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Abstract

In this paper we investigate the solvability of an ill-posed two-dimensional Fredholm integral equation of the $rst
kind which allows the solutions of distribution type. The problem is $rst transformed into a well-posed di2erential–
integral equation using output least-squares approach with a regularization of bounded variations. A globally convergent
iterative method is proposed and some numerical results are presented. The methodology discussed may be applied for
the identi$cation of the boundary shape of the defects of a dielectric material or the interface between di2erent materials.
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1. Introduction

Consider the Maxwell equations

�(x)Et + J(x; t) =� ×H in � × (0; T ); (1.1)

�(x)Ht = −� × E in � × (0; T ); (1.2)

where �⊂R3 is occupied, for example, by a dielectric material. E and H represent the electric and
magnetic $elds, J is the current density. The coe=cients � and � are the permittivity and permeability
of the material. Eliminating E by di2erentiating (1.1) and using (1.2), we obtain

�Htt +� ×
(

1
�
� ×H

)
=� ×

(
1
�
J(x; t)

)
;
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this becomes in the steady-state case,

� ×
(

1
�(x)

� ×H
)

=� ×
(

1
�(x)

J
)
: (1.3)

If the considered domain consists of two materials with di2erent dielectric coe=cients �, namely
�(x) is discontinuous along some interface within the domain, then equation (1.3) can be regarded
as the following di2erential equation with a continuous coe=cient but with a singular source density,
i.e.,

� × (� ×H) = J(x) + g�(x): (1.4)

Then the location of the interface can be determined once the singular source density g� is available.
Now consider a thin plate V = (0; d0) × � with d0 being the thickness of the plate, and �

a two-dimensional planar domain. Suppose we can make the following measurement of the eddy
current at a position x with a vertical distance d from the thin plate V :

F(x) =
∫
V

x − x′
|x − x′|3 × (� ×H(x′)) dx′:

Assume that the magnetic $eld is generated so that it takes the form H = (0; 0; H (x1; x2))�, then the
component of F(x) along the vertical direction is

F3(x) =−
∫
V

(x1 − x′1)Hx1 + (x2 − x′2)Hx2

|x − x′|3 dx

=
∫
V
�x′

1
|x − x′| ·�x′H (x′) dx′

=−
∫
V

�x′H (x′)
|x − x′| dx′ +

∫
@V

@H
@n

(x′)
1

|x − x′| dx′:

This with Eq. (1.4) and the relation

� × (� ×H) = (0; 0;−�x′ H (x′))

gives the following inverse problem:
Find the distribution �(x) such that∫

�
kd(x; x′)�(x′) dx′ = f(x); x ∈ � (1.5)

for a given f, often available only in a noised form due to the measurement error. Here kd(x; x′) is
given by

kd(x; x′) =
1√|x − x′|2 + d2

: (1.6)

For convenience, we de$ne an operator Kd :L2(�) → L2(�) by

Kd�(x) =
∫
�
kd(x; x′)�(x′) dx′: (1.7)
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Clearly Kd is a self-adjoint operator with respect to the L2(�)-inner product (· ; ·), i.e., K∗
d = Kd.

Moreover, the operator Kd is bounded and satis$es

‖Kd �‖L2(�)6k0 ‖�‖L2(�): (1.8)

with k0 = |�|1=2=d.
The special case of the integral problem (1.5) with the zero distance, i.e., d= 0 in (1.6), arises in

$nding the charge density on a thin plate using the potential measurement of the plate. In this case
the kernel function is singular, the inverse problem (1.5) is not so di=cult, and it was discussed
numerically in [5]. In our currently interested physical situation, the distance d from the thin plate
to the position where the measurement of the eddy current was made is not allowed to be zero for
a few practical reasons, so the kernel kd(x; x′) is a very smooth function. But the inverse problem
(1.5) becomes highly ill-posed. In particular, we can allow the source density function �(x) to be a
delta-type distribution, while this is not allowed to happen in the case of d= 0. Our main concern
of this paper is to propose a stable method for the recovery of the source density of distribution
type and analyse the stability and convergence of the proposed method in terms of the regularization
parameter and the distance d.

One of the direct applications of this identi$cation technique is to locate the defects or the cracks
of the materials as well as the junction between di2erent materials. Other approaches for similar
identi$cations can be found in [1–3].

