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Abstract As the number of processor cores on supercomputers becarges &nd larger,
algorithms with high degree of parallelism attract moretion. In this work, we propose a
two-level space-time domain decomposition method foriaghan inverse source problem
associated with the time-dependent convection-diffugiquation in three dimensions. We
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space-time parallel domain decomposition preconditiéoethe Karush-Kuhn-Tucker sys-
tem induced from reformulating the inverse problem as apuidéast-squares optimization
problem in the entire space-time domain. The new full sgane-approach eliminates the
sequential steps in the optimization outer loop and therifiosvard and backward time
marching processes, thus achieves high degree of pasaileNumerical experiments vali-
date that this approach is effective and robust for recogeuinsteady moving sources. We
will present strong scalability results obtained on a sopeputer with more than 1,000
processors.
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1 Introduction

In this paper, we consider an inverse problem associatédmattime-dependent convection-
diffusion equation defined if e R3:

(2_?:D-(a(x)DC)—D-(V(X)C)+f(x,t), 0O<t<T,xeQ

C(x,t) =p(x,t), xel 1
g )
ax) o =d(x1), xelz

C(x,0) =Co(x), x€Q,

where f (x,t) is the source profile to be recoveradx) andv(x) are the given diffusivi-
ty and convective coefficients, arfd and I; are two disjoint parts of the boundagf2.
Dirichlet and Neumann boundary conditions are imposedesly onli; and/lz. When
the observation da@(x,t) is available at certain locations, several classes of ga/prob-
lems associated with the convection-diffusion equaligrhéive been investigated, such as
the recovery of the diffusivity coefficient with applicati® in, for examples, laminar wavy
film flows [21]], and flows in porous media [28], the recoveryld source with applications
in, for examples, convective heat transfer problems [2&]por airborne pollutant tracking
[25], and ground water contamination modeling![301. 33, 83,

The main focus of this work is to study the following inverselgem: given the mea-
surement dat&f(x,t) of C(x,t) at some locations insid@ for the period O<t < T (€
denotes the noise level), we try to recover the space-tianging source locations and in-
tensities, i.e., the source functidiix,t) in equation[(lL).

The inverse source problem has been studied in differemscdsr example, the re-
covering of the location and time-dependent intensity afpsources in[[1, 13,20, 36], the
piecewise-constant sources [in[[2,37] and Gaussian caatettsources iri_[2]3]. Among
these different approaches, the Tikhonov optimizationhoetis most popular |1, 13,19,
36], which reformulates the original inverse source probieto an output least-squares op-
timization problem with PDE-constraints, by introducingnse appropriate regularizations
to ensure the stability of the resulting optimization peshlwith respect to the change of
noise in the observation daia [14] 35].

We define the following objective functional with Tikhonoggularization:

T ,
I(F) = %/0 /QA(X)(C(XJ)—Cs(x,t))zdxdt—l—Nﬁ(f), @

whereC = C(f) is the solution to the systefl (1) corresponding to a givenceoiy A(x)
is the data range indicator function givenAgx) = 7 ; d(x—Xx;), with X1, X2, - - -, Xs being
a set of specified locations where the concentraflaa measured, an@®(x,t) represents
the measurement @f(x,t) at a specified locatior and timet.

The termNg () in (@) is called the regularization with respect to the seugincef (x,t)
depends on both space and time, we propose the followingsjpaeH*-H? regularization:

T T
NB(f)z%/O /Q\f|2dxdt+%/0 /Q\Df\zdxdt. @3)

Here B; and 3, are two regularization parameters. Other regularizatiensh asH1-L2,
may be used, but we will show later by numerical experimemisH1-H* regularization
may offer better numerical reconstructions.



Space-time Methods for Inverse Problems 3

Various approaches are available for the minimization eftbnlinear functional(f) in
([2) associated with the systelm (1). One of the approachbs Isagrange multiplier method,
which converts the constrained minimization of functiod@f) into a unconstrained min-
imization of the corresponding Lagrange functionald¢f ). This results in the solution
of a so-called Karush-Kuhn-Tucker (KKT) system[[22], whiakiolve three coupled time-
dependent PDEs here, namely the governing equéfion ()dadncentratiof, its adjoint
equation for the Lagrange multiplier and the equation fer ittentifying source function
f; see Sectiofi]2 for more detail. For solving such a KKT systie traditional reduced
space SQP method is a popular and natural choice[3.113,B6]SQP method solves the
three coupled PDEs in the KKT system alternatively by iferatOne may see the essen-
tial sequential feature of the SQP: the outer iteration gaieatial among the solutions of
three PDEs, the governing equatih (1) is forward in time, #ue adjoint equation for the
Lagrange multiplier is backward in time. The parallelipatiof the SQP may happen for
the solution of each of the three time-dependent PDEs, wtachbe solved by, e.g., the
traditional fast algorithms such as domain decompositiath rmultigrid methods [3]. SQP
requires low memory, but it usually takes a large numberesétions to reach convergence.
Because of its essential sequential feature, the reducest QP method is less ideal for
parallel computers with a large number of processor comspared with the full space
SQP methods. Full space methods were studied for steadystailems in[[9, 10], but for
unsteady problems it needs to eliminate the sequentias 8t¢pe outer iteration of the SQP
and solve the full space-time system as a coupled system.

Because of the much larger size of the system, the full spppsoach may not be
suitable for parallel computer systems with a small numligrocessor cores, but it has
fewer sequential steps and thus offers a much higher degpeealelism required by large
scale supercomputers |12].

It is a very active research direction to construct efficigatallelization methods for
highly nonlinear optimizations constrained with PDEs. Arsteady PDE-constrained opti-
mization problem was solved ih [B8] for the boundary contblinsteady incompressible
flows by solving a subproblem at each time step. It has thessgiglitime-marching process
and each subproblem is steady-state.

