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Abstract

In this paper, we investigate the convergence rate of the Fourier spectral projection methods for
the periodic problem of-dimensional Navier—Stokes equations. Based on some alternative formu-
lations of the Navier—Stokes equations and the related projection methods, the error estimates are
carried out by a global nonlinear error analysis. It simplifies the analysis, relaxes the restriction on
the time step size, weakens the regularity requirements on the genuine solution, and leads to some
improved convergence results. A new correction technique is proposed for improving the accuracy
of the numerical pressure.
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1. Introduction

The projection method was introduced by Chorin [4—6] and Téman [20] as an efficient
algorithm for the numerical solution of Navier—Stokes equations, based on time splitting

* Corresponding author.

E-mail addresseshyguo@guomai.sh.cn (B.Y. Guo), zou@math.cuhk.edu.hk (J. Zou).

1 The work of B.Y. Guo was partially supported by The Special Funds for State Major Basic Research Projects
of China No. G1999032804, The Shanghai Science Foundation No. 00JC14057, The Special Funds for Major
Specialities of Shanghai Education Committee, and by Institute of Mathematical Sciences of CUHK.

2 The work of J. Zou was partially supported by Hong Kong RGC Grants CUHK4292/00P and The State Key
Laboratory of Soft Engineering, Wuhan University, China.

0022-247X/03/$ — see front mattér 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0022-247X(03)00254-3



B.Y. Guo, J. Zou / J. Math. Anal. Appl. 282 (2003) 766-791 767

discretization which decouples the computations of the veld¢ignd the pressurg. At

the first step, an intermediate velocity, is calculated using the momentum equation and
ignoring the incompressible constraint. At the second gfe[is projected into the space of
divergence-free vector fields to get the next updatds ahd P. It saves the computational
cost and preserves the incompressibilitybphysically. The projection method has been
successfully applied to the numerical simulations of incompressible viscous flows, see,
e.g., [2,3,13,14,16,21].

The convergence analysis of the projection method was first studied by Chorin [6]
and Téman [20]. Some results on the convergence rate was obtained by Shen [18,19].
E and Liu [7] investigated the numerical boundary layers caused by the projection method
for two-dimensional semi-periodic Navier—Stokes equations, and provided a technique to
improve the accuracy of the numerical pressure. E and Liu [8] also applied the Godunov—
Ryabenki analysis to the error estimate. Recently, E and Liu [9] studied the projection
method combined with the MAC spatial discretization. For other related work, we refer
to[1,17,22,23].

The purpose of this work is to study the convergence rate of the fully discrete projection
method and to improve the accuracy of the numerical solution by the pressure correction
for the n-dimensional periodic Navier—Stokes equations. The main idea is as follows. We
first derive some alternative formulations of the Navier—Stokes equations and the related
projection schemes. They enable us to derive the error estimates of numerical velocity
and numerical pressure separately. Then, a global nonlinear analysis is utilized to estimate
the convergence rates. In comparison with the most existing analysis, the global nonlinear
analysis enables us to relax the restrictiontohe step in time, and the requirement on
the regularity of the genuine solution. Furthermore, we show that the numerical pressure
of the second-order projection method can be corrected so that it achieves the same con-
vergence rate as the numerical velocity. More precisel2et [—x, 7]" and N be the
number of terms in the Fourier expansions of the numerical velagitgnd the numer-
ical pressurepy. If U € L*°(0, T; H"/?t3(2) N H"(£2)) N H2(0, T; L2($2)) for some
r >n/3 ands > 0, andr = O(N~"/3), then the error ofiy for the first-order projection
method is of the orde® (r + N~"). It is interesting to note thgty andV py have the
errors of the same order ag,, provided thatU and P are a little more regular. More-
over, if U € L®(0, T; H"23(£2) N H" (§2)) N H3(0, T'; L2(£2)) for somer > n/2 and
T = O(N~"*%), then the error ofiy of the second-order projection method by Kim and
Moin [14]is of the ordet0 (t2+ N "), while the corrected numerical pressyig . has the
error of the same order ag; . Finally, for the second-order projection method based on the
pressure increment formulation (see [2,21]), the errors of bgtAnd p are of the same
order O(t2 + N—"). In other words, the numerical pressure is corrected automatically.
The results of this paper indicate that the projection method has more useful features than
those pointed out before. In particular, the numerical pressure of the second-order projec-
tion method based on the pressure increment formulation appears more efficient than other
projection methods.

The rest of the paper is organized as follows. In Section 2, we present the equivalent
formulations for the:-dimensional periodic Navier—Stokes equations, and several Fourier
spectral projection schemes. In Section 3, we discuss the second-order projection method
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(Kim—Moin method). The final section is for the second-order projection method based on
the pressure increment formulation.

2. Alternative formulations of projection methods

Let x = (x1,x2,...,x,)] € R" and 2 = [—x, 7]". Denote byU = (u®,u®@, ...,
u™)T, P, andv > 0 the velocity, the pressure, and the kinetic viscosity, respectively.
U° and f are given functions with the periodt2in all spatial directions an& - U° = 0.

The periodic problem of the Navier—Stokes equations is todirechd P with the period zr
such that

WU -VW+VP—vAU=f, 0<1<T, 2.1)
V.U =0, 0<t<T, '
with U = U? atr = 0. For the uniqueness @, we require that
/de:O, 0<r«T. (2.2)

2

We first derive an alternative formulation of (2.1). Taking the divergence on both sides
of the first equation of (2.1), we obtain

%(V.U)Jrv.((U.V)U)+AP—uA(v.U)=v.f. (2.3)
This, with the fact tha¥v - U = 0 gives

AP+V-(U-VYU)=V-f, 0<t<T. (2.4)
Conversely, ifU and P satisfy the first equation of (2.1) and (2.4), then by (2.3),

0
5(V-U)—UA(V-U)=O, O<r<T.

SinceV - U% = 0, the above has the unique solutin U = 0. Thus (2.1) is equivalent to

WL (U-VU+VP—vAU=f, 0<1<T, 2.5)
AP+V - (U-V)U)=V-f, 0<1<T, '

coupled with (2.2) an@/ = U° atr = 0.

