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Abstract. We consider the unique determinations of impenetrable obstacles
or diffraction grating profiles in R3 by a single far-field measurement within

polyhedral geometries. We are particularly interested in the case that the scat-

tering objects are of impedance type. We derive two new unique identifiability
results by a single measurement for the inverse scattering problem in the afore-

mentioned two challenging setups. The main technical idea is to exploit certain

quantitative geometric properties of the Laplacian eigenfunctions which were
initiated in our recent works [12, 13]. In this paper, we derive novel geometric

properties that generalize and extend the related results in [13], which further

enable us to establish the new unique identifiability results. It is pointed out
that in addition to the shape of the obstacle or the grating profile, we can
simultaneously recover the boundary impedance parameters.

2020 Mathematics Subject Classification. Primary: 35P05, 35P25, 35R30; Secondary: 35Q60.
Key words and phrases. Unique identifiability, inverse obstacle scattering, inverse grating, sin-

gle far-field pattern, Laplacian eigenfunction, geometric structure.
The first author was supported by the Austrian Science Fund (FWF): P 32660. The second

author was supported in part by NSFC/RGC Joint Research Grant No. 12161160314 and the

startup fund from Jilin University. The third author was supported by Hong Kong RGC General
Research Funds (project numbers, 11300821, 12301218 and 12302919) and the NSFC/RGC Joint

Research Grant (project number, N CityU101/21). The fourth author was supported by Hong

Kong RGC General Research Fund (projects 14306718 and 14306719).
∗Corresponding author: Hongyu Liu.

1

http://dx.doi.org/10.3934/ipi.2022023


2 XINLIN CAO, HUAIAN DIAO, HONGYU LIU AND JUN ZOU

1. Introduction.

1.1. Mathematical setup and main results for the inverse obstacle prob-
lem. Let Ω ⊂ R3 be a bounded Lipschitz domain such that R3\Ω is connected. Let
ui be an incident plane field of the form

ui := ui(x; k,d) = eikx·d, x ∈ R3, (1.1)

where k ∈ R+ denotes the wavenumber and d ∈ S2 signifies the incident direction.
Denote us as the scattered wave field generated from the interruption of the prop-
agation of ui by an impedance obstacle. Define u := ui + us to be the total wave
field. The forward scattering problem is described as follows:

∆u+ k2u = 0 in R3\Ω,

u = ui + us in R3\Ω,

∂νu+ ηu = 0 on ∂Ω,

lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0, r := |x|,

(1.2)

where the last limit is known as the Sommerfeld radiation condition that holds
uniformly in x̂ := x/|x| ∈ S2. The Robin type boundary condition is referred to as
the impedance boundary condition for an impedance obstacle, where ν denotes the
exterior unit normal vector to ∂Ω and η ∈ L∞(∂Ω) represents the corresponding
boundary impedance parameter. If η 6= 0, Ω is said to be an impedance obstacle.

The wellposedness of the forward scattering problem (1.2) is known by [16, 45]
and there exists a unique solution u ∈ H1

loc(R3\Ω) fulfilling the following expansion,
which holds uniformly for x̂:

us(x; k,d) =
eikr

4πr
u∞(x̂; k,d) +O

(
1

r2

)
as r →∞, (1.3)

where u∞ is known as the associated far-field pattern or the scattering amplitude.
The corresponding inverse obstacle scattering problem to (1.2) is to recover the

shape of the obstacle Ω as well as the associated impedance parameter η by the
knowledge of the far-field pattern u∞(x̂; k,d). By introducing an abstract operator
F which sends the obstacle to the corresponding far-field pattern, the aforemen-
tioned inverse problem can be formulated as

F(Ω, η) = u∞(x̂; k,d), (1.4)

which is nonlinear and ill-posed (cf. [36, 49]).
We first introduce the concept of “admissible” obstacles by presenting certain

a-priori conditions on the underlying obstacles in deriving our main unique deter-
mination results for the inverse obstacle problem.

Definition 1.1. Let Ω ⊂ R3 be an open polyhedron associated with the boundary
impedance condition (i.e. the third equation) in (1.2). Denote ∂Ω = ∪pm=1Σm (p ∈ N
and p ≥ 4), where Σm is a face of Ω, and E(Ω) = {l1, . . . , lq} is the set of edges of
Ω. Ω is said to be an admissible polyhedral obstacle, if the following conditions are
fulfilled:

(a) η ∈ C(∂Ω);
(b) for any face Σm ⊂ ∂Ω, the surface impedance parameter η on Σm is a real-

analytic function;
(c) for any edge lj ∈ E(Ω), η(x0) 6= 0 for any x0 ∈ lj.
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Throughout this paper, for notational unification, we write an admissible polyhedral
obstacle as (Ω, η).