The parareal algorithms were studied if [7]15, 24], whicblve a coarse-grid solver (in
the time direction) for prediction and a fine-grid solverttie time direction) for correction.
Parallel implicit time integrator method (PITA), space multigrid, multiple shooting
methods can be categorized as improved versions of theggdragorithm [[1%,18]. The
parareal algorithm combined with domain decompositionho@t27] or multigrid method
can be powerful. However, most existing parareal relatadiss have focused mainly on
the stability and convergende [16].

In this work, we will study an effective reconstruction oéttime history and intensity
profile of a source function simultaneously. For this aim,pr@pose a fully implicit, mixed
finite element and finite difference discretization scheandte globally coupled KKT sys-
tem, and a corresponding space-time overlapping Schwacopditioner for solving the
large-scale discretised KKT system. The method removekeequential inner time steps
and achieves full parallelization in both space and time s\l not compare the proposed
method with traditional reduced space SQP methods, simckkély that, for supercomput-
ers with a small number of processor cores, the traditiopptaach is still a better choice.
The focus of the current study is to formulate the techniedhits of our new space-time
parallel algorithm, which may play a promising role for frélexascale computing systems.
Furthermore, to resolve the dilemma that the number of tiitesations of one-level meth-
ods increases with the number of processors [32], we wilekbgva two-level space-time
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hybrid Schwarz preconditioner, which offers better parfance in terms of the number of
iterations and the total compute time.

The rest of the paper is arranged as follows. In Setfion 2,egeribe the mathematical
formulation of the inverse problem and the derivation of KH€T system. We propose, in
Section[8, the main algorithm of the paper, and discuss akteghnical issues involved
in the fully implicit discretization scheme and the one- &wd-level overlapping Schwarz
methods for solving the KKT system. Numerical experimeatste recovery of 3D sources
are given in Sectiof]4, and some concluding remarks aregediin Sectiofls.

2 Strong formulation of KKT system

We now derive the KKT system of the minimisation &ff) in (@) combined with the e-
quations[(l). To do so, we formally write the first equatior{ih as an operator equation
L(C, f)=0. By introducing a Lagrange multiplier or adjoint variaiBec H(0, T;H(Q)),
the Lagrange functiondl [2, 23]

7(C.f,6)= // )(C—C¥)2dxdt + Ng(f) + (G,L(C, 1)) )

transforms the PDE-constrained minimizationJ¢f ) in (2) into an unconstrained saddle-
point optimization problem, wher@, L(C, f)) denotes the inner product 6fandL(C, f).
Two approaches are available for the resulting saddletppiimization of 7, the optimize-
then-discretize approach and the discretize-then-opéirapproach. The first approach de-
rives a continuous optimality system and then applies itediacretization scheme, such as
a finite element method to obtain a discrete system readyofopatation. The second ap-
proach discretizes the Lagrange functiondl and then the objective functional becomes a
finite dimensional quadratic polynomial. The solution aithon is then based on the polyno-
mial system. The two approaches perform the approximatwohdiscretization at different
stages, both have been applied successiully [29]. We sbalthe optimize-then-discretize
approach in this work.

The first-order optimality conditions of7 in (4), i.e., the KKT system, is obtained by
taking its variations with respect 8, C and f as

76(C,f,Gv=0
7c(C,f,G)w=0 (5)
_74(C.f,G)g=0

for all v,w € L?(0, T;Hf (Q)) with zero traces oify andg € HY(0, T;H!(Q)). Then by
using integration by parts, we may derive the following sgrdorm of the KKT system:

%—D~(aDC)+D-(v(x)C)— f=0
J;—? —0-(a0G) — v(x) - 0G4+ A(X)C = A(x)C? (6)

0% f
G+B]_W—F[32Af =0

To derive the boundary, initial and terminal conditionsdach variable of the equations, we
make use of the property thai (5) holds for arbitrary dimw functionsy, w andg.
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For the state equation, i.e., the first one[in (6), it mairgtaie same conditions as [d (1).
For the adjoint equation, i.e., the second onén (5] br (&) can deduce by integration by
parts for any test functiow € L?(0, T; H,ll(Q)) with w(-,0) = 0 anda(x)dw/dn =0 on'>:

7e(C,f.G)w //A )(C— Cs)wdxdtJr/GxT W(x, T)dx

/ / (_+ H: )DG)+V(X)~DG)wdxdt
//rl< >Gdl'dt
* /o /r2 <a(><)% +V(X) n) wdr dt .

By the arbitrariness of, the boundary and terminal conditions férare derived:

G(x,t)=0, xefl,te[0,T]
a(x)(;—f +v(x):n=0, xe€l,,tel0,T]
G(x,T)=0, xeQ.

Similarly for the third equation of{5) of6), we can deduce

T, T
/f(c,f,e)g:f/ / ngxdt+/ /(fg+Df-Dg)dxdt
0 JQ 0 JQ

T/ . T oL
-/ /ngxdt+<fg)|t:o:f/ | fo
0 JQ
R
/ / gdl'dtf/ /Afgdxdt
aQ on

/ / (G+ f+Af)gdxdt + () 0T+/ / gdl'dt

Using the arbitrariness @ we derive the boundary, initial and terminal conditions fo

of of
5t =0 fort=0,T,xeQ; %_0 for xedQ,te[0,T]. (7)

3 A fully implicit and fully coupled method

In this section, we first introduce a mixed finite element aniddidifference method for the

discretization of the continuous KKT system derived in thevipus section, then we briefly
mention the algebraic structure of the discrete systemwd@aons. In the second part of the
section, we introduce the one- and two-level space-timevachpreconditioners that are
the most important components for the success of the oagalfithm.
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3.1 Fully implicit space-time discretization

