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In this paper, we develop a novel method of reconstructing acoustic obstacles in R2,
which follows a similar spirit of the linear sampling method originated by Colton and
Kirsch. The reconstruction scheme makes use of the near-field measurements encoded
into the boundary Dirichlet-to-Neumann map or the Neumann-to-Dirichlet map. Both
the plane waves and cylindrical waves are shown to meet the reconstruction purpose.
Rigorous mathematical justification of the reconstruction scheme is established. The
mapping properties of the newly introduced function operators involved in the re-
construction scheme are established. These results are of significant mathematical
interests for their own sake. Moreover, due to the distinct properties of the function
operators, the indictor function in the proposed reconstruction scheme exhibits com-
pletely different behaviors from those having been established for the indictor function
in the original linear sampling method for inverse scattering problems. Numerical ex-
periments are presented to illustrate the effectiveness of the proposed reconstruction
scheme. C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4751282]

I. INTRODUCTION

This work is concerned with the inverse problem of imaging obstacles located in the homo-
geneous space by acoustic wave measurements. Consider an impenetrable scatterer D, which is
assumed to be the open complement of an unbounded domain of C2 class in R2. The scatterer is
allowed to have more than one (but finitely many) obstacle component. The time-harmonic wave
propagation in R2\D̄ is governed by the celebrated Helmholtz equation

(� + k2)u = 0 in R2\D̄, (1)

where u represents the pressure of the wave. On the boundary ∂D of the obstacle, the wave exhibits
various behaviors depending on the physical properties of the underlying obstacle. We have u = 0
on ∂D for a sound-softD, ∂u/∂ν = 0 on ∂D for a sound-hard D, and ∂u/∂ν + iλu = 0 on ∂D for a
scatterer D of impedance type. Here ν is the exterior unit normal to ∂D and λ ∈ C1(∂D) is a positive
function. We shall write

B(u) = 0 on ∂ D (2)
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for either of the aforementioned three boundary conditions or the mixed type. We would like to
stress that the reconstruction method developed in the present paper is independent of the specific
boundary condition. However, for the ease of exposition we stick mostly to Dirichlet or Neumann
boundary conditions in our subsequent discussions.

In non-invasive probing, one intends to determine the target obstacle D by the knowledge of
the waves away from the object. This inverse problem forms the basis of many areas of science
and technology; see, e.g., Refs. 2, 7, 19, 28, and 29 and the references therein. There are two types
of wave measurements that have been widely employed and investigated in the literature for this
inverse problem: the scattering measurement encoded into the far-field pattern, and the boundary
measurement encoded into the Dirichlet-to-Neumann (DtN) or Neumann-to-Dirichlet (NtD) map.
Correspondingly, one would consider either the inverse scattering problem or the inverse boundary
value problem. Many reconstruction schemes have been developed in different settings, among
which we would like to mention two: the linear sampling method originated from Colton and Kirsch
(see, e.g., Ref. 18) and the enclosure method due to Ikehata (see, e.g., Ref. 26, 27, and 25). These
two schemes have received significant attention in the last decade due to their qualitative aspects.
Particularly, these methods require no a priori knowledge of the underlying target obstacles. This
is of essential importance from a practical viewpoint. There are many developments along this line;
see, e.g., Refs. 6, 10, 14, 20–22, 24, 29–31, and 33–35 and the references therein.

In this paper, we are mainly interested in the inverse boundary value problem by using the
boundary measurements for the reconstructing unknown obstacles. We would have more choices on
the probing waves other than planar waves. To that end, we let � be an artificial domain containing
D such that �\D̄ is connected. It is assumed that � is of class C2 and the origin belongs to �. For the
Helmholtz equations (1) and (2) confined over �\D̄, we impose the following boundary condition
on the exterior boundary:

u = f ∈ H 1/2(∂�) on ∂�. (3)

It is assumed that 0 is not an eigenvalue to the problems (1)–(3). Hence, we have a well-defined
Dirichlet-to-Neumann map �D defined as

�D( f ) = ∂u

∂ν

∣∣∣∣
∂�

, (4)

where u ∈ H 1(�\D̄) is the unique solution to (1)–(3) and ν denotes the exterior unit normal to
∂�. The method we shall develop is to reconstruct D from the knowledge of �D. Physically, f is
the acoustic pressure injected on ∂�, whereas �D(f) is the corresponding acoustic flux measured
on ∂�. For our reconstruction scheme, the inputs could be either planar waves or cylindrical waves
depending on a family of parameters y ∈ ∂�̃, where �̃ is a bounded domain in R2 that one could
flexibly choose for practical purpose. We shall specify the probing waves in more details in the
subsequent discussion. The crucial ingredient in our study is to introduce the following novel first
kind integral equation:∫

∂�̃

(�D − �0)u(x ; y)g(y)ds(y) = ∂G(x, z)

∂ν(x)
, x ∈ ∂�, z ∈ �, (5)

where u(x; y) is a class of solutions to the Helmholtz equation (1) depending on the parameters
y ∈ ∂�̃, �0 stands for the DtN map without the inclusion D, and G(x, z) is a Green’s function for
the Helmholtz equation in � with a vanishing Dirichlet boundary value on ∂�. We shall show that
the solution g(y) to (5) exhibits different behaviors depending on whether z belongs to the interior or
exterior of D. Therefore, we could make use of g as an indicator function to identify D. The idea of
using an indicator function to recover the unknown obstacle has been essentially implemented in the
linear sampling method originated in Ref. 18. As we mentioned earlier, there are a lot of developments
along this line, but mostly based on far-field measurements corresponding to planar incident waves.
There are relatively less studies based on the near-field data following the linear sampling spirit, and
we refer to Ref. 17 for a near-field reconstruction method by using the Cauchy data and by combining
the linear sampling method and the reciprocal gap functional, where under consideration is a Cauchy
problem for acoustic scattering. In order to derive the indicating behaviors of the function g in (5),
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we introduce some critical boundary operators and establish the corresponding mapping properties,
which are of important mathematical interests for their own sake. Due to the distinct properties
of the newly introduced boundary operators, the indictor function in the proposed reconstruction
scheme exhibits completely different behaviors from those having been established for the indictor
function in the linear sampling method for inverse scattering problems. Here, we would like to
emphasize that one major distinction is that the boundary operator defining our method lacks the
denseness property as that for the far-field operator defining the linear sampling method. It is also
worthy noting that the DtN map has been widely adopted in various inverse problems. For example,
in electric impedance tomography (EIT), the DtN map is the so-called current-to-flux map (see,
e.g., Refs. 8, 36, and 37 for comprehensive surveys), and our method developed in the current work
could be modified to the reconstruction of the supports of electric inclusions from current-to-flux
measurements. However, the EIT problem is harder due to its strong instability, and we refer to
Ref. 5 and the references therein for some interesting results on this topic. The DtN map is also
used in a very different manner in the obstacle reconstructions associated with different inverse
problems, for instance, in the enclosure method,25–27, 33 where the sources are generated by the more
complicated complex geometric optics (CGO) waves.