2. Regularization method and its dependence on parameters

Since f(x) is often available only with some observation noise, system (1.5) may not have a
solution. Even if there exist solutions, the solutions may vary unstably with respect to the changes
of f. Hence we propose to use the output least-squares method with a regularization of bounded
variations (BV) to solve the Fredholm integral equation (1.5):

min
�∈H 1(�)

J (�) = 1
2‖Kd�− f‖2

L2(�) + � |�|BV +
�
2
‖��‖2

L2(�); (2.1)

where |�|BV is de$ned either by

|�|BV =
∫
�

√
|�x1 |2 + |�x2 |2 dx (2.2)

or equivalently by

|�|BV =
∫
�
|�x1 | dx +

∫
�
|�x2 | dx: (2.3)

In our applications, we will always $x the parameter � as a small number, and let only � play the
role of regularization in order to properly handle the noise in the data and the nonsmoothness of the
function �(x). If the solution �(x) is smooth, one may drop o2 the �-term. Our major interest of
the paper is to recover the nonsmooth parameter function �(x), for example, � is only a delta-type
distribution.

For convenience, we will use �∗ to denote the solution of (2.1). But we may write the solution
also as �∗� or �∗d when we want to emphasize its dependence on the regularization parameter � or
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on the distance d in some situations. We will frequently use the following Ad-inner product de$ned
by

Ad(�; �) = (Kd�; Kd�) + �(��;��) ∀�; � ∈ H 1(�)

and its induced norm

‖�‖Ad = (Ad�; �)1=2 ∀� ∈ H 1(�):

The L2-norm ‖ · ‖L2(�) will often be written as ‖ · ‖.
We now prove

Lemma 2.1. There exists a unique minimizer to the problem (2:1).

Proof. As J (�) is bounded below, so j0 ≡ min�∈H 1(�) J (�) is $nite, and there exists a sequence
{�n}⊂H 1(�) such that limn→∞ J (�n) = j0: Therefore {‖��n‖} is bounded, which implies

‖�n‖6C (2.4)

for some constant C. To see (2.4), we write

�n(x) = �̂n + �n(x); �̂n =
1
|�|

∫
�
�n(x) dx:

By Friedrichs’ inequality, we have

‖�n‖ = ‖�n − �̂n‖6C0 ‖��n‖;
thus {‖�n‖} is bounded, and so is {‖�n‖}. Otherwise if {‖�n‖} is unbounded, then �̂n = �n − �n is
also unbounded as n→ ∞. Using this and the boundednesss of Kd (cf. (1.8)), we have

J (�n) =
1
2

∫
�

(Kd �n − f)2 dx + � |�n|BV +
�
2
‖��n‖2

¿
�
2
‖��n‖2 +

1
4

∫
�

(Kd �̂n)
2 dx − 1

2

∫
�

(Kd �n − f)2 dx

=
�

2C2
0
‖�n‖2

L2(�) +
�̂2
n

4
|�| (Kd(1))2 − 1

2

∫
�

(Kd �n − f)2 dx

→∞:
This contradicts with the boundedness of J (�n). Therefore (2.4) is true and {‖�n‖H 1(�)} is bounded.
So there exists a subsequence, still denoted as {�n}, such that it converges weakly to a �∗ in H 1(�).
This with the lower semi-continuity of a seminorm, we derive

J (�∗)6 lim
n→∞ inf J (�n) = min

�∈H 1(�)
J (�);

so �∗ is a minimizer.
Note that for any �1 �≡ �2 in �, we have either ��1 �≡ ��2 in � or Kd �1 �= Kd �2. Then it is

easy to verify that J (�) is strictly convex, which implies the uniqueness of the minimizers.
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We now derive the optimality conditions for the minimizers in (2.1). For convenience, we let

F(�) = 1
2‖Kd �− f‖2 +

�
2
‖��‖2; j(�) = |�|BV:

Let �∗ be a minimizer of (2.1), then

J (�∗)6J (�) ∀� ∈ H 1(�); (2.5)

or equivalently

0¿J (�∗) − J (�) = F(�∗) − F(�) + � (j(�∗) − j(�));

replacing � by �∗ + t(�− �∗) above for t ¿ 0, and using the convexity of j(�), we get