In this subsection, we introduce a fully implicit finite elent/finite difference scheme to
discretize [(B). To discretize the state and adjoint eqoatie., the first two equations in
(©), we use a second-order Crank-Nicolson finite differesateeme in time and a piecewise
linear continuous finite element method in space. Considegalar triangulation?h of
domainQ, and a time partitiorP” of the interval[0,T]: 0=t <t* < ... <tM =T, with
t" = nr,7 = T/M. LetV" be the piecewise linear continuous finite element spacﬁBn
andVh be the subspace d" with zero trace or;. We introduce the difference quotient
and the averaging of a functiap(x,t) as

aynx) = S g =2

n _ -1 1 tn
Y00 — i) [ wixa
t
with ¢"(x) := @(x,t"). Let 15, be the finite element interpolation associated with the spac

VP, then we obtain the discretizations for the state and adiguiations by finding the
sequence of approximatio@,Gp € V' for n=0,1, ---, M such thatC® = Co, GM =0,
andCp(x) = m,p(x,t"),Gp(x) = 0 for x € I, and satisfying
(rCf vh) + (QICH, Ovi) + (0 - (VCF), vn) - (Vi) + (@ Vi) 1y, ¥V € V"
—(erﬂ,wh)_Jr (aDGﬂLth) (O- (vwp), Gp) (8)
—(AX)(CR(x,t) =C*"(x,t)),Wh), Ywh € V"

Unlike the approximations of the forward and adjoint equaiin [8), we shall approx-
imate the source functioh differently. We know that the source function satisfies diptat
equation (see the third equation [d (6)) in the space-timrmaaion Q x (0,T). So we shall
apply 7" x P to generate a partition of the space-time dongir (0, T), and then apply
the piecewise linear finite element method in both spacedtdimensions) and time (one
dimension), denoted byy!, to approximate the source functidn Then the equation for
f e W can be discretized as follows: Find the sequencg'dbr n=0,1,---, M such that

— (G, 0h) + Bu(0: T, 0:0f) + B2(O 1, Ogf) =0, Vgh e W . C)

The coupled systerh](8)1(9) is the so-called fully discediKKT system. In the Appendix,
we provide some details of the discrete structure of this K3tem.

3.2 One- and two-level space-time Schwarz preconditioner

The unknowns of the KKT systerhl(8)}(9) are often ordered glayariable by physical
variable, namely in the form

L] = (Covclv"’chvGolev”' 7GM7f07f17"'7fM)T"

Such ordering is used extensively in reduced space SQP defhé]. In our all-at-once
method, the unknown8,G and f are ordered mesh point by mesh point and time step by
time step, and all unknowns associated with a point staytheges a block. At each mesh
pointxj, j =1,---, N, and time step", n=0, ---, M, the unknowns are arranged in the

order ofCn GT, fJ” Such ordering avoids zero values on the main diagonal aoftiteix and
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has better cache performance for point-block LU (or ILU)tdaization based subdomain
solvers. More precisely, we define the solution vector as

U= (C:?,GO, f](.Jv 7ClglvGR|7 fﬁvc]].-?G%v f]:.L7 70%1761: fliI- :C]'\_Avele f]'_vly
~.,CM GNL T
then the linear systerl(}(9) is rewritten as
FU =D, (10)

whereF, is a sparse block matrix of siZé + 1)(3N) by (M + 1)(3N) with the following
block structure:

S0 So1 0 0
So0S:1  Se 0

Fh=| o . 0 )
0 - Svu—1M—2 Su-1M-1 Su-1m
o .- 0 SumM-1 Sum

where the block matrice§; for 0 <i, j < M are of size 8l x 3N and most of its elements
are zero matrices except the ones in the tridiagonal st{ifes; },{S, },{S,i+1}- Itis noted

that if we denote the submatrices forG and f of sizeN x N respectively by§", S5, Sfj in
each blockSj, the sparsity of the matrices are inconsistent, nanﬁjlys the densest and

3‘? is the sparest. This is due to the discretization scheme we lsed. The system (10) is
large-scale and ill-conditioned, therefore is difficulstulve because the space-time coupled
system is denser than the decoupled system, especiallsei@ dimensions.

We shall design the preconditioner by extending the claésjgatial Schwarz precon-
ditioner to include both spatial and temporal variablescHSan approach eliminates all
sequential steps and the unknowns at all time steps aredssimailtaneously. We use a
right-preconditioned Krylov subspace method to sdlvé ,(10)

MU’ =D,

whereM~1 is a space-time Schwarz preconditioner &he- M~1U’.

Denoting the space-time domain By= Q x (0, T), an overlapping decomposition of
O is defined as follows: we divid€ into Ns subdomains, Qy, - - -, Qn,, then partition
the time interval[0, T] into N; subintervals using the partition: @ T; < To < -+ < T,
By coupling all the space subdomains and time subinteraadecomposition o is © =
Ui'\‘zsl(u'j\“zle.,—), where@;j = Q; x (T;_1,Tj). For convenience, the number of subdomains,
i.e.NsN;, is equal to the number of processors. These subdon@ijreme then extended to
Oi’j to overlap each other. The boundary of each subdomain is@étby an integral num-
ber of mesh cells in each dimension, and we trim the cellsaeitsf ©. The corresponding
overlapping decomposition @ is © = ui'\'zsl(u?"zlei’j). See the left figure of Figufd 1 for
the overlapping extension. The matrix on each subdorﬁﬁiﬁ: Qf x (Tj’_l,T]-’), i=12,
-+, Ng, j=1,2,---, N is the discretized version of the following system of PDEs