Now, let M be any positive integer aritl= Mt. Denote byU*, P¥, and f* the values
of U, P, and f att = kr. u* and p* are the numerical solutions &f* and P¥, u* is the
predicted value of*. The first-order projection method is to find, «X, and p* such that
u® e U% and

L@hH — by + @k Vb —vAuktt = o<k <M -1,
L@kt —yk+hy 4 vpktl=o, 0<k<M-—1, (2.6)
V-uk =0, 0<k< M.

In addition, we require that

/pkdxzo, 0<k< M. (2.7)
2
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Taking the divergence on both sides of the second equation of (2.6) yields

1
Apktl= —V'ui"'l. (2.8)
T
Obviously,
uk-i-l — ui-i—l _ erk+l. (29)

We now derive an equivalent form of (2.6). Let
sk = %(Ukﬂ -
Using (2.9), we get from (2.6) that
Sk + W* - Vyuk + A — v )V —p Akt = R (2.10)
Taking the divergence on both sides of (2.10), we obtain
L—ve) AP 4 v (Wk - Vuk) = v R (2.11)
Conversely, for any* and p* satisfying (2.10), we have
8(V - uby + V- (- Vyu*) + A —vea)aprTt —vav - uFH = v A
If u¥ and p* also fulfill (2.11), then
8(V - uby —vAV - =o0.

By induction withV - 1 = 0, we assert tha¥ - u¥ = 0 for 0< k < M. The previous state-

ments imply that (2.6) is equivalent to the system (2.10), (2.11) with (2.7),8rdU°.
We now turn to the Kim—Moin method [14]. It is to find, «¥, and p**%/2 such that

ul=0U%Vv.uM=0,andfor I<k <M —1,

%(uiJrl —uky 4+ :—z(uk Vuk — %(uk*l SVuk1 = %vA(uk + uk+

— §fk _ lfk—l
Lkl AT L o k2 (2.12)
V-uk =0,
coupled with (2.7). By the first two equations of (2.12), we deduce that
K, 3 & kLo k—1 1 k+1/2
Sru +2(M -Vu 2(14 VT + (1 21)7,’A Vp
1 3 1
— EuA(uk +ukthy = 5fk — EfH. (2.13)

Taking the divergence on both sides of (2.13) gives
1 1
<1 — EvrA)Ale/z +V- <:—;(uk . V)uk — E(ukfl . V)ukl>

_ . § k_} k—1
—v (zf ) > (2.14)
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Conversely, if«* and p* satisfy (2.13) and (2.14), then
1
8 (V- ufy — SVA(V Wk +v.ukth =o.

By induction withV - % = 0, we know thatv - u¥ = 0 for 0< k < M. Therefore (2.12) is
equivalent to system (2.13), (2.14) with (2.7), arft= U°.

Finally we discuss the second-order projection method based on the pressure increment
formulation. It is to findu*, uX, and p*+1/2 such thaw® = U°, v - 4™ = 0, and for 1<
k<M-1,

%(uiJrl —uky 4+ :—z(uk Vuk — %(uk*l Vyuk—t 4 vpk-1/2 %vA(uk + uk+l)

— §fk _ lfk—l
1 kfl kil ’ k+1/2 _ k—1/2 (2.15)
T —u )+ V(p 4 )=0,
V.uk=0,
coupled with (2.7). We have from (2.15) that
3 1 1
8[Mk + E(Mk . V)Mk _ E(ukil . V)Mkfl + Vpk+l/2 _ EUT251A(Vpk71/2)
1 3 1
- EvA(uk +ufthy = Efk - Ef"—l. (2.16)

Taking the divergence on both sides of (2.16) leads to

3 1 1
Apk+l/2 + AVAR <§(Mk ) V)Mk _ E(ukil ) V)Mk]_) _ EUT25,(A2pk71/2)

_ . § k_} k—1
—v (zf ) > (2.17)

We can verify that (2.15) is equivalent to system (2.16), (2.17) with (2.7)u8re U°.

3. First-order Fourier spectral projection method

The Fourier spectral method has been successfully used for the numerical solution of
the periodic problem of Navier—Stokes equations, see, e.g., [11,15]. However, there seems
no work for the Fourier spectral projection method. We now develop the first-order Fourier
spectral projection method.

3.1. Some notations and auxiliary results
For anyr > 0, we useH (£2) to denote the subspace Hf (§2) consisting of all func-

tions with the period 2 in all spatial directions} - |, and|| - ||, to denote the semi-norm
and norm ofH;(.Q), respectively. Furthermoré, -) and| - || represent the scalar product

and norm of the spadef, (£2), respectively. In addition,

L3 5(82) = {v lveL3(£2) and/udx :o}.
2
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Let! = (I1,12,...,1,)T andN be any positive integer. Then we define
Vy =spar{e™, 0<|I| <N},

and Vy is the subspace ofy, consisting of all real-valued functions. Moreovéy o =
VN N Lf,)o(.(z). Throughout the papet, or C, with or without subscripts, will always
denote a generic positive constant independent &f, and any function. We have that for
any¢ € Vy, 1< p<qg <oo,andr >0,

IpllLe <cN™P=4plLr, |l < V/nN" @] (3.1)
Next, let/Ty be theL2 (£2)-orthogonal projection such that for any L2(s2),

(v—TIyv,$) =0, V¢ e Vy.
As is well known (see [12]) that for any e H,(§2),r 20, andu <r,

lv—Myvly <eNF vl (3.2)
Itis easy to see that for anye Lf,)o(sz), ITyv € Vi o.

The following lemma will play an important role in the subsequent analysis; see [12].

