Ω = 0 and lim
𝑘→∞

‖y*𝑘 − y*∞‖curl,Ω = 0. (4.16)

Proof. We note from the claim (4.14) in the proof of Theorem 4.4 that the second convergence in (4.16) is
a consequence of the first one. Hence, it suffices to prove the convergence of {u*𝑘}𝑘≥0. To this end, a direct
calculation gives

‖curly*𝑘 − curly*∞‖20,Ω + 𝛼‖u*𝑘 − u*∞‖20,Ω
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= ‖curly*𝑘 − y𝑑 + y𝑑 − curly*∞‖20,Ω + 𝛼‖u*𝑘 − u𝑑 + u𝑑 − u*∞‖20,Ω

= ‖curly*𝑘 − y𝑑‖20,Ω + ‖curly*∞ − y𝑑‖20,Ω − 2
(︀
curly*𝑘 − y𝑑, curly*∞ − y𝑑

)︀
0,Ω

+ 𝛼‖u*𝑘 − u𝑑‖20,Ω + 𝛼‖u*∞ − u𝑑‖20,Ω − 2𝛼
(︀
u*𝑘 − u𝑑,u*∞ − u𝑑

)︀
0,Ω

,

which, by taking the upper limit on both sides and using Theorem 4.4, implies

2𝐽∞(u*∞) + lim sup
𝑘→∞

(︀
‖curly*𝑘 − curly*∞‖20,Ω + 𝛼‖u*𝑘 − u*∞‖20,Ω

)︀
≤ lim sup

𝑘→∞
2𝐽𝑘(u*𝑘). (4.17)

Then it follows that
𝐽∞(u*∞) ≤ lim sup

𝑘→∞
𝐽𝑘(u*𝑘). (4.18)

We choose a sequence u𝑘 ∈ U𝑎𝑑
𝑘 , 𝑘 ≥ 0, such that ‖u𝑘 − u*∞‖0,Ω → 0, as 𝑘 → ∞, and then we can derive, by

(4.18) and (4.15), that
𝐽∞(u*∞) ≤ lim sup

𝑘→∞
𝐽𝑘(u*𝑘) ≤ lim

𝑘→∞
𝐽𝑘(u𝑘) = 𝐽∞(u*∞). (4.19)

Combining the above estimate (4.19) with (4.17), we obtain the strong convergence of {u*𝑘}𝑘≥0. �

It is easy to write the optimality system for the limiting problem by a standard argument:⎧⎪⎪⎨⎪⎪⎩
𝐵(y*∞,𝜑∞) = (f + u*∞,𝜑∞)0,Ω ∀ 𝜑∞ ∈ V∞,

𝐵(p*∞,𝜙∞) =
(︀
curly*∞ − y𝑑, curl𝜙∞

)︀
0,Ω

∀ 𝜙∞ ∈ V∞,(︀
p*∞ + 𝛼

(︀
u*∞ − u𝑑

)︀
,u∞ − u*∞

)︀
0,Ω

≥ 0 ∀ u∞ ∈ U𝑎𝑑
∞ ,

(4.20a)

(4.20b)

(4.20c)

and see that the sequence of discrete triplets {(y*𝑘,p*𝑘,u*𝑘)}𝑘≥0 converges strongly to the solution (y*∞,p*∞,u*∞)
to the limiting optimality system (4.20a)–(4.20c). We remark that the variational inequality (4.20c) will be used
in the next subsection.

4.2. Proof of convergence

We have proved the strong convergence of the discrete solutions {(y*𝑘,p*𝑘,u*𝑘)} in Section 4.1, where we have
only used the structure of the control problem, while the adaptive process does not have an essential involvement.
We shall see that in the subsequent analysis, the error estimator 𝜂ℎ defined in (3.2) and the marking requirement
(3.3) in Algorithm 1 play a crucial role. To complete the proof of Theorem 4.1, we start with the following key
lemma.

Lemma 4.6. Let ̃︀𝑇𝑘 ∈ T𝑘 be one of the elements that achieve the maximum value of 𝜂𝑘(𝑇 ) over 𝑇 ∈ T𝑘, i.e.,
𝜂𝑘

(︁̃︀𝑇𝑘

)︁
:= max

𝑇∈T𝑘

𝜂𝑘(𝑇 ). Then we have

lim
𝑘→∞

𝜂𝑘

(︁̃︀𝑇𝑘

)︁
= 0. (4.21)

Proof. We start with the estimates for 𝜂(1)

𝑦,𝑇 and 𝜂(1)

𝑦,𝐹 on a given mesh T𝑘. A direct application of the inverse
estimate and the triangle inequality gives

