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Abstract

The regularized near-cloak via the transformation optics approach in the time-harmonic electromagnetic scattering is considered.
This work extends the existing studies mainly in two aspects. First, it presents a near-cloak construction by incorporating a much
more general conducting layer between the cloaked and cloaking regions. This might be of significant practical importance when
production fluctuations occur. Second, it allows the cloaked contents to be both passive and active with an applied current inside.
In assessing the near-cloaking performance, comprehensive and sharp estimates are derived for the scattering amplitude in terms of
the asymptotic regularization parameter and the material tensors of the conducting layer. The scattering estimates are independent
of the passive/active contents being cloaked, which implies that one could nearly cloak arbitrary contents by using the proposed
near-cloak construction.
© 2013 Elsevier Masson SAS. All rights reserved.

Résumé

Cet article traite de la régularisation de l’invisibilité intérieure pour les ondes élecromagnétiques en régime harmonique, en
se basant sur la transformation optique. Il améliore les résultats déjà obtenus sur ce sujet selon deux directions. D’abord, on
présente une construction assez générale de structures d’invisibilité qui incorpore une couche conductrice. Ensuite, on démontre
la possibilité de placer une source active dans la région invisible sans qu’elle soit détectée. Afin d’évaluer les performances de la
construction proposée on établit des estimations fines de l’amplitude de diffusion en fonction du paramètre de régularisation et
des propriétés physiques de la couche conductrice. Ces estimations sont uniformes par rapport aux objets placés dans la région
d’invisibilité. Ceci montre que la construction proposée dans cet article permet de rendre invisible des objets arbitraires.
© 2013 Elsevier Masson SAS. All rights reserved.
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1. Introduction

This work is concerned with the invisibility cloaking for electromagnetic (EM) waves via the approach of
transformation optics [24,25,32,45]. This is a rapidly growing research area with many potential applications, and
we refer to [14,22,23,42,47,48] and the references therein for the recent progresses in both theories and experiments.

We consider two bounded simply connected smooth domains D and Ω in R3, with D b Ω , and three real
symmetric matrix-valued functions ε̃ = (ε̃ij )3

i,j=1, µ̃ = (µ̃ij )3
i,j=1 and σ̃ = (σ̃ ij )3

i,j=1 in Ω , satisfying

c|ξ |2 6
3∑

i,j=1

ε̃ij (x)ξiξj 6 C|ξ |2, c|ξ |2 6
3∑

i,j=1

µ̃ij (x)ξiξj 6 C|ξ |2 (1.1)

and

0 6
3∑

i,j=1

σ̃ ij (x)ξiξj 6 C|ξ |2, (1.2)

for all x ∈ Ω and ξ = (ξi )
3
i=1 ∈ R3. Here the constants c and C, or cl and Cl for l = 0,1,2 in the rest of the work,

are used for generic positive constants whose meanings should be clear from the contexts. Physically, functions ε̃,
µ̃ and σ̃ stand respectively for the electric permittivity, magnetic permeability and conductivity tensors of a regular
EM medium occupying Ω . In this work, we shall often refer to (1.1) and (1.2) as the regular conditions for an EM
medium, and write (Ω; ε̃, µ̃, σ̃ ) for an EM medium residing in Ω . We always assume that the EM medium inclusion
(Ω; ε̃, µ̃, σ̃ ) is located in a uniformly homogeneous space where the EM parameters are given by ε0,µ0 and σ0. It is
assumed that σ

ij
0 = 0 and ε

ij
0 = µ

ij
0 = δij for the ease of our exposition, where δij is the Kronecker delta function.

We shall be concerned with an EM medium distribution in the whole space R3 as follows:

R3; ε̃, µ̃, σ̃ =

⎧
⎨

⎩

ε0,µ0,σ0 in R3\Ω,

εc,µc,σc in Ω\D,

ε̃a, µ̃a, σ̃a in D,

(1.3)

where the mediums in D and Ω\D will be specified appropriately in the sequel wherever it is necessary.
Next, we consider the EM scattering corresponding to an EM medium described in (1.3). To this end, we first

introduce the governing equations. Let ω ∈ R+ be the wave frequency, and Ei,H i ∈ C3 be the incident EM fields that
are (real analytic) entire solutions to the time-harmonic Maxwell equations

∇ ∧ Ei − iωµ0H
i = 0, ∇ ∧ Hi + iωε0E

i = 0 in R3. (1.4)

Then the EM wave propagation in the whole space R3 with an EM medium inclusion (Ω; ε̃, µ̃, σ̃ ) as described in
(1.3) is governed by the following Maxwell system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ ∧ Ẽ − iωµ̃H̃ = 0 in R3,

∇ ∧ H̃ + iω

(
ε̃ + i

σ̃

ω

)
Ẽ = J̃ in R3,

Ẽ− = Ẽ|Ω , Ẽ+ =
(
Ẽ − Ei

)∣∣
R3\Ω

H̃− = H̃ |Ω , H̃+ =
(
H̃ − Hi

)∣∣
R3\Ω

lim
|x|→+∞

|x|
∣∣∣∣
(
∇ ∧ Ẽ+)

(x) ∧ x

|x| − iωẼ+(x)

∣∣∣∣ = 0,

(1.5)

where J̃ ∈ C3 denotes an electric current density, and supp(J̃ ) ⊂ Ω . In (1.5), Ẽ and H̃ are respectively the electric
and magnetic fields, and Ẽ+ and H̃+ are known as the scattered fields (cf. [16,41]). The last relation in (1.5) is called
the Silver–Müller radiation condition, which characterizes the radiating nature of the scattered wave fields Ẽ+ and
H̃+. For a regular EM medium (Ω; ε̃, µ̃, σ̃ ) and an active electric current J̃ ∈ L2(Ω)3, there exists a unique pair of
solutions Ẽ, H̃ ∈ Hloc(∇∧;R3) (see [31,41]), and Ẽ+ admits the asymptotic expression as |x| → ∞ (cf. [16]):
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Ẽ+(x) = eiω|x|

|x| A∞

(
x

|x| ;E
i

)
+O

(
1

|x|2
)

, (1.6)

where A∞(x̂;Ei) with x̂ := x/|x| ∈ S2 is known as the scattering amplitude. In the above and sequel, we shall often
use the spaces

Hloc(∇∧;X) =
{
U |B ∈ H(∇∧;B)

∣∣ B is any bounded subdomain of X
}
,

and

H(∇∧;B) =
{
U ∈

(
L2(B)

)3 ∣∣ ∇ ∧ U ∈
(
L2(B)

)3}
.

Clearly, the scattering amplitude A∞ depends also on the underlying passive EM medium (Ω; ε̃, µ̃, σ̃ ) and the active
electric current J̃ , hence we shall write A∞(x̂;Ei, (Ω; ε̃, µ̃, σ̃ ), J̃ ) to emphasize such dependence if necessary.
An important inverse scattering problem arising from practical applications is to recover the medium (Ω; ε̃, µ̃, σ̃ )

and/or the current J̃ by knowledge of A∞(x̂;Ei). This inverse problem is of fundamental importance to many areas
of science and technology, such as radar and sonar, geophysical exploration, non-destructive testing, and medical
imaging. We refer the readers to [4,10,30,43,44] and the references therein for the studies on uniqueness and stability
of this inverse problem. In the present work, we are mainly concerned with the invisibility cloaking.

Definition 1.1. Consider an EM medium as described in (1.3), where (D; ε̃a, µ̃a, σ̃a) and (Ω\D; εc,µc,σc) are
the target and designed cloaking EM media respectively, and J̃ ∈ L2(Ω)3 is an active object in Ω . The medium
(Ω; ε̃, µ̃, σ̃ ) is called an (ideal) invisibility cloaking device if no scattered fields are generated outside Ω , or
equivalently

A∞
(
x̂;Ei, (Ω; ε̃, µ̃, σ̃ ), J̃

)
= 0.

