
Journal of Scientific Computing manuscript No.
(will be inserted by the editor)

Two-level Space-time Domain Decomposition Methods for
Three-dimensional Unsteady Inverse Source Problems

Xiaomao Deng · Xiao-Chuan Cai · Jun Zou

Received: date / Accepted: date

Abstract As the number of processor cores on supercomputers becomes larger and larger,
algorithms with high degree of parallelism attract more attention. In this work, we propose a
two-level space-time domain decomposition method for solving an inverse source problem
associated with the time-dependent convection-diffusionequation in three dimensions. We
introduce a mixed finite element/finite difference method and a one-level and a two-level
space-time parallel domain decomposition preconditionerfor the Karush-Kuhn-Tucker sys-
tem induced from reformulating the inverse problem as an output least-squares optimization
problem in the entire space-time domain. The new full space-time approach eliminates the
sequential steps in the optimization outer loop and the inner forward and backward time
marching processes, thus achieves high degree of parallelism. Numerical experiments vali-
date that this approach is effective and robust for recovering unsteady moving sources. We
will present strong scalability results obtained on a supercomputer with more than 1,000
processors.
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1 Introduction

In this paper, we consider an inverse problem associated with the time-dependent convection-
diffusion equation defined inΩ ∈ R3:































∂C
∂ t

= ∇ · (a(x)∇C)−∇ · (v(x)C)+ f (x, t), 0< t < T , x ∈ Ω

C(x, t) = p(x, t), x ∈ Γ1

a(x)
∂C
∂n

= q(x, t), x ∈ Γ2

C(x,0) =C0(x), x ∈ Ω ,

(1)

where f (x, t) is the source profile to be recovered,a(x) andv(x) are the given diffusivi-
ty and convective coefficients, andΓ1 andΓ2 are two disjoint parts of the boundary∂ Ω .
Dirichlet and Neumann boundary conditions are imposed respectively onΓ1 andΓ2. When
the observation dataC(x, t) is available at certain locations, several classes of inverse prob-
lems associated with the convection-diffusion equation (1) have been investigated, such as
the recovery of the diffusivity coefficient with applications in, for examples, laminar wavy
film flows [21], and flows in porous media [28], the recovery of the source with applications
in, for examples, convective heat transfer problems [26], indoor airborne pollutant tracking
[25], and ground water contamination modeling [30,33,39],etc.

The main focus of this work is to study the following inverse problem: given the mea-
surement dataCε(x, t) of C(x, t) at some locations insideΩ for the period 0< t < T (ε
denotes the noise level), we try to recover the space-time-varying source locations and in-
tensities, i.e., the source functionf (x, t) in equation (1).

The inverse source problem has been studied in different cases, for example, the re-
covering of the location and time-dependent intensity of point sources in [1,13,20,36], the
piecewise-constant sources in [2,37] and Gaussian concentrated sources in [2,3]. Among
these different approaches, the Tikhonov optimization method is most popular [1,13,19,
36], which reformulates the original inverse source problem into an output least-squares op-
timization problem with PDE-constraints, by introducing some appropriate regularizations
to ensure the stability of the resulting optimization problem with respect to the change of
noise in the observation data [14,35].

We define the following objective functional with Tikhonov regularization:

J( f ) =
1
2

∫ T

0

∫

Ω
A(x)(C(x, t)−Cε(x, t))2dxdt +Nβ ( f ) , (2)

whereC =C( f ) is the solution to the system (1) corresponding to a given source f , A(x)
is the data range indicator function given byA(x) =∑s

i=1 δ (x−xi), with x1, x2, · · · , xs being
a set of specified locations where the concentrationC is measured, andCε(x, t) represents
the measurement ofC(x, t) at a specified locationx and timet.

The termNβ ( f ) in (2) is called the regularization with respect to the source. Sincef (x, t)
depends on both space and time, we propose the following space-timeH1-H1 regularization:

Nβ ( f ) =
β1

2

∫ T

0

∫

Ω
| ḟ |2dxdt +

β2

2

∫ T

0

∫

Ω
|∇ f |2dxdt . (3)

Here β1 and β2 are two regularization parameters. Other regularizations, such asH1-L2,
may be used, but we will show later by numerical experiments that H1-H1 regularization
may offer better numerical reconstructions.
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Various approaches are available for the minimization of the nonlinear functionalJ( f ) in
(2) associated with the system (1). One of the approaches is the Lagrange multiplier method,
which converts the constrained minimization of functionalJ( f ) into a unconstrained min-
imization of the corresponding Lagrange functional ofJ( f ). This results in the solution
of a so-called Karush-Kuhn-Tucker (KKT) system [22], whichinvolve three coupled time-
dependent PDEs here, namely the governing equation (1) for the concentrationC, its adjoint
equation for the Lagrange multiplier and the equation for the identifying source function
f ; see Section 2 for more detail. For solving such a KKT system,the traditional reduced
space SQP method is a popular and natural choice [3,13,36]. The SQP method solves the
three coupled PDEs in the KKT system alternatively by iteration. One may see the essen-
tial sequential feature of the SQP: the outer iteration is sequential among the solutions of
three PDEs, the governing equation (1) is forward in time, and the adjoint equation for the
Lagrange multiplier is backward in time. The parallelization of the SQP may happen for
the solution of each of the three time-dependent PDEs, whichcan be solved by, e.g., the
traditional fast algorithms such as domain decomposition and multigrid methods [3]. SQP
requires low memory, but it usually takes a large number of iterations to reach convergence.
Because of its essential sequential feature, the reduced space SQP method is less ideal for
parallel computers with a large number of processor cores, compared with the full space
SQP methods. Full space methods were studied for steady state problems in [9,10], but for
unsteady problems it needs to eliminate the sequential steps in the outer iteration of the SQP
and solve the full space-time system as a coupled system.

Because of the much larger size of the system, the full space approach may not be
suitable for parallel computer systems with a small number of processor cores, but it has
fewer sequential steps and thus offers a much higher degree of parallelism required by large
scale supercomputers [12].

It is a very active research direction to construct efficientparallelization methods for
highly nonlinear optimizations constrained with PDEs. An unsteady PDE-constrained opti-
mization problem was solved in [38] for the boundary controlof unsteady incompressible
flows by solving a subproblem at each time step. It has the sequential time-marching process
and each subproblem is steady-state.

The parareal algorithms were studied in [7,15,24], which involve a coarse-grid solver (in
the time direction) for prediction and a fine-grid solver (inthe time direction) for correction.
Parallel implicit time integrator method (PITA), space-time multigrid, multiple shooting
methods can be categorized as improved versions of the parareal algorithm [17,18]. The
parareal algorithm combined with domain decomposition method [27] or multigrid method
can be powerful. However, most existing parareal related studies have focused mainly on
the stability and convergence [16].