0¿t−1{F(�∗) − F(�∗ + t(�− �∗)} + � (j(�∗) − j(�)) ∀� ∈ H 1(�):

Letting t → 0+, we get

F ′(�∗)(�∗ − �) + �(j(�∗) − j(�))60 ∀� ∈ H 1(�):

This gives the necessary condition of the optimality. In fact, it is also a su=cient condition, that is,
we have

Theorem 2.1. The necessary and su8cient conditions of optimality for problem (2:1) is

F ′(�∗)(�∗ − �) + � (j(�∗) − j(�))60 ∀� ∈ H 1(�): (2.6)

Proof. To prove the su=cient part, let �∗ ∈ H 1(�) be such that (2.6) holds. Then by the convexity
of F(�), we have

J (�∗) − J (�) = F(�∗) − F(�) + �(j(�∗) − j(�))

6F ′(�∗)(�∗ − �) + �(j(�∗) − j(�))60 ∀� ∈ H 1(�);

so �∗ is a minimizer.

The next lemma shows the Lipschitz continuity of the minimizer function �∗� with respect to the
regularization parameter �:

Lemma 2.2. The minimizer �∗� of problem (2:1) is Ad-Lipschitz continuous with respect to the
regularization parameter �. More accurately; we have

‖�∗� − �∗�′‖Ad6C |� − �′| ∀�; �′¿ 0;

where C is a constant independent of the distance parameter d; � and �′.

Proof. For any �; �′¿ 0, using the optimality conditon (2.6) with �∗ and � replaced by �∗�′ and
�∗�, we get

(Kd �∗�′ − f; Kd (�∗�′ − �∗�)) + � (��∗�′ ; �(�∗�′ − �∗�)) + �′(j(�∗�′) − j(�∗�))60; (2.7)

while replacing �∗ and � by �∗� and �∗�′ in (2.6), we obtain

(Kd �∗� − f; Kd (�∗� − �∗�′)) + �(��∗�;�(�∗� − ��′)) + �(j(�∗�) − j(�∗�′))60: (2.8)
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Summing up inequalities (2.7)–(2.8) give

‖Kd (�∗� − �∗�′)‖2 + � ‖�(�∗� − �∗�′)‖2 + (� − �′)(j(�∗�) − j(�∗�′))60: (2.9)

On the other hand, it is easy to see

|j(�∗�) − j(�∗�′)|6
√

2 |�|1=2 ‖�(�∗� − �∗�′)‖′;
the desired result now follows immediately from Young’s inequality and (2.9).

For the continuity of the minimizer �∗d of problem (2.1) with respect to the distance parameter d,
we have

Lemma 2.3. For any d¿d′¿ 0;

‖Kd(�∗d − �∗d′)‖ + �1=2‖�(�∗d − �∗d′)‖63 ‖f‖|d− d
′|

d′
: (2.10)

Proof. For any d; d′¿ 0, using the optimality condition (2.6) with �∗ and � replaced by �∗d and
�∗d′ , we get

(Kd�∗d − f;Kd(�∗d − �∗d′)) + �(��∗d; �(�∗d − �∗d′)) + �(j(�∗d) − j(�∗d′))60;

while replacing �∗ and � by �∗d′ and �∗d in (2.6), we obtain

(Kd′�∗d′ − f;Kd′(�∗d′ − �∗d)) + � (��∗d′ ; �(�∗d′ − �∗d)) + � (j(�∗d′) − j(�∗d))60:

Summing up the above two inequalities gives

‖Kd(�∗d − �∗d′)‖2 + �‖�(�∗d − �∗d′)‖2

6(f; (Kd − Kd′)(�∗d − �∗d′)) − (Kd�∗d′ ; Kd(�
∗
d − �∗d′)) + (Kd′�∗d′ ; Kd′(�

∗
d − �∗d′))

= (f − Kd′�∗d′ ; (Kd − Kd′)(�∗d − �∗d′)) + ((Kd′ − Kd)�∗d′ ; Kd(�∗d − �∗d′)): (2.11)