Based on Definition 1.1, the designed cloaking medium (Ω\D; εc,µc,σc) makes the target medium (D; ε̃a, µ̃a, σ̃a)

and the active/radiating source J̃ invisible to the exterior EM detectors. From a practical point of view, the target
medium and the electric current, (D; ε̃a, µ̃a, σ̃a) and J̃ , should be allowed to be arbitrary for a cloaking device.
This viewpoint would be adopted for our subsequent construction and investigation of the near-cloaking device.
By the unique continuation principle for Maxwell’s equations (cf. [16]), it is readily seen that for an ideal invisibility
cloaking device, the scattered EM wave fields are completely trapped inside the device. The ideal invisibility cloaking
of generic passive media was investigated in [21,45], and it turns out that one has to implement singular EM media.
Indeed, the ideal invisibility constructions for the Maxwell equations proposed in [21,45] make use of cloaking media
(Ω\D; εc,µc) which violate the regular conditions (1.1). Furthermore, it is shown in [21] that if one intends to ideally
cloak an active current, in addition to the singular cloaking medium, one needs to implement a special singular double
coating to defeat the blow-up of the EM fields within the cloaked region. The singular media present a great challenge
for both theoretical analysis and practical fabrications. Several regularized constructions have been developed to
avoid the singular structures. A truncation of singularities has been introduced in [19,20,46], and the ‘blow-up-a-
point’ transformation from [25,32,45] has been regularized to become a ‘blow-up-a-small-region’ transformation in
[28,29,36]. By incorporating regularization into the cloaking construction, instead of the ideal/perfect invisibility, one
considers the approximate/near invisibility; that is, to build up a regularized cloaking device so that the resulting
scattering amplitude is nearly negligible in terms of an asymptotically small regularization parameter ρ ∈ R+. This is
the central focus of the current paper. For this purpose, we shall adopt the blow-up-a-small-region strategy in the
present study. Nevertheless, the truncation-of-singularity construction and the blow-up-a-small-region construction
are equivalent to each other, as pointed out in [27]. Hence, all of the results obtained in this work hold equally for the
truncation-of-singularity construction.

Due to its practical importance, the approximate cloaking has recently been extensively studied. In [29,5],
approximate cloaking schemes were developed for electric impedance tomography which can be regarded as optics
at zero frequency. In [6,7,28,33,35,36], several near-cloaking schemes were presented for scalar waves governed
by the Helmholtz equation. On the contrary, not much has been done yet for the approximate cloaking of the full
Maxwell equations. In [37], the approximate cloaking was developed for the full Maxwell equations, where the near-
cloaking construction is composed of three parts: a cloaked region D(1) containing the target medium (ε̃a, µ̃a, σ̃a);
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a conducting layer (D(2); ε̃l , µ̃l , σ̃l) located right outside the cloaked region D(1), and a cloaking layer (Ω\D; ερ
c ,µ

ρ
c )

outside D = D(1) ∪ D(2), where ρ ∈ R+ is the regularizer and (ε
ρ
c ,µ

ρ
c ) degenerates to the singular cloaking medium

in [21,45] as ρ → 0. The conducting layer (D(2); ε̃l , µ̃l, σ̃l ) between the cloaked and cloaking regions D(1) and Ω\D
appears to be crucial to a practical near-cloaking construction. In fact, it is shown [37] that without the conducting
layer, there always exist cloak-busting inclusions which defy any attempt to achieve the near-cloak, no matter how
small the regularization parameter ρ is. This reflects the highly unstable nature of the ideal invisibility cloaking with
singular structures. However, the results of [37] were established only for the spherical geometry and the uniform
cloaked content, namely both Ω and D were assumed to be Euclidean balls and the medium parameters ε̃a , µ̃a and
σ̃a were all constants multiple of the identity matrix. Under these special settings, the Fourier–Bessel technique can
be used to derive the analytic series expansions of the EM fields [37], enabling one to assess the corresponding near-
cloaking performance. Later, the study in [37] was generalized in [11] such that Ω and D could be general smooth
domains and the cloaked content could be an arbitrary regular passive medium. However, the conducting layer adopted
in [11] for the cloaking construction is the same as the one in [37], whose material tensors depend uniformly on the
asymptotic parameter ρ in a specific manner (see Remark 2.2).

In this work, we investigate the near-cloaking devices with more general conducting layers. The material tensors
of the conducting layers could be anisotropic, dependent on or independent of the regularization parameter ρ. On the
one hand, this would extend the studies in the literature to an extremely general case, and on the other hand it would
be significant to practical applications when fabrication fluctuations occur. Moreover, only passive cloaked contents
were studied for nearly cloaking so far, not any active contents involved. We shall investigate the nearly cloaking of
both passive and active contents. In assessing the near-cloaking performance, we derive some systematic and sharp
asymptotic estimates of the scattering amplitude in terms of the regularization parameter ρ and the material tensors of
the conducting layer. Our estimates are independent of the passive/active contents being cloaked. This implies that one
could nearly cloak an arbitrary content. Furthermore, the estimates can provide some practical guidance in choosing
an appropriate conducting layer to improve the near cloaking of active contents. In addition, we emphasize that the
asymptotic estimates were given in terms of the boundary measurements in [11,37], whereas the asymptotic estimates
are derived in terms of the scattering measurements in this work and the corresponding asymptotic analysis is more
delicate and technical.

In addition to the transformation-optics approach adopted in the present study, there are several other effective
approaches in the literature to realize the near-cloaking, and we mention the one based on anomalous localized
resonance [3,39] and another one based on special (object-dependent) coatings [1]. Finally, we also mention a recent
interesting work in [2], where the near-cloaking of a perfectly conducting obstacle was studied for the full Maxwell
equations.

The rest of the paper is organized as follows. In Section 2, we present the construction of our near-cloaking device
and state the main result of the paper in estimating the cloaking performance. Section 3 is devoted to the proof of the
main result.

2. Near-cloak construction and the main result

In this section, we present the construction of our near-cloaking device and formulate the major result in assessing
the corresponding cloaking performance.

Let D and Ω be two bounded simply connected smooth domains in R3 such that D b Ω and D contains the origin.
For ρ ∈ R+, we set

Dρ := {ρx; x ∈ D}.
Let 0 < ρ < 1 be a small parameter. Assume that there exists an orientation-preserving and bi-Lipschitz mapping
Fρ : Ω\Dρ → Ω\D such that

Fρ(Ω\Dρ) = Ω\D and Fρ |∂Ω = Identity. (2.1)

Now we define a transformation F by

F(x) =

⎧
⎨

⎩

x, x ∈ R3\Ω,

Fρ(x), x ∈ Ω\Dρ,
x
ρ , x ∈ Dρ,

(2.2)
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and an EM medium inside Ω\D by

ερ
c (x) = F∗ε0(x), µρ

c (x) = F∗µ0(x), σρ
c (x) = 0 (2.3)

for x ∈ Ω\D. Here F∗ denotes the push-forward operator defined by

F∗m(x) := DF(y) · m(y) · DF(y)T

|det(DF)(y)|

∣∣∣∣
y=F−1(x)

, x ∈ Ω\D, (2.4)

where m(y) denotes an EM parameter in Ω\Dρ , such as ε, µ or σ , and DF represents the Jacobian matrix of the
transformation F . In the sequel, we may often write (2.3) as

(
Ω\D; ερ

c ,µρ
c

)
= F∗(Ω\Dρ; ε0,µ0) :=

(
F(Ω\Dρ);F∗ε0,F∗µ0

)
.