𝜂
(1)
𝑦,𝑇 . ℎ𝑇 ‖f‖0,𝑇 + ℎ𝑇 ‖u*ℎ‖0,𝑇 + ‖curly*ℎ‖0,𝑇 + ℎ𝑇 ‖y*ℎ‖0,𝑇 ,

and, by the assumption of 𝜇 and the trace inequality (3.18), we have

𝜂
(1)
𝑦,𝐹 . ℎ

1/2
𝐹 ‖(curly*ℎ)|−‖0,𝐹 + ℎ

1/2
𝐹 ‖(curly*ℎ)|+‖0,𝐹 . ‖curly*ℎ‖0,𝜔𝐹

.
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We now consider 𝜂(2)

𝑦,𝑇 and 𝜂(2)

𝑦,𝐹 . Similarly, we have

𝜂
(2)
𝑦,𝑇 . ℎ𝑇 ‖div f‖0,𝑇 + ‖y*ℎ‖0,𝑇 ,

and

𝜂
(2)
𝑦,𝐹 . ℎ

1/2
𝐹 ‖[𝛾𝑛(f)]𝐹 ‖0,𝐹 + ℎ

1/2
𝐹 ‖[u*ℎ]𝐹 ‖0,𝐹 + ℎ

1/2
𝐹 ‖[y*ℎ]𝐹 ‖0,𝐹 (4.22)

by the triangle inequality. Then the trace inequality (3.18) gives

ℎ
1/2
𝐹 ‖[u*ℎ]𝐹 ‖0,𝐹 + ℎ

1/2
𝐹 ‖[y*ℎ]𝐹 ‖0,𝐹 . ‖u*ℎ‖0,𝜔𝐹

+ ‖y*ℎ‖curl,𝜔𝐹
, (4.23)

since for 𝑇 ∈ 𝜔𝐹 , u*ℎ|𝑇 is a constant vector and y*ℎ|𝑇 ∈ H1(𝑇 ) satisfies
√

2|∇y*ℎ| = |curly*ℎ| which can be
directly checked by using y*ℎ|𝑇 = a𝑇 ×x+b𝑇 for some a𝑇 , b𝑇 ∈ R3. It is clear from (2.4) that ‖[𝛾𝑛(f)]𝐹 ‖0,𝐹 > 0,
only if 𝐹 ⊂ Γ = ∪𝑚

𝑖=1𝜕Ω𝑖∖𝜕Ω. Hence, it follows from (4.22) and (4.23) that

𝜂
(2)
𝑦,𝐹 . ℎ

1/2
𝐹 ‖[𝛾𝑛(f)]𝐹 ‖0,𝐹∩Γ + ‖u*ℎ‖0,𝜔𝐹

+ ‖y*ℎ‖curl,𝜔𝐹
.

The same analysis applies to the other terms in 𝜂𝑘. Then a careful but straightforward computation shows, for
𝑇 ∈ T𝑘,

𝜂𝑘(𝑇 ) . ‖y*𝑘‖curl,𝜔𝑇
+ ‖p*𝑘‖curl,𝜔𝑇

+ ‖u*𝑘‖0,𝜔𝑇
+ ℎ𝑇 ‖curly𝑑‖0,𝑇

+ ℎ𝑇 ‖f‖div,𝑇 +
∑︁

𝐹∈𝜕𝑇∩Γ

ℎ
1/2
𝐹 ‖[𝛾𝑛(f)]𝐹 ‖0,𝐹 . (4.24)

Here 𝜔𝑇 denotes the union of elements that share a common face with 𝑇 . Then, it follows from (4.24) and the
estimate

ℎ̃︀𝑇𝑘
‖f‖div,̃︀𝑇𝑘

+
∑︁

𝐹∈𝜕 ̃︀𝑇𝑘∩Γ

ℎ
1/2
𝐹 ‖[𝛾𝑛(f)]𝐹 ‖0,𝐹 . ℎ

1/2
̃︀𝑇𝑘

(︃
‖f‖0,Ω +

𝑚∑︁
𝑖=1

‖div f‖0,Ω𝑖
+ ‖[𝛾𝑛(f)]Γ‖0,Γ

)︃

that

𝜂𝑘

(︁̃︀𝑇𝑘

)︁
. ℎ

1/2
̃︀𝑇𝑘

C(f) + ‖y*𝑘 − y*∞‖curl,Ω + ‖p*𝑘 − p*∞‖curl,Ω + ‖u*𝑘 − u*∞‖0,Ω

+ ℎ̃︀𝑇𝑘
‖curly𝑑‖0,̃︀𝑇𝑘

+ ‖y∞‖curl,𝜔 ̃︀𝑇𝑘
+ ‖p∞‖curl,𝜔 ̃︀𝑇𝑘

+ ‖u∞‖0,𝜔 ̃︀𝑇𝑘
, (4.25)

where C(f) := ‖f‖0,Ω +
∑︀𝑚

𝑖=1‖div f‖0,Ω𝑖 + ‖[𝛾𝑛(f)]Γ‖0,Γ is well-defined by (2.4). Hence, by the definition of 𝜂ℎ,

we have the estimate for 𝜂𝑘

(︁̃︀𝑇𝑘

)︁
:

𝜂𝑘

(︁̃︀𝑇𝑘

)︁
. 𝜂𝑘

(︁̃︀𝑇𝑘

)︁
+ ‖u𝑑‖0,̃︀𝑇𝑘

, (4.26)

where 𝜂𝑘

(︁̃︀𝑇𝑘

)︁
has been bounded by (4.25). Since ̃︀𝑇𝑘 will be marked in the (𝑘 + 1)th iteration, it holds that

̃︀𝑇𝑘 ∈ T 0
𝑘 and |𝜔̃︀𝑇𝑘

| . ‖ℎ𝑘‖3∞,̃︀Ω0
𝑘

→ 0 as 𝑘 →∞,

by (3.5) and the uniform convergence (4.4) of adaptive meshes. Taking advantage of the absolute continuity of
the Lebesgue integral and Theorem 4.5, we can get the desired vanishing limit of

{︁
𝜂𝑘

(︁̃︀𝑇𝑘

)︁}︁
from (4.25) and

(4.26) when 𝑘 tends to infinity. The proof is complete. �
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We are now well-prepared to show that the limiting state y*∞ and adjoint state p*∞ actually satisfy the
variational problems (2.7a) and (2.7b), respectively. It is worth emphasizing that in our proof, there is no
need to introduce a buffer layer of elements between the meshes at different levels as in [61], by virtue of the
generalized convergence result of mesh-size functions (4.4).

Lemma 4.7. Suppose that (y*∞,p*∞,u*∞) is the solution to the limiting optimality system (4.20a)–(4.20c). Then
it satisfies the variational problems (2.7a) and (2.7b), namely,

𝐵(y*∞,𝜙) = (f + u*∞,𝜙)0,Ω ∀ 𝜙 ∈ H0(curl, Ω), (4.27)

𝐵(p*∞,𝜙) =
(︀
curly*∞ − y𝑑, curl𝜙

)︀
0,Ω

∀ 𝜙 ∈ H0(curl, Ω). (4.28)

Proof. We only prove (4.27) since the proof of (4.28) is similar. For this, we first introduce the following residual
functionals on H0(curl, Ω):

ℛ(·) := 𝐵(y*∞, ·)− (f + u*∞, ·)0,Ω,

and
ℛ𝑘(·) := 𝐵(y*𝑘, ·)− (f + u*𝑘, ·)0,Ω, 𝑘 ≥ 0.

Note that Theorem 4.5 gives us the operator-norm convergence:

lim
𝑘→∞

sup
𝜙∈H0(curl,Ω)

|ℛ(𝜙)−ℛ𝑘(𝜙)|
‖𝜙‖H0(curl,Ω)

= 0. (4.29)

Therefore, to prove ℛ is actually a zero functional, it is sufficient to show

lim
𝑘→∞

ℛ𝑘(𝜙) = 0 ∀ 𝜙 ∈ C∞
𝑐 (Ω),

by the operator-norm convergence (4.29) and the density of C∞
𝑐 (Ω) in H0(curl, Ω). Recall the standard interpo-

lation operator ̃︀Πℎ : H𝑠(curl, 𝐺) → ̃︀Vℎ(𝐺) for 1/2 + 𝛿 ≤ 𝑠 ≤ 1, 𝛿 > 0, associated with Nédélec’s edge elements,
and the corresponding error estimate (cf. [44], Thm. 5.41):

‖v− ̃︀Πℎv‖curl,𝐺 . ℎ𝑠(‖v‖𝑠,𝐺 + ‖curl v‖𝑠,𝐺), (4.30)

where 𝐺 is a polyhedral Lipschitz subdomain of Ω and ̃︀Vℎ(𝐺) is the lowest-order conforming edge element
space without the specified boundary condition. Defining w := 𝜙− ̃︀Π𝑘𝜙 ∈ H0(curl, Ω) and applying the quasi-
interpolation operator Π𝑘 introduced in Lemma 3.1 to w, we have, by definition of ℛ𝑘 and ̃︀Π𝑘𝜙, Π𝑘w ∈ V𝑘,

ℛ𝑘(𝜙) = 𝐵(y*𝑘,𝜙)− (f + u*𝑘,𝜙)0,Ω = 𝐵(y*𝑘,w−Πℎw)− (f + u*𝑘,w−Πℎw)0,Ω.