Alternatively, our method works also with the Neumann-to-Dirichlet map. Actually, for the
Helmholtz equations (1) and (2) confined over �\D̄, one imposes the following boundary condition
on the exterior boundary:

∂u

∂ν
= f ∈ H−1/2(∂�) on ∂�. (6)

Again we assume that 0 is not an eigenvalue to the problems (1)–(3), then the NtD map ϒD is defined
by

ϒD( f ) = u|∂�, (7)

where u ∈ H 1(�\D̄) is the unique solution to (1), (2), and (6). The counterpart to (5) is given by∫
∂�̃

(ϒD − ϒ0)u(x ; y)g(y)ds(y) = G N (x, z), x ∈ ∂�, z ∈ �, (8)

where ϒ0 is the NtD map without the inclusion D, and GN(x, z) is a Green’s function for the
Helmholtz equation on � with a vanishing Neumann boundary value on ∂�.

The rest of the paper is organized as follows. We develop our reconstruction method based on
the DtN map in Sec. II, and show how to modify the reconstruction scheme for the NtD map in
Sec. III. Section IV is devoted to the derivation of the explicit forms of Green’s functions implemented
in our method when � is a disk. We shall conduct extensive numerical experiments to illustrate the
effectiveness of the proposed method in Sec. V, and conclude the work in Sec. VI.

II. RECONSTRUCTION BY THE DtN MAP

In this section, we develop our reconstruction scheme based on the DtN map using the near-field
flux measurements. The discussion will be concurrent for both plane waves and cylindrical waves.
We start with the plane wave of the form:

w(x, y) = eikx ·y, x ∈ R2 , y ∈ S1, (9)

where S1 is the unit circle in R2, and its corresponding (planar) Herglotz wave function

(Hg)(x) := wg(x) =
∫
S1

eikx ·y g(y)ds(y), x ∈ R2, (10)

where g(y) ∈ L2(S1). We also define

Up :=
{
wg(x) | wg(x) =

∫
S1

eikx ·y g(y)ds(y), g(y) ∈ L2(S1)

}
. (11)
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In two dimensions, the cylindrical waves (cf. Refs. 12 and 13) are of the form

w(x, y) = Jn(k|x − y|)einφ̂ , x ∈ R2, n ∈ Z, (12)

where Jn(t), t ∈ R is the nth order Bessel function, and in polar coordinates, y = |y|eiφ′ ∈ ∂�,
x = |x |eiφ ∈ R2, x − y = |x − y|ei φ̂ . We shall make use of the plane wave (9) or the cylindrical
wave (12) as the probing input for our reconstruction scheme; namely, in (3) and (6), f and g would
be w(x, y)|∂� and ∂w(x,y)

∂ν
|∂�, respectively, with w being given either in (9) or in (12). It is noted that

according to our earlier notation, the parameter set ∂�̃ would be S1 for the plane waves and ∂� for
the cylindrical waves, and this should be clear in the context of our subsequent study. Define the
Bessel-Herglotz wave function as follows:

(Bg)(x) := wg(x) =
∫

∂�

Jn(k|x − y|)einφ̂g(y)ds(y), x ∈ R2, (13)

where g(y) ∈ L2(∂�). Similar to (11), we introduce

Ub :=
{
wg(x) | wg(x) =

∫
∂�

Jn(k|x − y|)einφ̂g(y)ds(y), g(y) ∈ L2(∂�)

}
. (14)

In light of the linear superposition of the Helmholtz system, we establish another pair of solutions
to the Helmholtz equation.

Lemma 2.1: Let u(x ; y) ∈ H 1(�\D̄) be the solution to the Helmholtz equations (1)–(3)
associated with the Dirichlet boundary value f (x, y) = w(x, y)|∂� with w(x, y) = eikx ·y or
w(x, y) = Jn(k|x − y|)einφ̂ , y ∈ ∂�̃. Let wg be a Herglotz wave function (planar or Bessel, resp.).
Then the solution to {

(� + k2)u = 0 in �\D̄,

u|∂ D = 0, u|∂� = wg|∂�,
(15)

is given by

ug(x) =
∫

∂�̃

u(x ; y)g(y)ds(y).

The proof of Lemma 2.1 follows directly from the well-posedness and linearity of the involved
boundary value problems. We shall also need the following boundary value problem:{

(� + k2)v(x ; y) = 0 in �\D̄,

v|∂ D = − f (x, y), v|∂� = 0.
(16)

It is easy to see that v(x ; y) = u(x ; y) − w(x, y). Similarly to Lemma 2.1, we have

Lemma 2.2: Let v(x ; y) ∈ H 1(�\D̄) be the solution to the Helmholtz equation (16) associated
with f(x, y) = eikx · y or f (x, y) = Jn(k|x − y|)einφ̂ . Let wg be a Herglotz wave function (planar or
Bessel, resp.). Then the solution to{

(� + k2)v = 0 in �\D̄,

v|∂ D = −wg|∂ D, v|∂� = 0,
(17)

is given by

vg(x) =
∫

∂�̃

v(x ; y)g(y)ds(y).

Since v(x ; y) = u(x ; y) − w(x, y) in �\D̄, we point out the following pivotal relation for our
subsequent discussion:

∂v(x ; y)

∂ν(x)

∣∣∣∣
∂�

= �D( f (x, y)) − �0( f (x, y)). (18)
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Next, we introduce some function spaces:

H 1
�(�\D̄) :={ u ∈ H 1(�\D̄) | (� + k2)u = 0 in �\D̄ and u|∂� = 0 },

H−1/2
� (∂�) :=

{
∂u

∂ν

∣∣∣∣
∂�

| u ∈ H 1
�(�\D̄)

}
,

where the boundary values ∂u
∂ν

|∂� and u|∂� are all understood in the sense of traces. Clearly, H 1
�(�\D̄)

and H−1/2
� (∂�) are both Banach spaces. Define S : L2(∂�̃) → H 1

�(�\D̄) by

Sg(x) :=
∫

∂�̃

v(x ; y)g(y)ds(y) (19)

and L : L2(∂�̃) → H−1/2
� (∂�) by

Lg(x) :=
∫

∂�̃

∂v(x ; y)

∂ν(x)
g(y)ds(y). (20)

By (17), we see Sg(x)|∂ D = −vg(x)|∂ D and Sg(x)|∂� = 0. Also by the definitions of S and L we have
∂Sg

∂ν
(x)

∣∣∣∣
∂�

= Lg(x).