Similarly, we set

(D\D1/2; ε̃l , µ̃l , σ̃l) = F∗(Dρ\Dρ/2; εl ,µl,σl), (2.5)

where εl(x), σl(x) and µl(x) are given by

εl (x) = ρ−rα(x/ρ), σl(x) = ρ−sβ(x/ρ), µl(x) = ρ−tγ , x ∈ Dρ\Dρ/2, (2.6)

for r, s, t ∈ R. Here α(x) = (αij (x)) and β(x) = (β ij (x)) are the material tensors for a regular EM medium in D\D1/2,
and are assumed to satisfy

c0|ξ |2 6
3∑

i,j=1

m
ij
l (x)ξiξj 6 C0|ξ |2 for ∀ξ ∈ R3 and a.e. x ∈ D\D1/2, (2.7)

for ml = α or β . γ = (γ ij ) is assumed to be of the form

γ −1 = η
(
δij

)
, (2.8)

where η is a constant satisfying c0 6 η 6 C0. Now, we consider an EM medium distribution in R3 as follows:

R3; ε̃ρ, µ̃ρ, σ̃ρ =

⎧
⎪⎪⎨

⎪⎪⎩

ε0,µ0,σ0 in R3\Ω,

ε
ρ
c ,µ

ρ
c ,σ

ρ
c in Ω\D,

ε̃l , µ̃l , σ̃l in D\D1/2,

ε̃a, µ̃a, σ̃a in D1/2,

(2.9)

where (Ω\D; ερ
c ,µ

ρ
c ,σ

ρ
c ) and (D\D1/2; ε̃l , µ̃l , σ̃l) are given in (2.3) and (2.5) respectively, and (D1/2; ε̃a, µ̃a, σ̃a) is

an arbitrary regular EM medium. Associated with the EM medium distribution (R3; ε̃ρ, µ̃ρ, σ̃ρ), the EM scattering
due to the incident fields (Ei,H i) can be described by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ ∧ Ẽρ − iωµ̃ρH̃ρ = 0 in R3,

∇ ∧ H̃ρ + iω

(
ε̃ρ + i

σ̃ρ

ω

)
Ẽρ = J̃ in R3,

Ẽ−
ρ = Ẽρ |Ω , Ẽ+

ρ =
(
Ẽρ − Ei

)∣∣
R3\Ω ,

H̃−
ρ = H̃ρ |Ω , H̃+

ρ =
(
H̃ρ − Hi

)∣∣
R3\Ω ,

lim
|x|→∞

|x|
∣∣∣∣
(
∇ ∧ Ẽ+

ρ

)
(x) ∧ x

|x| − iωẼ+
ρ (x)

∣∣∣∣ = 0,

(2.10)

where J̃ ∈ L2(D)3 denotes an electric current in D. We shall assume that
(
σ̃a(x)ξ

)
· ξ > c0|ξ |2 for ∀ξ ∈ R3 and a.e. x ∈ supp(J̃ ) ∩ D1/2. (2.11)

We refer to (2.10) as the scattering problem in the physical space.
We are now in a position to state the main result of this paper.
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Theorem 2.1. Let (R3; ε̃ρ, µ̃ρ, σ̃ρ) be the passive EM medium described by (2.3)–(2.8), (2.9) and (2.11), J̃ ∈ L2(D)3

be an active current in D, and ζ1, ζ2 be the parameters given by

ζ1 := min
(
s + 1, s + 5 − 2(t + r),5 − 2t − s

)
, (2.12)

ζ2 := min(s, s + 2 − t − r,2 − t). (2.13)

Assume r, s, t ∈ R are chosen such that ζ1 > 0. Let Ã
ρ
∞(x̂) := A∞(x̂;Ei, (Ω; ε̃ρ, µ̃ρ, σ̃ρ), J̃ ) be the scattering

amplitude corresponding to Ẽ+
ρ in (2.10). Then there exists a positive constant ρ0 such that for any ρ < ρ0,

∥∥Ã
ρ
∞

(
x̂;Ei

)∥∥
L∞(S2)

6 C
(
ρmin(ζ1,3)

∥∥Ei
∥∥

H(∇∧;Ω)
+ ρ

ζ1
2 ∥J̃∥L2(D1/2)3 + ρζ2∥J̃∥L2(D\D1/2)3

)
(2.14)

where C is a positive constant depending only on α,β,γ ,ω, c0 in (2.11), C0 in (2.7) and Ω , D, but independent of ρ,
r , s, t and ε̃a , µ̃a , σ̃a , J̃ , Ei .

The proof of Theorem 2.1 will be given in Section 3. In the rest of this section, we give some remarks about the
implications and practical significance of Theorem 2.1 to the approximate invisibility cloaking.

Remark 2.1. By Theorem 2.1, it is readily seen that (2.9) yields a near-invisibility cloak, which is capable of nearly
cloaking a passive medium (D1/2; ε̃a, µ̃a, σ̃a), an active current in both D1/2 and D\D1/2, with an accuracy of orders
ρmin(ζ1,3), ρζ1/2, and ρζ2 respectively. We note that ζ2 is required to be positive in order to achieve the cloaking effect,
but Theorem 2.1 will be proved without this requirement. Hence, the estimate (2.14) is rather general in this sense.
The estimate (2.14) is independent of the passive medium (D1/2; ε̃a, µ̃a, σ̃a) and the active current J̃ , so the contents
being cloaked could be arbitrary. Clearly, this is of significant importance for a near-cloaking device in applications.
We mention that the cloaking of active contents was studied in [21], where the authors considered the ideal cloaking
by employing the singular cloaking medium (ε

ρ
c ,µ

ρ
c ) in the theoretic limiting case ρ = +0. However, it was shown

there that one cannot cloak an active content by merely using (ε
ρ
c ,µ

ρ
c ) in the theoretic limiting case ρ = +0, otherwise

one would have the blow-up of the EM fields within the cloaked region. Theorem 2.1 indicates that our near-cloaking
construction (2.9) is much more stable, even in cloaking active contents.

Remark 2.2. By (2.5) and (2.6), it is straightforward to show that in the physical space,

ε̃l(x) = ρ1−rα(x), σ̃l(x) = ρ1−sβ(x), µ̃l(x) = ρ1−tγ (x), x ∈ D\D1/2. (2.15)

Hence, if we take r = t = 0, s = 2, and α = β = γ = C0(δ
ij ) with C0 being a positive constant, we obtain the

conducting layer employed in [11,37]. In this case we have min(ζ1,3) = 3, hence Theorem 2.1 recovers the results
in [11,37] in near-cloaking passive mediums within an accuracy of order ρ3. It is interesting to note that by taking
r = s = t = 1, the conducting layer (2.15) is independent of the asymptotic parameter ρ, and the estimate (2.14)
reduces to

∣∣Ãρ
∞

(
x̂;Ei

)∣∣ 6 C
(
ρ2∥∥Ei

∥∥
H(∇∧;Ω)

+ ρ∥J̃∥L2(D)3
)
. (2.16)

That is, by employing a regular conducting layer without relating to the regularization parameter ρ, one could achieve
a near-invisibility cloak which is capable of cloaking a passive content and an active content with an accuracy of order
ρ2 and ρ respectively. On the other hand, we emphasize that our incorporation of the anisotropic parameters α and
β is of significant interests in applications where some fabrication fluctuations occur. Moreover, our general estimate
would provide a guideline for practically choosing the conducting layer to produce customized near-cloaking effects.
For instance, if we take r = 0, t = −s with s ∈ R+, then one can check that the larger the index s is, the better accuracy
of near-cloaking the current J̃ that one can achieve.

3. Proof of the major result

This section is devoted to the proof of Theorem 2.1, the major result of this work. We first collect some important
function spaces that are needed for the subsequent analysis.
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3.1. Function spaces

Let Γ be the smooth boundary of a bounded domain in R3, with ν being its outward unit normal vector. It is
known that Hs(Γ ) is well-defined for |s| 6 2 (cf. [26,34]). By THs(Γ ) we denote the subspace of all the functions U ∈
Hs(Γ )3, which are orthogonal to the unit outward normal vector ν. For |s| 6 2, we can decompose a U ∈ Hs(Γ )3 into
a sum of the form U = Ut +νUν , where Ut and Uν are the tangential and normal components, i.e., Ut = −ν ∧ (ν ∧U),
Uν = ⟨ν,U⟩. This gives rise to a decomposition of Hs(Γ )3 for |s| 6 2: Hs(Γ )3 = THs(Γ ) ⊕ NHs(Γ ). Since Γ is
smooth, we know THs(Γ ) coincides with ν ∧Hs(Γ )3. Let Div be the surface divergence operator on Γ , then we will
frequently use in the sequel the following dual space of TH1/2(Γ ):

TH−1/2
Div (Γ ) =

{
U ∈ TH−1/2(Γ )

∣∣ Div(U) ∈ H−1/2(Γ )
}
,

and a skew-symmetric bilinear form B: TH−1/2
Div (Γ ) ∧ TH−1/2

Div (Γ ) → C, given by the non-degenerate duality product
(cf. [17]):

B(j,m) =
∫

Γ

j · (m ∧ ν) ds, ∀j,m ∈ T H
−1/2
Div (Γ ). (3.1)

3.2. Proof of Theorem 2.1

We first present a lemma with some key ingredients of the transformation optics, whose proof is available in [37].