By the splitting of the mesh T𝑘 introduced in (4.3), a derivation similar to the one for (3.17) and (3.19) gives

|ℛ𝑘(𝜙)| = |ℛ𝑘(w−Πℎw)| .
∑︁

𝑇∈T𝑘

(︁
𝜂
(1)
𝑦,𝑇 + 𝜂

(2)
𝑦,𝑇

)︁
‖w‖curl,̃︀Ω𝑇

+
∑︁

𝑇∈T𝑘

∑︁
𝐹∈𝜕𝑇∩Ω

(︁
𝜂
(1)
𝑦,𝐹 + 𝜂

(2)
𝑦,𝐹

)︁
‖w‖curl,̃︀Ω𝑇

.
∑︁

𝑇∈T +
𝑙

𝜂𝑘(𝑇 )‖𝜙− ̃︀Π𝑘𝜙‖0,̃︀Ω𝑇
+

∑︁
𝑇∈T𝑘∖T +

𝑙

𝜂𝑘(𝑇 )‖𝜙− ̃︀Π𝑘𝜙‖0,̃︀Ω𝑇
, (4.31)

where 𝑙 is an iteration index less than 𝑘 (clearly, T +
𝑙 ⊂ T𝑘). Note that

𝜂𝑘(𝑇 ) ≤ 𝜂𝑘

(︁̃︀𝑇𝑘

)︁
= max

𝑇∈T𝑘

𝜂𝑘(𝑇 )
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holds for all 𝑇 ∈ T +
𝑙 , where ̃︀𝑇𝑘 is as defined in Lemma 4.6. We also observe from (4.30) that

‖𝜙− ̃︀Π𝑘𝜙‖0,̃︀Ω𝑇
. ‖𝜙‖𝐻𝑠(curl,Ω).

Hence, by these two observations and Cauchy’s inequality, (4.31) implies

|ℛ𝑘(𝜙)| . #(T +
𝑙 )𝜂𝑘

(︁̃︀𝑇𝑘

)︁
‖𝜙‖𝐻𝑠(curl,Ω) +

⎛⎝ ∑︁
𝑇∈T𝑘∖T +

𝑙

𝜂2
𝑘(𝑇 )

⎞⎠1/2

‖𝜙− ̃︀Π𝑘𝜙‖0,̃︀Ω0
𝑙
. (4.32)

To derive the second term in the right-hand side of (4.32), we have also used another observation, by definition
and the shape regularity of the meshes, that for any 𝑇 ∈ T𝑘∖T +

𝑙 , there exists an element 𝑇 ′ ∈ T 0
𝑙 such that

𝑇 ⊂ 𝑇 ′ and the extended neighborhood ̃︀Ω𝑇 of 𝑇 in T𝑘 is contained in the extended neighborhood ̃︀Ω𝑇 ′ of 𝑇 ′ in
T𝑙, i.e., ̃︀Ω𝑇 ⊂ ̃︀Ω𝑇 ′ , which, along with the properties (3.6), allows us to write∑︁

𝑇∈T𝑘∖T +
𝑙

‖𝜙− ̃︀Π𝑘𝜙‖20,̃︀Ω𝑇
=

∑︁
𝑇 ′∈T 0

𝑙

∑︁
𝑇∈T𝑘,𝑇⊂𝑇 ′

‖𝜙− ̃︀Π𝑘𝜙‖20,̃︀Ω𝑇
≤ 𝐶

∑︁
𝑇 ′∈T 0

𝑙

‖𝜙− ̃︀Π𝑘𝜙‖20,̃︀Ω𝑇 ′
,

with 𝐶 independent of the meshes. For a fixed 𝑙, by Lemma 4.6, the first term in (4.32) vanishes when 𝑘 tends
to infinity. For the second term in (4.32), we note from the inequality (4.24) and the boundedness of numerical
solutions {(y*𝑘,p*𝑘,u*𝑘)} that ∑︁

𝑇∈T𝑘∖T +
𝑙

𝜂2
𝑘(𝑇 ) ≤

∑︁
𝑇∈T𝑘

𝜂2
𝑘(𝑇 ) ≤ 𝐶, (4.33)

where the constant 𝐶 is independent of 𝑘. We hence have from (4.32) that

lim sup
𝑘→∞

|ℛ𝑘(𝜙)| . lim sup
𝑘→∞

‖𝜙− ̃︀Π𝑘𝜙‖0,̃︀Ω0
𝑙
. (4.34)

We note that ̃︀Ω0
𝑙 inherits a triangulation from the mesh T𝑘 in the sense that ̃︀Ω0