The following theorem plays a key role in the mathematical justification of our proposed
reconstruction scheme.

Theorem 2.3: L : L2(∂�̃) → H−1/2
� (∂�) is a compact linear operator. If k2 is not a Dirichlet

eigenvalue for − �, respectively, in �\D̄, �, and D, then L is injective and has a dense range in
H−1/2

� (∂�).

Remark 2.4: We would like to emphasize that the boundary operator L only has dense range
in H−1/2

� (∂�), which is a subset of H− 1/2(∂�). It is the lack of denseness in H− 1/2(∂�) for the
operator L that will result in some distinct indicating behaviors of the boundary density function g
in (20) (see Theorem 2.6). On the other hand, we would like to note that the mapping properties in
Theorem 2.3 are new in literature and of important mathematical interests for their own sake.

In order to prove Theorem 2.3, we shall need the following crucial lemma.

Lemma 2.5: With respect to the H1/2(∂D)-norm, the traces of (planar or Bessel-) Herglotz wave
functions are dense in the space of the traces of the solutions to the Helmholtz equation on ∂D. Here,
we impose the same assumption on k2 as that in Theorem 2.3.

Proof: For the case with plane waves and the corresponding (planar) Herglotz wave functions,
consider a solution u ∈ H1(D) to the Helmholtz equation �u + k2u = 0 in D. By Theorem 7.3 in
Ref. 29, for every ε > 0, there exists a Herglotz wave function wg such that ‖wg − u‖H 1(D) ≤ ε,
which implies

‖wg − u‖H 1/2(∂ D) ≤ C0‖wg − u‖H 1(D) ≤ C0ε

for some positive constant C0 by the trace theorem, thus proving the desired density.
We next consider the case with cylindrical waves and the corresponding Bessel-Herglotz wave

functions. In fact, we shall show that Ub|∂� is dense in H1/2(∂�) and this implies Ub is dense in
{u ∈ H1(�); (� + k2)u = 0}. In turn, Ub|∂D is dense in the space of traces of the solutions to the
Helmholtz equation on ∂D with respect to the H1/2(∂D)-norm. Clearly, it suffices to show that if ϕ(x)
∈ H− 1/2(∂�) such that∫

∂�

∫
∂�

Jn(k|x − y|)eikφ̂g(y)ds(y)ϕ(x)ds(x) = 0, for ∀g ∈ L2(∂�), (21)

then one must have ϕ(x) = 0. By (21), together with the use of Fubini’s Theorem, we have∫
∂�

Jn(k|x − y|)eikφ̂ϕ(x)ds(x) = 0. (22)
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Set

h(y) =
∫

∂�

Jn(k|x − y|)eikφ̂ϕ(x) ds(x). (23)

Clearly, h(y) is an analytical function in R2 satisfying the Helmholtz equation. By (22), h(y)|∂�

= 0. These, together with our assumption that k2 is not a Dirichlet eigenvalue for − � in �, imply
that h(y) = 0 on �. By analytic continuation, we further see h(y) = 0 in R2. Next, we choose a
sufficiently large central ball of radius R̃, denoted as B(0, R̃), such that � � B(0, R̃) and k2 is not
a Dirichlet eigenvalue for − � in B(0, R̃). We recall the following important expansion of Bessel
function (see formula (D.3) in Appendix D of Ref. 15):

Jn(k|x − y|)einφ̂ =
∞∑

m=−∞
Jm−n(k|y|)Jm(k|x |)eimφ−i(m−n)φ′

. (24)

Plugging (24) into the integral representation (23) of h(y), we have

h(y)|∂ B(0,R̃) =
∞∑

m=−∞

∫
∂�

Jm(k|x |)eimφϕ(x)ds(x)Jm−n(k|R̃|)e−i(m−n)φ′
.

By virtue of h(y)|∂ B(0,R̃) = 0 and Jm−n(k|R̃|) 	= 0, ∀m ∈ Z, together with the fact that the set
{e−i(m−n)φ′

, m ∈ Z} is a basis for L2(∂ B(0, R̃)), we see∫
∂�

Jm(k|x |)eimφϕ(x)ds(x) = 0, ∀m ∈ Z. (25)

Next we shall make use of the following expansion of the Hankel function H (1)
0 (k|x − y|) (cf.

Refs. 15 and 19):

H (1)
0 (k|x − y|) =

∞∑
m=−∞

Jm(k|x |)H (1)
m (k|y|)eimφ′

e−imφ, (26)

where y ∈ R2\B(0, R̃) and x ∈ ∂�. Multiplying H (1)
m (k|y|)eimφ′

to the complex conjugate of Eq.
(25) and summing up for all m ∈ Z, together with the use of (26), we have by straightforward
calculations:

H (y) :=
∫

∂�

�(k|y − x |)ϕ(x)ds(x) = 0 for y ∈ R2\B(0, R̃), (27)

where �(k|y − x |) = i/4H (1)
0 (k|y − x |). By the mapping properties of single layer potential operator

(cf. Ref. 32), we know that H (y) ∈ H 1
loc(R2\∂�) satisfying the Helmholtz equation. Moreover, H(y)

is analytic inR2\�̄, and hence by continuation, we see H(y) = 0 inR2\�̄. In the following, we denote
by γ + and γ − the one-sided trace operators for � and R2\�̄. Again by the mapping properties of
single layer potential operator, we have γ − H(y) = γ + H(y) = 0 on ∂�. Since (� + k2)H(y) = 0
on �, and by our assumption that k2 is not a Dirichlet eigenvalue for − � in �, we see H(y) = 0 on
�. Finally, by the jump properties of the single layer potential operator (cf. Ref. 32), we have

ϕ(x) = γ + ∂ H (y)

∂ν
− γ − ∂ H (y)

∂ν
on ∂�.