2C — 0-(a)0C) — 0- (V(C) + (k1) (1) € &
(39_(5 =—-0-(a(x)0G) —v(x)-0OG (11)

+AX)(C(x,1) =CE(x,1)), (X.1) € O]
2
Broa +BAT+G=0, (x1) Q)
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Time Timef

subdomain tc/mﬂnal time + subdomain terminal time
T T /
finemesh | @ 0./ 6 coarsemesh ;| @ (C) / ©
in time 13 L _23_, A 33 intime 1 B 2_3_,’____ 33
L 0 i3 overlap in time r n coarse overlap
1 T 1 T in time
I } 1 | 1
I H b .
O, i 2 :®32 ®12| Oz |®32
o i i L i i
I R A S A L. IR !
o o - I overlap in space | o o Vo= ) [~ coarse overlap
N 11 pal (C) 1 11 PYR 31 in space
|© : )
L I IR | L L L 1 TR | L L
= — .
fine mesh subdomain initial time Space coarse mesh  subdomain initial time Space

in space in space

Fig. 1 Left: a sample overlapping decomposition in space-timealnr® on a fine mesh. Right: the same
decomposition on the coarse mesh.

with the following boundary conditions
Cxt)=0, G(x,t)=0, f(x,t)=0,xecdQ/, te[T_4,T]] (12)

along with the initial and terminal time boundary conditon

{C<x, 1)=0 GXT =0 f(xT =0 xc0 (13)

C(X,TJ/) = 07 G(X,T]/) == 07 f(X,TJ/) = 0, X e QI/ .

One may notice fron{{13) that the homogenous Dirichlet bamndonditions are applied
in each time interva@Tj’_l,Tj’), as the solution of the subdomain problem is not really phys-
ical. This is one of the major differences between the spiace-Schwarz method and the
parareal algorithn [24]. The time boundary condition fockeaubproblem of the parareal
algorithm is obtained by an interpolation of the coarse tgay and if the coarse mesh is
fine enough, the solution of the subdomain problem is phisiderefore, the parareal al-
gorithms can be used as a solver, but our space-time Schvedhodican only be used as a
preconditioner. Surprisingly, as we shall see from our micaeexperiments in Sectidd 4,
the Schwarz preconditioner is an excellent one even thouglime boundary conditions
violate the physics.

We solve the subdomain problems using the same method akefagiabal problem
(@0), no time-marching is performed in our new algorithmg afi unknowns affiliated with
the subdomain are solved simultaneously. Mgtbe the matrix generated in the same way
as the global matrig, in (I0) but for the subproblend (fL1)-(13), aMle be an exact or
approximate inverse df;;. By denoting the restriction matrix fro@ to the subdomaili)i’]-

by Ri‘sj, with overlapping siz&d, we propose the following one-level space-time restricted
Schwarz preconditioner for the global matFx

N N )
More_evel = Zl'Z(FQﬁ)TMi]lRQj.
j=1i=

As it is well known, any one-level domain decomposition noelhare not scalable with
the increasing number of subdomains or processofs [32gddone should have multilevel
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methods in order to observe possible scalable effedts [4y82 now propose a two-level
space-time additive Schwarz preconditioner. To do so, wiitipa Q with a fine mesQ"
and a coarse medB°. For the time interval, we have a fine partitiBh and a coarse parti-
tion P™ with T < 1.. We will adopt a nested mesh, i.e., the nodal points of theseomesh
Q° x P’ are a subset of the nodal points of the fine m@$h« P. In practice, the size of the
coarse mesh should be adjusted properly to obtain the bdetmpance. On the fine level,
we simply apply the previously defined one-level space-tadditive Schwarz precondi-
tioner; and to efficiently solve the coarse problem, a pelralbarse preconditioner is also
necessary. Here we use the overlapping space-time adfittwearz preconditioner and for
simplicity divide Q€ x P into the same number of subdomains as on the fine level, using
the non-overlapping decompositiéh= Ui'\‘zsl(u?"zle.,—). When the subdomains are extend-
ed to overlapping ones, the overlapping size is not nedgstfae same as that on the fine
mesh. See the right figure of Figlire 1 for a coarse versioneo$place-time decomposition.
We denote and define the preconditioner on the coarse level by

e & s Tyl
M= = Z‘Z(lec) Mij,cRinA,c:
j=1i=

whered is the overlapping size on the coarse mesh. Here the mam;qs an approximate
inverse ofV;j c which is obtained by a discretization 6f {11)-(13) on therseanesh o®;.

To combine the coarse preconditioner with the fine mesh puditioner, we need a
restriction operatolf from the fine to coarse mesh and an interpolation opetftvom the
coarse to fine mesh. For our currently used nested struatueetl and linear finite elements,
18 is easily obtained using a linear interpolation on the aaresh and = (17)T. We note
that when the coarse and fine meshes are nested, insteath@f s (IQ)T, we may take
I¢ to be a simple restriction, e.g., the identity one whichgssithe values on the coarse
mesh using the same values on the fine mesh. In general, theeqmaconditioner and
the fine preconditioner can be combined additively or mliditively. According to our
experiments, the following multiplicative version workg v

y=10F1IEx
{M_]_C c h_ M—l (14)
two—level X = Y T More_1evel (Xf th) ’

whereF; ! corresponds to the GMRES solver right-preconditionedvigy* on the coarse
level, andr, is the discrete KKT syster (1LO) on the fine level.