Remark 1.2. It is noted that the conditions on the impedance parameter η in
Definition 1.1 can be fulfilled when η is a non-zero constant on ∂Ω. That is,
η(x) ≡ η0 ∈ C\{0} for x ∈ ∂Ω. Compared with the admissible polyhedral obstacles
introduced in [13, Definition 6.1], we completely remove the root assumption of the
associated Legendre polynomials on the dihedral angle between any two adjacent
faces of the underlying polyhedron, which may not be easily verified in practical
applications. Therefore, our new unique identifiability result in what follows for
determining the admissible obstacle as introduced above can be applied to more
general scenarios in the inverse obstacle scattering problem.

Following the notations in [13], we let Π1,Π2 be any two adjacent faces of a
polyhedron Ω. Denote E(Π1,Π2, l) to be an edge corner associated with Π1 and
Π2. V({Π`}n`=1,x0) signifies the vertex corner formulated by Π1,Π2, · · · ,Πn at the
vertex x0 ∈ ∂Ω. It is clear that a vertex corner V({Π`}n`=1,x0) is composed of finite
many edge corners, which intersect at x0, ; see [13, Definitions 1.2 and 1.3] for more
details. Now, recall the definitions for rational and irrational obstacles based on the
concept of the rational and irrational corners introduced in [13] as follows.

Definition 1.3. [13, Definition 4.1] Let E(Π1,Π2, l) be an edge corner associated
with Π1 and Π2. Denote the dihedral angle of Π1 and Π2 by φ = α·π, α ∈ (0, 1). If φ
is an irrational dihedral angle, namely, α is an irrational number, then E(Π1,Π2, l)
is said to be an irrational edge corner. Otherwise it is said to be a rational edge
corner. For a rational edge corner E(Π1,Π2, l), it is called a rational angle of degree
p of E(Π1,Π2, l) if α = q/p with p, q ∈ N being irreducible.

Definition 1.4. [13, Definition 4.2] Let V({Π`}n`=1,x0) be a vertex corner, where
n ∈ N and n ≥ 3. It is clear that V({Π`}n`=1,x0) is composed of the following n edge
corners:

E` := E(Π`,Π`+1, l`), En := E(Πn,Π1, ln), Πn+1 := Π1, ` = 1, 2, . . . , n− 1,

where l` is the line segment of Π` ∩ Π`+1 and ln is the line segment of Πn ∩ Π1,
respectively. Denote

IIR = {` ∈ N | 1 ≤ ` ≤ n, E` is an irrational edge corner},
IR = {` ∈ N | 1 ≤ ` ≤ n, E` is a rational edge corner}.

(1.5)

If #IIR ≥ 1, then V({Π`}n`=1,x0) is said to be an irrational vertex corner. If #IIR ≡
0, then V({Π`}n`=1,x0) is said to be a rational vertex corner. For a rational vertex
corner V({Π`}n`=1,x0) composed of edge corners E` := E(Π`,Π`+1, l`), the largest
degree of E` (` = 1, . . . , n) is referred to as the rational degree of V({Π`}n`=1,x0).

Next, we provide the definition for rational and irrational admissible obstacles.

Definition 1.5. Let (Ω, η) be an admissible polyhedral obstacle. If there exists a
rational vertex corner, then it is said to be a rational obstacle. If all the vertex
corners of Ω are irrational, then it is called an irrational obstacle. The smallest
degree of the rational corner of Ω is referred to as the rational degree of Ω.

We also introduce the admissible complex polyhedral obstacles as follows.
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Definition 1.6. Ω is said to be an admissible complex polyhedral obstacle if it
consists of finitely many pairwise disjoint admissible polyhedral obstacles Ωj (j =
1, . . . , l) such that Ωj is simply connected and ∂Ωi∩∂Ωj = ∅ (∀i, j ∈ {1, . . . , l} with
i 6= j). That is,

(Ω, η) =

l⋃
j=1

(Ωj , ηj), η =

l∑
j=1

ηjχ∂Ωj∩∂Ω

where l ∈ N and each (Ωj , ηj) is an admissible polyhedral obstacle. Moreover, Ω
is said to be irrational if all of its component polyhedral obstacles are irrational,
otherwise it is said to be rational. For the latter case, the smallest degree among
all the degrees of its rational components is defined to be the degree of the complex
obstacle Ω, which is denoted by deg(Ω). Furthermore, Ω is said to be convex if all
of its component polyhedral obstacles are convex.