Hence ϕ = 0, which completes the proof. �
Proof of Theorem 2.3: We first prove the compactness of the operator L. In the sequel,

a � b means a ≤ Cb with C a generic constant that might change in different estimates but is
fixed and finite in a single relation. By the classic regularity estimate for elliptic equations, we know
for g ∈ L2(∂�̃), Sg ∈ H 2(�\D̄). Hence,

‖Lg‖H 1/2(∂�) = ‖∂Sg/∂ν‖H 1/2(∂�) � ‖Sg‖H 2(�\D̄). (28)

Next, by the well-posedness of the system (17), we know ‖Sg‖H 2(�\D̄) � ‖wg‖H 3/2(∂ D). Hence,

‖Sg‖H 2(�\D̄) � ‖wg‖H 3/2(∂ D) � ‖wg‖H 2(D) � ‖g‖L2(∂�̃). (29)
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By combining (28) and (29), we see

‖Lg‖H 1/2(∂�) � ‖g‖L2(∂�̃).

That is, L maps L2(∂�̃) into H1/2(∂�) boundedly. Hence, L is compact.
Now we show the injectivity of L. Suppose g ∈ L2(∂�̃) and Lg = 0. Clearly, Sg|∂� = 0

and ∂Sg
∂ν

|∂� = Lg = 0. Hence, by the unique continuation, we know Sg = 0 in �\D̄. Therefore,
wg|∂ D = −Sg|∂ D = 0. Then, noting wg is a solution for the Helmholtz equation in H1(D) and k2 is
not a Dirichlet eigenvalue, we see wg = 0 in D. By unique continuation again, we see wg = 0 in R2.
If wg ∈ Up, then by Theorem 3.15 in Ref. 19, g = 0. If wg ∈ Ub, we have

wg(x) =
∫

∂�

Jn(k|x − y|)einφ̂g(y)ds(y) = 0 in R2.

Then, by a completely similar argument to the second part of the proof for Lemma 2.5, we can show
that g = 0.

Finally, we show that L has a dense range in H−1/2
� (∂�). For every ψ ∈ H−1/2

� (∂�), let
u ∈ H 1

�(�\D̄) be such that ∂u
∂ν

|∂� = ψ |∂�. Then by Lemma 2.5, there exists a (planar or Bessel)
Herglotz wave function wg such that for arbitrary small ε > 0, ‖wg − u‖H 1/2(∂ D) ≤ ε. By the well-
posedness of the boundary value problem (17), we see ‖Sg − u‖H 1(�\D̄) � ε. By the trace theorem,
we further have ‖Lg − ψ‖H−1/2(∂�) � ‖Sg − u‖H 1(�\D̄) � ε. This proves Theorem 2.3. �

For any x ∈ �̄ and z ∈ �, let G(x, z) be a Green’s function associated with the Helmholtz
equation with a vanishing Dirichlet value on ∂�. For our reconstruction algorithm developed in the
sequel, we take G(x, z) = �(x, z) − u(x, z), where �(x, z) = i

4 H (1)
0 (k|x − z|) is the fundamental

solution to the operator − � − k2 and u(x, z) satisfies

(� + k2)u(x, z) = 0 in �, u(x, z)|∂� = �(x, z)|∂�, (30)

for any fixed z ∈ �. For the case with � being a central disk, an explicit form of G(x, z) can be
derived in the way demonstrated in Sec. IV. It is clear to see that G(x, z) ∈ H 1

�(�\D̄) if z ∈ D,
which further implies ∂G(x,z)

∂ν(x) |∂� ∈ H−1/2
� (∂�) if z ∈ D.

Now we are ready to present the first main theorem and establish the reconstruction algorithm.
To that end, we introduce the following crucial first kind integral equation for gz ∈ L2(∂�̃):

(Lgz)(x) = ∂G(x, z)

∂ν(x)
, x ∈ ∂�, z ∈ �, (31)

which by (18) is equivalent to∫
∂�̃

(�D − �0)( f (x, y))gz(y)ds(y) = ∂G(x, z)

∂ν(x)
, x ∈ ∂�, z ∈ � . (32)

Theorem 2.6: For gz in (31) or (32), we have

(i) If z ∈ D, then for every ε > 0, there exists gz,ε ∈ L2(∂�̃) such that

‖Lgz,ε(x) − ∂G(x, z)

∂ν(x)
‖H−1/2(∂�) ≤ ε. (33)

Moreover, for every z* ∈ ∂D and every choice of gz,ε ∈ L2(∂�̃) in (33),

lim
z→z∗ ‖gz,ε‖L2(∂�̃) = ∞ and lim

z→z∗ ‖vgz,ε‖H 1(D) = ∞. (34)

(ii) If z ∈ �\D̄, we can solve (31) by the Tikhonov regularization to have a regularized solution
gz,ε in L2(∂�̃), depending on a regularizer ε > 0. That is, gz, ε is the unique solution to the
regularized system: (

ε I + L∗L
)

g = L∗ ∂G(·, z)

∂ν
. (35)
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Moreover, only one of the following two possibilities occurs to the sequence {gz,ε}: either there
exists a sequence εn → 0+ such that

lim
εn→0+

‖Lgz,εn (x) − ∂G(x, z)

∂ν(x)
‖H−1/2(∂�) = 0, (36)

and

lim
εn→0+

‖gz,εn ‖L2(∂�̃) = ∞, (37)

or, there exists a constant C > 0 such that for all ε > 0,

‖Lgz,ε(x) − ∂G(x, z)

∂ν(x)
‖H−1/2(∂�) ≥ C. (38)

Remark 2.7: Part (ii) of Theorem 2.6 tells that the following situation would not happen: there
exists a sequence εn → 0+ such that

lim
εn→0+

‖Lgz,εn (x) − ∂G(x, z)

∂ν(x)
‖H−1/2(∂�) = 0, (39)

and

lim inf
εn→0+

‖gz,εn ‖L2(∂�̃) < ∞. (40)

More precisely, we may interpret it as follows: for any point z lying outside the obstacle, either the
magnitude of its indicator function gz,εn blows up, or the magnitude of the residual Lgz,εn − ∂G(·,z)

∂ν(x)
is bounded from below by a positive constant.

Remark 2.8: By Theorem 2.6, we see that the norm of the function gz cannot completely determine
whether a point lies inside or outside the obstacle D, especially for a point lying outside D, and
one has to make further use of the indicating behaviors of the residual function Lgz − ∂G(x, z)/∂ν.
Since the Tikhonov regularization has been used, we know that the norms of gz and Lgz − ∂G(x,
z)/∂ν are related, but the indicating behaviors of Lgz − ∂G(x, z)/∂ν are due to the lack of denseness
of the operator L as emphasized in Remark 2.4, and this can be seen from the following proof to
Theorem 2.6.