𝑙 =
⋃︀

𝑇∈T𝑘,𝑇⊂̃︀Ω0
𝑙
𝑇 . Then the

interpolation error estimate (4.30) gives

‖𝜙− ̃︀Π𝑘𝜙‖0,̃︀Ω0
𝑙
. ‖ℎ𝑙‖𝑠

∞,̃︀Ω0
𝑙

‖𝜙‖𝐻𝑠(curl,Ω),

which, by (4.34), implies

lim sup
𝑘→∞

|ℛ𝑘(𝜙)| . ‖ℎ𝑙‖𝑠
∞,̃︀Ω0

𝑙

‖𝜙‖𝐻𝑠(curl,Ω). (4.35)

Letting 𝑙 →∞ in (4.35) and recalling the uniform convergence of mesh funcitons (4.4), we can readily conclude
that for all 𝜙 ∈ C∞

𝑐 (Ω), there holds
ℛ(𝜙) = lim

𝑘→∞
ℛ𝑘(𝜙) = 0,

which completes the proof. �

Lemma 4.7 suggests that it suffices to show that u*∞ is actually the minimizer to the cost functional 𝐽(u)
over the admissible set U𝑎𝑑. For this, we prove the following result by exploiting the similar splitting of T𝑘 as
in Lemma 4.7 and some fundamental properties of 𝐿2-projections.

Theorem 4.8. Under the same assumptions as in Lemma 4.7, u*∞ satisfies the variational inequality:(︀
p*∞ + 𝛼

(︀
u*∞ − u𝑑

)︀
,u− u*∞

)︀
0,Ω

≥ 0 ∀ u ∈ U𝑎𝑑. (4.36)
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Proof. Note that the convex set D+(Ω) := {v ∈ C∞
𝑐 (Ω) | v ≥ 0} is dense in U𝑎𝑑 with respect to the 𝐿2-norm.

It suffices to show that the variational inequality (4.36) holds for all u in D+(Ω). However, we have(︀
p*∞ + 𝛼

(︀
u*∞ − u𝑑

)︀
,u− u*∞

)︀
0,Ω

≥ 0 ∀ u ∈ U𝑎𝑑
∞ ,

since (y*∞,p*∞,u*∞) is the solution to the limiting optimality system (4.20a)–(4.20c). The above fact, along with
the relation U𝑎𝑑

𝑘 ⊂ U𝑎𝑑
∞ , implies that for all u ∈ D+(Ω), there holds(︀

p*∞ + 𝛼
(︀
u*∞ − u𝑑

)︀
,u− P𝑘u + P𝑘u− u*∞

)︀
0,Ω

≥
(︀
p*∞ + 𝛼

(︀
u*∞ − u𝑑

)︀
,u− P𝑘u

)︀
0,Ω

. (4.37)

It follows from the strong convergence of {(y*𝑘,p*𝑘,u*𝑘)} and ‖u− P𝑘u‖0,Ω ≤ 2‖u‖0,Ω that

lim inf
𝑘→∞

(︀
p*∞ + 𝛼

(︀
u*∞ − u𝑑

)︀
,u− P𝑘u

)︀
0,Ω

= lim inf
𝑘→∞

(︀
p*𝑘 + 𝛼

(︀
u*𝑘 − u𝑑

)︀
,u− P𝑘u

)︀
0,Ω

. (4.38)

Noting that I− P𝑘 is an orthogonal 𝐿2-projection and using the Poincaré inequality for (I− P𝑘)u:

‖(I− P𝑘)u‖0,𝑇 . ℎ𝑇 ‖∇u‖0,𝑇 ,

we derive⃒⃒⃒(︀
p*𝑘 + 𝛼

(︀
u*𝑘 − u𝑑

)︀
,u− P𝑘u

)︀
0,Ω

⃒⃒⃒
=
⃒⃒⃒(︀

(I− P𝑘)
(︀
p*𝑘 − 𝛼u𝑑

)︀
, (I− P𝑘)u

)︀
0,Ω

⃒⃒⃒
.
∑︁

𝑇∈T𝑘

(︀
ℎ𝑇 ‖p*𝑘 − P𝑘p

*
𝑘‖0,𝑇 + ℎ𝑇 ‖u𝑑 − P𝑘u

𝑑‖0,𝑇

)︀
‖∇u‖0,𝑇

.
∑︁

𝑇∈T +
𝑙

ℎ𝑇 · 𝜂𝑘(𝑇 )‖∇u‖0,𝑇 +
∑︁

𝑇∈T𝑘∖T +
𝑙

ℎ𝑇 · 𝜂𝑘(𝑇 )‖∇u‖0,𝑇 , (4.39)

by the definition of 𝜂𝑘(𝑇 ). Here we have used the same splitting of T𝑘 as the one in Lemma 4.7 with 𝑙 being
a fixed iteration index less than 𝑘. Similarly to the proof of Lemma 4.7, we estimate the two terms in (4.39),
respectively, as follows. For the first term in (4.39), we have∑︁