4 Numerical experiments

In this section we present some numerical experiments ttyshe parallel performance
and robustness of the newly developed algorithms. Whermgukaone-level precondition-
er, we use a restarted GMRES method (restarts at 50) to dwveréconditioned system;
when using the two-level preconditioner, we use the resddiexible GMRES (fGMRES)
method [31] (restarts at 30), considering the fact that therail preconditioner changes
from iteration to iteration because of the iterative coaslwer. Although fGMRES needs
more memory than GMRES, we have observed its number ofitt@satan be significantly
reduced. The relative convergence tolerance of both GMRESGMRES is set to be 16.
The initial guesses for both GMRES and fGMRES method are. Zére size of the over-
lap between two neighboring subdomains, denotetbtyp, is set to be 1 unless otherwise
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specified. The subsystem on each subdomain is solved by amjtete LU factorization
ILU(K), with k being its fill-in level, andk = O if not specified. The algorithms are imple-
mented based on the Portable, Extensible Toolkit for Sieromputation (PETSc) [6]
and run on a Dawning TC3600 blade server system at the NaSomercomputing Center
in Shenzhen, China with a 1.271 PFlops/s peak performance.

In our computations, the settings for the model sysfém @jaken as follows. The com-
putational domain, the terminal time and the initial coiuditare taken to b&@ = (-2, 2)3,

T =1 andC(-,0) = O respectively. Let = S=H = 2, then the homogeneous Dirichlet
and Neumann conditions ifll(1) are respectively imposedion {x = (X1,%2,X3); |X1| =

L or |xo| =S} andl = {x = (X1,X2,X3); |xs| = H}. Furthermore, the diffusivity and con-
vective coefficients are set to béx) = 1.0 andv(x) = (1.0,1.0,1.0)T.

In order to generate the observation data, we solve the fdre@nvection-diffusion e-
guation [1) on a very fine mesh 268265x 265 with a small time step size/26, and the
resulting approximate solutidBi(x,t) is used as the noise-free observation data. The mea-
surement data are chosen on a set of nested meshes (theteatiee is given for each
numerical example later), which may not necessarily be gfaithe fine mesh we used to
compute the noise-free data and hence linear interpotatimneeded to obtain the concen-
tration at each selected measurement point. Then a randis@ isadded in the following
form at the locations where the measurements are taken:

CE(xi,t) =C(xi,t) +erC(x,t), i=1,---,s.

Herer is a random function with the standard Gaussian distributamd ¢ is the noise
level. We takese = 1% in our numerical experiments if it is not specified otheeviAs for
most inverse problems, the regularization parameterssead 3, in (@) are important
to effective numerical reconstructions. In this work welbhat discuss about the technical
selection of these regularization parameters but cho@se teuristically.

The numerical tests are designed to investigate the recatish effects with different
types of three-dimensional sources by the proposed onevamlelvel space-time Schwarz
method, as well as the robustness of the algorithm with mdpedifferent noise levels,
different regularizations and amount of measurement ttateddition, parallel efficiency of
the proposed algorithms is also studied.

4.1 Reconstruction of 3D sources

We devote this subsection to test the numerical reconsiructf three representative 3D
sources by the proposed one-level space-time method,npith 256 processors. Each of
the three examples are constructed with its own speciatliffi

Example 1: two Gaussian sourcesThis example tests two moving Gaussian sources
in Q, namely the sourcé takes the form:

f(x,t) = iieXp( (x=x) + (y;é}/i)z—l—(z—zi)z) 7

with a= 2.0 and two moving centers of the sources are given by

{(xl,ybzl) = (Lsin(2mt), Scog2mt),H cog4rt)) (15)

(X2,Y2,22) = (L —2L|cog4t)|, —S+ 25 cog4t) |, —H + 2Ht?).



Space-time Methods for Inverse Problems 11

Fig. 2 The traces of two moving sources.
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Fig. 3 Example 1: the source reconstructions at three monteats0/39,20/39,30/39 with measurements
collected at the mesh 2414 x 14 (bottom), comparable with the exact source distribugtop).

The moving traces of the sources are shown in Figlire 2.

In the first experiment, we use a 4010 x 40 mesh and time step siz¢3P for the inver-
sion process. The measurements are taken from the mest44 14, which is uniformly
located inQ, with the mesh size being/13. The regularization parameters are set to be
Br=3.6x10"6 andB, = 3.6 x 10~3. In Figure[3, the numerically reconstructed sources
are compared with the exact ones at three montgntsl0/39,t, = 20/39,t3 = 30/39. We
can see that the source locations and intensities are doste  the true values at the three
chosen moments. Then we increase the noise levekd% ands = 10%, still with the
same set of parameters. The reconstruction results arenshdwigure[4. We observe that
the reconstructed profiles deteriorate and become ostijlats the noise level increases.
This is expected since the regularized solutions providethé minimization of function-
al J(f) in (2) become less accurate, so are their numerical appatgisolutions obtained
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Fig. 4 Example 1: source reconstructions with noise level 5% (top) ands = 10% (bottom).

Table 1 L2-norm errors at = 10/39,20/39,30/39 with different noise levels and regularization paramsete

B L2-normerrors =1% &=5% &=10%
e 0.043 0.045 0.053
B1=3.6e—6,3, =3.6e—3 e 0.0491 0.057 0.076
e 0.022 0.044 0.081
e 0.059 0.061 0.063
B1=3.6e—5,(, =3.6e—3 e 0.064 0.067 0.076
e 0.035 0.045 0.066
e 0.031 0.058 0.104
B1=3.6e—6,3, =3.6e—4 & 0.036 0.094 0.108
e 0.027 0.053 0.056
e 0.052 0.061 0.083
B =3.6e—5,0, = 3.6e— 4 & 0.058 0081  0.127
e 0.042 0.084 0.152

from the discretised KKT syster](§)1(9). We have tested éliffierent sets of regularization
parameters for thel1-H* regularization in[(B), and present thé-norm errors between the
reconstructed source and the exact source functidii at the aforementioned three mo-
mentsty, t, andts. TheL2-norm error at time; is defined here bgj = ||(f — ) ) llz (o)
for j = 1,2,3, and is shown in Tablg 1 for each set of regularization patars.