Lemma 3.1. Let EX be a nonnegative function @f G* and F* be two functions ok’
(0< j<k),andd > 0, A > 0, andb > 0 are three constants. Furthermore, we assume
that

(i) If E/ <dforall j <k —1,then GF > AEF and FF=—1 < hEF1;

. . . k=1 i

(i) For anondecreasing functiop® and all1 <k < M, G* <t Y, F/ + p*;
(i) AEQ < pM < Ade bPMT/%,

Then for allk < M, EF < (1/1)pM ePMT/%,
3.2. First-order spectral projection method

Letuy andpy be the approximations to and P, respectively, and y . the predicted
value ofuy. Their values at = kt are denoted by}, u5, ,, andp,. Then the first-order

Fourier spectral projection scheme is to fimiq, u’]‘v » € Vv, and py, € Vy o such that
u =1yU°, and

L — k) + Iy, - Vouk —vault =y 41 o<k<m -1,
Tut —ulfh+vpitt =0 o<k<m -1, (3.3)
V.uk =0, 0<k<M.
We have from the second equation of (3.3) that
u]]‘erl = u]]‘VJrj — erII‘VJrl, (3.4

1
Apf\;“l = ;V . u];\;rj (3.5)
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Inserting (3.4) into the first equation of (3.3) yields

Sk, + My (uh, - V)uky + A —vr ) VPt —vAukt =y AL (3.6)
Then taking the divergence on both sides, we obtain
L —ve ) Aphtt 4 Iy v - (k- V)uk)) = Iy (v - 54, (3.7)

Itis easy to verify that (3.3) is equivalent to system (3.6)—(3.7) wﬁ@h: yuPC.
We are now in a position for the error analysis on scheme (3.4), see Theorems 3.1-3.3.

Theorem 3.1. Assume that for some> n/3 and an arbitrary small constarst> 0,
. gn/2+8 2 .72
UeL®(0,T: Hy""(2)N Hy(2)) NH*(0, T; L5(£2)).
Then there exist positive constanisandcz, depending only om, 7', and the norms o/
in the mentioned spaces, such that formak ciN~"/3 andk < M,
|U* =k |> < coe? + N2,

If, in addition, U € L2(0, T; H,™(£2)), then
rZ|Uj —u{\,|i§03(t2+N72r),

wherecz depends o, and || U||L2(0’T;H;+1(Q)).

Proof. We divide the proof into two parts. In Parf ve compare the numerical solution
with the Lf,(Q)-orthogonaI projection of the exact solution, and build up a basic energy
inequality. In Part 2, we deal with the nonlinear error terms. Then we complete the proof
by means of the global nonlinear error analysis initiated by Guo [10].
Part 1. Let Uy = ITyU* and Py, = ITy P¥. Taking theL2 (s2)-orthogonal projection
on both sides of (2.5) at the time= k7 + 7, we obtain
8 UK + My ((UX - VUK + VPET —vaUfT
=IN(Ry o+ Ry 1 + N2+fk+l) (3.8)
AP+ TINY - (U - VIUR) = TINV - (R, 1 + R 5+ 57,
whereR}, o, R, 1, andR}, , are given by
ad
k k k+1
RN,O :8Z‘U]\] — 5UN+ N
RA]](\/’]_ — ((Uk _ Uk+l) . V)Uk+l + (Uk . V)(Uk _ Uk+l),
Ry ,=((UN = UY) - V)UN + U - V)(UY, — UY).
Now, let itk = uX, — UX, and pk, = pk — P. Subtracting the first equation of (3.8)
from (3.6), and the second one from (3.7), respectively, we arrive at
8,k + My AK, + Vi —ve AV pith —vAGK, + t8,a%)
= —IIn(RY, 0+Rk 1+ Ry ). (3.9
(1—vrA)A~k+1+HNV AN =T AP = 1Ty V- (RK |+ RY ).
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whereA, = A}, | + A , + A}, 5, and

All{v,lz(ﬁ]]{V'V)UN’ Ay 2= (Uy - V)it Az = (i - V)it
Clearly,V - ik, =0, pk; € Lf,!o(.(z), and for anyv € Lf,(.(z),

2(8,0%, v%) =8, 0412 — 7|8 "2,

208, 0, VL) = 8,108 |2 + 7|18, 0% )12 (3.10)

By taking the scalar product on the first equation of (3.9) w'vﬂﬁ,Zwe get from (3.10)
that

ol |* — < ouitky |+ 2v [y [ + vesi| il [§ — ve2|siich |3
= —2(AK + Ry o+ Ry 1+ R} 5. 11}y). (3.11)
Next, let¢é be a certain undetermined positive constant. Taking the scalar product on both
sides of the first equation of (3.9) witix §; 0}5, leads to
g8 ity | ? + %évré,ﬁll‘vﬁ + %Svr2|5,ﬁ]]‘\,|i
=—&7(A} + Ry o+ Ry 1 + Ry 5. 8iiih,).- (3.12)

For convenience, we lety, = —(A}, + R}, o+ R, | + Ry, ,. 2}, +&18,1%,). Then adding
up (3.11) and (3.12), we deduce that

il |+ o6 — s |+ 20l [

& & k12
+vr<2+l>8t‘uN LT (§—1>\atu’;, T=J5 (3.13)

Take& =2(q +1),q > 0. Then (3.13) reads
o iy |* + 7 (2q + sy |+ 20ty 5
+vr(q+2)5,|ﬁ]]‘\,|i+qu2|8,uN|l=JN. (3.14)

Part 2. We now estimate the terms involvedJ§. First, for anyv, w, z € Hl}(.Q) with
V.v=0,

((v-Vyw,z) + (v V)z,w) =0, ((v-Vyw,w)=0. (3.15)

This implies (AN 0 lly) = (AN 3 #y) = 0. Thus, using (3.15), the imbedding theory,
and (3.2), we obtain

2|(Al. )| = 2|(AN v iiy)| =2 (@) - V)i, Uy)|

. 2 1,2 ¢ k112
e L R 177 o ¥ e I R T A P
(3.16)
By the same reason, we have

- 1 -
sr|(A 1+ Ay 2 driiy)] < 6‘1”2‘&“1\1‘? ||Uk||n/2+5H Nl (3.17)
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Moreover, by (3.1),

| (Ah 3. 0it) | < g ity |2+ = . ~ Nl | P 5 (3.18)
Next, let Ay = (kt, kT + 7). According to the property of the Bochner integral,

2Ry o )| < [y |2+ [ Ry ol < [ |2 +elU e g2y (319)
By virtue of (3.15), the imbedding theory and (3.2),

2R )| <2 =0 )i, 04 2 i 0= 0

k2 k+1
_U|MN 1 (”U ” /2+5+”U ”’1/2+5)”U”Hl(Ak;Lf)(Q))'

(3.20)
Thanks to (3.15) and (3.2),
2| (R, )] < 2/((U} — U*) - 9)ity, UR)| + 2/(Uf - V)i, Uk — %)
1
|uN 1+ N ZNUMIZ s IU N2 (3.21)
Similarly, we can derlve that
. k(12
|§t(R§<v,o’ 5t”]1<v)| <qr|[siiry || +CT2||U||12L]2(Ak;L§(Q))' (3.22)