𝑇∈T +
𝑙

ℎ𝑇 · 𝜂𝑘(𝑇 )‖∇u‖0,𝑇 . #(T +
𝑙 )𝜂𝑘

(︁̃︀𝑇𝑘

)︁
‖∇u‖0,Ω,

which, by Lemma 4.6, vanishes as 𝑘 →∞. For the second term in (4.39), note from (4.33) that∑︁
𝑇∈T𝑘∖T +

𝑙

𝜂2
𝑘(𝑇 ) =

∑︁
𝑇∈T𝑘∖T +

𝑙

𝜂2
𝑘(𝑇 ) + osc2

𝑇

(︀
u𝑑
)︀
≤ 𝐶

holds with the constant 𝐶 independent of 𝑘. Then, by Cauchy’s inequality, we have∑︁
𝑇∈T𝑘∖T +

𝑙

ℎ𝑇 · 𝜂𝑘(𝑇 )‖∇u‖0,𝑇 . ‖ℎ𝑙‖∞,Ω0
𝑙
‖∇u‖0,Ω,

which vanishes when 𝑙 tends to infinity. By above arguments, we have proven

lim
𝑘→∞

|(p*𝑘 + 𝛼(u*𝑘 − u𝑑),u− P𝑘u)0,Ω| = 0. (4.40)

In view of (4.37), (4.38) and (4.40), we complete the proof, since the left-hand side of (4.37) is independent of
𝑘. �

We end our theoretical analysis for the adaptive approximation of the control problem with an additional
remark.
Remark 4.9. If the function u𝑑 has the regularity: u𝑑 ∈ H1(Ω), then using Theorem 4.1, the uniform conver-
gence (4.4) and the Poincaré inequality, we can argue in a manner similar to Theorem 6.2 of [61] to conclude
the convergence of the error estimators {𝜂𝑘}. However, for a general 𝐿2-data u𝑑, the optimal control u* can
only be guaranteed to have a 𝐿2-regularity, and the data oscillation {osc𝑘

(︀
u𝑑
)︀
} may not converge to zero in the

adaptive process.
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5. Numerical experiments

In this section, we provide a detailed documentation of the numerical results to illustrate the performance
of our adaptive algorithm for the optimal control problem. All the examples presented below are implemented
based on the MATLAB package iFEM [18] using MATLAB 2017a on a personal laptop with 8.00 GB RAM and
dual-core 2.4 GHz CPU. When solving the discrete optimization problems (2.12) and (2.13), we use the projected
gradient algorithm in which the HX-preconditioner [32] is also adopted for solving the H(curl)-elliptic problem.
More precisely, we start with an initial guess u(0)

ℎ ∈ U𝑎𝑑
ℎ , and in 𝑛th step (𝑛 ≥ 1) we solve two H(curl)-elliptic

problems to obtain the state y(𝑛)

ℎ and the adjoint state p(𝑛)

ℎ with the help of HX-preconditioner. Then the control
variable uℎ can be explicitly updated as follows:

u
(𝑛)
ℎ = max

{︁
0,u

(𝑛−1)
ℎ + 𝑠

(︁
−Pℎp

(𝑛)
ℎ − 𝛼

(︁
u

(𝑛−1)
ℎ − u𝑑

ℎ

)︁)︁}︁
, (5.1)

where the parameter 𝑠 can be computed explicitly by solving a one dimensional quadratic optimization problem.
Compared to the algorithm in [35] where the edge element was used to approximate the control and an additional
least squares problems with inequality constraints need to be solved to realize the box constraint (1.2), which
is very expensive and time-consuming, our algorithm uses only about half the number of DoFs for computing
the control variable but gives equally accurate numerical resolution, and can be trivially implemented.

In the following, we carry out some numerical experiments for two benchmark problems. For both examples,
we shall first compute the numerical solutions and errors on the uniform meshes with five refinement iterations
for the purpose of comparison, and then conduct the new adaptive algorithm, which is terminated when the
corresponding DoFs are almost the same as that of the finest uniform mesh. The first example is modified
from [22, 67], where there is a corner singularity in the solution. We consider an optimal control problem on
the L-shape domain: Ω = [−1, 1]3∖[0, 1]× [0, 1]× [−1, 1] with both the electric permittivity 𝜎 and the magnetic
permeability 𝜇 taken to be 1. We set the target applied current density (control) u𝑑 and the target magnetic field
(state) y𝑑 to zero, and set the parameter 𝛼 to 0.1. We choose the inhomogeneous Dirichlet boundary condition
and the source term f such that the exact solution are given as follows:

u* = p* = 0 and y* = grad
(︂

𝑟
2
3 sin

(︂
2
3
𝜃

)︂)︂
in cylindrical coordinates.