Example 2: Four constant sourcesAppropriate choices of regularizations are impor-
tant for the inversion process. In the previous example we hsed éH!-H! Tikhonov
regularization in both space and time. In this example, vtenith to compare thel-H?!
regularization with the followingd1-L2 regularization

Nﬁ(f):%/()T/Q|f(x,t)|zdxdt+%/;/gfzdxdt.
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Fig. 5 Example 2: the source reconstructions with-H* regularization (mid) andi!-L2 regularization
(bottom), compared with the exact solution (top).

For the comparisons, we consider the case in which four anhsburces move along the
diagonals of the cube to their far corner. The four sourceibigions are specified by

filx,t) =g for |[x—x| <04, |y—yi| <04, |z—z|<04

fori=1,2,3,4, where the constang are given byay = a4 = 2.0, a, = ag = 1.0, and their
traces are described respectively by

(X1,y1,21) = (—L+2Lt, S+ 2%, H — 2Ht)
(X2,Y2,22) = (L — 2Lt,S— 2%, —H + 2Ht)

(Xa,y3,23) = (L — 2Lt,—S+ 2, —H + 2Ht)
(Xa,Y4,24) = (—L+2Lt, S— 2, H — 2Ht)..

Same mesh and measurements are used as in Example 1, andulagization param-
eters are set to bfy = 1075, 8, = 10°% in Ng(f), and By = 10,8, = 108 in Ng(f),
respectively. The reconstruction results are comparel thi¢ true solution at three mo-
mentst; = 10/39, t, = 20/39, t3 = 30/39, and two slices at= 0.95 andx = —0.95. It is
observed from Figuriel 5 that the resolution of the sourcelprisfimuch better with thel -
H? regularizatiorN ( f) than with theH-L2 regularizationNs (), and the latter presents a
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Table 2 L2-norm errors of the reconstructed source at 3 moments fom@ka2 with two regularizations

time  error withH1-H! regularization  error withi-L? regulzarization

10/39 0.019 0.023
20/39 0.012 0.019
30/39 0.019 0.026

reconstruction process that is much less stable and much oseillatory. Furthermore, we
demonstrate in Tablg 2 theé-norm errors between the reconstructed source funcficarsd
the exact source§" at the three specified momenisty, t3 for both theH!-H* andH*-L2
regularizations. The?-norm error at time; is defined here by = || i, (fi— i)tz (o)
for j = 1,2,3. We can see that the errors with tHé-H* regularization are slightly smaller
than that of theH1-L? regularization.

Example 3: Eight moving sourcesThis last example presents a very challenging case
that eight Gaussian sources are initially located at theaysrof the physical cubic domain,
then move inside the cube following their own traces givdoweThe Gaussian sources are
described by

8
f(x,t) = Zla,- e (X2 =(y-y)P~(z-2)?
where the coefficients; and the source traces are represented by

a=p=a3=a =40, as=ag=a;=ag=06.0,

and
(X1,¥1,21) = (—L+2L(1—t),—=S+25(1—t),—H + 2H (1 1))
(X2,Y2,22) = (—L +2Lt, =S+ 2, —H + 2Ht)
(X3,Y3,23) = (—L+2Lcog(mt)%(1—t), —S+ 2Ssin(7t)?t, —H + 2H cog(7t)?(1 - t))
(Xa,Ya,24) = (—L+2Lcog(mt)%(1—t), —S+2Scos(1t)%(1—t), —H + 2H sin(7it)%t) )
(Xs,Y5,25) = (—L -+ 2L cog2mt)? cos(71/2t) , — S+ 2Ssin(tt)?sin(r1/2t) ,

—H + 2H sin(nt)?sin(rt/2t) )
(X6, Y6:26) = (—L -+ 2L sin(nt)?sin(m/2t) , — S+ 2Scog2mt)? cos(1/2t) ,
—H + 2H sin(7t)?sin(r1/2t) )
(X7,¥7,27) = (=L +2Lsin(mt)?sin(m/2t) , —S+ 2Ssin(mt)?sin(m/2t) ,
—H +2H cog2mt)? cos(11/2t) )
(Xs,Ys,28) = (—L -+ 2Lsin(nt)?sin(m/2t) , — S+ 2Scog2mt)? cos(1/2t) ,
—H +2H cog2mtt) cos(m/2t)) .
We shall use the mesh 6464 x 64 and the time step size/47, with two regularization
parameterg; = 3.6 x 107° andB, = 3.6 x 10~1. We compare the results recovered by two
sets of measurements, collected on two meshes 22x 22 and 10x 10 x 10, with the
mesh sizes 121 and 19 respectively. The solution is shown in Figlte 6, at threeniats
t =0.0,10/47,1.0. Clearly better reconstructions are observed for the wétbemore mea-
surements collected at the finer meshx222 x 22, though the coarser mesh @0 x 10

is good enough for locating the sources, only with their veced source intensities smaller
than the true values.
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Fig. 6 Example 3: the source reconstructions with measuremetiectem at the mesh 22 22 x 22 (mid)
and 10x 10x 10 (bottom), compared with the exact solution (top).
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4.2 Performance in parallel efficiency

In the previous subsection, we have shown with 3 represemetamples that the proposed
algorithm can successfully recover the intensities antlidigions of unsteady sources and
is robust with respect to the noise in the data, the choicékbiohov regularizations and the
number of measurements. These numerical simulationslarenaputed using the proposed
one-level space-time method wittp = 256 processors. In this section, we focus on our
proposed two-level space-time method and study its paeffieiency with respect to the
number of ILU fill-in levels, namely the numbérin ILU(K), the overlap sizéovl p on the
fine level, and the mesh size on the coarse level. We also gertipanumber of iterations
and the total compute time of the one-level and two-levehm@s with increasing degrees
of freedoms (DOFs) and the number of processors.