Furthermore, by (3.15) and an argument as before, we can show that

_ 1 i
|"§T(R]1<v,1’ S,ull‘v)| < équ2|5,u1]‘\,|i
CcT
+ q—v(nU"ni/M U 2 10 20 (B23)
Using (3.15), (3.1) and (3.2) again yield
_ 1 _ Y
67 (R 2. 8| < Sqve? sy |; + qivN ZNUMIZ o4 s IUFIZ. (3.24)
Now, it follows by substituting (3.16)—(3.24) into (3.14) that
~ 2 ~ 2 ~ 2\ |~k |2 ~k |12 ~k 12
Sellay |* + w8y | "+ (v — er N [ | ) a1 + vesiak |+ ve?[si [y
< c(q—nU"nn/m + —||U"+1||n/2+5 + 1) |k |? + 6%, (3.25)
where

k k2 k+1,2 2
Gho = (UM 12 24 + 102 2 ) 10 s 4y 122

—2r 77k 2 2
1O~ II;

+Ct||U||312(Ak;L§(_Q)) +cN 2 ors U

For the ease of describing the errors, we introduce the notations
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k—1
EXw) = [wh 12+ 1) (vlw/ T+ o lsw 12+ ve?lswd ),
j=0
PN =T Gy (3.26)

Summing (3.25) with respect g we arrive at

k—1
EXiin) — ctN"ENTHNEN)EN (in) < cot Y EY (iiy) + py. (3.27)
j=0

CIearIy,pN c2(t?24+ N~%). Letcs be a suitably small positive constant dependingon
Then ift < caN~"3 andr > n/3, we havepk, < cN~@/3". Now, applying Lemma 3.1
to (3.27) with

EY=E*ay), G'=EMan) - ctN"EFYan) EFay),  FY = EfGin),

= s d:—’ )\,:—’ b: N
p=PN 2ctN" 2 2

gives immediately thaE* (iiy) < c2(t?2 + N~2'). This with (3.2) completes the proof of
Theorem 3.1. O

We now turn to the error estimate fpk,™.

Theorem 3.2. Assume that for some > n/2 and § > 0, P € L*°(0, T; H3(S2) N
H:H(2)) and

2+85+1
U eL®(0.T; Hy " (@) n B (@) n HY(0. T: HX(2))
2 )
NH(0,T; L5(£2)).
Then there exist positive constanisandcz depending only om, 7', and the norms o/
and P in the mentioned spaces, such that forat c1N /2 andk < M,

k
T Z”Pj - p{vHi <ca(t?+ N7,
j=0

Proof. Taking the scalar product on the second equation of (3.9)ﬁ§i}“fﬁ, we obtain that

| NHl‘l + ”|Pk+l|2 —vr(A(VPYT). VA) = — (A + Ry 1 + Ry 5. VIRT).

(3.28)

By the Poincaré inequality %™ < c[pk
anye > 0,

|1 and the Cauchy—Schwarz inequality, for
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Cc ~
(A% VAR < el AT+ — (1090 ol

U2 |l 5 + N7 |2 [2).

(Rl 1. VA < ev| 552+ (||Uk”n/2+5+1”U”H1(Ak 12(@2)

U 24510 151 4 1)
(R Nz’vpk+l)|<€”‘1’k+l‘1+ N_Zr(”Uk”2/2+a||Uk||r+1
+IUA IR 21542 1UET7),
vr|(A(VP1]\‘,+1),VﬁII‘V+1)| ev|pk+l|1+cvr2||Pk+l||%.

Substituting the above estimates into (3.30) and summing the resulting inequality with
respect td, we obtain by taking to be suitably small that

’Zo |73l +vrl v ) czrz (I 12+ 8 [P )+ cate?+ N2,

This with Theorem 3.1 and (3.2) completes the proof Theorem 32.

Remark 3.1. The errors(pX, — P¥) andV (pX, — P¥) have the same order as!; —
provided thaty and P are slightly more regular as in Theorem 3.2. This is a merit of the
projection method, and is discovered here at the first time.

Remark 3.2. Since we used the equivalent formulation of the projection method, we de-
rive the error estimates fdy and P separately. So the projection method simplifies the
calculation, and the equivalent formulation simplifies the analysis.

Below, we consider the error estimates in the maximum norms.

Theorem 3.3. Assume that <4,r >n/2,6 >0, and
U e L®(0,T; Hy " *2(@) n H}*2(2)) N H(0, T; HA(2))
NWLe(0,T: HX(R2)).
Then for allt < ¢ N~"/2 andk < M, we have
[UF —uly|,<c@+NT).
If, in addition, P € L>(0, T Hy(2) N H,™2(£2)), then
HP" - pk, l,<cx+N).

Proof. Taking the Laplacian on both sides of (3.9) gives
8 (Adky) + My AAY, + A(VENTY) — vt A2(VPETY) — v A2 (i, + v8,a,)
=—IINA(RY o+ Ry 1+ R} 5). (3.29)
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Now multiplying both sides byz + 515,(AuN) and integrating ovef2 and then fol-
lowing the same strategy as in Part 1 of the proof of Theorem 3.1, we derive

8,|ﬂ]]‘\,|§+r(2q+1)|5t~N|§+2v|VﬁN|§

+vr(q+2)5,|VuN ,tqvt |8,Vﬂll‘v|§=.]]]f,, (3.30)
where
T = —(AAK + ARK o+ ARK, | + ARY, 5, 240k + £18, Ailky).
So it remains to estimatjeINL For this purpose, Iei (~(1)k, ... N(")k)T It follows

from V. i, =0 that

n

a
~k k ~()krrk
(it - V)Uy = Z g(“z@t Uy).
a=1 !
By integration by parts three times, we have

(A4}, 1, aity) = (@ - V)Uy, A%iy)

n

3
~()k (B 7 (g
=— Y <A(uN Uy )’7axaax2“N )
Y

o,B,y=1

Similar equalities are valid fo(rAA" i Aity), j = 2,3. Therefore, we obtain

N c _ i
2 (). auy)| < ”|WN2 (012 22 |5+ N7 ]3)-

Following the same lines as in Part 2 of the proof of Theorem 3.1 and the previous argu-
ment, it is not difficult to show that

gr\(AA’]‘V,(S,A )‘ <qt|‘sfv”N 2 ||Uk”2/2+5+2|| N”;