Lemma 3.1. Let (Ω; ε,µ,σ ) be a regular EM medium, J ∈ L2(Ω)3 be a current in Ω , and x′ = F(x) : Ω → Ω

be a bi-Lipschitz and orientation-preserving mapping, whose restriction on ∂Ω is the identity. Suppose that E,H ∈
H(∇∧;Ω) are the EM fields satisfying

∇ ∧ E − iωµH = 0 in Ω,

∇ ∧ H + iω

(
ε + i

σ

ω

)
E = J in Ω.

If we define the pull-back fields by

E′ =
(F−1)∗

E := (DF)−T E ◦F−1,

H ′ =
(F−1)∗

H := (DF)−T H ◦F−1,

J ′ =
(F−1)∗

J := 1
|det(DF)| (DF)J ◦F−1,

then the pull-back fields E′,H ′ ∈ H(∇′∧;Ω) satisfy the following Maxwell equations

∇′ ∧ E′ − iωµ′H ′ = 0 in Ω,

∇′ ∧ H ′ + iω

(
ε′ + i

σ ′

ω

)
E′ = J ′ in Ω,

where ∇′∧ denotes the curl operator in the x′-coordinates, ε′, µ′ and σ ′ are the push-forwards of ε, µ and σ via F ,
i.e., (Ω; ε′,µ′,σ ′) =F∗(Ω; ε,µ,σ ). Moreover, we have

ν ∧ E′ = ν ∧ E, ν ∧ H ′ = ν ∧ H on ∂Ω.

Next, for the EM fields (Ẽρ, H̃ρ) described by (2.10) associated with the physical scattering problem, we define

Eρ = F ∗Ẽρ and Hρ = F ∗H̃ρ, (3.2)

where F is the transformation given by (2.2). They by Lemma 3.1 it is straightforward to verify that the two fields
Eρ,Hρ ∈ Hloc(∇∧;R3), and satisfy the following system:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ ∧ Eρ − iωµρHρ = 0 in R3,

∇ ∧ Hρ + iω

(
ερ + i

σρ

ω

)
Eρ = J in R3,

E−
ρ = Eρ |Dρ , E+

ρ =
(
Eρ − Ei

)∣∣
R3\Dρ

,

H−
ρ = Hρ |Dρ , H+

ρ =
(
Hρ − Hi

)∣∣
R3\Dρ

,

lim
|x|→∞

|x|
∣∣∣∣
(
∇ ∧ E+

ρ

)
(x) ∧ x

|x| − iωE+
ρ (x)

∣∣∣∣ = 0,

(3.3)

where J (x) and the EM medium (ερ,µρ,σρ) are given by

J (x) := F ∗J̃ (x) = 1
ρ2 J̃

(
x

ρ

)
, x ∈ Dρ, (3.4)

and

R3; ερ,µρ,σρ =

⎧
⎨

⎩

ε0,µ0,σ0 in R3\Dρ,

εl ,µl,σl in Dρ\Dρ/2,

εa,µa,σa in Dρ/2,

(3.5)

with (Dρ\Dρ/2; εl ,µl,σl ) given in the form (2.6)–(2.8), and

(Dρ/2; εa,µa,σa) :=
(
F−1)

∗(Dρ/2; ε̃a, µ̃a, σ̃a). (3.6)

For our subsequent use, we note by (2.2), (2.4) and straightforward calculations that

ma(x) = ρ−1m̃a

(
ρ−1x

)
, x ∈ Dρ/2 (3.7)

for m = ε, µ, σ , hence it follows from (2.11) that
(
σa(x)ξ

)
· ξ > c0ρ

−1|ξ |2 ∀ξ ∈ R3, x ∈ supp(J ) ∩ Dρ/2. (3.8)

Next we shall establish a series of lemmas which provide several crucial relations and estimates for the proof of
Theorem 2.1.

Lemma 3.2. Let BR be a central ball of radius R such that Dρ b BR . Then the solutions Eρ,Hρ ∈ Hloc(∇∧;R3) to
the system (3.3) satisfy

∫

Dρ\Dρ/2

σlE
−
ρ · E−

ρ dx +
∫

Dρ/2

σaE
−
ρ · E−

ρ dx

= ℜ
∫

∂BR

(
ν ∧ E+

ρ

)
·
[
ν ∧

(
ν ∧ H+

ρ

)]
dsx + ℜ

∫

∂BR

(
ν ∧ Ei

)
·
[
ν ∧

(
ν ∧ H+

ρ

)]
dsx

+ ℜ
∫

∂BR

(
ν ∧ E+

ρ

)
·
[
ν ∧

(
ν ∧ Hi

)]
dsx + ℜ

∫

Dρ

J · E−
ρ dx. (3.9)

Proof. First of all, it is easy to see that the solutions (E±
ρ ,H±

ρ ) to (3.3) satisfy

∇ ∧ E−
ρ = −iωµρH−

ρ in Dρ, (3.10)

∇ ∧ H−
ρ = −iω

(
ερ + i

σρ

ω

)
E−

ρ in Dρ, (3.11)

∇ ∧ E+
ρ = iωH+

ρ , ∇ ∧ H+
ρ = −iωE+

ρ in BR\Dρ, (3.12)

ν ∧ E−
ρ = ν ∧ E+

ρ + ν ∧ Ei on ∂Dρ, (3.13)

ν ∧ H−
ρ = ν ∧ H+

ρ + ν ∧ Hi on ∂Dρ . (3.14)
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Using (3.12) and integrating by parts we can deduce

−iω

∫

BR\Dρ

E+
ρ · E+

ρ ds =
∫

BR\Dρ

(
∇ ∧ H+

ρ

)
· E+

ρ dx

=
∫

BR\Dρ

H+
ρ ·

(
∇ ∧ E+

ρ

)
dx −

∫

∂(BR\Dρ)

(
ν ∧ E+

ρ

)
· H+

ρ dsx

= −iω

∫

BR\Dρ

H+
ρ dsx +

∫

∂BR

(
ν ∧ E+

ρ

)
·
[
ν ∧

(
ν ∧ H+

ρ

)]
dsx

−
∫

∂Dρ

(
ν ∧ E+

ρ

)
·
[
ν ∧

(
ν ∧ H+

ρ

)]
dsx, (3.15)

while using (3.10)–(3.11) and integrating by parts, we can write

−
∫

Dρ\Dρ/2

iω

(
εl + i

σl

ω

)
E−

ρ · E−
ρ dx −

∫

Dρ/2

iω

(
εa + i

σa

ω

)
E−

ρ · E−
ρ dx

=
∫

Dρ

(
∇ ∧ H−

ρ

)
· E−

ρ dx +
∫

Dρ

J · E−
ρ dx

=
∫

Dρ

H−
ρ ·

(
∇ ∧ E−

ρ

)
dx −

∫

∂Dρ

(
ν ∧ E−

ρ

)
· H−

ρ dsx +
∫

Dρ

J · E−
ρ dx

=
∫

Dρ

H−
ρ ·

(
−iωµρH−

ρ

)
dx +

∫

Dρ

J · E−
ρ dx +

∫

∂Dρ

(
ν ∧ E−

ρ

)
·
[
ν ∧

(
ν ∧ H−

ρ

)]
dsx. (3.16)