By de$nition of Kd, we can easily verify that for any � ∈ H 1(�),

‖Kd�− Kd′�‖6 |d− d′|
d′

‖Kd�‖
and

‖Kd�− Kd′�‖6 |d− d′|
d

‖Kd′�‖:
On the other hand, by taking �= 0 in (2.5) we have

‖Kd �d‖6‖f‖; ‖Kd′�d′‖6‖f‖:
Using these estimates we derive from (2.11) that

Ad(�∗d − �∗d′ ; �∗d − �∗d′)
62‖f‖ ‖(Kd − Kd′)(�∗d − �∗d′)‖ + ‖(Kd − Kd′)�∗d′‖‖Kd(�∗d − �∗d′)‖
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6
(

2‖f‖|d− d
′|

d′
+

|d− d′|
d

‖Kd′�∗d′‖
)
‖Kd(�∗d − �∗d′)‖

63‖f‖|d− d
′|

d′
{Ad(�∗d − �∗d′ ; �∗d − �∗d′)}1=2;

from which estimate (2.3) follows immediately.

3. An iterative solver

We now discuss an algorithm for solving the variational inequality (2.6) for the minimizer �∗.
Recall that �∗ ∈ H 1(�) satis$es

(Kd�∗; Kd (�∗ − �)) + � (��∗; �(�∗ − �)) + � (j(�∗) − j(�))6(f;Kd (�∗ − �))

or

K∗
dKd�

∗ + ��∗��∗ + �@j(�∗) = K∗
df; (3.1)

where K∗
d and �∗ are the adjoints of Kd and �, respectively, in terms of the L2-inner product, and

@j denotes the subdi2erential of j.
To solve this system, we are going to use an iterative method. Note that the integral operator Kd is

a global operator, its discretized version is a dense matrix. To avoid solving a discretized system with
a dense coe=cient matrix at each iteration, we propose to use the implicit time-marching iteration.
First, we solve the corresponding linear system of (3.1) for an initial value �0 ∈ H 1(�):

K∗
dKd�

0 + ��∗��0 = K∗
df (3.2)

(instead one may use an arbitrary initial guess �0 ∈ H 1(�)), then generate the sequence {�n}∞n=1 ⊂
H 1(�) by solving

�n+1 − �n
�t + (D + ��∗�)�n+1 + �@j(�n+1) = K∗

df + (D − K∗
dKd)�

n; (3.3)

where D is any $xed positve-semi-de$nite operator such that

‖D�‖L2(�)6c0‖�‖L2(�) ∀� ∈ L2(�) (3.4)

for some constant c0.
In the following, we are going to show the global convergence of the algorithm (3.3). To do so,

we $rst give a stability estimate for the sequence {�n}.

Lemma 3.1. For the sequence generated by (3:3) with an arbitrary guess �0 ∈ H 1(�); we have for
any M ¿ 1;(

1
Qt

− k
2
0

2

)
M−1∑
n=1

‖�n+1 − �n‖2 + ((K∗
dKd + ��∗�)�M ; �M )

+
M−1∑
n=0

((2D + ��∗�)(�n+1 − �n); �n+1 − �n) + �j(�M )6C(�0); (3.5)

where C(�0) is a constant depending on �0.
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Proof. Let L=D+��∗�, and ‖·‖L for its induced norm (L·; ·)1=2. Multiplying (3.3) by (�n+1−�n),
we get

1
Qt

‖�n+1 − �n‖2 + (L�n+1; �n+1 − �n) + �(j(�n+1) − j(�n))

6(K∗
df; �

n+1 − �n) + ((D − K∗
dKd)�

n; �n+1 − �n)
or

1
Qt

‖�n+1 − �n‖2 + 1
2‖�n+1‖2

L + 1
2‖�n+1 − �n‖2

L + �j(�n+1)

6 1
2‖�n‖2

L + �j(�n) + (K∗
df; �

n+1 − �n)
+ 1

2 ((K∗
dKd − D)�n; �n) − 1

2 ((K∗
dKd − D)�n+1; �n+1)

+ 1
2 ((K∗

dKd − D)(�n − �n+1); �n − �n+1);

summing over n= 0; 1; : : : ; M − 1, we obtain

1
Qt

M−1∑
n=0

‖�n+1 − �n‖2 + 1
2 ((L+ K∗

dKd − D)�M ; �M )

+ 1
2

M−1∑
n=0

((L+ D − K∗
dKd)(�n+1 − �n); �n+1 − �n) + �j(�M )

6 1
2 (L�0; �0) + �j(�0) + (K∗

df; �
M ) − (K∗

df; �
0) + 1

2 ((K∗
dKd − D)�0; �0):