+= N”H“NH \WNZ

Itis clear that
2
22|(AR]1€\1,]" Aﬁ]f\/” < ”‘f‘]fv |§ + Ct”U”ilz(Ak;Hz(Q))
j=0

k)2 k+1 2
(”U ” /2+5+2+ ”U + ”n/2+5+2)”U”Hl(Ak;HZ(.Q))
+;N* TNV R 254210 12
Moreover, as for (3.22)—(3.24), we can prove that
ET|(AR} o+ AR} 1 + AR} 5. 5, AllYy ) |
k)2 k+1,2 2
<qt|51”N 2 ;(”U ||n/2+5+2+ 14 * ||n/2+5+2)”U”Hl(Ak;HZ(Q))

Cc _
+ q_vN 2 I Ut ||5/2+5+2|| vt ||f+2‘
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Substituting the above estimates into (3.30), we obtain that
8 iy [+ 7 sty [+ (v — eN" |y |5) [ Vil 5 + vesn [Vl [3 + ve?|o, Vi |5

<c<—||U ||,,/2+5+2+1>|MN2+ N"||a N||2+ék, (3.31)
where

G];v = CT(||Uk||r21/2+8+2 + Uk+l||r21/2+8+2 + 1) ”U”?-IZ(A,C;HZ(.Q))
+ cNZNUMIE 4542l US 112 2.
Let
k k
Eraw = [l |5+ ve Y (ah B+ IVahD,  Ah=sb eG4
j=1 j=1

wherepk, is the same as in (3.25). Obvious}, < c2(z?+N~2"). Adding (3.25) to (3.31)
and summing the result over we assert that

k—1
EX (i) — eN"E* L) EXGin) < cat Y (EY (i) + (EV @n))?) + -
j=0
We now apply Lemma 3.1 to the above with
EX=EXay),  GM=E*un) — cN"E* G EX (i),
F*¥ = E¥uy) + cN" (Ek_l(ﬁlv))z,
1 1

k_ =k
=py, d=——, A==, b=co.
P PN 2cN"™ 2 2

Then the corresponding result with the imbedding theory leadgkty, < co(t + N77).
This with (3.2) implies| U* — uX, 12 < ca(z + N7").

Next, we take the scalar product on the second equation of (3.9)A/ﬁfﬁ1. Itis noted
that

_vt(Azkarl Aﬁ];;rl)_vr‘v k+1‘2
Thus by the Poincaré inequality, we deduce that
|8 5 <c(IV- AR I+ 1V - Ry o+ [V - BE |* + 221 PFH1).

Furthermore, using (3.2) and the imbedding theory again, yields

[V - A3 <e(luh Ieslah [ae+ 10N an |71

~ 2 ~ 2 ~ 4
+ | Lo i 12+ iy [ e)
<ca(t?+ N7,

It is easy to verify that
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|V Ri sl + V- RE o)
k+12 2
<CZT (”U ||n/2+§+2+”U ||n/2+8+2)”U”WlA(Ak;HZ(.Q))
+ N2 NUMIE 2452 U112
Now it follows immediately from the above three inequalities thiﬁ,*lllz <ot +N).
O

By Theorem 3.3 and the imbedding theory, we have

Corollary 3.1. Under the same assumptions as in TheoB8we have
[U* k|, <c2t + N7, | PE =Pl ||« <ca+ N

3.3. A modified first-order Fourier spectral projection method

In this subsection we consider the following modified first-order Fourier spectral pro-
jection method: Find,, uf, , € Viy andp}, € Vi o, such thau§, = 1Ty U°, and
1(uk+1 uh)) + Iy @y - Vyultt —vault =y f41 o<k<mM -1,
Ll e+l —ulthH+Vpyt=0, 0<k<M-1, (3.32)
V. ik k=0, 0<k<M
Itis equivalent to the following system witi®, = 17y U° and
5,14]]‘\, + HN(u]]‘V . V) kL4 rHN(uN V)Vpll‘\;rl
+1- vrA)Vpk+1 vAu];,"’l = 17ka+1,
a1- vrA)Apk+l + 1NV - (( k. V)u/]‘j‘l)
+TIINY - ((uhy - V)V =1y v - 51
forO<k<M—1.The errorsuN = uN — U* satisfy the following equations:
8tuN + nN(Ak + Bk £y + v pht — vrA(Vpk+l) vARkHt
(L—vra)ApK; el + NV - (A’;V + BN) - vmzpf,“
=—TIyV - (RN’l + Ry .+ RY ),

(3.33)

where

0
R?V,O — 51U1]:] _ 5(]]/;4‘1’ RN = ((Uk _ Uk+l) . V)Uk+l,
R a= (U~ U9) )05+ W Wy (U - Ut)

Ry 3=1(Uy - V)VP,
and
Tk _ xk k k k k
AN_AN1+AN2+AN3’ By =By1+By,+Bys
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with
k k+1 ~k+1 k ~k+1

ANl—(”N v)UNJF ’ ANZ_(UN V)ity A ANs—(”N V)iiy A

By =(ik - V)VPYT By ,=1(Uy-V)VENT. BN g=r(dly V)V
Theorem 3.4. Assume that for some> n/2 ands > 0,

U eL®(0,T: Hy*" (@) n HY(2)) N H3(0, T; L2(R2)),

.2 +1

PeL™®(0,T; Hy(£2) N H,"H(£2)).