Proof of Theorem 2.6: We first verify (i). For z ∈ D, we obviously have G( · , z)|∂D ∈ H1/2(∂D).
Hence by Lemma 2.5, for any ε > 0 there exists gz,ε ∈ L2(∂�̃) such that

‖vgz,ε − G(·, z)‖H 1/2(∂ D) ≤ ε . (41)

In the rest of the proof, we let C denote a generic positive constant, which may differ at different
estimates but is fixed and finite in a single relation. Since vgz,ε = Sgz,ε on ∂D and G(·, z) ∈ H 1

�(�\D̄),
by the well-posedness of problem (17) we have ‖Sgz,ε − G(·, z)‖H 1(�\D̄) ≤ Cε. This, along with the
trace theorem and the fact that ∂Sg/∂ν = Lg on ∂�, leads to the desired estimate (33).

We next show (34). By the trace theorem again,

‖Sgz,ε − G(·, z)‖H 1/2(∂ D) ≤ C‖Sgz,ε − G(·, z)‖H 1(�\D̄). (42)

Assume contrarily that there exists z* ∈ ∂D, 0 < M < ∞ and a sequence zn → z* such that
‖vn‖H 1(D) ≤ M , where we write vn := vgzn ,ε

. Then by (41) we have

‖G(·, zn)‖H 1/2(∂ D) ≤ ‖G(·, zn) − vn‖H 1/2(∂ D) + ‖vn‖H 1/2(∂ D) ≤ C(ε + M) (43)

for all n > 0. However, noting that G( · , z) has the same singularity as the fundamental solution
�( · , z), we have ‖G(·, zn)‖H 1(U\D̄) → ∞ as n → ∞ for any bounded region U containing D. This
contradicts to (43), thus proves the second statement in (34). The first statement follows directly
from the boundedness of the mapping g �→ vg|D from L2(∂�̃) into H1(D).
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Next, we demonstrate (ii). For a point z ∈ �\D and small ε > 0, we introduce the Tikhonov
functional Jz,ε : L2(∂�̃) → R by

Jz,ε(g) = ‖Lg − ∂G(·, z)

∂ν
‖2

H−1/2(∂�) + ε‖g‖2
L2(∂�̃)

for g ∈ L2(∂�̃). By the classical result on the regularities of solutions to (16) (cf. Ref. 23), we know
the operator L has a continuous kernel and hence L*L is compact from L2(∂�̃) to L2(∂�̃). Moreover,
L*L + εI is positive since L is injective by Theorem 2.3. Therefore, for any ε > 0, there exists a
unique minimizer gz,ε ∈ L2(∂�̃) to functional Jz, ε, which is given by (35). Now it suffices for us
to show that (39) and (40) cannot hold simultaneously. Assume contrarily that both (39) and (40)
are true, then we have a sequence {gz,εn } such that εn → 0+ as n → ∞, and ‖gz,εn ‖L2(∂�̃) ≤ C for
all n and (39) also holds. Then there exists a subsequence gz,εn′ which converges weakly to some
g ∈ L2(∂�̃). By the compactness of L, we have Lgz,εn′ → Lg in H−1/2

� (∂�), which implies Lg(x) =
∂G(x,z)
∂ν(x) |∂� by means of (39). Therefore, we obtain ∂Sg

∂ν
= Lg and Sg(x) = G(x, y) on ∂�. Using

Holmgren’s uniqueness theorem, we see Sg(x) = G(x, z) in a neighborhood of ∂�. By the unique
continuation principle, we further have Sg(x) = G(x, z) in �\(D̄

⋃ {z}). However, this is impossible,
since Sg(x) ∈ H 1(�\D̄) ∪ H 1(�\(D̄

⋃ {z}), but G(x, z) does not belong to H 1(�\(D̄
⋃ {z}) for

z ∈ �\D. This proves (ii), hence completes the proof of Theorem 2.6. �
Theorem 2.6 suggests a procedure to determine if a point z ∈ � lies in D or not. To do so, we

may choose two cut-off values c1, c2 > 0. Then one can first find a Tikhonov regularized solution
gz, ε to (31). If ‖gz,ε‖L2(∂�̃) > c1, we count z ∈\ D; otherwise we further compute the residual Lgz, ε

− ∂G( · , z)/∂ν. If the norm of this residual is less than c2, we count z ∈ D, or z ∈\ D otherwise.
The above discussion leads us to the following numerical reconstruction scheme.

A. Numerical reconstruction scheme (DtN)

Select two cut-off values c1, c2 > 0.

Step 1. Collect the measurement data ∂u(x ;y)
∂ν

on ∂� corresponding to the excitation f(x, y) on
∂� for different y’s .
Step 2. Select a sampling mesh Th over the domain �.
Step 3. For each sampling mesh point z ∈ Th , compute a Tikhonov regularized solution gz, ε

to (31).
Step 4. If ‖gz,ε‖L2(∂�̃) > c1, we count z ∈\ D; otherwise we compute the residual Lgz, ε −
∂G( · , z)/∂ν. If the norm of this residual is less than c2, we count z ∈ D; otherwise we count
z ∈\ D.

III. RECONSTRUCTION BY THE NtD MAP

We proposed a reconstruction scheme of an unknown obstacle in Sec. II A by the DtN map.
Similar ideas work as well for the NtD map. In this section, we present some necessary modifications
for the case with the NtD map. Let u(x ; y) ∈ H 1(�\D̄) be the unique solution to the system:{

(� + k2)u(x ; y) = 0 in �\D̄,

u = 0 on ∂ D; ∂u/∂ν = ∂w(·, y)/∂ν on ∂�,
(44)

where w(x, y) is the (planar or cylindrical) incident wave as introduced in Sec. II. Here it is assumed
that k2 is not a Neumann eigenvalue to − � in � and 0 is not an eigenvalue to the problem (44). We
also set v(x ; y) = u(x ; y) − w(x, y), then v(x ; y) satisfies{

(� + k2)v(x ; y) = 0 in �\D̄,

v = −w(x, y) on ∂ D; ∂v/∂ν = 0 on ∂�.
(45)
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The NtD map associated with (44) is given by

ϒD

(
∂w(x, y)

∂ν

∣∣∣∣
∂�

)
= u(x ; y)|∂�.

When the inclusion D is empty, we shall write ϒD as ϒ0.
Similarly to Lemmas 2.1 and 2.2, we have the following result by linear superposition.