We set 𝜃 = 0.5 in the marking strategy (3.4) and remark that there is no need to consider the data oscillation
osc𝑇

(︀
u𝑑
)︀

in this example because of the vanishing desired control u𝑑.
In our simulations, the computation starts on a very coarse mesh with 480 DoFs. The adaptively refined

meshes in the 10th, 14th and 18th iterations are presented in Figure 1, in which we clearly observe that the
meshes are locally refined around the 𝑧-axis where the singularity of y* occurs. Note the non-smooth function
y* /∈ H1(Ω) and that the lowest-order edge elements of first family are used to discretize the state variable.
We typically cannot expect the optimal convergence order 𝑂(ℎ) on a uniformly refined mesh according to the
standard interpolation result (4.30). However, this theoretical order of convergence can be recovered by the
adaptive mesh refinement in the sense that

‖y*𝑘 − y*‖curl,Ω . (#DoFs)−1/3,

which has been confirmed by the convergence history plotted in Figure 2 (left) on a double logarithmic scale. We
should also observe that the errors of the control ‖u*−u*𝑘‖0,Ω and the adjoint state ‖p*−p*𝑘‖curl,Ω reduce with
a slope −2/3, which is twice the one of the error associated with the state y. The difference in the convergence
rates may be explained by the fact that u* and p* are zero functions and hence very smooth while the optimal
state y* is non-smooth and has a strong singularity near the 𝑧-axis. Moreover, Figure 2 (right) shows the
reduction of the total error (almost dominated by the error ‖y* − y*𝑘‖curl,Ω):

‖y* − y*𝑘‖curl,Ω + ‖p* − p*𝑘‖curl,Ω + ‖u* − u*𝑘‖0,Ω,
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Figure 1. Evolution of the adaptive mesh for the first example in steps 𝑘 = 10, 14 and 18
(final mesh).

Figure 2. Convergence histories of the control, state and adjoint state (left), and the total
errors for the uniform mesh refinement and the adaptive mesh refinement, as well as the error
estimator 𝜂ℎ (right) for the first example.

and the convergence behavior of the a posteriori error estimator 𝜂ℎ = 𝜂ℎ, which confirms the efficiency of 𝜂ℎ

and the superiority of the adaptive mesh refinement over the uniform mesh refinement: the total error on the
adaptively refined mesh reduces with an order −1/3, double the one (−0.15) on the uniformly refined mesh.
This is also confirmed by the computing times and computational costs: for achieving the error over the mesh
generated by the 5th uniform refinement, the adaptive algorithm takes only about 80 s and 105 DoFs, whereas
the uniform one takes about 580 s and 1 410 240 DoFs.

The second example is chosen to be similar to the one in [35], where there are non-smooth source terms and
large jumps of physical coefficients across the interface between two different media. To be precise, we consider
an optimal control problem on Ω = [−1, 1]3 with a high-contrast inclusion: Ω𝑐 := {x ∈ R3; 𝑥2 +𝑦2 +𝑧2 < 0.62},
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Figure 3. Evolution of the adaptively refined mesh (2D slice) for the second example in steps
𝑘 = 8, 12, 16 and 19 (final mesh).

on which the coefficients 𝜇 and 𝜎 are given by

𝜎 =

{︃
10 in Ω𝑐,

1 in Ω∖Ω𝑐,
𝜇−1 =

{︃
0.1 in Ω𝑐,

1 in Ω∖Ω𝑐.

We set the target state y𝑑 = 0 and the target control u𝑑 = 10(𝜒Ω𝑐 , 0, 0). Here 𝜒Ω𝑐 is the characteristic function
of Ω𝑐. We define a scalar function:

𝜑(x) =
1

2𝜋
sin(2𝜋𝑥) sin(2𝜋𝑦) sin(2𝜋𝑧),

and then introduce the non-smooth source term f:

f(x) = 𝜎∇𝜑(x)− 10(𝜒Ω𝑐
, 0, 0).

We readily see that the unique solution to the optimality system (2.7a)–(2.7c) is given by

y* = ∇𝜑, p* = 0, and u* = 10(𝜒Ω𝑐
, 0, 0).