With all the necessary notations and definitions introduced above, we are now in
a position to give the local unique identifiability results for an admissible complex
polyhedral obstacle by a single far-field measurement with respect to rational and
irrational cases, separately.

Theorem 1.7. Considering the scattering problem (1.2) associated with two admis-
sible irrational complex polyhedral obstacles (Ωj , ηj) in R3, j = 1, 2. Let uj∞(x̂; k,d)
be the corresponding far-field patterns associated with (Ωj , ηj) and the incident wave

ui is defined in (1.1). Let G be the unbounded connected component of R3\(Ω1 ∪ Ω2).
Suppose that

u1
∞(x̂; k,d) = u2

∞(x̂; k,d), for all x̂ ∈ S2, (1.6)

then (∂Ω1\∂Ω2)
⋃

(∂Ω2\∂Ω1) cannot possess an edge corner on ∂G.
Moreover,

η1 = η2 on ∂Ω1 ∩ ∂Ω2. (1.7)

For any vertex xc of a polyhedron Ω ∈ R3, we denote for r ∈ R+ that Ωr(xc) =
Br(xc) ∩ R3\Ω. Define

L(f)(xc) := lim
r→+0

1

|Ωr(xc)|

∫
Ωr(xc)

f(x) dx (1.8)

if the limit exists for any f ∈ L2
loc(R3\Ω). It is easy to see that if f(x) is continuous

in Ωε0(xc) for a sufficiently small ε0 ∈ R+, then L(f)(xc) = f(xc). According
to [13, Remark 6.11], (1.8) can be fulfilled in certain practical scenarios.

Using the technical assumption (1.8), the unique determination of rational ob-
stacles can be stated as follows.

Theorem 1.8. For a fixed k ∈ R+, we let (Ωj , ηj), j = 1, 2, be two admissible
rational complex obstacles, with uj∞(x̂; k,d) being their corresponding far-field pat-
terns associated with the incident field ui defined in (1.1), where d is the incident
direction. Assume that

deg(Ωj) ≥ 3, j = 1, 2, (1.9)

where deg(Ωj) is the rational degree of Ωj defined in Definition 1.6. We further

write G for the unbounded connected component of R3\(Ω1 ∪ Ω2). If

u1
∞(x̂; k,d) = u2

∞(x̂; k,d), x̂ ∈ S2, and L(∇uj)(xc) 6= 0, j = 1, 2, (1.10)
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for all vertices xc of Ω, then the set (∂Ω1\∂Ω2) ∪ (∂Ω2\∂Ω1) can not possess an
edge corner on ∂G. Moreover,

η1 = η2 on ∂Ω1 ∩ ∂Ω2.

Remark 1.9. We would like to point out that the technical condition L(∇uj)(xc) 6=
0 in (1.10) can be satisfied under some generic conditions on Ω. For example, if the
diameter of the obstacle Ω is relatively small compared with the wavelength in the
certain regime that k · diam(Ω)� 1, then (1.10) can hold.

Theorems 1.7 and 1.8 actually reveal the unique determination for a certain kind
of impedance obstacles locally in the neighborhood of the corner. It is easy to verify
that if the underlying admissible complex obstacles are convex, then there holds the
global uniqueness results by a single far-field measurement accordingly. Indeed, one
has

Corollary 1.10. For a fixed k ∈ R+, let (Ω, η) and (Ω̃, η̃) be two convex admissible
irrational polyhedral obstacles, with uj∞(x̂; k,d), j = 1, 2, being their corresponding
far-field patterns associated with the incident field ui defined in (1.1), where d is
the incident direction. If (1.6) is fulfilled, then

Ω = Ω̃, η = η̃.

Compared with the unique identifiability study in [13, Section 6], the results
presented in this paper significantly relax the number of the measurements from “at
most two far-field patterns” to “only one far-field pattern”. This is made possible by
relaxing the technical condition u(0) = 0 in the vanishing properties of Laplacian
eigenfunctions in R3, which will be systematically investigated in the subsequent
sections. Moreover, the a-priori conditions imposed on “admissible obstacles” are
also relaxed by removing the conditions on the associated Legendre polynomials.
This is derived from the fact that the vanishing orders of the Laplacian eigenfunction
u at an edge corner can be determined by corresponding two intersecting adjacent
planes without any a-prior information of the other planes; see [13, Theorem 3.1]
for more relevant discussions.