Firstly we test how the number of fGMRES iterations and thtaltoompute time of
the two-level method change with different ILU fill-in legeWe use the coarse mesh»21
21x 21 with the time step 120, and the fine mesh 4441 x 41 with the time step M0 for
Example 1, 2, and 3, and the overlap siad p = 1. We see that the total number of DOFs
on the fine mesh is 16 times of the one on the coarse mesh.[Tahlen& the comparison
with np = 256 processors. Column 2-3, 4-5 and 6-7 present the resulSxample 1, 2



16 Xiaomao Deng et al.

Table 3 Effects of ILU fill-in levels on the two-level method for Exate 1 (columns 2-3), Example 2
(columns 4-5), and Example 3 (columns 6-7).

Ex1 Ex2 Ex3
ILU(K) Its Time(sec) Its Time(sec) Its Time (sec)
0 47  10.498 55 12.448 81 17.238
1 28 33.633 36 47.766 60 49.622
2 18 230.552 23 232.914 48  257.798
3 15 1121.469 20 1132.841 45 1165.203

Table 4 Effects of the overlap size on the two-level method for Exkmb (columns 2-3), Example 2
(columns 4-5), and Example 3 (columns 6-7).

Ex1 Ex2 Ex3
iovip Its Time(sec) Its Time(sec) Its Time (sec)

1 47  10.498 55 12.448 81 17.238
2 39 13.071 51 23.663 69 27.952
4 37 27.423 49 45225 68 47.032

and 3 respectively. It is observed that as the fill-in leveléases the number of {GMRES
iterations decreases, but the total compute time incred#iesn the fill-in level increases to
3, the compute time increases significantly and the numbgeaitions only reduces by 3
times. This suggests a suitable fill-in level toibgevel =0 or 1.

Next we look at the impact of the overlap size. We still useghme fine and coarse
meshes for all examples, and ILU(0) for the solver for eadddsmain problem on both the
coarse and fine meshes. The overlap size on the coarse mesloive 1. We test different
overlap sizes on the fine level, and the results are givenbie® It is observed that when
the overlap size increases from 1 to 2 and then to 4, the nuofEMRES iterations
decreases slowly and the total compute time increases. Shallemostly uséovip =1 in
our subsequent computations.

It is well known that the size of the coarse mesh is an impoffeator for a two-level
method. Now we investigate the performance of our two-levethod with different coarse
meshes. We know that if the mesh is too coarse, both the nuofloeiter iterations and the
total compute time increase; on the other hand, if the mesbtisoarse enough, too much
time is spent on the coarse solver, the number of outerib@samay decrease significantly,
but the compute time may increase. For this experiment, wéhéxfine mesh 43 43 x
43 with the time step #42, and the coarse mesh size in each direction is sef2oot
1/3 of the fine mesh. We combine these options and obtain fosrafetoarse meshes
and their corresponding time steps. If we denote the rafiadkeoDOFs on the fine mesh
compared to that on the coarse mesmpthenn = 8,16,24 and 27 for these coarse meshes
respectivelynp = 256 processors are used. The fill-in level of the subdomaiih sblver
is ilulevel = 0 and the size of overlap on both the coarse and fine levelip = 1. The
computational results presented in Tdble 5 indicate thsichly the number of fGMRES
iterations increases when we decrease the coarse meshwizer the compute time does
not necessarily follow this trend, it decreases when theseomesh is fixed at 2222 x 22
and the time step is reduced frordR to 1/21, then for the next two coarse mesh settings,
the compute time grows slowly. As a result, the proper coaresh for this example is
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Table 5 Effects of the coarse mesh size on the two-level method fantpte 1 (columns 4-5), Example 2
(columns 6-7), and Example 3 (columns 8-9).

Ex1 Ex2 Ex3
Coarsemesh M n Its Time(sec) Its Time(sec) Its Time (sec)

22x22x22 43 8 46  13.754 43  13.236 50 17.207
22x22x22 22 16 49 12.967 50 13.174 69 16.035
22x22x22 15 24 52 13.185 53 13.355 77 19.371
15x15x15 43 27 58 14.677 58 14.706 92 20.515

22 x 22 x 22 with time step 121, i.e. 16 times coarser is the optimal choice for this test
case.

Lastly we compare the performance of the one-level and ewvelispace-time Schwarz
preconditioners in Tablés 6 ahH 7. On the coarse level, artedtGMRES is used, with the
one-level space-time Schwarz preconditioner. ILU(0) isduas the local preconditioner on
each subdomain and the coarse overlap size is set to be lht@rtigonvergence tolerance
on the coarse mesh can reduce the number of outer {GMRE8adtesabut often increases
the total compute time. In the following numerical examples set the tolerance to be 10
and the maximum number of GMRES iterations to 4 on the coaeshm

In the following experiments for Example 1, 2 and 3, we usedtlsets of fine meshes,
33x33x 33, 49x 49x 49 and 64 67x 67, and the corresponding time steps g/&2] 1/48
and 1/66 respectively, while the coarse meshes are chosen tobd1% 17, 17x 17 x 17
and 23x 23 x 23, with the corresponding time steps beiril@, 1/48 and ¥66. So the
DOFs on the fine meshes are 16, 27 and 27 times of the ones owmarmeeaneshes for
Example 1, 2 and 3 respectively. We uge= 64,128 and 512 processors for the three sets
of meshes respectively and compare their performance hétbrie-level method in Tallé 6.
Savings in terms of the number of iterations and the totalmdmtime are obtained for the
two-level method with all three sets of meshes. As we obstakthe number of iterations
of the two-level method is mostly reduced by at least 4 tim@spgared to the one for the
one-level method, but the compute time is usually reduce?l toy4 times.