Using (1.8), we further derive(
1

Qt
− k

2
0

2

)
M−1∑
n=0

‖�n+1 − �n‖2 + 1
2 ((K∗

dKd + ��∗�)�M ; �M )

+
1
2

M−1∑
n=0

((2D + ��∗�)(�n+1 − �n); �n+1 − �n) + �j(�M )

6 1
2 (L�0; �0) + �j(�0) − (K∗

df; �
0) +

k2
0

2
‖�0‖2

− 1
2 (D�0; �0) + (K∗

df; �
M ): (3.6)

Using the same argument as in proving (2.4), we have

‖�M‖6C((K∗
dKd + ��∗�)�M ; �M )1=2: (3.7)

To see this, we write

�(x) = �̂+ �(x) ∀x ∈ �;
where �̂ is the average of the function � in �, then we get from (1.8) that

‖Kd�‖2¿ 1
2‖Kd�̂‖2 − ‖Kd�‖2¿

�̂2

2
|�|(Kd(1))2 − |�|

d2
‖�‖2;
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which implies

�̂26C(‖�‖2 + ‖Kd�‖2):

Then (3.7) follows from the triangle and PoincarRe inequalities. (3.7) with Young’s inequality gives

(K∗
df; �

M )6C((K∗
dKd + ��∗�)�M ; �M )1=2‖K∗

df‖
6 1

4 ((K∗
dKd + ��∗�)�M ; �M ) + C‖K∗

df‖2;

with which (3.6) leads to (3.5).

Applying the stability estimate in Lemma 3.1 we can prove the following global convergence of
algorithm (3.3):

Theorem 3.1. Let {�n}∞n=1 be the iterative sequence generated by algorithm (3:3) with an arbitrary
initial guess �0 ∈ H 1(�); not necessarily given by (3:2); then it converges strongly in H 1(�) to
the solution �∗ of (3:1).

Proof. We know from (3.5) that {�n} is bounded in H 1(�), therefore there exists a subsequence,
still denoted as {�n}, such that

�n → S� weakly in H 1(�); �n → S� strongly in L2(�): (3.8)

Next, we show that S� is a solution of (3.1). To see this, multiplying (3.3) by (�n+1 − �), with any
� ∈ H 1(�), we obtain

1
Qt

(�n+1 − �n; �n+1 − �) + ((D + ��∗�)�n+1; �n+1 − �)

+ (K∗
dKd�

n; �n+1 − �) + �j(�n+1) − �j(�)

6(K∗
df; �

n+1 − �) + (D�n; �n+1 − �): (3.9)

Again from (3.5), we know that
∞∑
n=1

‖�n+1 − �n‖26C;

therefore ‖�n+1 − �n‖ → 0 as n → ∞. Using this, (3.8)–(3.9) and the lower semi-continuity of a
seminorm, we derive by taking the lim inf n→∞ in (3.9) that

(Kd S�; Kd( S�− �)) + �(� S�;�( S�− �)) + (D S�; S�− �) + �(j( S�) − j(�))

6 lim inf
n→∞ {(K∗

df; �
n+1 − �) + (D�n; �n+1 − �)}

= (f;Kd( S�− �)) + (D S�; S�− �) ∀� ∈ H 1(�):

so S� is the unique solution �∗ of (2.6) or (3.1).
Using the above result, we can easily show that each subsequence of {�n}∞n=1 has a subsequence

which converges to �∗. So the whole sequence {�n}∞n=1 converges to the same limit �∗. We next
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prove that �n converges to �∗ strongly in H 1(�). To do so, taking � = �∗ in (3.9) and summing
the resulting inequality with (3.1) with � replaced by �n+1, we obtain

1
Qt

(�n+1 − �n; �n+1 − �∗) + ((D + ��∗�)(�n+1 − �∗); �n+1 − �∗)

6((D − K∗
dKd)(�n − �∗); �n+1 − �∗);

or equivalently
1

Qt
‖�n+1 − �∗‖2 + �‖�(�n+1 − �∗)‖26

(
c0 + k0 +

1
Qt

)
‖�n − �∗‖‖�n+1 − �∗‖:

This with the previously proved L2-convergence of {�n} implies the desired strong convergence in
H 1(�).