In this work, we will study an effective reconstruction of the time history and intensity
profile of a source function simultaneously. For this aim, wepropose a fully implicit, mixed
finite element and finite difference discretization scheme for the globally coupled KKT sys-
tem, and a corresponding space-time overlapping Schwarz preconditioner for solving the
large-scale discretised KKT system. The method removes allthe sequential inner time steps
and achieves full parallelization in both space and time. Weshall not compare the proposed
method with traditional reduced space SQP methods, since itis likely that, for supercomput-
ers with a small number of processor cores, the traditional approach is still a better choice.
The focus of the current study is to formulate the technical details of our new space-time
parallel algorithm, which may play a promising role for future exascale computing systems.
Furthermore, to resolve the dilemma that the number of linear iterations of one-level meth-
ods increases with the number of processors [32], we will develop a two-level space-time
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hybrid Schwarz preconditioner, which offers better performance in terms of the number of
iterations and the total compute time.

The rest of the paper is arranged as follows. In Section 2, we describe the mathematical
formulation of the inverse problem and the derivation of theKKT system. We propose, in
Section 3, the main algorithm of the paper, and discuss several technical issues involved
in the fully implicit discretization scheme and the one- andtwo-level overlapping Schwarz
methods for solving the KKT system. Numerical experiments for the recovery of 3D sources
are given in Section 4, and some concluding remarks are provided in Section 5.

2 Strong formulation of KKT system

We now derive the KKT system of the minimisation ofJ( f ) in (2) combined with the e-
quations (1). To do so, we formally write the first equation in(1) as an operator equation
L(C, f )= 0. By introducing a Lagrange multiplier or adjoint variableG ∈ H1(0,T ;H1(Ω )),
the Lagrange functional [2,23]

J (C, f ,G) =
1
2

∫ T

0

∫

Ω
A(x)(C−Cε)2dxdt +Nβ ( f )+(G,L(C, f )) (4)

transforms the PDE-constrained minimization ofJ( f ) in (2) into an unconstrained saddle-
point optimization problem, where(G,L(C, f )) denotes the inner product ofG andL(C, f ).
Two approaches are available for the resulting saddle-point optimization ofJ , the optimize-
then-discretize approach and the discretize-then-optimize approach. The first approach de-
rives a continuous optimality system and then applies certain discretization scheme, such as
a finite element method to obtain a discrete system ready for computation. The second ap-
proach discretizes the Lagrange functionalJ , and then the objective functional becomes a
finite dimensional quadratic polynomial. The solution algorithm is then based on the polyno-
mial system. The two approaches perform the approximation and discretization at different
stages, both have been applied successfully [29]. We shall use the optimize-then-discretize
approach in this work.

The first-order optimality conditions ofJ in (4), i.e., the KKT system, is obtained by
taking its variations with respect toG, C and f as











JG(C, f ,G)v = 0

JC(C, f ,G)w = 0

J f (C, f ,G)g = 0

(5)

for all v,w ∈ L2(0,T ;H1
Γ1
(Ω )) with zero traces onΓ1 and g ∈ H1(0,T ;H1(Ω )). Then by

using integration by parts, we may derive the following strong form of the KKT system:























∂C
∂ t

−∇ · (a∇C)+∇ · (v(x)C)− f = 0

−
∂ G
∂ t

−∇ · (a∇G)−v(x) ·∇G+A(x)C = A(x)Cε

G+β1
∂ 2 f
∂ t2 +β2∆ f = 0.

(6)

To derive the boundary, initial and terminal conditions foreach variable of the equations, we
make use of the property that (5) holds for arbitrary directional functionsv,w andg.
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For the state equation, i.e., the first one in (6), it maintains the same conditions as in (1).
For the adjoint equation, i.e., the second one in (5) or (6), we can deduce by integration by
parts for any test functionw ∈ L2(0,T ;H1

Γ1
(Ω )) with w(·,0) = 0 anda(x)∂ w/∂n = 0 onΓ2:

JC(C, f ,G)w=
∫ T

0

∫

Ω
A(x)(C−Cε )wdxdt +

∫

Ω
G(x,T )w(x,T)dx

−

∫ T

0

∫

Ω

(

∂ G
∂ t

+∇ · (a(x)∇G)+v(x) ·∇G

)

wdxdt

−
∫ T

0

∫

Γ1

(

a(x)
∂ w
∂n

)

GdΓ dt

+

∫ T

0

∫

Γ2

(

a(x)
∂ G
∂n

+v(x) ·n
)

wdΓ dt .

By the arbitrariness ofw, the boundary and terminal conditions forG are derived:

G(x, t) = 0, x ∈ Γ1, t ∈ [0,T ]

a(x)
∂ G
∂n

+v(x) ·n = 0, x ∈ Γ2, t ∈ [0,T ]

G(x,T ) = 0, x ∈ Ω .

Similarly for the third equation of (5) or (6), we can deduce

J f (C, f ,G)g=−
∫ T

0

∫

Ω
Ggdxdt +

∫ T

0

∫

Ω
( ḟ ġ+∇ f ·∇g)dxdt

=−
∫ T

0

∫

Ω
Ggdxdt +( ḟ g)|t=0,T −

∫ T

0

∫

Ω
f̈ g

+
∫ T

0

∫

∂Ω

∂ f
∂n

gdΓ dt −
∫ T

0

∫

Ω
∆ f gdxdt

=−

∫ T

0

∫

Ω
(G+ f̈ +∆ f )gdxdt +( ḟ g)|t=0,T +

∫ T

0

∫

∂Ω

∂ f
∂n

gdΓ dt .

Using the arbitrariness ofg, we derive the boundary, initial and terminal conditions for f :

∂ f
∂ t

= 0 for t = 0,T, x ∈ Ω ;
∂ f
∂n

= 0 for x ∈ ∂ Ω , t ∈ [0,T ] . (7)

3 A fully implicit and fully coupled method

In this section, we first introduce a mixed finite element and finite difference method for the
discretization of the continuous KKT system derived in the previous section, then we briefly
mention the algebraic structure of the discrete system of equations. In the second part of the
section, we introduce the one- and two-level space-time Schwarz preconditioners that are
the most important components for the success of the overallalgorithm.
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3.1 Fully implicit space-time discretization

In this subsection, we introduce a fully implicit finite element/finite difference scheme to
discretize (6). To discretize the state and adjoint equations, i.e., the first two equations in
(6), we use a second-order Crank-Nicolson finite differencescheme in time and a piecewise
linear continuous finite element method in space. Consider aregular triangulationT h of
domainΩ , and a time partitionPτ of the interval[0,T ]: 0= t0 < t1 < · · · < tM = T, with
tn = nτ ,τ = T/M. Let V h be the piecewise linear continuous finite element space onT h,
andV̊ h be the subspace ofV h with zero trace onΓ1. We introduce the difference quotient
and the averaging of a functionψ(x, t) as

∂τψn(x) =
ψn(x)−ψn−1(x)

τ
, ψ̄n(x) =

1
τ

∫ tn

tn−1
ψ(x, t)dt ,

with ψn(x) := ψ(x, tn). Let πh be the finite element interpolation associated with the space
V h, then we obtain the discretizations for the state and adjoint equations by finding the
sequence of approximationsCn

h ,G
n
h ∈ V h for n = 0,1, · · · , M such thatC0

h = πhC0, GM
h = 0,

andCn
h(x) = πh p(x, tn),Gn

h(x) = 0 for x ∈ Γ1, and satisfying











(∂τCn
h ,vh)+(a∇C̄n

h ,∇vh)+(∇ · (vC̄n
h),vh) = ( f̄ n

h ,vh)+ 〈q̄n,vh〉Γ2, ∀vh ∈ V̊ h

−(∂τ Gn
h,wh)+(a∇Ḡn

h,∇wh)+(∇ · (vwh), Ḡn
h)

=−(A(x)(C̄n
h(x, t)−C̄ε ,n(x, t)),wh), ∀wh ∈ V̊ h .