Now by taking the real parts of both sides of (3.16), we obtain
∫

Dρ\Dρ/2

σlE
−
ρ · E−

ρ dx +
∫

Dρ/2

σaE
−
ρ · E−

ρ dx

= ℜ
∫

∂Dρ

(
ν ∧ E−

ρ

)
·
[
ν ∧

(
ν ∧ H−

ρ

)]
dsx + ℜ

∫

Dρ

J · E−
ρ dx. (3.17)

On the other hand, taking the real parts of both sides of (3.15), then adding them to (3.17), we arrive at
∫

Dρ\Dρ/2

σlE
−
ρ · E−

ρ dx +
∫

Dρ/2

σaE
−
ρ · E−

ρ dx

= ℜ
∫

∂BR

(
ν ∧ E+

ρ

)
·
[
ν ∧

(
ν ∧ H+

ρ

)]
dsx + ℜ

∫

Dρ

J · E−
ρ dx

− ℜ
∫

∂Dρ

(
ν ∧ E+

ρ

)
·
[
ν ∧

(
ν ∧ H+

ρ

)]
dsx + ℜ

∫

∂Dρ

(
ν ∧ E−

ρ

)
·
[
ν ∧

(
ν ∧ H−

ρ

)]
dsx. (3.18)

For the last two terms in (3.18), we can use the transmission conditions (3.13)–(3.14) and integration by parts to write
∫

∂Dρ

(
ν ∧ E−

ρ

)
·
[
ν ∧

(
ν ∧ H−

ρ

)]
dsx −

∫

∂Dρ

(
ν ∧ E+

ρ

)
·
[
ν ∧

(
ν ∧ H+

ρ

)]
dsx
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=
∫

∂Dρ

(
ν ∧ Ei

)
·
[
ν ∧

(
ν ∧ H+

ρ

)]
dsx +

∫

∂Dρ

(
ν ∧ E+

ρ

)
·
[
ν ∧

(
ν ∧ Hi

)]
dsx

+
∫

∂Dρ

(
ν ∧ Ei

)
·
[
ν ∧

(
ν ∧ Hi

)]
dsx, (3.19)

while the following holds for the first two terms in the RHS of (3.19),

ℜ
∫

∂Dρ

(
ν ∧ Ei

)
·
[
ν ∧

(
ν ∧ H+

ρ

)]
dsx + ℜ

∫

∂Dρ

(
ν ∧ E+

ρ

)
·
[
ν ∧

(
ν ∧ Hi

)]
dsx

= ℜ
∫

∂BR

(
ν ∧ Ei

)
·
[
ν ∧

(
ν ∧ H+

ρ

)]
dsx + ℜ

∫

∂BR

(
ν ∧ E+

ρ

)
·
[
ν ∧

(
ν ∧ Hi

)]
dsx. (3.20)

In fact, we immediately derive by integration by parts that

−
∫

∂Dρ

(
ν ∧ Ei

)
·
[
ν ∧

(
ν ∧ H+

ρ

)]
dsx +

∫

∂BR

(
ν ∧ Ei

)
·
[
ν ∧

(
ν ∧ H+

ρ

)]
dsx

=
∫

BR\Dρ

(
∇ ∧ H+

ρ

)
· Ei dx −

∫

BR\Dρ

H+
ρ ·

(
∇ ∧ Ei

)
dx

= iω

∫

BR\Dρ

[
−E+

ρ · Ei + H+
ρ · Hi dx

]
(3.21)

and

−
∫

∂Dρ

(
ν ∧ E+

ρ

)
·
[
ν ∧

(
ν ∧ Hi

)]
dsx +

∫

∂BR

(
ν ∧ E+

ρ

)
·
[
ν ∧

(
ν ∧ Hi

)]
dsx

= iω

∫

BR\Dρ

[
−Ei · E+

ρ + Hi · H+
ρ

]
dx. (3.22)

Clearly, (3.20) is a direct consequence of (3.21)–(3.22). For the last term in (3.19), we can use the Maxwell
equations (1.4) and integration by parts to obtain

∫

∂Dρ

(
ν ∧ Ei

)
·
[
ν ∧

(
ν ∧ Hi

)]
dsx =

∫

Dρ

((
ν ∧ Hi

)
· Ei − Hi ·

(
∇ ∧ Ei

))
dx

= iω

∫

Dρ

(
−

∣∣Ei
∣∣2 +

∣∣Hi
∣∣2)

dx. (3.23)

Now combining (3.18)–(3.20) with (3.23) gives (3.9), so completes the proof of Lemma 3.2. ✷

In order to reduce the concerned scattering problem in the whole space R3 to a bounded domain problem, we next
introduce the following auxiliary Maxwell system,

⎧
⎪⎪⎨

⎪⎪⎩

∇ ∧ E − iωµ0H = 0 in R3\BR,

∇ ∧ H + iωε0E = 0 in R3\BR,

lim
|x|→+∞

|x|
∣∣∣∣(∇ ∧ E)(x) ∧ x

|x| − iωE(x)

∣∣∣∣ = 0.

(3.24)

Associated with the system (3.24), we introduce a boundary operator Λ, which maps the tangential component of the
electric field to the tangential component of the magnetic field:
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Λ(ν ∧ E|∂BR) = ν ∧ H |∂BR : T H
−1/2
Div (∂BR) → T H

−1/2
Div (∂BR), (3.25)

where E,H ∈ Hloc(∇∧;R3\BR) are the unique solutions to (3.24). We choose R such that Dρ b BR b Ω and ω

is not an interior EM eigenvalue in the sense that the following Maxwell equations have only the trivial solutions
Ẽ = H̃ = 0:

{
∇ ∧ Ẽ − iωµ0H̃ = 0 in BR,

∇ ∧ H̃ + iωε0Ẽ = 0 in BR,
(3.26)

if ν ∧ Ẽ|∂BR = 0 or ν ∧ H̃ |∂BR = 0. We know the boundary operator Λ in (3.25) is continuous and invertible [41].
Next, we shall establish some crucial estimates of the solutions Eρ,Hρ ∈ Hloc(∇∧;R3) to the system (3.3).

Lemma 3.3. The solutions Eρ , Hρ to the system (3.3) admit the following estimate,
∫

Dρ\Dρ/2

∣∣E−
ρ

∣∣2
dx 6 Cρs

{∥∥ν ∧ E+
ρ

∥∥
TH−1/2

Div (∂BR)

∥∥Λ
(
ν ∧ E+

ρ

)∥∥
TH−1/2

Div (∂BR)

+
∥∥ν ∧ Ei

∥∥
TH−1/2

Div (∂BR)

∥∥Λ
(
ν ∧ E+

ρ

)∥∥
TH−1/2

Div (∂BR)

+
∥∥ν ∧ Hi

∥∥
TH−1/2

Div (∂BR)

∥∥ν ∧ E+
ρ

∥∥
TH−1/2

Div (∂BR)

}

+ Cρ2s−1∥J̃∥2
L2(D\D1/2)3 + Cρs∥J̃∥2

L2(D1/2)3, (3.27)

where C is a constant depending only on c0 in (3.8).