Then there exist positive constanisandcz, depending only om, 7', and the norms o/

and P in the mentioned spaces, such that forat c1N /2 andk < M,

k
0¥~ 4 2 3107~ < cale? 4 N2,
j=0

Proof. Taking the scalar product on the first equation of (3.33) Wiﬂﬁ,*é, and us-
ing (3.16), we obtain that

o iy | + 7 vty | * + 2] = U4 (3.34)
where

Iy = —2(AN + BN + Rl o+ Ry 1 + Ry 5 + RN 5, it ).
Similarly to (3.16), we have for any > 0,

2] (A )] = 2 (A% A < erla ™+ S U o7 P (338)
Thanks to (3.1) and (3.2),

~ cT - c ~
2/(By. )| < evr | B UK s |y SN ik [P

(3.36)
Using (3.1), (3.2), and (3.15) again, we deduce that
2‘(Rk 0+RN 1+RN 2+RN 3 i)
~k+1
< |lay H + CT”U”HZ(Ak;LZ(.Q))
+ TN R 21511l U W, 1y T €TI0 7 2451 PEFE
[Ca—
+ N (UHE 24 a N US I+ NURIE 2 s IO ). (3.37)

Next, taking the scalar product on the second equation of (3.33)1515‘(;‘*[%, we find that

H ~1<+1||1 " ”T||Pk+1“2 <c|(AN + BY + Ry 1+ Ry 5+ Ry 5. VN
+CUT2”Pk+l”§~ (338)
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By an argument as in the proof of Theorem 3.2, we know that forcanyd,
(AN, VBN )| <e H p"“Hl
2001 202+ 002 ) (il P+ )
+= N” |k |1 ?ak 2. (3.39)
On use of (3.15), we ha\(99N VPN =0forj =23, and so

|(BR- VAN < eve| 5+ S 1P s i ] (3.40)
Finally, we can further show that

|(Ry.1+ Ry 2+ Ry 3. Vin)|

~k+1 k+1,2 2
61)‘ Py |1+CT”U ||n/2+5+1||U”Hl(Ak;L%(_Q))

+ T2 URIZ o5 PFHIS
+- N‘Z’(||Uk+1||,,/2+5+1||U"||2+||Uk||,,/2+5||Uk+1||§+1). (3.41)

Now adding (3.38) to (3.34), substituting (3.35)—(3.37) and (3.39)—(3.41) into the resulting
inequality, and then summing up the result okewe arrive at

S +r2(v—czv"|~’ )k 5+ s )®

0l ~ i 2 ~j 2
+ (@ —cenal P | IE + vel 54 13)
k—1
<ot Y (@ |2+ eN" i |*) + car? + N7,
Jj=0
Now the desired result follows directly from Lemma 3.1 and (3.2).

4. Second-order Fourier spectral projection method

In this section, we focus on the second-order Fourier spectral projection method by
K|m and Moin [14] The scheme aims to flmd;, uN e Vy andkar 12 ¢ V.0, such that
u =MyU° v-ubt =0,andfor 1<k <M — 1,

1(u"+1—uN)+nN(§(u’;v.V)u’;v Sl Vo) — Ak, +ulith
My (37" =377,

—(uk“—uljjrj)—l—v k+1/2 —0,

A\ uNzO.

(4.1)

In actual computations, one may use (3.3) to evaluate the startingw}qlue
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By the first two equations of (4.1), we can deduce that
5kn§kvk_}k—1vk—1
iy + 2(”N' Juy 2(”1\/ - V)uly
k12 1 k+1/2y 1 k+1
+ Vpy ZUTA(Vp ) = SvA(uly +ulith)

:HN(:—;fk—%fk_l), 1<k<M-—1 (4.2)

Taking the divergence on both sides of the above equation gives
1 3 1
<1— EvrA)Akarl/z + TNV - <§(”]1<V . V)u]]‘\, — E(u]]{v_l . V)ull{v_l>

=TIIyV - (:—;f" — %f"l) (4.3)

One can show as before that (4.1) is equivalent to system (4.2)—(4.3L)$’(,vi£hHN UP.

It is important to note that one can improve the accuracy of the numerical pressure

p’]‘V“/Z by correcting it as follows:

k+1/2 1 k+1/2
pNJ)rc/ = (1— EvtA)pN+ / (4.4)
For the subsequent error estimates, we introduce a Sobolev Bfjade £2) equipped

with the norm
1/4
lollw e = Z/ is) .
W’"4(Q)

The main results of this section are stated in Theorems 4.1-4.3.

mv(s)

Theorem 4.1. Assume that for some> /2 and$ > 0, we havef € H2(0,T; L5(£2))
and

U e L®(0,T: Hy*"(2) N H(2)) N H3(0, T: HX(R))
NH3(0,T; L5(52)) N Wi (0, T; £2).

Then there exist positive constartsand c; depending only ow, 7', and the normg/
and f in the mentioned spaces, such that foral ciN™* andk < M,

|UF — ki |? < catrt + N7,
If, in addition,U € L2(0, T; H;+1(Q)), then

k
|0+ U i —ul R < @t N,
j=0
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wherecsz depends o, and ||U||L2(o,T;H;+1(9))- Moreover, if

U eL®(0,T: HY*" @) nH)TH2)) n HY(0, T: H))(£2)),

then

0% 2+ 07 ) P < enet+ N,
j=0

Whel’em depends Omz and || U”L°°(O,T;H”/2+5+1(9)0Hr+1(9))ﬂHl(O,T;H;(.Q))'
Proof. We use the same notatioi&,, Pk, ik, pi*/%, and A%, AL, as in the last
k+1/2

section, andPy, /< = ITy P**1/2, Taking theLZ(Q)-orthogonaI projection on (2.5) at

t=kt+1/2, we have

UK + Iy 3k -vUL - 1wt vur™)

+ VP2 Lo AL + UKt
y(3 fk — 3L R+ RE L+ RE,+ RE ), (4.5)
k+1/2 _ _
AP pht1 +1yv - Gk -wuk - 3wkt vk
=nV- (3 =351+ lev,l"‘ Ry o+ lev,3)’

where

d 1
R?\/,O — 5;U]]f, - Uk+l/2+ 5 A(ZUk+l/2 U]]f, B U]]f;rl),

3 - —
Ry1= E(Uk VUK - E(Uk 1. wyyk-1 — (k2. yyyk+i/2,

3 3
Ry o= 5((Uk = U") - V)UL + S0 w) (U - U)
1 k1 k=1 k-1 1o k—1 k—1
—S(UE = UR ) U - SR (g - Uk,
3 1.
Rl&ngk+1/2_§fk+§fk 1
Then subtracting (4.5) from (4.2) gives

Sk, + My (34K, — 14Ky 4 vkt2 — Tuea(v %) —

=—nN(R’;VO+R 1Ry, Ry 9,
1- 2vrA)A~k+1/2+I'[ v. (3A’< — 1A — Lura?py
= —MINV - (R |+ R, + RY, ).