Other parameters are chosen to be same as the first example.
We still set 𝜃 = 0.5 in the marking strategy (3.4) and start our computation on a very coarse initial mesh

with 604 DoFs. We show the evolution of adaptive meshes on the (𝑦, 𝑧)-cross section at 𝑥 = 0 in Figure 3,
from which we immediately see that the meshes are strongly concentrated in the high-contrast inclusion Ω𝑐 and
clearly capture the shape of the interface. We can also observe, from Figure 4 (left), an optimal convergence
order −1/3 for the control and state variable and a little bit faster decrease of the error for the adjoint state
‖p*−p*𝑘‖curl,Ω, which is possibly because p* is quite smooth (a zero function), compared to u* and y*. Figure 4
(right) again verifies the effectiveness of the error estimator 𝜂𝑘 and the gain of computational efficiency from the
adaptive mesh refinement: the total error on the adaptively refined mesh reduces with an order −1/3, whereas
the error on the uniform one reduces only with an order −0.2.

6. Concluding remarks

In this work, we have studied an electromagnetic optimal control problem and used the lowest-order edge
elements to approximate the state and adjoint state, while used the piecewise constant functions to approxi-
mate the control. We have designed an adaptive finite element method with an error indicator involving both
the residual-type error estimator and the lower-order data oscillation. We have established the reliability and
efficiency of the a posteriori error estimator and the strong convergence of the adaptive finite element solutions



AN ADAPTIVE EDGE ELEMENT METHOD AND ITS CONVERGENCE 2041

Figure 4. Convergence histories of the control, state and adjoint state (left), and the total
errors for the uniform mesh refinement and the adaptive mesh refinement, as well as the error
estimator 𝜂ℎ (right) for the second example.

for both the state and control variables. With a very minor modification, our analysis and arguments can be
directly applied to the more realistic case [61, 63] where the control u is added on a subdomain Ω𝑐 of Ω and
the case [27] where the control satisfies a bilateral constraint. It is worth pointing out that our arguments can
also be modified to cope with the inhomogeneous Dirichlet boundary condition. To be exact, suppose that the
boundary condition is given by 𝛾𝑡y = 𝛾𝑡g with g ∈ H(curl, Ω) being a known function satisfying the given
Dirichlet trace data [14]. Then we can check that the optimality systems (2.7a)–(2.7c) and (2.14a)–(2.14c) still
hold, except that (2.7a) and (2.14a) are solved on the affine spaces g + V and ̃︀Πℎg + Vℎ, respectively. Hence,
up to a possible data oscillation: ‖g− ̃︀Πℎg‖curl,Ω, our a posteriori error estimates and the convergence analysis
can be readily applied.

As mentioned in the Introduction, the model of our interest can be connected with the discretization of the
control problem of time-dependent eddy current equations [41,46,47], where the implicit time-stepping scheme
is adopted for the sake of stability [10,31]. In this case, the coefficient 𝜎 will be scaled by the current time-step
size. Therefore, it is important to design an error estimator which is robust with respect to the scaling of the
coefficients, namely, the generic constants involved in the a posteriori error analysis should be independent
of the scaling factors of the coefficients. For this, we may measure the errors of the states (y and p) by the
energy norm on H0(curl, Ω): ‖·‖2𝐵 = ‖

√︀
𝜇−1curl·‖20,Ω + ‖

√
𝜎·‖20,Ω, and the error estimators may also need to

be scaled correspondingly. If we assume that 𝜇 and 𝜎 are element-wise constant with respect to the initial
mesh T0 [10], or that there exists a scaled norm ‖ · ‖2V := 𝜇−1

* ‖curl · ‖20,Ω + 𝜎*‖ · ‖20,Ω with 𝜇* and 𝜎* being
positive constants, such that 𝐵(·, ·) is continuous and inf-sup stable with respect to ‖ · ‖V with the involved
generic constants independent of 𝜇 and 𝜎 [53], one can naturally follow the a posteriori error analysis provided
in this work to obtain a robust error analysis by using the energy norm and the scaled error estimators (for
instance, if the norm ‖·‖V defined above exists, by adding a scaling factor

√
𝜇*, we can modify 𝜂(1)

𝑦,𝑇 and 𝜂(1)

𝑦,𝐹

as follows: 𝜂(1)

𝑦,𝑇 := ℎ𝑇
√

𝜇*‖f + u*ℎ − curl𝜇−1curly*ℎ − 𝜎y*ℎ‖0,𝑇 and 𝜂(1)

𝑦,𝐹 :=
√

ℎ𝐹 𝜇*‖[𝛾𝑡(𝜇−1curly*ℎ)]𝐹 ‖0,𝐹 ).
We refer the readers to [17, 48] for related discussions. However, the detailed and rigorous treatments for the
general coefficients and the time-dependent model are not trivial tasks and need further investigations. We
finally remark that it is also of great interest to design the adaptive algorithm for more complicated models,
such as the nonlinear electromagnetic control problem [64] and the Maxwell variational inequalities [65,66].
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[33] J.B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I: Fundamentals. Springer Science &
Business Media 305 (2013).
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