Next we fix the space mesh to be 4949 xx 49 and the time step to be/48, resulting in
a very large-scale discrete system with 17,294,403 DORsheawo-level method, we set
the coarse mesh to be 717 x 17 with the time step M8, which implies that the DOFs on
the fine mesh is about 27 times of the ones on the coarse mesi tfién problem is solved
with np =128 256,512, and 1024 processors respectively. The performancéges the
one-level and two-level methods are presented in Tdble Db&erve that when the number
of sources is small, both the one-level and two-level methar@ scalable with up to 512
processors, but the two-level method takes much less centipue. The strong scalability
deteriorates when the number of processors is too largehéosize of the problems. As
the number of sources increases, the scalability becoriggglglworse for both one-level
and two-level methods, even though the two-level methodligaster in terms of the total
compute time.

5 Concluding remarks

In this work we have proposed and studied a fully implicigsg-time coupled, mixed finite
element and finite difference discretization method, anaralfel one- and two-level domain
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Table 6 Comparisons between the one-level and two-level spacegieconditioners for Examples 1-3 with
different meshes.

Ex1
np Mesh M  levd lts Time (sec)
64 33x33x33 33 1 175 53.635
2 57 20.653
128 49x49x49 49 1 346  200.664
2 83 47.812
512 67x67x67 67 1 491 675.985
2 105 212.72
Ex2
np Mesh M levd lts Time (sec)
64 33x33x33 33 1 228 72.338
2 77 20.246
128 49x49x49 49 1 365 214.058
2 85 47.078
512 67x67x67 67 1 599 841.652
2 121 216.92
Ex3
np Mesh M levd lts Time (sec)
64 33x33x33 33 1 297 82.834
2 76 21.738
128 49x49x49 49 1 405 238.712
2 93 57.244
512 67x67x67 67 1 716 872.766
2 137  263.222

Table 7 Comparisons between the one-level and two-level spacegieconditioners for Examples 1-3 with
different number of processors.

Ex1 Ex2 Ex3
np level Its Time (sec) Its Time (sec) Its Time (sec)
128 1 346  200.664 365 214.815 405  238.712
2 83 47.812 85 47.072 93 57.244
256 1 343  127.035 363 152.334 408 145.213
2 82 24.744 87 26.424 90 36.307
512 1 343  69.482 363 95.707 400 101.343
2 82 16.461 101  19.453 100 18.611
1024 1 351 41.821 393 58.785 433  59.534
2 85 10.132 100 11.352 104  15.815

decomposition solver for the three-dimensional unsteadsrse convection-diffusion prob-
lem. With a suitable number of measurements, this all-ae@pproach provides acceptable
reconstruction of the physical sources in space and timel&neously. The classical over-
lapping Schwarz preconditioner is extended successfulliye coupled space-time problem
with a homogenous Dirichlet boundary condition applied othithe spatial and temporal
part of the space-time subdomain boundaries. The one+eetlod is easier to implement,
but the two-level hybrid space-time Schwarz method performauch better in terms of the
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number of iterations and the total compute time. Good sd#jafesults were obtained for

problems with more than 17 millions degrees of freedom orpasomputer with more than
1,000 processors. The approach is promising to more gemest¢ady inverse problems in
large-scale applications.
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A The discrete structure of the KKT system

The KKT system[(B)E() is formulated as follows:

(9rCh,vh) + (@DCH, Ov) + (3- (V) vh) = (Fvh) + (@ W)y, Vv € VP
<areg7wh> <aDG”7mwh>+< (). G

—(AX)(Cht) —CEn(x,1)) Wh), Vin €V

(Ghvgh)'f‘ﬁl(ﬁrf ;0:90) + B2(0f,0Ogp) =0, Vgr e W .

(16)

To better understand the discrete structurd_of (16), wetdeihe identity and zero matrices handO re-
spectively, and the basis functions of the finite elementepa” andW! by = (@7,i=1,---,N andg?,
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j=1,---,N,n=0,---, M, respectively, let

A= (aj)ij=1-N, @j=(alq,0¢)
B=(bij)ij=1-n, bij=(@,)
E=(&j)ij=1-N, &j=(0-(v@a), @)

ot ot
K™ = (k)i j=1,- No<mnem, K" = (Og", Og})

D™ = (d")ij=1.- Nocmnem, A" = (g.0]),

dgm ag"
er:(th)i‘j:l‘---‘N‘ogm‘ngM, th—( 9 =3

and based on these element matrices we define

T T
A1:B+§(A+E), A2:—B+§(A+E)

T T
81:B+§(A+ET)7 Bg:—B+§(A+ET)

B3 = zeros except 1 at the measurement locations
Wrm — Blen +Bszn’

Then the systenL(16) takes the following form

CO
Cl
: co
CM*Z <qﬂ-~ (p>r2
CM—l .
cM .
GO <qM1;17¢>I'2
Gt @, o,
a2 1/2B3(CE0 +C5 1)
(BC BG Bf ) GM—Z = T/ZB3(CS‘M72+C&M71) )
aM-1 T/2B3(CEM-1CEM)
GM G
f0 0
f1 0
f2 .
. 0
fM—Z 0
fM—l
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where the block matriceBC,BG andBf are given by
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