Proof. Without loss of generality, we may assume that supp(J ) = Dρ/2. By using (2.6)–(2.7), (3.8), (3.40), and the
Cauchy–Schwartz inequality, we first deduce from (3.9) that

c0ρ
−s

∥∥E−
ρ

∥∥2
L2(Dρ\Dρ/2)3 + c0ρ

−1∥∥E−
ρ

∥∥2
L2(Dρ/2)3

6
∫

Dρ\Dρ/2

σlE
−
ρ · E−

ρ dx +
∫

Dρ/2

σaE
−
ρ · E−

ρ dx

6
{∥∥ν ∧ E+

ρ

∥∥
TH−1/2

Div (∂BR)

∥∥Λ
(
ν ∧ E+

ρ

)∥∥
TH−1/2

Div (∂BR)
+

∥∥ν ∧ Ei
∥∥

TH−1/2
Div (∂BR)

∥∥Λ
(
ν ∧ E+

ρ

)∥∥
TH−1/2

Div (∂BR)

+
∥∥ν ∧ Hi

∥∥
TH−1/2

Div (∂BR)

∥∥ν ∧ E+
ρ

∥∥
TH−1/2

Div (∂BR)

}
+

∣∣∣∣

∫

Dρ

J · E−
ρ dx

∣∣∣∣. (3.28)

For the last term above, it follows from the relation
∥∥∥∥J̃

( ·
ρ

)∥∥∥∥
L2(Dρ)

= ρ3/2∥∥J̃ (·)
∥∥

L2(D)

and (3.4) that
∣∣∣∣

∫

Dρ

J · E−
ρ dx

∣∣∣∣ 6 ∥J∥L2(Dρ\Dρ/2)3

∥∥E−
ρ

∥∥
L2(Dρ\Dρ/2)3 + ∥J∥L2(Dρ/2)3

∥∥E−
ρ

∥∥
L2(Dρ/2)3

6 ρs

2c0

∥∥∥∥ρ−2J̃

( ·
ρ

)∥∥∥∥
2

L2(Dρ\Dρ/2)3
+ c0ρ

−s

2

∥∥E−
ρ

∥∥2
L2(Dρ\Dρ/2)3

+ ρ

2c0

∥∥∥∥ρ−2J̃

( ·
ρ

)∥∥∥∥
2

L2(Dρ/2)3
+ c0ρ

−1

2

∥∥E−
ρ

∥∥2
L2(Dρ/2)3

= ρs−1

2c0
∥J̃∥2

L2(D\D1/2)
+ c0ρ

−s

2

∥∥E−
ρ

∥∥2
L2(Dρ\Dρ/2)3

+ 1
2c0

∥J̃∥2
L2(D1/2)3 + c0ρ

−s

2

∥∥E−
ρ

∥∥2
L2(Dρ\Dρ/2)3 , (3.29)
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where the two terms involving E−
ρ can be estimated by using (3.28)–(3.29) as follows

c0ρ
−s

2

∥∥E−
ρ

∥∥2
L2(Dρ\Dρ/2)3 + c0ρ

−1

2

∥∥E−
ρ

∥∥2
L2(Dρ/2)3

6
{∥∥ν ∧ E+

ρ

∥∥
TH−1/2

Div (∂BR)

∥∥Λ
(
ν ∧ E+

ρ

)∥∥
TH−1/2

Div (∂BR)
+

∥∥ν ∧ Ei
∥∥

TH−1/2
Div (∂BR)

∥∥Λ
(
ν ∧ E+

ρ

)∥∥
TH−1/2

Div (∂BR)

+
∥∥ν ∧ Hi

∥∥
TH−1/2

Div (∂BR)

∥∥ν ∧ E+
ρ

∥∥
TH−1/2

Div (∂BR)

}
+ ρs−1

2c0
∥J̃∥2

L2(D\D1/2)
+ 1

2c0
∥J̃∥2

L2(D1/2)3, (3.30)

which, along with (3.28), implies (3.27). ✷

For our subsequent analysis, we need some estimates (Lemma 3.5) for the traces of the solutions (Eρ,Hρ) to the
system (3.3). To the purpose we first establish an important auxiliary Sobolev extension result.

Lemma 3.4. For any φ ∈ H 1/2(∂D)3, there exists U ∈ H 2(Ω)3 such that

1. ν ∧ U = 0 on ∂D,
2. ν ∧ (ν ∧ (∇ ∧ U)) = ν ∧ (ν ∧ φ) on ∂D,
3. ∥U∥H 2(D)3 6 C∥φ∥H 1/2(∂D)3 with C being a constant depending only on D,
4. U = 0 in D1/2.

Proof. First, we let (V ,p) ∈ H 1(D)3 ∧ L2(D) be the solution to the following Stokes system (cf. [12])
{−2V + ∇p = 0 in D,

Div V = 0 in D,

V = ν ∧ (ν ∧ φ) on ∂D.
(3.31)

Moreover, there exists a positive constant C depending only on D such that

∥V ∥H 1(D)3 6 C∥φ∥H 1/2(∂D)3 . (3.32)

Next, we introduce the following auxiliary system
⎧
⎪⎨

⎪⎩

∇ ∧ (∇ ∧ U) = ∇ ∧ V in D,

Div U = 0 in D,

ν · U = 0 on ∂D,

ν ∧ U = 0 on ∂D.

(3.33)

We know from [15, Section 1.5] that there exists a solution U ∈ H 2(D)3 to the system (3.33) and it holds for some
positive constant C depending only on D that

∥U∥H 2(D)3 6 C∥∇ ∧ V ∥L2(Ω)3 . (3.34)

We shall show ∇ ∧ U = V . To that end, we first note that (cf. [13] and [16])

ν · (∇ ∧ U) = −Div(ν ∧ U) = 0 on ∂D. (3.35)

But it follows from [40, Theorem 3.37] that

∇ ∧ (∇ ∧ U − V ) = 0 in D,

so there exists a u ∈ H 1(D) such that

∇ ∧ U − V = ∇u in D. (3.36)

Clearly, we also have u ∈ H 2(D). Then by taking the divergence of both sides of (3.36),

2u = 0 in D. (3.37)

On the other hand, by taking the inner-product of both sides of (3.36) with ν, we deduce
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∂u

∂ν
= ν · (∇ ∧ U) − ν · V = 0 on ∂D,

which together with (3.37) immediately implies ∇u = 0 in D. Therefore it follows from (3.36) that

∇ ∧ U = V in D. (3.38)

By (3.31) and (3.38), we see ν ∧ (ν ∧ (∇ ∧ U)) = ν ∧ (ν ∧ V ) = ν ∧ (ν ∧ φ) on ∂D, which, along with (3.33) and
(3.34), indicates readily that U fulfills the first 3 requirements of the extension function stated in the lemma. In order
for U to also meet Condition (iv), we can multiply U by a properly selected smooth cut-off function χ that vanishes
in D1/2 and takes values 1 near ∂D, then χU will meet all the desired 4 conditions. ✷

Lemma 3.5. The following estimate holds for the solutions (Eρ,Hρ) to the system (3.3):
∥∥(

ν ∧ E−
ρ

)
(ρ·)

∥∥
TH−1/2(∂D)

6 Cρ
ζ1
2 −2{∥∥ν ∧ E+

ρ

∥∥1/2

TH−1/2
Div (∂BR)

∥∥Λ
(
ν ∧ E+

ρ

)∥∥1/2

TH−1/2
Div (∂BR)

+
∥∥ν ∧ Ei

∥∥1/2

TH−1/2
Div (∂BR)

∥∥Λ
(
ν ∧ E+

ρ

)∥∥1/2

TH−1/2
Div (∂BR)

+
∥∥ν ∧ Hi

∥∥1/2

TH−1/2
Div (∂BR)

∥∥ν ∧ E+
ρ

∥∥1/2

TH−1/2
Div (∂BR)

}

+ Cρ
ζ1
2 −2∥J̃∥L2(D1/2)3 + Cρζ2−2∥J̃∥L2(D\D1/2)3 , (3.39)

where ζ1 and ζ2 are given in (2.12)–(2.13), and C is a positive constant dependent only on D, Ω and c0 in (3.8), but
independent of Ei , Hi , J̃ and ρ.

Proof. It suffices to show that the same estimate in (3.39) holds for ∥(ν ∧ E−
ρ )(ρ ·)∥H−1/2(∂D)3 . We shall make use of

the following duality identity

∥∥(
ν ∧ E−

ρ

)
(ρ·)

∥∥
H−1/2(∂D)3 = sup

∥φ∥
H1/2(∂Ω)361

∣∣∣∣

∫

∂D

(
ν ∧ E−

ρ

)
(ρx) · φ(x) dsx

∣∣∣∣. (3.40)

For y ∈ Dρ , we let x := y/ρ ∈ D, and

E(x) := E−
ρ (ρx) = E−

ρ (y), H(x) := H−
ρ (ρx) = H−

ρ (y).