(8)

Unlike the approximations of the forward and adjoint equations in (8), we shall approx-
imate the source functionf differently. We know that the source function satisfies an elliptic
equation (see the third equation in (6)) in the space-time domain Ω × (0,T). So we shall
applyT h ×Pτ to generate a partition of the space-time domainΩ × (0,T ), and then apply
the piecewise linear finite element method in both space (three dimensions) and time (one
dimension), denoted byW τ

h , to approximate the source functionf . Then the equation for
f ∈W τ

h can be discretized as follows: Find the sequence off n
h for n = 0,1, · · · , M such that

− (Gn
h,g

τ
h)+β1(∂τ f n

h ,∂τgτ
h)+β2(∇ f n

h ,∇gτ
h) = 0, ∀gτ

h ∈W τ
h . (9)

The coupled system (8)-(9) is the so-called fully discretized KKT system. In the Appendix,
we provide some details of the discrete structure of this KKTsystem.

3.2 One- and two-level space-time Schwarz preconditioner

The unknowns of the KKT system (8)-(9) are often ordered physical variable by physical
variable, namely in the form

Ũ = (C0,C1, · · · ,CM,G0,G1, · · · ,GM, f 0, f 1, · · · , f M)T .

Such ordering is used extensively in reduced space SQP methods [13]. In our all-at-once
method, the unknownsC,G and f are ordered mesh point by mesh point and time step by
time step, and all unknowns associated with a point stay together as a block. At each mesh
point x j, j = 1, · · · , N, and time steptn, n = 0, · · · , M, the unknowns are arranged in the
order ofCn

j ,G
n
j , f n

j . Such ordering avoids zero values on the main diagonal of thematrix and
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has better cache performance for point-block LU (or ILU) factorization based subdomain
solvers. More precisely, we define the solution vector as

U = (C0
1,G

0
1, f 0

1 , · · · ,C
0
N ,G

0
N , f 0

N ,C
1
1,G

1
1, f 1

1 , · · · ,C
1
N ,G

1
N , f 1

N , · · · ,C
M
1 ,GM

1 , f M
1 ,

· · · ,CM
N ,GM

N , f M
N )T .

then the linear system (8)-(9) is rewritten as

FhU = b , (10)

whereFh is a sparse block matrix of size(M+1)(3N) by (M +1)(3N) with the following
block structure:

Fh =















S00 S01 0 · · · 0
S10 S11 S12 · · · 0

0
.. .

. ..
.. . 0

0 · · · SM−1,M−2 SM−1,M−1 SM−1,M

0 · · · 0 SM,M−1 SM,M















,

where the block matricesSi j for 0≤ i, j ≤ M are of size 3N ×3N and most of its elements
are zero matrices except the ones in the tridiagonal stripes{Si,i−1},{Si,i},{Si,i+1}. It is noted
that if we denote the submatrices forC,G and f of sizeN ×N respectively bySC

i j,S
G
i j,S

f
i j in

each blockSi j, the sparsity of the matrices are inconsistent, namely,S f
i j is the densest and

SG
i j is the sparest. This is due to the discretization scheme we have used. The system (10) is

large-scale and ill-conditioned, therefore is difficult tosolve because the space-time coupled
system is denser than the decoupled system, especially in three dimensions.

We shall design the preconditioner by extending the classical spatial Schwarz precon-
ditioner to include both spatial and temporal variables. Such an approach eliminates all
sequential steps and the unknowns at all time steps are solved simultaneously. We use a
right-preconditioned Krylov subspace method to solve (10),

FhM−1U ′ = b ,

whereM−1 is a space-time Schwarz preconditioner andU = M−1U ′.
Denoting the space-time domain byΘ = Ω × (0,T ), an overlapping decomposition of

Θ is defined as follows: we divideΩ into Ns subdomains,Ω1,Ω2, · · · , ΩNs , then partition
the time interval[0,T ] into Nt subintervals using the partition: 0< T1 < T2 < · · · < TNt .
By coupling all the space subdomains and time subintervals,a decomposition ofΘ is Θ =
∪Ns

i=1(∪
Nt
j=1Θi j), whereΘi j = Ωi × (Tj−1,Tj). For convenience, the number of subdomains,

i.e. NsNt , is equal to the number of processors. These subdomainsΘi j are then extended to
Θ ′

i j to overlap each other. The boundary of each subdomain is extended by an integral num-
ber of mesh cells in each dimension, and we trim the cells outside ofΘ . The corresponding
overlapping decomposition ofΘ is Θ = ∪Ns

i=1(∪
Nt
j=1Θ ′

i j). See the left figure of Figure 1 for
the overlapping extension. The matrix on each subdomainΘ ′

i j = Ω ′
i × (T ′

j−1,T
′
j ), i = 1,2,

· · · , Ns, j = 1,2, · · · , Nt is the discretized version of the following system of PDEs


































∂C
∂ t

= ∇ · (a(x)∇C)−∇ · (v(x)C)+ f (x, t) , (x, t) ∈Θ ′
i j

∂ G
∂ t

=−∇ · (a(x)∇G)−v(x) ·∇G

+A(x)(C(x, t)−Cε(x, t)) , (x, t) ∈Θ ′
i j

β1
∂ 2 f
∂ t2 +β2∆ f +G = 0, (x, t) ∈Θ ′

i j

(11)
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Fig. 1 Left: a sample overlapping decomposition in space-time domain Θ on a fine mesh. Right: the same
decomposition on the coarse mesh.

with the following boundary conditions

C(x, t) = 0, G(x, t) = 0, f (x, t) = 0, x ∈ ∂ Ω ′
i , t ∈ [T ′

j−1,T
′
j ] (12)

along with the initial and terminal time boundary conditions
{

C(x,T ′
j−1) = 0, G(x,T ′

j−1) = 0, f (x,T ′
j−1) = 0, x ∈ Ω ′

i

C(x,T ′
j ) = 0, G(x,T ′

j ) = 0, f (x,T ′
j ) = 0, x ∈ Ω ′

i .
(13)

One may notice from (13) that the homogenous Dirichlet boundary conditions are applied
in each time interval(T ′

j−1,T
′
j ), as the solution of the subdomain problem is not really phys-

ical. This is one of the major differences between the space-time Schwarz method and the
parareal algorithm [24]. The time boundary condition for each subproblem of the parareal
algorithm is obtained by an interpolation of the coarse solution, and if the coarse mesh is
fine enough, the solution of the subdomain problem is physical. Therefore, the parareal al-
gorithms can be used as a solver, but our space-time Schwarz method can only be used as a
preconditioner. Surprisingly, as we shall see from our numerical experiments in Section 4,
the Schwarz preconditioner is an excellent one even though the time boundary conditions
violate the physics.