Lva@k +alth

k+1/2 (4.6)

Now, we take the scalar product on the first equation of (4.6) itht i% to obtain

sl |+ —V\MN iy

3 1, 3
= —<§A']‘V - EA’,‘V 14 RN o+ Ry 1+ Ry o+ Ry 5. 015 + "+1). (4.7)
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By (3.15), we have

3 - 3, -
3 ko + )] = 21 0) ), 0
<L k+1

c 8
G v|ik + iy ‘1 ;”Uk”r21/2+5HuNH2'

We can estimate the other termsdfy, andAX* similarly, and obtain

3 1 - -
‘(EA']‘V oA uk;l)

1 7 ~
< Zovlithy + i+ (U0 | |+ 104212 s i)
+;N"(H )
By the property of Bochner integral and the Cauchy—Schwarz inequality,

20 (R gy + @ < iy [P+ 1 + x| - 90|z 1200

=0,1,3
Jj= 3

+ et U s ) + — — £ W2 a2y
By (3.2), (3.15), and a similar argument as in Part 2 of the proof of Theorem 3.1,

- 1 i
|(RN 20 iy + iy )| < |”N+ ]zcv+11
+ = N—Zr(||Uk||2/2+5||Uk|| +IURYE o s IUFHIE).

Substituting the above estimates into (4.7), and summing up the result,aoverobtain

| | +WZ\MN+% gh

k—1
<et Y (10712 a5 + D)y |2 + N7 a4 |*) + o (4.8)
j=0

where,o < ca(t? + N=2). In particular, fort < cgxN~"/* and r > n/2, we have
pN < c2N7". Now, the first two conclusions of Theorem 4.1 follows directly from this
result, (3.2), and Lemma 3.1.

Next, we take the scalar product on the first equation of (4.6) &Wﬁ) to obtain that

|8 N” +5 ”51|“N1
3. 1 k k k k ~k
__<§AN_§AN + Ry o+ Ry 1+ Ry + Rygz diily | (4.9)
It can be verified that
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3 1 . -
(Gt -3k o)

1, -
g_H‘SIL‘NHZ"‘C<||Uk||2/2+5+1H NHZ"'”Uk 1||2/2+5+1H”k l”

+ IR IZ st 3 4+ 10212 s

+ Nk | Pl [F - N kP )

We can estlmate(RN o syl j=0,1,3, as before. Moreover

k ~k ~k 12, €2 k2 k2
|(RN,2,5,MN)|<5||5,MN|| + =N r(nU /245210117
F 1T Y254l UF2)2
FINUMZ 24 NUF N2 + 1012 25 llU“nfﬂ)-

Thus substituting the above estimates into (4.9), summing up itoaed adding the result
to (4.8), we obtain

NHl+fZHMN|| ch 10712 25 aalith I+ N ik |2l |3) + o
j=0

which, with Lemma 3.1, leads to the third conclusion of Theorem 401.

Remark 4.1. One can see from Theorem 4.1 that the second-order projection method not
only improves the accuracy, but also relaxes the restriction.dfor example, ifn = 2,

Tt < N™Y2andr > 1, we have|U* — uk || = O(z? + N 7).

For the accuracy of the numerical pressure, we have the following result.

Theorem 4.2. Assume that for some> n/2 ands > 0,
U e L%(0.T; Hy*" @) n 1" 2)) N HA(0, T: HA(R))
NH3(0,T: L3(£2)) N W5 (0, T: £2),
PeL®(0,T; HY2) NH, ™ (2)).  feH?0,T; L5()).

Then there exist positive constartsand ¢ depending only ow, T, and the norms of
U, P, and f in the mentioned spaces, such that forat c; N ~"/4 andk < M,

k
TZ” pitl/2 _ 1+1/2|| 2 (r +N~ Zr)
Moreover, for the corrected numerical pressure, we have
k
e Y [P LR < a4 N,

wherecs is independent dfPIILoo(o,T;HS(Q)).
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Proof. The periodicity implies||A ~]‘Jr1/2|| = |~k+1/2| andpkﬂ/2 € tho(Q) implies
1p52) < el plt?11. So taking the scalar product on the second equation of (4.6) with
ﬁk+l/2 gives

H ~k+1/2 ” ~k+1/2

2+ I2

IV T k k+1/2
C(EAN—EAN + RE 1+ R 5+ R 5, VY

+ cv?| PR3, (4.10)

The right-hand side of (4.10) can be estimated in the same manner as we did in the proof
of Theorem 3.2. Accordingly, we get from (4.10) that

TZ (K215 + vl A ™212) <cth (a3 + N7k 1Py [

+ca(t?+ N7, (4.11)

Then the first conclusion of Theorem 4.2 follows from (4.11), Theorem 4.1, and (3.2).
Next, we rewrite (4.3) as follows:

ApH2 4+ Iy v - <:—;(u’;v.v)u§v— %(u’;v—l.v)u’;v—l>

_ . § k_} k=1
_ (3 20

Following the same line as in the first part of the proof, and noting that the dominant error
termev?|| P"+1||§ in (4.10) does not appear any more, we arrive at the second conclusion.
O

By the same procedure as in the proof of Theorem 3.3, we can prove the following
result.

Theorem 4.3. For somen < 4, r >n/2, andé > 0, we assume thaf € H2(0, T; H3(£2))
and

U e L®(0,T; Hy " *2(@) N H*2(2)) N H?(0,T; H(2))
NH3(0,T; HA(2)) N W5(0.T: £2).

Then there exist positive constanisand ¢z depending only om, 7, and the norms of U
and f in the mentioned spaces, such that forratl c; N /4 andk < M,

|U* — k|, < ca(z® + N7").
If, in addition, P € L>°(0, T; Hr+2(s2)), then

HPk+1/2 k+l/2H2§C3(‘L' + N~ r)
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wherecz depends om; and || P||LOC(0,T;H;+2(Q))- Furthermore, ifP € L*°(0, T; Hg(Q) n
H;T2(12)), then

| PEA2 = oy < cae + N7,

wherecs depends oz and || P||LOC(O’T;H;1(Q)).
Theorem 4.3 leads directly to the following error estimates in the maximum norm.

Coroallary 4.1. Under the same assumptions as in TheofeBwe have
|UF =i || o Sc@®+NTY, | PRYV2ph R <@ N,

H pkt+1/2 _ p1]<V+1/2

| 1
| o <cz+NT).