Proposition 3.1: Let u(x; y) and v(x ; y) ∈ H 1(�\D̄) be the solution to (44) and (45), respectively,
associated with w(x, y), and wg be a Herglotz wave function (planar and Bessel resp.). Then the
solutions to the system: {

(� + k2)u(x ; y) = 0 in �\D̄,

u|∂ D = 0, ∂u
∂ν

|∂� = ∂wg

∂ν
|∂�

(46)

and {
(� + k2)v(x ; y) = 0 in �\D̄,

v|∂ D = −wg|∂ D, ∂v
∂ν

|∂� = 0
(47)

are, respectively, given by

ug(x) =
∫

∂�̃

u(x ; y)g(y)ds(y) and vg(x) =
∫

∂�̃

v(x ; y)g(y)ds(y) .

For the subsequent analysis, we introduce the following function spaces:

Ĥ 1
�(�\D̄) :={ u ∈ H 1(�\D̄), (� + k2)u = 0 in �\D̄ and

∂u

∂ν
|∂� = 0 },

Ĥ 1/2
� (∂�) :={ u|∂�; u ∈ Ĥ 1

�(�\D̄) }
and the operator Ŝ : L2(∂�̃) → Ĥ 1/2

� (∂�) defined by

Ŝg(x) := vg(x)|∂� =
∫

∂�̃

v(x ; y)g(y)ds(y)|∂�, (48)

where vg(x) is the solution to (47). Similarly to Theorem 2.3, we have

Theorem 3.2: The operator Ŝ : L2(∂�̃) → Ĥ 1/2
� (∂�) is compact and has a dense range. Fur-

thermore, Ŝ is injective provided that k2 is not a Dirichlet eigenvalue to − � in D and �.

Let G N (x, z), x ∈ �̄, z ∈ �, be a Green’s function for the Helmholtz equation with a homoge-
neous Neumann condition on ∂�. For the convenience, we will take GN(x, z) = �(x, z) − u(x, z),
where �(x, z) is the fundamental solution to − � − k2 for any fixed z, and u(x, z) satisfies

(� + k2)u(x, z) = 0 in �,
u(x, z)

∂ν
= ∂�(x, z)

∂ν
on ∂� (49)

for any fixed z ∈ �. When � is a simple disk, we will derive the explicit expression of GN(x, z) in
Sec. IV.

Now we are ready to present a major theorem of this section, a counterpart to Theorem 2.6
based on the NtD map; and its proof follows the one of Theorem 2.6, with slight modifications. The
governing equation involved in the theorem is now given by

Ŝgz(x) = G N (x, z), x ∈ ∂�, z ∈ �, (50)

or equivalently,∫
∂�̃

(ϒD − ϒ0)(
∂w(x, y)

∂ν

∣∣∣∣
∂�

)gz(y)ds(y) = G N (x, z), x ∈ ∂�, z ∈ �.

Theorem 3.3: For gz in (50), we have
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(i) If z ∈ D, then for every ε > 0 there exists gz, ε to (50) such that

‖Ŝgz,ε(x) − G N (x, z)‖H 1/2(∂�) ≤ ε. (51)

Moreover, for every z* ∈ ∂D and every choice of gz,ε ∈ L2(∂�̃) in (51),

lim
z→z∗ ‖gz,ε‖L2(∂�̃) = ∞ and lim

z→z∗ ‖vgz,ε‖H 1(D) = ∞. (52)

(ii) If z ∈ �\D̄, we can solve (50) by the Tikhonov regularization to have a regularized solution
gz,ε in L2(∂�̃), depending on a regularizer ε. That is, gz, ε is the unique solution to the system:

(ε I + Ŝ∗ Ŝ)g = Ŝ∗G N (·, z). (53)

Moreover, only one of the following two possibilities occurs to the sequence {gz, ε}: either
there exists a sequence εn → 0+ such that

lim
εn→0+

‖Ŝgz,εn (x) − G N (x, z)‖H 1/2(∂�) = 0 (54)

and

lim
εn→0+

‖gz,εn ‖L2(∂�̃) = ∞ , (55)

or, there exists a positive constant C such that for all ε > 0,

‖Ŝgz,ε(x) − G N (x, z)‖H 1/2(∂�) ≥ C. (56)

Similarly to our discussion in Sec. II A for the motivation of the numerical reconstruction
scheme (DtN) by Theorem 2.6, Theorem 3.3 above suggests us the following reconstruction scheme
by using the NtD map.

A. Numerical reconstruction scheme (NtD)

Select two cut-off values c1, c2 > 0.

Step 1. Collect the measurement data u(x; y) on ∂� corresponding to ∂w(x, y)/∂ν on ∂� for
different y’s.

Step 2. Select a sampling mesh Th over the domain �.

Step 3. For each sampling point z ∈ Th , compute a Tikohnov regularized solution gz, ε to
Eq. (50).

Step 4. If ‖gz,ε‖L2(∂�̃) > c1, we count z ∈\ D; otherwise we compute the residual Ŝgz,εn (x) −
G N (x, z). If the norm of this residual is less than c2, we count z ∈ D; otherwise we count
z ∈\ D.

Remark 3.4: If the boundary condition of the obstacle is of general type (2), all the results we
have obtained in Secs. II and III still hold. In particular, we can show similar density for the Herglotz
wave functions (Up or Ub) in H1(�) and similar results to Theorems 2.6 and 3.3.

IV. GREEN’S FUNCTIONS

In our reconstruction schemes developed in Secs. II, III the Green’s functions G(x, z) and GN(x,
z) are needed. It is noted that G and GN can be obtained by solving the Helmholtz equations (30)
and (49), respectively. Clearly, they do not depend on the unknown obstacle D and can be computed
in advance before one starts the reconstruction process. Particularly, when � is a central disk of
radius R, one could derive the explicit forms of those Green’s functions. For this case, it is worthy
noting that due to the positive wave number k, the so-called method of image or reflection does not
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work to construct the Green’s functions from the fundamental solution �(x, z) as it does for the
Laplace equation (see, e.g., Ref. 8). Actually, the explicit form of the Dirichlet–Green’s function
G was derived in Ref. 16 when � is a central disk. But we could not find a convenient literature
on the explicit form of the Neumann–Green’s function GN, and hence in the rest of this section,
we shall give a brief derivation of the explicit forms of both GN and G when � is a central disk of
radius R. Before this, we would like to note that there are some useful identities of Green’s functions
established in Ref. 8 for general shaped domains.