We solve the subdomain problems using the same method as for the global problem
(10), no time-marching is performed in our new algorithm, and all unknowns affiliated with
the subdomain are solved simultaneously. LetMi j be the matrix generated in the same way
as the global matrixFh in (10) but for the subproblem (11)-(13), and̃M−1

i j be an exact or
approximate inverse ofMi j. By denoting the restriction matrix fromΘ to the subdomainΘ ′

i j

by Rδ
i j, with overlapping sizeδ , we propose the following one-level space-time restricted

Schwarz preconditioner for the global matrixFh:

M−1
one−level =

Nt

∑
j=1

Ns

∑
i=1

(Rδ
i j)

T M̃−1
i j R0

i j .

As it is well known, any one-level domain decomposition methods are not scalable with
the increasing number of subdomains or processors [32]. Instead one should have multilevel
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methods in order to observe possible scalable effects [4,32]. We now propose a two-level
space-time additive Schwarz preconditioner. To do so, we partition Ω with a fine meshΩ h

and a coarse meshΩ c. For the time interval, we have a fine partitionPτ and a coarse parti-
tion Pτc with τ < τc. We will adopt a nested mesh, i.e., the nodal points of the coarse mesh
Ω c×Pτc are a subset of the nodal points of the fine meshΩ h×Pτ . In practice, the size of the
coarse mesh should be adjusted properly to obtain the best performance. On the fine level,
we simply apply the previously defined one-level space-timeadditive Schwarz precondi-
tioner; and to efficiently solve the coarse problem, a parallel coarse preconditioner is also
necessary. Here we use the overlapping space-time additiveSchwarz preconditioner and for
simplicity divide Ω c ×Pτc into the same number of subdomains as on the fine level, using
the non-overlapping decompositionΘ = ∪Ns

i=1(∪
Nt
j=1Θi j). When the subdomains are extend-

ed to overlapping ones, the overlapping size is not necessarily the same as that on the fine
mesh. See the right figure of Figure 1 for a coarse version of the space-time decomposition.
We denote and define the preconditioner on the coarse level by

M−1
c =

Nt

∑
j=1

Ns

∑
i=1

(Rδc
i j,c)

T M̃−1
i j,cR0

i j,c ,

whereδc is the overlapping size on the coarse mesh. Here the matrixM̃−1
i j,c is an approximate

inverse ofMi j,c which is obtained by a discretization of (11)-(13) on the coarse mesh onΘ ′
i j.

To combine the coarse preconditioner with the fine mesh preconditioner, we need a
restriction operatorIc

h from the fine to coarse mesh and an interpolation operatorIh
c from the

coarse to fine mesh. For our currently used nested structuredmesh and linear finite elements,
Ih
c is easily obtained using a linear interpolation on the coarse mesh andIc

h = (Ih
c )

T . We note
that when the coarse and fine meshes are nested, instead of using Ic

h = (Ih
c )

T , we may take
Ic
h to be a simple restriction, e.g., the identity one which assigns the values on the coarse

mesh using the same values on the fine mesh. In general, the coarse preconditioner and
the fine preconditioner can be combined additively or multiplicatively. According to our
experiments, the following multiplicative version works well:

{

y = Ih
c F−1

c Ic
hx

M−1
two−levelx = y+M−1

one−level(x−Fhy) ,
(14)

whereF−1
c corresponds to the GMRES solver right-preconditioned byM−1

c on the coarse
level, andFh is the discrete KKT system (10) on the fine level.

4 Numerical experiments

In this section we present some numerical experiments to study the parallel performance
and robustness of the newly developed algorithms. When using the one-level precondition-
er, we use a restarted GMRES method (restarts at 50) to solve the preconditioned system;
when using the two-level preconditioner, we use the restarted flexible GMRES (fGMRES)
method [31] (restarts at 30), considering the fact that the overall preconditioner changes
from iteration to iteration because of the iterative coarsesolver. Although fGMRES needs
more memory than GMRES, we have observed its number of iterations can be significantly
reduced. The relative convergence tolerance of both GMRES and fGMRES is set to be 10−6.
The initial guesses for both GMRES and fGMRES method are zero. The size of the over-
lap between two neighboring subdomains, denoted byiovl p, is set to be 1 unless otherwise
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specified. The subsystem on each subdomain is solved by an incomplete LU factorization
ILU(k), with k being its fill-in level, andk = 0 if not specified. The algorithms are imple-
mented based on the Portable, Extensible Toolkit for Scientific computation (PETSc) [6]
and run on a Dawning TC3600 blade server system at the National Supercomputing Center
in Shenzhen, China with a 1.271 PFlops/s peak performance.

In our computations, the settings for the model system (1) are taken as follows. The com-
putational domain, the terminal time and the initial condition are taken to beΩ = (−2,2)3,
T = 1 andC(·,0) = 0 respectively. LetL = S = H = 2, then the homogeneous Dirichlet
and Neumann conditions in (1) are respectively imposed onΓ1 = {x = (x1,x2,x3); |x1| =
L or |x2| = S} andΓ2 = {x = (x1,x2,x3); |x3|= H}. Furthermore, the diffusivity and con-
vective coefficients are set to bea(x) = 1.0 andv(x) = (1.0,1.0,1.0)T .

In order to generate the observation data, we solve the forward convection-diffusion e-
quation (1) on a very fine mesh 265×265×265 with a small time step size 1/96, and the
resulting approximate solutionC(x, t) is used as the noise-free observation data. The mea-
surement data are chosen on a set of nested meshes (the concrete choice is given for each
numerical example later), which may not necessarily be partof the fine mesh we used to
compute the noise-free data and hence linear interpolations are needed to obtain the concen-
tration at each selected measurement point. Then a random noise is added in the following
form at the locations where the measurements are taken:

Cε(xi, t) =C(xi, t)+ ε rC(xi, t), i = 1, · · · ,s .

Here r is a random function with the standard Gaussian distribution, andε is the noise
level. We takeε = 1% in our numerical experiments if it is not specified otherwise. As for
most inverse problems, the regularization parameters (seeβ1 andβ2 in (3)) are important
to effective numerical reconstructions. In this work we shall not discuss about the technical
selection of these regularization parameters but choose them heuristically.

The numerical tests are designed to investigate the reconstruction effects with different
types of three-dimensional sources by the proposed one- or two-level space-time Schwarz
method, as well as the robustness of the algorithm with respect to different noise levels,
different regularizations and amount of measurement data.In addition, parallel efficiency of
the proposed algorithms is also studied.

4.1 Reconstruction of 3D sources

We devote this subsection to test the numerical reconstruction of three representative 3D
sources by the proposed one-level space-time method, withnp = 256 processors. Each of
the three examples are constructed with its own special difficulty.