1.2. Mathematical setup and main results for the inverse diffraction grat-
ing problem. First, we give a brief review on the mathematical setup of the diffrac-
tion grating profile. Assume that the diffraction grating involves an impenetrable
surface Λf which is 2π-periodic with respect to x′ := (x1, x2). Precisely speaking,
denote

Λf = {x := (x′, x3) ∈ R3;x3 = f(x′)}, (1.11)

where f is a bi-periodic Lipschitz function with period 2π with respect to x1 and
x2. Let

Ωf := {x ∈ R3; x′ ∈ R2, x3 > f(x′)} (1.12)

be the unbounded domain filled with an isotropic homogeneous medium. Suppose
that the incident plane wave ui(x; k,d), where k ∈ R+ and

d := d(θd, φd) = (sinφd cos θd, sinφd sin θd,− cosφd),

θd ∈ [0, 2π), φd ∈ (−π/2, π/2),
(1.13)

propagates to Λf from the top. The total wave field fulfills the following Helmholtz
system

∆u+ k2u = 0 in Ωf ; ∂νu+ ηu = 0 on Λf , (1.14)
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where η denotes the surface impedance parameter and η ∈ L∞(Λf ). Throughout
the rest of the paper, we let

α = k(sinφd cos θd, sinφd sin θd).

To ensure the well-posedness of (1.14), the total wave field u is supposed to be
α-quasiperiodic with respect to x1 and x2, which can be defined more rigorously as

Definition 1.11. u is said to be α-quasiperiodic with respect to x′ = (x1, x2), if
there holds

u(x′ + 2πn, x3) = ei2πα·nu(x′, x3)

for any n = (n1, n2) ∈ Z2.

The corresponding scattered wave us satisfies the following Rayleigh series ex-
pansion

us(x) =
∑
n∈Z2

une
iαn·x′+iβnx3 :=

∑
n∈Z2

une
iξn·x, x3 > max

x′∈[0,2π)2
f(x′), (1.15)

where un := un(k) ∈ C are the Rayleigh coefficients of us and

ξn = (αn,βn), with αn := n +α,β2
n = k2 − |αn|2, (1.16)

where =βn ≥ 0 if |αn|2 > k2. The existence and uniqueness of the α-quasiperiodic
solution to (1.14) for the sound-soft (η ≡ ∞) or impedance boundary condition
with a constant η fulfilling =η > 0 can be seen in [1, 9, 26,28].

Define

Γb := {(x′, x3); x′ ∈ [0, 2π)2, x3 = b}, b > max
x′∈[0,2π)2

|f(x′)| (1.17)

The inverse problem associated with (1.14) is to determine Λf from the knowledge
of u(x|Γb ; k,d). By introducing an abstract operator F which sends the information
of Λf to the measurement u(x; k,d) on Γb, the inverse problem can be formulated
as

F(Λf , η) = u(x|Γb ; k,d). (1.18)

The unique identifiability for the diffraction grating with impedance boundary con-
dition by finite measurements has been an open problem for a long time. In order to
investigate this problem, similar to the study on the inverse obstacle problems, we
first propose the necessary definition of so-called “admissible” polyhedral gratings
considered in our work as follows.

Definition 1.12. Let (Λf , η) be a bi-periodic grating as described in (1.11). It is
said to be an admissible polyhedral diffraction grating if Λf is a polyhedral Lips-
chitz surface in R3, consisting of a finite number of planar faces in one periodic
cell [0, 2π) × [0, 2π), and the surface impedance parameter η satisfies the following
assumptions:

(a) η ∈ C(Λf );

(b) for any face Σm ⊂ Λf , the surface impedance parameter η on Σm is a real-
analytic function;

(c) for any edge lj ∈ E(Λf ), η(x0) 6= 0 for any x0 ∈ lj.
Henceforth, for notational unification, we write an admissible polyhedral diffraction
grating as (Λf , η).
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Following the definitions for irrational and rational vertex corners in Definition
1.4, we have the following concept for admissible irrational and rational polyhedral
diffraction gratings.

Definition 1.13. Let (Λf , η) be an admissible polyhedral diffraction grating. If there
exists a rational vertex corner in one period, then it is said to be a rational polyhe-
dral diffraction grating. If all the vertex corners of Λf in one period are irrational,
then it is called an irrational polyhedral diffraction grating. The smallest degree
of the rational corners of Λf is referred to as the rational degree of Λf , which is
denoted by deg(Λf ).