4. Choice of regularization parameters

In this section we study the possibility of the use of Morozov’s principle to choose a reasonable
regularization parameter � in (2.1). Assume that the available observation data is f!, instead of the
exact data f, and the noise level is of order !, namely

‖f! − f‖L2(�)6!: (4.1)

Let �̂ ∈ H 1(�) be a solution of Kd�̂=f, and �!� be the unique solution of the following minimization
problem:

min
�∈H 1(�)

J (�) = 1
2‖Kd�− f!‖2 + �j(�) +

�
2
‖��‖2

L2(�): (4.2)

Recall that for our interest in this paper, � is $xed and much smaller than �.
The damped Morozov principle proposes that the regularization parameter � should be chosen

such that the error due to the regularization is equal to the error due to the observation data. That
is, � is chosen according to

‖Kd�!� − f!‖2 + �‖��!�‖2 = !2: (4.3)

For such a choice of the regularization parameter �, we have the following error estimate between
�!� and �̂:

Theorem 4.1. If � is chosen according to (4:3); then we have

‖Kd(�!� − �̂)‖2 + �‖�(�!� − �̂)‖262(!2 + �‖��̂‖2): (4.4)

Proof. We see from (4.3) that

‖Kd�!� − f!‖2 + �‖��!�‖2 − {‖Kd�!0 − f!‖2 + �‖��!0‖2}6!2: (4.5)

Now we claim that the left-hand side of (4.5) is equal to Ad(�!� − �!0; �!� − �!0). In fact,

LHS = ‖Kd(�!� − �!0)‖2 + �‖�(�!� − �!0)‖2

+ 2{(Kd�!0 − f!; Kd(�!� − �!0)) + �(��!0;�(�!� − �!0))}: (4.6)
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Note that �!0 is a minimizer of problem (4.2) with � = 0, that is, �!0 is a solution of the following
variational problem:

(Kd�!0; Kd(�
!
0 − �)) + �(��!0;�(�!0 − �)) = (f!; Kd(�!0 − �)) ∀� ∈ H 1(�); (4.7)

now the claim follows from (4.6) and (4.7).
We next estimate Ad(�!0 − �̂; �!0 − �̂). To do so, we add up (4.7) with � replaced by �̂ and the

following equation:

(Kd�̂− f;Kd(�̂− �!0)) = 0

to obtain

‖Kd(�̂− �!0)‖2 +
�
2
‖�(�̂− �!0)‖2 +

�
2
‖��!0‖2 − �

2
‖��̂‖2 = (f! − f;Kd(�!0 − �̂));

then the Cauchy–Schwarz inequality gives

Ad(�̂− �!0; �̂− �!0)6�‖��̂‖2 + ‖f! − f‖26!2 + �‖��̂‖2: (4.8)

Now result (4.4) follows immediately from the trianlge inequality and (4.6) and (4.8).

5. Numerical experiments

In this section we show some numerical experiments using the iterative algorithm (3.3) proposed
in Section 3 for the identi$cation of some source densities of distribution type. Let us $rst discuss
the discretization of Eq. (3.3) for $nding the (n + 1)th iterate �n+1. It is easy to verify that the
solution �n+1 solves equivalently the following problem:

min
�∈H 1(�)

J̃ (�) = 1
2Qt‖�‖2 + 1

2 (D�; �) +
�
2
‖��‖2 + �j(�) − (f̃; �);

or the following nonlinear elliptic problem:

1
Qt
�+ D�− �Q�− �� ·

(
��√|��|2 + �

)
= f̃ (5.9)

when we use (2.2) or

1
Qt
�+ D�− �Q�− �

2∑
i=1

(
�xi√|�xi |2 + �

)
xi

= f̃ (5.10)

when we use (2.3). Here � is a small positive parameter introduced to smooth the nondi2erentiable
functional j(�), and f̃ is given by

f̃ =
1

Qt
�n + K∗

df + (D − K∗
dKd)�

n: (5.11)

We will complement Eq. (5.9) or (5.10) with the homogeneous Neumann boundary condition
@�=@n = 0 on @�.