Example 1: two Gaussian sources. This example tests two moving Gaussian sources
in Ω , namely the sourcef takes the form:

f (x, t) =
2

∑
i=1

exp
(

−
(x− xi)

2+(y− yi)
2+(z− zi)

2

a2

)

,

with a = 2.0 and two moving centers of the sources are given by

{

(x1,y1,z1) = (Lsin(2πt),Scos(2πt),H cos(4πt))

(x2,y2,z2) = (L−2L|cos(4t)|,−S+2S|cos(4t)|,−H +2Ht2) .
(15)
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Fig. 2 The traces of two moving sources.

Fig. 3 Example 1: the source reconstructions at three momentst = 10/39,20/39,30/39 with measurements
collected at the mesh 14×14×14 (bottom), comparable with the exact source distribution(top).

The moving traces of the sources are shown in Figure 2.

In the first experiment, we use a 40×40×40 mesh and time step size 1/39 for the inver-
sion process. The measurements are taken from the mesh 14×14×14, which is uniformly
located inΩ , with the mesh size being 1/13. The regularization parameters are set to be
β1 = 3.6× 10−6 andβ2 = 3.6× 10−3. In Figure 3, the numerically reconstructed sources
are compared with the exact ones at three momentst1 = 10/39, t2 = 20/39, t3 = 30/39. We
can see that the source locations and intensities are quite close to the true values at the three
chosen moments. Then we increase the noise level toε = 5% andε = 10%, still with the
same set of parameters. The reconstruction results are shown in Figure 4. We observe that
the reconstructed profiles deteriorate and become oscillatory as the noise level increases.
This is expected since the regularized solutions provided by the minimization of function-
al J( f ) in (2) become less accurate, so are their numerical approximate solutions obtained
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Fig. 4 Example 1: source reconstructions with noise levelε = 5% (top) andε = 10% (bottom).

Table 1 L2-norm errors att = 10/39,20/39,30/39 with different noise levels and regularization parameters

β L2-norm errors δ = 1% δ = 5% δ = 10%

e1 0.043 0.045 0.053
β1 = 3.6e−6,β2 = 3.6e−3 e2 0.0491 0.057 0.076

e3 0.022 0.044 0.081
e1 0.059 0.061 0.063

β1 = 3.6e−5,β2 = 3.6e−3 e2 0.064 0.067 0.076
e3 0.035 0.045 0.066
e1 0.031 0.058 0.104

β1 = 3.6e−6,β2 = 3.6e−4 e2 0.036 0.094 0.108
e3 0.027 0.053 0.056
e1 0.052 0.061 0.083

β1 = 3.6e−5,β2 = 3.6e−4 e2 0.058 0.081 0.127
e3 0.042 0.084 0.152

from the discretised KKT system (8)-(9). We have tested fourdifferent sets of regularization
parameters for theH1-H1 regularization in (3), and present theL2-norm errors between the
reconstructed sourcef and the exact source functionf ∗ at the aforementioned three mo-
mentst1, t2 andt3. TheL2-norm error at timet j is defined here bye j = ‖( f − f ∗)(t j)‖L2(Ω)

for j = 1,2,3, and is shown in Table 1 for each set of regularization parameters.

Example 2: Four constant sources. Appropriate choices of regularizations are impor-
tant for the inversion process. In the previous example we have used aH1-H1 Tikhonov
regularization in both space and time. In this example, we intend to compare theH1-H1

regularization with the followingH1-L2 regularization

Ñβ ( f ) =
β1

2

∫ T

0

∫

Ω
| ḟ (x, t)|2dxdt +

β2

2

∫ T

0

∫

Ω
f 2dxdt .
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Fig. 5 Example 2: the source reconstructions withH1-H1 regularization (mid) andH1-L2 regularization
(bottom), compared with the exact solution (top).

For the comparisons, we consider the case in which four constant sources move along the
diagonals of the cube to their far corner. The four source distributions are specified by

fi(x, t) = ai for |x− xi|< 0.4, |y− yi|< 0.4, |z− zi|< 0.4

for i = 1,2,3,4, where the constantsai are given bya1 = a4 = 2.0, a2 = a3 = 1.0, and their
traces are described respectively by



















(x1,y1,z1) = (−L+2Lt,−S+2St,H −2Ht)

(x2,y2,z2) = (L−2Lt,S−2St,−H +2Ht)

(x3,y3,z3) = (L−2Lt,−S+2St,−H +2Ht)

(x4,y4,z4) = (−L+2Lt,S−2St,H −2Ht) .

Same mesh and measurements are used as in Example 1, and the regularization param-
eters are set to beβ1 = 10−5,β2 = 10−3 in Nβ ( f ), andβ1 = 10−5,β2 = 10−8 in Ñβ ( f ),
respectively. The reconstruction results are compared with the true solution at three mo-
mentst1 = 10/39, t2 = 20/39, t3 = 30/39, and two slices atx = 0.95 andx = −0.95. It is
observed from Figure 5 that the resolution of the source profile is much better with theH1-
H1 regularizationNβ ( f ) than with theH1-L2 regularizationÑβ ( f ), and the latter presents a
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Table 2 L2-norm errors of the reconstructed source at 3 moments for Example 2 with two regularizations

time error withH1-H1 regularization error withH1-L2 regulzarization

10/39 0.019 0.023
20/39 0.012 0.019
30/39 0.019 0.026

reconstruction process that is much less stable and much more oscillatory. Furthermore, we
demonstrate in Table 2 theL2-norm errors between the reconstructed source functionsfi and
the exact sourcesf ∗i at the three specified momentst1, t2, t3 for both theH1-H1 andH1-L2

regularizations. TheL2-norm error at timet j is defined here bye j = ‖∑4
i=1( fi− f ∗i )(t j)‖L2(Ω)

for j = 1,2,3. We can see that the errors with theH1-H1 regularization are slightly smaller
than that of theH1-L2 regularization.

Example 3: Eight moving sources. This last example presents a very challenging case
that eight Gaussian sources are initially located at the corners of the physical cubic domain,
then move inside the cube following their own traces given below. The Gaussian sources are
described by

f (x, t) =
8

∑
i=1

ai e−(x−xi)
2−(y−yi)

2−(z−zi)
2
,

where the coefficientsai and the source traces are represented by

a1 = a2 =a3 = a4 = 4.0; a5 = a6 = a7 = a8 = 6.0,

and

(x1,y1,z1) = (−L+2L(1− t),−S+2S(1− t),−H +2H(1− t))

(x2,y2,z2) = (−L+2Lt,−S+2St,−H +2Ht)

(x3,y3,z3) =
(

−L+2Lcos(πt)2(1− t),−S+2Ssin(πt)2t,−H +2H cos(πt)2(1− t)
)

(x4,y4,z4) =
(

−L+2Lcos(πt)2(1− t),−S+2Scos(πt)2(1− t),−H +2H sin(πt)2t)
)

(x5,y5,z5) =
(

−L+2Lcos(2πt)2 cos(π/2t) ,−S+2Ssin(π t)2 sin(π/2t) ,

−H +2H sin(πt)2 sin(π/2t)
)

(x6,y6,z6) =
(

−L+2Lsin(πt)2 sin(π/2t) ,−S+2Scos(2π t)2 cos(π/2t) ,

−H +2H sin(πt)2 sin(π/2t)
)

(x7,y7,z7) =
(

−L+2Lsin(πt)2 sin(π/2t) ,−S+2Ssin(π t)2 sin(π/2t) ,

−H +2H cos(2πt)2 cos(π/2t)
)

(x8,y8,z8) =
(

−L+2Lsin(πt)2 sin(π/2t) ,−S+2Scos(2π t)2 cos(π/2t) ,

−H +2H cos(2πt)2 cos(π/2t)
)

.