We would like to point out that the vertex corner considered in Definition 1.13
includes the edge corner which is intersected by two adjacent planes as a special
case.

Now, we can provide our main unique determination results for the inverse diffrac-
tion grating problem (1.18) with respect to irrational and rational structures, re-
spectively.

Theorem 1.14. Let (Λf , ηf ) and (Λg, ηg) be two admissible irrational polyhedral
diffraction gratings and G be the unbounded connected component of Ωf ∩ Ωg. Let
k ∈ R+ be fixed and d ∈ S2 be the corresponding incident direction defined in (1.13).
Let Γb be a measurement boundary given by (1.17) with

b > max

{
max

n′∈[0,2π)2
|f(n′)|, max

n′∈[0,2π)2
|g(n′)|

}
.

Suppose that uf (x; k,d) and ug(x; k,d) are the total wave fields measured on Γb
associate with (Λf , ηf ) and (Λg, ηg), respectively. If there holds that

uf (x; k,d) = ug(x; k,d) for x ∈ Γb, (1.19)

then ∂G\∂Λf can not possess an edge corner of Λg and ∂G\∂Λg can not possess
an edge corner of Λf . Moreover,

ηf = ηg on Λf ∩ Λg.

Similar to Theorem 1.8, if we assume the total wave field to (1.14) satisfies the
condition (1.8) on all the vertices of an admissible polyhedral diffraction grating,
the uniqueness results for admissible rational polyhedral diffraction gratings can be
stated as

Theorem 1.15. Let (Λf , ηf ) and (Λg, ηg) be two admissible rational polyhedral
diffraction gratings and G be the unbounded connected component of Ωf ∩ Ωg. Let
k ∈ R+ be fixed and d ∈ S2 be the corresponding incident direction defined in (1.13).
Let Γb be a measurement boundary given by (1.17) with

b > max

{
max

n′∈[0,2π)2
|f(n′)|, max

n′∈[0,2π)2
|g(n′)|

}
.

Assume that

deg(Λf ) ≥ 3 and deg(Λg) ≥ 3, (1.20)

where deg(Λf ) and deg(Λg) are the rational degrees of Λf and Λg defined in Defi-
nition 1.13, respectively. Suppose that uf (x; k,d) and ug(x; k,d) are the total wave
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fields measured on Γb associate with (Λf , ηf ) and (Λg, ηg), respectively. If there holds
that

uf (x; k,d) = ug(x; k,d) for x ∈ Γb, L(∇uf )(xfc ) 6= 0, L(∇ug)(xgc) 6= 0,
(1.21)

where xfc and xgc are arbitrary vertices of the admissible rational polyhedral diffrac-
tion gratings (Λf , ηf ) and (Λg, ηg), respectively, then ∂G\∂Λf can not possess an
edge corner of Λg and ∂G\∂Λg can not possess an edge corner of Λf . Moreover

ηf = ηg on Λf ∩ Λg.

Similar to Corollary 1.10, we have the following global uniqueness result for
convex irrational polyhedral diffraction gratings by a single measurement. Before
that, we first introduce the definition of a convex polyhedral diffraction grating.

Definition 1.16. Let Λf be an admissible polyhedral diffraction grating. If f is
convex in the periodic cell [0, 2π]× [0, 2π], then we say that Λf is a convex polyhedral
diffraction grating. Otherwise Λf is said to be a non-convex polyhedral diffraction
grating.

By virtue of Theorem 1.14, using Definition 1.16, one has the following corollary.

Corollary 1.17. For a fixed k ∈ R+, let (Λf , ηf ) and (Λg, ηg) be two convex irra-
tional polyhedral diffraction gratings, with uf (x; k,d) and ug(x; k,d) being the cor-
responding measurements on Γb given by (1.17) associated with the incident plane
wave field ui(x; k,d), where d is the incident direction (1.13). If (1.19) is fulfilled,
then

Λf = Λg, ηf = ηg.