Using Lemma 3.4, there exists a U ∈ H 2(D)3 for any φ ∈ H 1/2(∂D)3 such that Conditions (i)–(iv) in Lemma 3.4 are
satisfied. Using (2.8) and this extension function U and its properties, we can compute as follows:

∫

∂D

(
ν ∧ E−

ρ

)
(ρx) · φ(x) dsx

= −
∫

∂D

η−1(ν ∧ E)(x) ·
(
ν ∧

(
ν ∧

(
γ −1∇ ∧ U

)))
(x) dsx

=
∫

∂D

(
ν ∧

(
γ −1∇ ∧ U

))
(x) · η−1E(x)dsx −

∫

∂D

(
ν ∧

(
γ −1∇ ∧ E

))
(x) · η−1U(x)dsx

=
∫

D

(
∇ ∧

(
γ −1∇ ∧ U

))
(x) · η−1E(x)dx −

∫

D

(
∇ ∧

(
γ −1∇ ∧ E

))
(x) · η−1U(x)dx. (3.41)

On the other hand, for y ∈ Dρ\Dρ/2 it follows from (2.6) and (3.4) that

∇y ∧ E−
ρ (y) = iωµl(y)H−

ρ (y),

∇y ∧ H−
ρ (y) = −iω

(
εl (y) + i

σl(y)

ω

)
E−

ρ (y) + J (y). (3.42)

Then it is straightforward to verify for x ∈ D\D1/2 that
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∇x ∧ E(x) = iωρ1−tγH(x),

∇x ∧ H(x) = −iω

(
ρ1−rα(x) + iρ1−s β(x)

ω

)
E(x) + ρ−1J̃ (x), (3.43)

and

∇x ∧
(
γ −1(x)∇x ∧ E(x)

)
= ω2

(
ρ2−t−rα(x) + iρ2−t−s β(x)

ω

)
E(x) + iωρ−t J̃ (x). (3.44)

By combining (3.41) with (3.44), we obtain
∫

∂D

(
ν ∧ E−

ρ

)
(ρx) · φ(x) dsx

= η−1
∫

D\D1/2

[(
∇ ∧

(
γ −1∇ ∧ U

))
(x) − ω2

(
ρ2−t−rα(x) + iρ2−t−s β(x)

ω

)
U(x)

]
· E(x)dx

− iωη−1ρ−t

∫

D\D1/2

J̃ (x) · U(x)dx. (3.45)

This immediately yields
∣∣∣∣

∫

∂D

(
ν ∧ E−

ρ

)
(ρx) · φ(x)

∣∣∣∣ 6 Cρθ∥E∥L2(D\D1/2)
∥U∥H 2(D\D1/2)

+ Cρ−t∥J̃∥L2(D\D1/2)
∥U∥H 2(D\D1/2)

6 C
(
ρ−3/2+θ

∥∥E−
ρ

∥∥
L2(Dρ\Dρ/2)

+ ρ−t∥J̃∥L2(D\D1/2)

)
∥φ∥H 1/2(∂D)3, (3.46)

where θ = min(0,2 − t − r,2 − t − s), and C is a positive constant depending on α, β , γ , ω and D, but independent
of φ, J̃ , E−

ρ , ρ. Then by (3.40) we know from (3.46) that
∥∥(

ν ∧ E−
ρ

)
(ρ·)

∥∥
H−1/2(∂D)3 6 C

(
ρ−3/2+θ

∥∥E−
ρ

∥∥
L2(Dρ\Dρ/2)3 + ρ−t∥J̃∥L2(D\D1/2)3

)
.

Finally, by means of the estimates (3.2) and (3.27) we can directly show the existence of two generic constants
C1 and C2 such that

∥∥(
ν ∧ E−

ρ

)
(ρ ·)

∥∥
H−1/2(∂D)3 6 C1ρ

−3/2+θ
{
ρs/2[∥∥ν ∧ E+

ρ

∥∥
TH−1/2

Div (∂BR)

∥∥Λ
(
ν ∧ E+

ρ

)∥∥
TH−1/2

Div (∂BR)

+
∥∥ν ∧ Ei

∥∥
TH−1/2

Div (∂BR)

∥∥Λ
(
ν ∧ E+

ρ

)∥∥
TH−1/2

Div (∂BR)

+
∥∥ν ∧ Hi

∥∥
TH−1/2

Div (∂BR)

∥∥ν ∧ E+
ρ

∥∥
TH−1/2

Div (∂BR)

]1/2

+ ρ(2s−1)/2∥J̃∥L2(D\D1/2)3 + ρs/2∥J̃∥L2(D1/2)3
}

+ ρ−t∥J̃∥L2(D\D1/2)3

6 C2ρ
s/2−3/2+θ

{∥∥ν ∧ E+
ρ

∥∥1/2

TH−1/2
Div (∂BR)

∥∥Λ
(
ν ∧ E+

ρ

)∥∥1/2

TH−1/2
Div (∂BR)

+
∥∥ν ∧ Ei

∥∥1/2

TH−1/2
Div (∂BR)

∥∥Λ
(
ν ∧ E+

ρ

)∥∥1/2

TH−1/2
Div (∂BR)

+
∥∥ν ∧ Hi

∥∥1/2

TH−1/2
Div (∂BR)

∥∥ν ∧ E+
ρ

∥∥1/2

TH−1/2
Div (∂BR)

}

+ C2
(
ρ(2s−1)/2−3/2+θ + ρ−t

)
∥J̃∥L2(D\D1/2)

+ C2ρ
s/2−3/2+θ∥J̃∥L2(D1/2)

,

which proves (3.39) with

ζ1 = 2
(

2 + s

2
− 3

2
+ θ

)
= min

(
s + 1, s + 5 − 2(t + r),5 − 2t − s

)
,

ζ2 = 2 + min
(

2s − 1
2

− 3
2

+ θ,−t

)
= min(s, s + 2 − t − r,2 − t). ✷
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Lemma 3.6. For τ ∈ R+, let Eτ ,Hτ ∈ Hloc(∇∧;R3\Dτ ) be the solutions to the following scattering problem:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∇ ∧ E+
τ − iωµ0H

+
τ = 0 in R3\Dτ ,

∇ ∧ H+
τ + iωε0E

+
τ = 0 in R3\Dτ ,

ν ∧ E+
τ = ψ ∈ TH−1/2

Div (∂Dτ ) on ∂Dτ ,

lim
|x|→∞

|x|
∣∣∣∣
(
∇ ∧ E+

τ

)
(x) ∧ x

|x| − iωE+
τ (x)

∣∣∣∣ = 0.

(3.47)

Then there exists τ0 ∈ R+ such that the following estimate holds for τ < τ0,

∥ν ∧ Eτ∥TH−1/2
Div (∂BR)

6 Cτ 2∥∥ψ(τ ·)
∥∥

H−1/2(∂D)3 . (3.48)

Moreover, if ψ(x) = Ei(x) is the solution to (1.4) it holds that

∥ν ∧ Eτ∥TH−1/2
Div (∂BR)

6 Cτ 3∥∥ν ∧ Ei
∥∥

TH−1/2
Div (∂BR)

. (3.49)

The constants C in (3.48)–(3.49) are generic, depending only on R, ω, τ0 and D.

Proof. The proof follows a natural modification of the estimates derived in [11, Section 3]. ✷

Remark 3.1. For the results in Lemma 3.6, we would like to mention some closely related studies on the scattering
estimates due to small EM scatterers in [8,10], and on the low-frequency asymptotics of EM scattering in [9,18,38,41].