We shall use the mesh 64×64× 64 and the time step size 1/47, with two regularization
parametersβ1 = 3.6×10−5 andβ2 = 3.6×10−1. We compare the results recovered by two
sets of measurements, collected on two meshes 22× 22× 22 and 10× 10× 10, with the
mesh sizes 1/21 and 1/9 respectively. The solution is shown in Figure 6, at three moments
t = 0.0,10/47,1.0. Clearly better reconstructions are observed for the casewith more mea-
surements collected at the finer mesh 22×22×22, though the coarser mesh 10×10×10
is good enough for locating the sources, only with their recovered source intensities smaller
than the true values.
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Fig. 6 Example 3: the source reconstructions with measurements collected at the mesh 22×22×22 (mid)
and 10×10×10 (bottom), compared with the exact solution (top).

4.2 Performance in parallel efficiency

In the previous subsection, we have shown with 3 representative examples that the proposed
algorithm can successfully recover the intensities and distributions of unsteady sources and
is robust with respect to the noise in the data, the choice of Tikhonov regularizations and the
number of measurements. These numerical simulations are all computed using the proposed
one-level space-time method withnp = 256 processors. In this section, we focus on our
proposed two-level space-time method and study its parallel efficiency with respect to the
number of ILU fill-in levels, namely the numberk in ILU(k), the overlap sizeiovl p on the
fine level, and the mesh size on the coarse level. We also compare the number of iterations
and the total compute time of the one-level and two-level methods with increasing degrees
of freedoms (DOFs) and the number of processors.

Firstly we test how the number of fGMRES iterations and the total compute time of
the two-level method change with different ILU fill-in levels. We use the coarse mesh 21×
21×21 with the time step 1/20, and the fine mesh 41×41×41 with the time step 1/40 for
Example 1, 2, and 3, and the overlap sizeiovl p = 1. We see that the total number of DOFs
on the fine mesh is 16 times of the one on the coarse mesh. Table 3shows the comparison
with np = 256 processors. Column 2-3, 4-5 and 6-7 present the results for Example 1, 2
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Table 3 Effects of ILU fill-in levels on the two-level method for Example 1 (columns 2-3), Example 2
(columns 4-5), and Example 3 (columns 6-7).

Ex1 Ex2 Ex3

ILU(k) Its Time (sec) Its Time (sec) Its Time (sec)

0 47 10.498 55 12.448 81 17.238
1 28 33.633 36 47.766 60 49.622
2 18 230.552 23 232.914 48 257.798
3 15 1121.469 20 1132.841 45 1165.203

Table 4 Effects of the overlap size on the two-level method for Example 1 (columns 2-3), Example 2
(columns 4-5), and Example 3 (columns 6-7).

Ex1 Ex2 Ex3

iovlp Its Time (sec) Its Time (sec) Its Time (sec)

1 47 10.498 55 12.448 81 17.238
2 39 13.071 51 23.663 69 27.952
4 37 27.423 49 45.225 68 47.032

and 3 respectively. It is observed that as the fill-in level increases the number of fGMRES
iterations decreases, but the total compute time increases. When the fill-in level increases to
3, the compute time increases significantly and the number ofiterations only reduces by 3
times. This suggests a suitable fill-in level to beilulevel = 0 or 1.

Next we look at the impact of the overlap size. We still use thesame fine and coarse
meshes for all examples, and ILU(0) for the solver for each subdomain problem on both the
coarse and fine meshes. The overlap size on the coarse mesh is set to be 1. We test different
overlap sizes on the fine level, and the results are given in Table 4. It is observed that when
the overlap size increases from 1 to 2 and then to 4, the numberof fGMRES iterations
decreases slowly and the total compute time increases. So weshall mostly useiovl p = 1 in
our subsequent computations.

It is well known that the size of the coarse mesh is an important factor for a two-level
method. Now we investigate the performance of our two-levelmethod with different coarse
meshes. We know that if the mesh is too coarse, both the numberof outer iterations and the
total compute time increase; on the other hand, if the mesh isnot coarse enough, too much
time is spent on the coarse solver, the number of outer iterations may decrease significantly,
but the compute time may increase. For this experiment, we fixthe fine mesh 43× 43×
43 with the time step 1/42, and the coarse mesh size in each direction is set to 1/2 or
1/3 of the fine mesh. We combine these options and obtain four sets of coarse meshes
and their corresponding time steps. If we denote the ratios of the DOFs on the fine mesh
compared to that on the coarse mesh byn, thenn = 8,16,24 and 27 for these coarse meshes
respectively.np = 256 processors are used. The fill-in level of the subdomain ILU solver
is ilulevel = 0 and the size of overlap on both the coarse and fine level isiovl p = 1. The
computational results presented in Table 5 indicate that basically the number of fGMRES
iterations increases when we decrease the coarse mesh size,however the compute time does
not necessarily follow this trend, it decreases when the coarse mesh is fixed at 22×22×22
and the time step is reduced from 1/42 to 1/21, then for the next two coarse mesh settings,
the compute time grows slowly. As a result, the proper coarsemesh for this example is
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Table 5 Effects of the coarse mesh size on the two-level method for Example 1 (columns 4-5), Example 2
(columns 6-7), and Example 3 (columns 8-9).

Ex1 Ex2 Ex3

Coarse mesh M n Its Time (sec) Its Time (sec) Its Time (sec)

22×22×22 43 8 46 13.754 43 13.236 50 17.207
22×22×22 22 16 49 12.967 50 13.174 69 16.035
22×22×22 15 24 52 13.185 53 13.355 77 19.371
15×15×15 43 27 58 14.677 58 14.706 92 20.515

22× 22× 22 with time step 1/21, i.e. 16 times coarser is the optimal choice for this test
case.

Lastly we compare the performance of the one-level and two-level space-time Schwarz
preconditioners in Tables 6 and 7. On the coarse level, a restarted GMRES is used, with the
one-level space-time Schwarz preconditioner. ILU(0) is used as the local preconditioner on
each subdomain and the coarse overlap size is set to be 1. A tighter convergence tolerance
on the coarse mesh can reduce the number of outer fGMRES iterations, but often increases
the total compute time. In the following numerical examples, we set the tolerance to be 10−1

and the maximum number of GMRES iterations to 4 on the coarse mesh.
In the following experiments for Example 1, 2 and 3, we use three sets of fine meshes,

33×33×33, 49×49×49 and 67×67×67, and the corresponding time steps are 1/32, 1/48
and 1/66 respectively, while the coarse meshes are chosen to be 17×17×17, 17×17×17
and 23× 23× 23, with the corresponding time steps being 1/16, 1/48 and 1/66. So the
DOFs on the fine meshes are 16, 27 and 27 times of the ones on the coarse meshes for
Example 1, 2 and 3 respectively. We usenp = 64,128 and 512 processors for the three sets
of meshes respectively and compare their performance with the one-level method in Table 6.
Savings in terms of the number of iterations and the total compute time are obtained for the
two-level method with all three sets of meshes. As we observethat the number of iterations
of the two-level method is mostly reduced by at least 4 times compared to the one for the
one-level method, but the compute time is usually reduced by2 to 4 times.