We first recall the fundamental solution �(x, z) = i
4 H (1)

0 (k|x − z|) associated with the
Helmholtz operator − � − k2 and its special representation (cf. Ref. 15):

�(x, z) = i

4

∞∑
n=−∞

Jn(k|z|)H (1)
n (k|x |)ein(φ−φ′), (57)

where |x| > |z| and x = |x|eiφ , z = |z|eiφ′
in polar coordinates. Here H (1)

n (t) is the first kind of Hankel
functions of order n. Noting that GN(x, z) = �(x, z) − u(x, z), where u(x, z) solves (49). Now we
write u(x, z) as

u(x, z) =
∞∑

n=−∞
an Jn(k|x |)einφ. (58)

By direct computations using the boundary condition in (49) and the representation (57) we obtain

an = i H (1)
n

′
(k R)Jn(k|z|)e−inφ′

4Jn
′(k R)

. (59)

Next, we show that u(x, z) in (58) with the corresponding coefficients given by (59) is well-defined
in H1(�). Using the following asymptotic behaviors of Jn(t) and Hn(t) for fixed t and sufficiently
large n (cf. Ref. 1),

Jn(t) ∼ 1√
2πn

· (
et

2n
)n, H (1)

n (t) ∼ −i

√
2√

πn
· (

2n

et
)n, (60)

and the relation Jn
′(t) = 1

2
(Jn−1(t) − Jn+1(t)), H (1)

n
′
(t) = 1

2
(H (1)

n−1(t) − H (1)
n+1(t)), one can verify that

|an Jn(k|x |)| ∼ 1

nπ
· (

|z|
R

)n · (
|x |
R

)n , an Jn
′(k|x |) ∼ 2

πk R
· (

|z|
R

)n · (
|x |
R

)n−1. By further using these

asymptotic results, it is straightforward to show that
∑N

n=−N an Jn(k|x |)einφ converges to u(x, z) in
H1(�) as N → ∞. Hence, the Neumann–Green’s function GN(x, z) is given by

G N (x, z) = �(x, z) −
∞∑

n=−∞

i H (1)
n

′
(k R)Jn(k|z|)e−inφ′

4Jn
′(k R)

Jn(k|x |)einφ, (61)

for |x| > |z| and x = |x|eiφ , z = |z|eiφ′
.

In a similar manner, one can find G(x, z) by solving (30) that

G(x, z) = �(x, y) −
∞∑

n=−∞

i H (1)
n (k R)Jn(k|z|)e−inφ′

4Jn(k R)
Jn(k|x |)einφ, (62)

for |x| > |z| and x = |x|eiφ , z = |z|eiφ′
.

V. NUMERICAL EXPERIMENTS AND DISCUSSIONS

In this section, we present some numerical experiments to illustrate the strength of our proposed
sampling approach developed in Secs. II–IV. For simulation, we choose both the surrounding
medium � and the test domain �̃ as a disk centered at (0, 0) with radius R = 5.5 in R2.

We first list some crucial parameters to be used: k for the wave number, δ for the noise level, d
= (dx, dy)T for unitary incident direction, and c = (cx, cy)T for the object shifting with displacements
cx and cy from the origin.
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We shall test five different scatterers for systems (1) and (2): a unit disk, a kite, a crack, and a
flower-shape scatterer which are denoted by B, K, C, and F, respectively, and a combination of B
and K (at different locations). These scatterers can be parameterized as follows:

Ball: x(t) = (cos t, sin t)T , 0 ≤ t ≤ 2π, (63)

Kite: x(t) = (cos t + 0.65 cos 2t − 0.65, 1.5 sin t)T , 0 ≤ t ≤ 2π. (64)

Crack: x(t) = (t, t)T , −1 ≤ t ≤ 1, (65)

Flower: x(t) = ((1 + 0.2 sin 6t) cos(t), (1 + 0.2 sin 6t) sin(t))T , 0 ≤ t ≤ 2π. (66)

The synthetic near-field data are generated by solving the Helmholtz equation of the direct
problem corresponding to the systems (1) and (2) with isoparametric quadratic finite elements. We
solve the discrete system over a family of increasingly finer meshes over the computational domain
� \ D until the relative error is small, i.e., less than 10− 3, which, compared with the noise level we
added, is negligible and viewed as noise-free.

The synthetic near-field data along the medium boundary � are then subjected pointwise to
uniform random noise, in magnitude as well as in direction, added according to the following
formula:

U = U + δ r1|U | exp(iπ r2) , (67)

where U may be the measurement data from u or ∂u
∂ν

, r1 and r2 are two uniform random numbers, both
ranging from − 1 to 1, and δ represents the noise level. For each mesh point z, the corresponding
integral equation is discretized through the mid-point quadrature rule at the equidistant points on the
test boundary ∂�̃. It is noted that the integral kernel is quite smooth and thus the resulting matrix
after discretization is highly ill-posed with its condition number ranging from 1016 to 1018. Hence
certain regularization in solving the discrete system is necessary. In all our test, the linear system
is solved by using the Tikhonov regularization technique, with the corresponding regularization
parameters determined by the Morozov discrepancy principle.

The measurement data depend on two variables: the observation location x on the medium bound-
ary � and the incident direction d from the unit circle in R2, where we write x = (Rcos (φ), Rsin (φ))T

with φ ∈ [ − π , π ], and d = (cos (θ ), sin (θ ))T with θ ∈ [ − π , π ]. We compute the near-field
measurement data at 100 equidistantly distributed observation points xj = (Rcos φj, Rsin φj)T,
φj = 2jπ /100 − π , j = 1, 2, . . . , 100, corresponding to 100 equidistantly distributed incident
directions dj = (cos θ j, sin θ j)T, θ j = 2jπ /100 − π , j = 1, 2, . . . , 100. We may identify the ob-
servation points and incident directions with the index sequence {1, 2, . . . , 100} and illustrate the
measurement data by the contour plots of the corresponding 100 × 100 matrices as shown in the
following examples. Hereafter, the norms of the indicator function gz and the residual of the integral
equation GN(x, z) − Sgz in the NtD case (or ∂G(x,z)

∂ν(x) − Lgz in the DtN case) are denoted by g-norm
and the res-norm, respectively. Furthermore, these norms are plotted by transformation via 10-based
logarithm for better visualization.

In the examples below, we always show in three columns, the contour plots of g-norm (left
column) and res-norm (middle column) indicators, and two level sets (right column) with selected
cut-off values compared with the true shapes. In the last column, the exact shape is plotted in red.
The level set based on the g-norm indicator is plotted in black, while the other based on the res-norm
one in blue, with the associated cut-off values attached to the curves. From our proposed algorithms,
the interior region of the reconstructed scatterer should be understood as the intersection of the
interior parts enclosed by the respective blue and black curves.