Remark 4.4. In scheme (4.1), one may approximate the nonlinear t&¢imv)U by

3k 1](1 3k 1](1
<<2N zN)'V><§“N 2V )

In this case, all the results in Theorems 4.1-4.3 are still valid, but the regularityiwith
Wr(0,T; $2), m=1,3, in Theorems 4.1-4.3 are now replaced by the weaker regularity
with U € H?(0,T; H'(£2)).

5. Second-order Fourier spectral projection method based
on pressureincrement formulation

In this section, we investigate the second-order Fourier spectral projection method based
on pressure increment formulation. Its higher accuracy has been observed; see [2,3,21].
The second-order Fourier spectral projection method based on pressure increment for-

mulation is to finduf,, uf, , € Viy andkarl/2 € V.0, such thau® = Ty U°, and

Ll —uk) + Iy (B - vyuk, — it viulyh)

+ Vpy k=172 _ ZUA(MN+L£I]{V+:)
_,-,N(_fk__fkfl), 1<k<M-1, (5.1)

V ”N =0, O <k<
Itis equivalent to the following system:

Sk, +HN<§(”]1<V V) uk, — 2( k=1 V) )+V k+1/2 %erS,A(Vplf\fl/z)
1 3 1
- EUA(”N-i-u]](erl)— N(Efk— Efkl)a (5.2)

3 1 1
Y <§(u]1‘V.V)u]]<V - E(u’];—l.v)u’l‘\,—l) — SvrZsapy
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=19 (345000, (5.3)

where 1< k < M — 1 andu® = Ty U°. In the actual computations, one may use (3.3) to

evaluateu]lv, and use certain method to evaluaﬁé2 in advance. Suppose that for some
a>landr>1

| PY2 — p?| <c@® + N7, (5.4)

We define the corrected numerical pressure by

k12 kv12 1 k=12 1 k12 1 k—1/2
PN,C/ =Dy / 2vt28 Apy / (1—§vtA)pN / +2vrAp /2. (5.5)

Theorem 5.1. Under the same assumptions as in Theodkeiwe have the same conver-
gence results as in Theoredril for schemé5.1).

Proof. We will use the same notations as in the last section, suetfaR%, ,, RX |, and
R];v,z- As we did in the proof of Theorem 4.1, we have from (2.5) and (5.2) that

Sk, + My (34K, — 3AK7Y) 4 v kit/2

—zvtz&A(Vpk 1/ sz(u )
=—(Ry o+ Ry 1+ Ry, + Ry g, 1<k<M-—1,
Aﬁk+1/2+17 V- (3ak = Takot) — Lye2s, A2 5412
——vt25 Asz 1/2
=—IyV- (RN!1+R’1‘V!2+R§‘V’3), 1<k<M-1

(5.6)

Itis clear that

[ AR @ + i ax=o
2

By taking the scalar product on the first equation of (5.6) w@h—% %1 we obtain a ba-

sic energy equality which is exactly the same as (4.7). Then the conclusion follows directly.
O

Theorem 5.2. Assume that the conditions in Theordr are satisfied and® € H1(0, T';
Hl?(.Q)). Then there exist positive constanisandc, depending o, T, and the norms

of U, P, and f in the mentioned spaces, such that foraf c;N /4 andk < M

k
- Z” pitl/2 _ p,}{]+1/2||i < 6_2(T4+ 24 N72r)’

k
T Z” pitl/2 _ ]+1/2|| c3 (t4+ N—Zr)’

wherecs is independent dfPllgl(o,T;Hg(g)).
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Proof. Taking the scalar product on both sides of the second equation of (5.65%71%2
gives

_k—1/2(2

- 2 1 - 2
Foriziz 1 o2, |55 k—1/2 2

3
N ity 217 ”T |8: Py

3 1
S KEA% — AN+ RN 1+ Ry o+ Ry 5. V- pkN“/z)‘ +ev2ets, PEY2)2

Itis easy to see that

k
j—1/2,2 2
TZ”(S[P] / ”3<CHP”H1(O,T;H[§(Q))‘

Then the first conclusion of Theorem 5.2 follows immediately from (5.4) and a similar
proof to Theorem 4.2.
Next, by (5.5) and the second equation of (5.6), we have

~k+1/2

3 1 ..
Ap + TNV - <§A’§V — -Ak 1) =—IINV - (Ry 1+ Ry 5+ R ).

2

This, along with the same argument as used in the second part of the proof of Theorem 4.3,
leads to the second conclusion of Theorem 5.2.

Remark 5.1. One can see from Theorems 5.1 and 5.2, the choiqf,l\,/&fdoes not affect
the accuracy o:fk On the other han(;}:/‘“/2 andpkH/2 have the same accuracyif> 2.

In other words,pk“/2 is corrected fok > 1 automatically.

Like Theorem 4.3, we have the following result foK 4.

Theorem 5.3. If n < 4 and the regularity of Theorem.3 is fulfilled, then for allt <
caN~"4andk < M,

|UF —uly ]|, < ca@®+ N7,

wherec; andc;, are the same as in Theoreft3. Moreover, ifP € L0, T; H;+2(.Q)) N
HY0,T; H3(2)), then for allk < M

HPk—i-l/Z_karl/ZH C3(‘L’ +T +N~ r)

wherecz depends o, and || P||Loo(0 7 T2 Furthermore,
>4 Hp

(2)NNH3(O,T; HY($2)"
HPk+1/2 k+l/2H2 64(1_ N7,

wherec4 depends o, and || P||LOC(0,T;H;+2(9))-

Theorem 5.3 implies the following error estimates in the maximum norm.
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Coroallary 5.1. Under the same assumptions as in TheokeBwe have
k+1/2 _
WUF — kg, P2 pH2) o < C@2 N,

Remark 5.2. We notice from (5.5) that

k12 aky12 1 k—1/2
pN / ZPN,C/ +§VT28IAPN /

If o >1, then(S,AIzalj‘\,Jrl/2 is bounded uniformly for alk, k, N, andt < ¢tN /4. Conse-

qguently, we have
k+1/2
H pk+1/2 _ P /

| oo Sca@®+NT).

Thuslplj\;rl/2 has the same accuracynﬁ. This gives a new important feature of the pro-

jection method based on the pressure increment formulation. This seems to be the first time
to observe such a nice feature.
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