Next we fix the space mesh to be 49×49×49 and the time step to be 1/48, resulting in
a very large-scale discrete system with 17,294,403 DOFs. For the two-level method, we set
the coarse mesh to be 17×17×17 with the time step 1/48, which implies that the DOFs on
the fine mesh is about 27 times of the ones on the coarse mesh. Then the problem is solved
with np = 128,256,512, and 1024 processors respectively. The performance results of the
one-level and two-level methods are presented in Table 7. Weobserve that when the number
of sources is small, both the one-level and two-level methods are scalable with up to 512
processors, but the two-level method takes much less compute time. The strong scalability
deteriorates when the number of processors is too large for the size of the problems. As
the number of sources increases, the scalability becomes slightly worse for both one-level
and two-level methods, even though the two-level method is still faster in terms of the total
compute time.

5 Concluding remarks

In this work we have proposed and studied a fully implicit, space-time coupled, mixed finite
element and finite difference discretization method, and a parallel one- and two-level domain
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Table 6 Comparisons between the one-level and two-level space-time preconditioners for Examples 1-3 with
different meshes.

Ex1

np Mesh M level Its Time (sec)

64 33×33×33 33 1 175 53.635
2 57 20.653

128 49×49×49 49 1 346 200.664
2 83 47.812

512 67×67×67 67 1 491 675.985
2 105 212.72

Ex2

np Mesh M level Its Time (sec)

64 33×33×33 33 1 228 72.338
2 77 20.246

128 49×49×49 49 1 365 214.058
2 85 47.078

512 67×67×67 67 1 599 841.652
2 121 216.92

Ex3

np Mesh M level Its Time (sec)

64 33×33×33 33 1 297 82.834
2 76 21.738

128 49×49×49 49 1 405 238.712
2 93 57.244

512 67×67×67 67 1 716 872.766
2 137 263.222

Table 7 Comparisons between the one-level and two-level space-time preconditioners for Examples 1-3 with
different number of processors.

Ex1 Ex2 Ex3

np level Its Time (sec) Its Time (sec) Its Time (sec)

128 1 346 200.664 365 214.815 405 238.712
2 83 47.812 85 47.072 93 57.244

256 1 343 127.035 363 152.334 408 145.213
2 82 24.744 87 26.424 90 36.307

512 1 343 69.482 363 95.707 400 101.343
2 82 16.461 101 19.453 100 18.611

1024 1 351 41.821 393 58.785 433 59.534
2 85 10.132 100 11.352 104 15.815

decomposition solver for the three-dimensional unsteady inverse convection-diffusion prob-
lem. With a suitable number of measurements, this all-at-once approach provides acceptable
reconstruction of the physical sources in space and time simultaneously. The classical over-
lapping Schwarz preconditioner is extended successfully to the coupled space-time problem
with a homogenous Dirichlet boundary condition applied on both the spatial and temporal
part of the space-time subdomain boundaries. The one-levelmethod is easier to implement,
but the two-level hybrid space-time Schwarz method performs much better in terms of the
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number of iterations and the total compute time. Good scalability results were obtained for
problems with more than 17 millions degrees of freedom on a supercomputer with more than
1,000 processors. The approach is promising to more generalunsteady inverse problems in
large-scale applications.

Acknowledgements

The authors would like to thank the two anonymous referees for their very helpful and
insightful comments and suggestions, which have helped us improve the quality of the paper
essentially.

References

1. Atmadja, J., Bagtzoglou, A. C.: State of the art report on mathematical methods for groundwater pollution
source identification. Environ. Forensics2, 205-214 (2001)

2. Akcelik, V., Biros, G., Ghattas, O., Long, K. R., Waanders, B.: A variational finite element method for
source inversion for convective-diffusive transport. Finite Elem. Anal. Des.39, 683-705 (2003)

3. Akcelik, V., Biros, G., Draganescu, A., Ghattas, O., Hill, J., Waanders, B.: Dynamic data-driven inversion
for terascale simulations: Real-time identification of airborne contaminants. Proceedings of Supercomput-
ing, Seattle, WA (2005)

4. Aitbayev, R., Cai, X.-C., Paraschivoiu, M.: Parallel two-level methods for three-dimensional transonic
compressible flow simulations on unstructured meshes. Proceedings of Parallel CFD’99 (1999)

5. Battermann, A.: Preconditioners for Karush-Kuhn-Tucker Systems Arising in Optimal Control. Master
Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (1996)

6. Balay, S., Buschelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C.,
Smith, B. F., Zhang, H.: PETSc Users Manual. Technical Report, Argonne National Laboratory (2014)

7. Baflico, L., Bernard, S., Maday, Y., Turinici, G., Zerah, G.: Parallel-in-time molecular-dynamics simula-
tions. Phys. Rev. E.66, 2-5 (2002)

8. Biros, G., Ghattas, O.: Parallel preconditioners for KKTsystems arising in optimal control of viscous
incompressible flows. Proceedings of Parallel CFD’99, Williamsburg, Virginia, USA (1999)

9. Chen, R. L., Cai, X.-C.: Parallel one-shot Lagrange-Newton-Krylov-Schwarz algorithms for shape opti-
mization of steady incompressible flows. SIAM J. Sci. Comput. 34, 584-605 (2012)

10. Cai, X.-C., Liu, S., Zou, J.: Parallel overlapping domain decomposition methods for coupled inverse
elliptic problems. Comm. App. Math. Com. Sc.4, 1-26 (2009)

11. Cai, X.-C., Sarkis, M.: A restricted additive Schwarz preconditioner for general sparse linear systems.
SIAM J. Sci. Comput.21, 792-797 (1999).

12. Deng, X. M., Cai, X.-C., Zou, J.: A parallel space-time domain decomposition method for unsteady
source inversion problems. Inverse probl. imag., accepted, (2015)

13. Deng, X. M., Zhao, Y. B., Zou, J.: On linear finite elementsfor simultaneously recovering source location
and intensity. Int. J. Numer. Anal. Mod.10, 588-602 (2013)

14. Engl, H. W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic Publish-
ers, Netherland (1998)

15. Farhat, C., Chandesris, M.: Time-decomposed parallel time-integrators: theory and feasibility studies for
fluid, structure, and fluid-structure applications. Int. J.Numer. Meth. Eng.58, 1397-1434 (2003)

16. Gander, M. J., Hairer, E.: Nonlinear convergence analysis for the parareal algorithm. Proceedings of the
17th International Conference on Domain Decomposition Methods60, 45-56 (2008)

17. Gander, M. J., Petcu, M.: Analysis of a Krylov subspace enhanced parareal algorithm for linear problems.
Paris- Sud Working Group on Modeling and Scientific Computing 2007- 2008 (E. Cances et al., eds.),
ESAIM Proc. EDP Sci., LesUlis25, 114-129 (2008)