Example 1: Unit disk obstacle B with displacement c = ( − 1.5, − 1.5)T.
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FIG. 1. Sample plots of the real (left) and imaginary (right) parts of the observation data.
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FIG. 2. Reconstruction tests in Example V. (First row) Plane incident wave of wave number k = 1 with the NtD map.
(Second row) Plane incident wave of wave number k = 1 with the DtN map. (Third row) Cylindrical incident wave of order
ν = 1 with the NtD map.
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FIG. 3. Reconstruction tests in Example 2 with data measured with full aperture (Row 1), lower half aperture (Row 2),
quarter aperture in the fourth quadrant (Row 3).

For illustration, we show in Figure 1 the contour plots of a sample near-field measurement data
u with no noise when employing the plane incident wave with k = 1 and the NtD map, namely,
injecting the Neumann data to generate synthetic boundary potential u. Except very few clues like
self-similar patterns and periodicity, it is very hard to envisage the shape of the obstacle. The
inverse problem we are confronted with is to reconstruct the unknown scatterer D from those elusive
plots.

In Figure 2, we presents in three rows the reconstruction tests for different combinations of
types of incident waves and measurement data. The noise level is fixed with δ = 0.01 when using the
NtD map. We add no noise for the test with the DtN map to avoid instability since the computation
of measured Neumann data on the boundary are performed numerically by differentiating locally
the computed potential.

By our proposed linear sampling method (LSM), it clearly shows in Figure 2 that the recon-
structed shapes approximate well the actual disk. It is remarked that since the Tikhonov regularization
and the Morozov discrepancy principle has been used, the g-norm and the res-norm indicators are
related and this is reflected from the similar patterns of contour plots in Columns 1 and 2 of Figure 2.
However, the difference of minutes of contour plots is still observable. In Row 2 of Figure 2, using
the DtN map, we see that the location of the scatterer is well captured by the g-norm indicator, but
the shape determined solely by the g-norm indicator is severely distorted compared with the exact
one. This observation consolidates our prediction in Remark 2.8. Next, by further examining the
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FIG. 4. Reconstruction test in Example 3.

suspicious region using the res-norm indicator, we can successfully rule out some other part where
g-norm does not blow up and recover the fine details of the disk. To put simply, it is more sound to
use two indicators for reconstruction in case that the g-norm indicator fails.

We remark that in our numerical experiment the wavelength is larger than the size of the target
obstacle. For extended targets with more complex geometry, one may combine our method with
some existing techniques, e.g., the multiscale technique developed in Ref. 4, to extract finer details
of the targets by using multi-frequency measurements.

Example 2: Kite obstacle K.

In this example, we test a non-convex kite-shape scatterer by injecting cylindrical incident wave
of order ν = 3 and use the NtD map with noise level δ = 0.01.

For this kite example, we investigate the possibility of using limited data for reconstruction.
We gradually reduce incident angle from (i) full aperture θ ∈ [ − π , π ] to (ii) a half aperture in
the lower half plane θ ∈ [ − π , 0], and further to (iii) a quarter aperture in the fourth quadrant θ ∈
[ − π /2, 0]. In case (ii), the reconstructed object significantly lacks to symmetry as opposed to that
from case (i). More precisely, we see in Row 2 of Figure 3 that the lower wing of the kite is better
reconstructed than its upper one. When the incident angle is further restricted to a quarter aperture,
Figure 3 tells us that only the rough location of the kite and the lower part facing the incident angles
can be reasonably obtained.

Example 3: Crack obstacle C.

We try to detect an unknown crack buried in the medium. As is well known, imaging scatterers
of thin type is quite challenging and has much interest in many practical applications (cf. Ref. 9).
Cylindrical incident wave ν = 3 combined with the NtD map is used with noise level δ = 0.02. In
Figure 4, the reconstruction based on the g-norm indicator has some outliers, which can be effectively
eliminated by the res-norm indicator.
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FIG. 5. Reconstruction test in Example 4.
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FIG. 6. Reconstruction test in Example 5.

Example 4: Flower obstacle F.

We try to reconstruct a six-pedal flower, i.e., an extended object with fine structure on the
boundary (cf. Ref. 3). Except the noise level δ = 0.05, we adopt the same setting as in Example 3.
As can be observed in Figure 5, the reconstructed shape based on the g-norm indicator can locate the
rough location but with poor boundary characterization, while the res-norm indicator can improve
the fine details to some extent and yields better reconstruction by showing more oscillation on the
boundary.

Example 5: A combination of ball B and kite K obstacles with displacement cball = ( − 2, − 2)
and ckite = (2, 2)T.

In this example, we test the multi-component obstacle scattering case with a combination of a
unit ball B centered at ( − 2, − 2)T and a kite K with some displacement at (2, 2)T. Here the plane
incident wave of wave number k = 1 with the NtD map is used with noise level δ = 0.01. Due to
strong multi-scattering interaction, we see in Figure 6, those parts of the identified objects facing each
other are attracted to a certain degree based solely on the g-norm indicator, which cannot separate
the components correctly. Aided with the res-norm indicator, we see that the two components are
successfully separated and their boundaries are recovered much better than those by the g-norm
solely.

VI. CONCLUDING REMARKS

In this work, we have developed a linear sampling-type method for the inverse obstacle scattering
problem using near-fields through the DtN or NtD maps with planar or cylindrical incident waves.
The method is mathematically justified, and numerical experiments are also presented to demonstrate
the effectiveness of the method. We emphasize that the proposed method is basically for qualitative
reconstructions, although we observe from our numerical experiments that some fine aspects of
the underlying obstacles may be captured. However, the method is rather robust with respect to
noise. We would like to mention the interesting work5 for a related study on the resolution and
stability analysis for the EIT problem. Finally, we make an interesting remark on the extreme case
when the boundary on which the measurements are taken goes to infinity. One can easily come to a
reconstruction method using the far-field data by some straightforward analysis and taking x → ∞
in Eq. (5) or (8) which defines the indicator function g. Indeed, if one takes the inputs to be the plane
waves, Eq. (8) will reduce to the original linear sampling method in the infinity case, and we refer to
Refs. 11 and 29 and references therein for extensive numerical results for comparisons. However, as
we emphasized in the Introduction, the indicator function in our proposed scheme exhibits different
behaviors from those indicator functions in the original linear sampling method due to the distinct
mapping properties of the boundary operators involved here.
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