We are now ready to prove the main result of this work, Theorem 2.1. For the sake of exposition, we refer to the
system (3.3) as the scattering problem in the virtual space and denote by A

ρ
∞(x̂) := A∞(x̂;Ei, (Ω; ερ,µρ,σρ), J )

the corresponding scattering amplitude. Noting that mapping F (see (2.2)) is identity outside Ω , we know (Eρ,Hρ) =
(Ẽρ, H̃ρ) in R3\Ω , and hence

A
ρ
∞

(
x̂;Ei

)
= Ã

ρ
∞

(
x̂;Ei

)
, x̂ ∈ S2. (3.50)

Using these relations, it is easy to see that Theorem 2.1 is a direct consequence of the following theorem:

Theorem 3.1. Let (R3; ε,µ,σ ) be the EM medium described in (3.5)–(3.7), and J be the current density given in (3.4),
satisfying (3.8), and A

ρ
∞(x̂) be the scattering amplitude corresponding to E+

ρ in (3.3). Then there exists a positive
constant ρ0 such that the following estimate holds for ρ < ρ0,

∣∣Aρ
∞

(
x̂;Ei

)∣∣ 6 C
(
ρmin(ζ1,3)

∥∥Ei
∥∥

H(∇∧;Ω)
+ ρ

ζ1
2 ∥J̃∥L2(D1/2)3 + ρζ2∥J̃∥L2(D\D1/2)3

)
, (3.51)

where ζ1 and ζ2 are given in (2.12)–(2.13), and C is a positive constant depending only on α, β , γ , ω, c0 in (3.8), C0
in (2.7) and Ω,D, but independent of ρ, r , s, t and εa , µa , σa , J̃ , Ei .

Proof. Let E+
1 , H+

1 ∈ Hloc(∇∧;R3\Dρ) and E+
2 , H+

2 ∈ Hloc(∇∧;R3\Dρ) be the solutions to the following two
Maxwell scattering systems respectively,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∇ ∧ E+
1 − iωµ0H

+
1 = 0 in R3\Dρ,

∇ ∧ H+
1 + iωε0E

+
1 = 0 in R3\Dρ,

ν ∧ E+
1 = ν ∧ Eρ ∈ TH−1/2

Div (∂Dρ) on ∂Dρ,

lim
|x|→+∞

|x|
∣∣∣∣
(
∇ ∧ E+

1

)
(x) ∧ x

|x| − iωE+
1 (x)

∣∣∣∣ = 0,

(3.52)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∇ ∧ E+
2 − iωµ0H

+
2 = 0 in R3\Dρ,

∇ ∧ H+
2 + iωε0E

+
2 = 0 in R3\Dρ,

ν ∧ E+
2 = ν ∧ Ei ∈ TH−1/2

Div (∂Dρ) on ∂Dρ,

lim
|x|→+∞

|x|
∣∣∣∣
(
∇ ∧ E+

2

)
(x) ∧ x

|x| − iωE+
2 (x)

∣∣∣∣ = 0.

(3.53)
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It is easy to see that

E+
ρ = E+

1 − E+
2 in R3\Dρ . (3.54)

By taking τ = ρ in Lemma 3.6 and using Lemma 3.5, we have
∥∥ν ∧ E+

ρ

∥∥
TH−1/2(∂BR)

6 C1ρ
ζ1
2
{∥∥ν ∧ E+

ρ

∥∥1/2

TH−1/2
Div (∂BR)

∥∥Λ
(
ν ∧ E+

ρ

)∥∥1/2

TH−1/2
Div (∂BR)

+
∥∥ν ∧ Ei

∥∥1/2

TH−1/2
Div (∂BR)

∥∥Λ
(
ν ∧ E+

ρ

)∥∥1/2

TH−1/2
Div (∂BR)

+
∥∥ν ∧ Hi∥1/2

TH−1/2
Div (∂BR)

∥∥ν ∧ E+
ρ ∥1/2

TH−1/2
Div (∂BR)

}

+ C1ρ
3∥∥ν ∧ Ei

∥∥
TH−1/2

Div (∂BR)
+ C1ρ

ζ1
2 ∥J̃∥L2(D1/2)3 + C1ρ

ζ2∥J̃∥L2(D\D1/2)3 . (3.55)

In the sequel, we let

∥Λ∥L(TH−1/2(∂BR),TH−1/2(∂BR)) 6 ϵ0. (3.56)

Then it follows from (3.55) and (3.56) that
∥∥ν ∧ E+

ρ

∥∥
TH−1/2(∂BR)

6 C1ϵ0ρ
ζ1
2
∥∥ν ∧ E+

ρ

∥∥
TH−1/2(∂BR)

+ C2
1ϵ0ρ

ζ1
∥∥ν ∧ Ei

∥∥
TH−1/2

Div (∂BR)

+ 1
4

∥∥ν ∧ E+
ρ

∥∥
TH−1/2(∂BR)

+ C2
1ρζ1

∥∥ν ∧ Hi
∥∥

TH−1/2(∂BR)

+ 1
4

∥∥ν ∧ E+
ρ

∥∥
TH−1/2(∂BR)

+ C1ρ
3∥∥ν ∧ Ei

∥∥
TH−1/2

Div (∂BR)

+ C1ρ
ζ1
2 ∥J̃∥L2(D1/2)3 + C1ρ

ζ2∥J̃∥L2(D\D1/2)3 . (3.57)

By taking ρ0 ∈ R+ to be sufficiently small such that C1ϵ0ρ
ζ1/2 < 1/4, then the first, third and fifth terms in the RHS

of estimate (3.57) can be absorbed by the LHS, leading to the existence of a constant C2 > 0 such that
∥∥ν ∧ E+

ρ

∥∥
TH−1/2(∂BR)

6 C2ρ
ζ1

(∥∥ν ∧ Ei
∥∥

TH−1/2(∂BR)
+

∥∥ν ∧ Hi
∥∥

TH−1/2(∂BR)

)

+ C2ρ
3∥∥ν ∧ Ei

∥∥
T H

−1/2
Div (∂BR)

+ C1ρ
ζ1
2 ∥J̃∥L2(D1/2)3 + C1ρ

ζ2∥J̃∥L2(D\D1/2)3 . (3.58)

We can directly verify that Ei and Hi satisfies the vector-valued Helmholtz equations

2Ei + ω2Ei = 0, 2Hi + ω2Hi = 0 in Ω,

then obtain by the interior estimates for elliptic equations that
∥∥ν ∧ Ei

∥∥
TH−1/2

Div (∂BR)
+

∥∥ν ∧ Hi
∥∥

TH−1/2
Div (∂BR)

6 C3
(∥∥Ei

∥∥
H(∇∧;BR)

+
∥∥Hi

∥∥
H(∇∧;BR)

)

6 C4
(∥∥Ei

∥∥
L2(Ω)

+
∥∥Hi

∥∥
L2(Ω)

)

6 C5
∥∥Ei

∥∥
H(∇∧;Ω)

, (3.59)

where C3,C4 and C5 are generic positive constants depending only on R, Ω and ω. By combining (3.58) and (3.59),
one readily has that

∥∥ν ∧ E+
ρ

∥∥
TH−1/2(∂BR)

6 C6
(
ρmin(ζ1,3)

∥∥Ei
∥∥

H(∇∧;Ω)
+ ρ

ζ1
2 ∥J̃∥L2(D1/2)3 + ρζ2∥J̃∥L2(D\D1/2)3

)
. (3.60)

Moreover, we know by (3.56) that

∥∥ν ∧ H+
ρ

∥∥
TH−1/2(∂BR)

6 C6ϵ0
(
ρmin(ζ1,3)

∥∥Ei
∥∥

H(∇∧;Ω)
+ ρ

ζ1
2 ∥J̃∥L2(D1/2)3 + ρζ2∥J̃∥L2(D\D1/2)3

)
. (3.61)
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Now the desired estimate (3.51) follows directly from (3.60)–(3.61) and the following integral representation
(cf. [16]):

A
ρ
∞(x̂) = iω

4π
x̂ ∧

∫

∂BR

{
ν(y) ∧ E+

ρ (y) + (ν(y) ∧ H+
ρ (y) ∧ x̂

}
e−iωx̂·y dsy. ✷ (3.62)
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