18. Gander, M. J., Vandewalle, S.: Analysis of the parareal time-parallel time-integration method. SIAM J.
Sci. Comput.29, 556-578 (2007)

19. Gorelick, S., Evans, B., Remson, I.: Identifying sources of groundwater pollution: an optimization ap-
proach. Water Resour. Res.19, 779-790 (1983)

20. Hamdi, A.: The recovery of a time-dependent point sourcein a linear transport equation: application to
surface water pollution. Inverse Probl.,24, 1-18 (2009)



20 Xiaomao Deng et al.

21. Karalashvili, M., Groβ , S., Marquardt, W., Mhamdi, A., Reusken, A.: Identificationof transport coeffi-
cient models in convection-diffusion equations. SIAM J. Sci. Comput.33, 303-327 (2011)

22. Kuhn, H. W., Tucker, A. W.: Nonlinear programming. Proceedings of 2nd Berkeley Symposium, Berke-
ley: University of California Press, 481-492 (1951)

23. Keung, Y. L., Zou, J.: Numerical identifications of parameters in parabolic systems. Inverse Probl.14,
83-100 (1998)

24. Lions, J.-L., Maday, Y., Turinici, G.: A parareal in timediscretization of PDE’s. ComptesRendus de
l’Academie des Sciences Series I Mathematics332, 661-668 (2001)

25. Liu, X., Zhai, Z.: Inverse modeling methods for indoor airborne pollutant tracking literature review and
fundamentals. Indoor Air17, 419-438 (2007)

26. Zhang, J., Delichatsios, M. A.: Determination of the convective heat transfer coefficient in three-
dimensional inverse heat conduction problems. Fire SafetyJ.44, 681-690 (2009)

27. Maday, Y., Turinici G.: The parareal in time iterative solver: a further direction to parallel implementa-
tion. Domain Decomposition Methods in Science and Engineering, Springer LNCSE40, 441-448 (2005)

28. Nilssen, T. K., Karlsen, K. H., Mannseth, T., Tai, X.-C.:Identification of diffusion parameters in a nonlin-
ear convection-diffusion equation using the augmented Lagrangian method. Computat. Geosci.13, 317-329
(2009)

29. Prudencio, E., Byrd, R., Cai, X.-C.: Parallel full spaceSQP Lagrange-Newton-Krylov-Schwarz algo-
rithms for PDE-constrained optimization problems. SIAM J.Sci. Comput.27, 1305-1328 (2006)

30. Revelli, R., Ridolfi, L.: Nonlinear convection-dispersion models with a localized pollutant source II–a
class of inverse problems. Math. Comput. Model.42, 601-612 (2005)

31. Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput.14, 461-469
(1993)

32. Smith, B., Bjørstad, P., Gropp, W.: Domain Decomposition: Parallel Multilevel Methods for Elliptic
Partial Differential Equations. Cambridge University Press (2004)

33. Skaggs, T., Kabala, Z.: Recovering the release history of a groundwater contaminant. Water Resour. Res.
30, 71-80 (1994)

34. Samarskii, A. A., Vabishchevich, P. N.: Numerical Methods for Solving Inverse Problems of Mathemat-
ical Physics. Walter de Gruyter, Berlin (2007).

35. Woodbury, K. A.: Inverse Engineering Handbook. CRC Press (2003)

36. Wong, J., Yuan, P.: A FE-based algorithm for the inverse natural convection problem. Int. J. Numer.
Meth. Fl.68, 48-82 (2012)

37. Yang, L., Deng, Z.-C., Yu, J.-N., Luo, G.-W.: Optimization method for the inverse problem of recon-
structing the source term in a parabolic equation. Math. Comput. Simulat.80, 314-326 (2009)

38. Yang, H., Prudencio, E., Cai, X.-C.: Fully implicit Lagrange-Newton-Krylov-Schwarz algorithms for
boundary control of unsteady incompressible flows. Int. J. Numer. Meth. Eng.91, 644-665 (2012)

39. Yang, X.-H., She, D.-X., Li, J.-Q.: Numerical approach to the inverse convection-diffusion problem. 2007
International Symposium on Nonlinear Dynamics (2007 ISND), Journal of Physics: Conference Series96,
012156 (2008)

A The discrete structure of the KKT system

The KKT system (8)-(9) is formulated as follows:



















(∂τCn
h ,vh)+(a∇C̄n

h ,∇vh)+(∇ · (vC̄n
h ),vh) = ( f̄ n

h ,vh)+ 〈q̄n,vh〉Γ2 , ∀vh ∈ V̊ h

−(∂τGn
h,wh)+(a∇Ḡn

h,∇wh)+(∇ · (vwh),Ḡn
h)

=−(A(x)(C̄n
h(x,t)−C̄ε,n(x,t)),wh), ∀wh ∈ V̊ h

−(Gn
h,g

τ
h)+β1(∂τ f n

h ,∂τ gτ
h)+β2(∇ f n

h ,∇gτ
h) = 0, ∀gτ

h ∈W τ
h .

(16)

To better understand the discrete structure of (16), we denote the identity and zero matrices asI and0 re-
spectively, and the basis functions of the finite element spacesV h andW τ

h by φ = (φi)
T , i = 1, · · · , N andgn

j ,
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j = 1, · · · , N, n = 0, · · · , M, respectively, let

A = (ai j)i, j=1,··· ,N , ai j = (a∇φi,∇φ j)

B = (bi j)i, j=1,··· ,N , bi j = (φi,φ j)

E = (ei j)i, j=1,··· ,N , ei j = (∇ · (vφi),φ j)

Lmn = (lmn
i j )i, j=1,··· ,N,0≤m,n≤M, lmn

i j =

(

∂gm
i

∂ t
,

∂gn
j

∂ t

)

Kmn = (kmn
i j )i, j=1,··· ,N,0≤m,n≤M, kmn

i j = (∇gm
i ,∇gn

j )

Dmn = (dmn
i j )i, j=1,··· ,N,0≤m,n≤M, dmn

i j = (gm
i ,g

n
j ) ,

and based on these element matrices we define

A1 = B+
τ
2
(A+E), A2 =−B+

τ
2
(A+E)

B1 = B+
τ
2
(A+ET ), B2 =−B+

τ
2
(A+ET )

B3 = zeros except 1 at the measurement locations

W mn = β1Lmn +β2Kmn ,

Then the system (16) takes the following form

(

BC BG B f
)



















































































C0

C1

...
CM−2

CM−1

CM

G0

G1

G2

...
GM−2

GM−1

GM

f 0

f 1

f 2

...
f M−2

f M−1

f M



















































































=





























































C0

〈q̄1,φ〉Γ2

...
〈q̄M−1,φ〉Γ2
〈q̄M ,φ〉Γ2

τ/2B3(Cε,0+Cε,1)
...

τ/2B3(Cε,M−2+Cε,M−1)
τ/2B3(Cε,M−1+Cε,M)

GM

0
0
...
0
0





























































,



22 Xiaomao Deng et al.

where the block matricesBC,BG andB f are given by

BC :=
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