Without loss of generality, we take � to be the unit square � = (0; 1) × (0; 1) and the operator
D = 0. We divide the domain � into N 2 subsquares �ij with each side having equal length h. Let
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Fig. 1. Mesh 30 × 30; Qt = 0:25; � = 5:0 · 10−5; � = 10−10; d= 0:01.

xij=(xi1; x
j
2) be the centroid of each �ij. We will approximate the product of Kd with a given function

� as follows:

Kd�(xlm) =
∑
ij

∫
�ij

�(x′)√|x − x′|2 + d2
dx′ ≈ h2

∑
ij

�ijkij(xlm); ∀xlm:

We use the midpoint rule for our calculations. Thus, kij(xlm) is the average values of k(xlm; x′) at
four vertices of �ij and �ij approximates � at xij.

We use the central di2erence approximation of Q� at xij:

1
h2

(4�i; j − �i+1; j − �i−1; j − �i; j+1 − �i; j−1)

and the following second-order approximation for j(�) at xi; j:√√√√1
2

{∣∣∣∣�i+1; j − �i; j
h

∣∣∣∣
2

+
∣∣∣∣�i; j − �i−1; j

h

∣∣∣∣
2
}

+
1
2

{∣∣∣∣�i; j+1 − �i; j
h

∣∣∣∣
2

+
∣∣∣∣�i; j − �i; j−1

h

∣∣∣∣
2
}
:
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Fig. 2. Mesh 60 × 60; Qt = 1:0; � = 5:0 · 10−5; � = 10−10; d= 0:01.

Hence the discretized problem of (5.9) is given by

1
Qt
�n+1 + �H�n+1 +

�
2

((D+
1 )t'D+

1 + (D−
1 )t'D−

1 + (D+
2 )t'D+

2 + (D−
2 )t'D−

2 )�n+1

=
1

Qt
�n + Kdf − K∗

dKd�
n; (5.12)

where ' is the diagonal matrix with diagonal

(i+( j−1)n = {�ij(�n+1) + �}−1=2

with

�ij(�n+1) =
1

2h2
(|�n+1

i; j − �n+1
i−1; j|2 + |�n+1

i+1; j − �n+1
i; j |2) +

1
2h2

(|�n+1
i; j − �n+1

i; j−1|2 + |�n+1
i; j+1 − �n+1

i; j |2)

and H denotes the central di2erence matrix, and

D+
1 = D+ ⊗ I; D−

1 = D− ⊗ I; D+
2 = I ⊗ D+; D−

2 = I ⊗ D−:

If n= 1=h, then D+ and D− are the n× n forward and backward di2erence matrices respectively.
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In our implementations, we use the $xed-point iterative method to solve the nonlinear algebraic
system of Eqs. (5.12), namely the diagonal matrix ' is evaluated at the previous iterate �n, but we
let this process iterate only once to three times. Hence, the resulting system becomes a linear system
with a sparse (block tri-diagonal) symmetric positive-de$nite matrix and can be e=ciently solved by
the Cholesky decomposition method. In our numerical calculations we iterate the $xed-point iteration
once. We note that we can prove the global convergence of the resulting algorithm using the similar
arguments as in Section 3, e.g., see, [4].

In the example shown below, we choose the exact solution of the integral equation (1.5) to be
the delta function !*(x) with * being the circle of radius 0:25 centered at (0; 5; 0:5). Then the exact
observation data f is calculated through Eq. (1.5) using the exact solution. In our implementation,
we add a random noise to the observation data f in the following way:

f!(x) = f(x) + ! rand(x);

where rand(x) is a uniformly distributed random function in [− 1; 1], and ! is the noise level (Figs.
1–2).

References

[1] H. Banks, F. Kojima, Boundary shape identi$cation problems in two-dimensional domains related to thermal testing
of materials, Quart. Appl. Math. 47 (1989) 273–293.

[2] H. Banks, F. Kojima, Boundary shape identi$cation in two-dimensional electrostatic problems using SQUIDS,
Technical Report CRSC-TR98-15, Center for Research in Scienti$c Computing, North Carolina State University,
1998.

[3] H. Banks, F. Kojima, W. Winfree, Boundary estimation problems arising in thermal tomography, Inverse Problems 6
(1990) 897–921.

[4] K. Ito, On convergence of a $xed-point iteration for quasi-linear elliptic equations, 1999, Submitted.
[5] P. NeittaanmVaki, M. Rudnicki, A. Savini, Inverse Problems and Optimal Design in Electricity and Magnetism,

Clarendon Press, Oxford, 1996.