1.3. Background and discussions. Determining an impenetrable obstacle by a
minimal/optimal number of scattering measurements is a long-standing problem in
the inverse scattering theory. We refer to [17, 27, 43] for historical accounts as well
as surveys on some existing developments in the literature. This problem has been
resolved if a-priori geometric conditions are imposed on the underlying obstacle, say
e.g. smallness in size (compared to the wavelength), radial symmetry or polyhedral
shapes. We refer to [2,12–15,18,21–23,25,29,30,34–44,48–50] for existing theoretical
results and [31–33, 47] for related numerical studies in the literature. In two recent
papers [12, 13], a different perspective was proposed and the uniqueness study for
the inverse scattering problem is delicately connected to the geometric properties
of Laplacian eigenfunctions in certain specific setups. Within such a framework,
one can establish the unique determination of polyhedral obstacles of impedance
type by at most a few far-field measurements that were unable to be tackled by
other means developed in the previous studies. The corresponding studies have
been extended to solving a large class of inverse scattering problems associated
with electromagnetic and elastic waves as well [7, 19–23]. The piecewise constant
refractive indices by a single far field pattern can be uniquely identified; see [5, 11]
for more details. The unique determination for a scatterer with a high curvature
point by a single measurement is established in [6]. Recent progresses on uniqueness
results on the shape determination by finite far field measurements for the inverse
scattering problems within the polyhedral geometry can be found in [10]. As also
discussed in Section 1.1, we derive in this paper some novel uniqueness results which
extend the related results in [13] by relaxing certain technical conditions. This is
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made possible by exploiting the geometric structures of Laplacian eigenfunctions in
a less restrictive setup compared to that in [13].

There are also rich results on the unique determination of periodic structures.
It is known that in general a grating profile can be uniquely identified by infinitely
many quasi-periodic incident plane waves with a fixed phase-shift [3, 28]. In [26],
it is shown that uniqueness by a finite number of incident plane waves could be
attained under the Dirichlet boundary condition if some a-priori information about
the height of the grating curve is known in R2. The global uniqueness can also be
established for the inverse scattering with a finite number of incident plane waves
if the grating profiles are piecewise linear; see [24]. Recently, in [12], the unique
recovery for the inverse diffraction grating with generalized impedance boundary
condition (including the Dirichlet and Neumann boundary conditions) has been
proved in a unified way by at most two far-field measurements under some mild as-
sumptions. The corresponding development for uniqueness results of inverse elastic
polygonal diffractive grating problems by finite many far field measurements can be
found in [22]. In this paper, we establish the unique identifiability of a periodical
diffraction grating with impedance boundary condition in R3 by a single far-field
measurement, which makes a significant progress compared with the existing results.

The rest of this paper is organized as follows. In Section 2, we present the exten-
sion and generalization of our results in [13] on the geometric structures of Laplacian
eigenfunctions. Section 3 is devoted to the proofs of the unique identifiability results
for the inverse scattering problems.

2. Geometric properties of Laplacian eigenfunctions. In [13], certain geo-
metric properties of Laplacian eigenfunctions in R3 were investigated. Specifically,
we studied the cases for edge corners and vertex corners respectively and derived
a rigorous characterization of the relationship between the analytic behaviour of
Laplacian eigenfunctions at the underlying corner point and the geometric quan-
tities of that corner. In fact, in the edge corner case, the vanishing order of the
eigenfunction is related to the rationality of the intersecting dihedral angle, whereas
in the vertex corner case, the vanishing order of the eigenfunction follows a more
complicated manner through the roots of the Legendre polynomials. In this section,
as an extension of the study in [13], we establish the vanishing properties of the
Laplacian eigenfunction by getting rid of the technical condition that u(xc) = 0 at
the intersecting point as well as relaxing the technical restrictions associated with
the Legendre polynomials.

Let Ω be an open set in R3. Consider u ∈ L2(Ω) and λ ∈ R+ such that

−∆u = λu. (2.1)

The solution u to (2.1) is referred to as a (generalized) Laplacian eigenfunction.
First, we introduce some notifications for the subsequent use. Let Π be a flat

plane in R3. For any non-empty connected open subset Σ b Π, it is said to be a cell
of Π. Denote ΠΣ to be the connected component of Π ∩ Ω which contains Σ.

Definition 2.1. Let Σ be a cell of Π such that Σ ⊂ Ω and η ∈ L∞(Π). Consider
a Laplacian eigenfunction u to (2.1). If ∂νu + ηu = 0 on Σ, where ν denotes any
unit normal vector that is perpendicular to Σ, then Σ is said to be the generalized
singular cell in Ω and Π is called the generalized singular plane. In particular, if
η ≡ 0 on Σ (i.e. ∂u = 0 on Σ), a generalized singular plane is called a singular plane
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and if η = ∞ on Σ (i.e. u = 0 on Σ), a generalized singular plane is also called a
nodal plane.

Next, we follow Definition 1.4 and Definition 1.5 in [13] to present the precise
definition for vanishing orders of the Laplacian eigenfunction u at a given point
associated with an edge corner or a vertex corner.

Definition 2.2. Let u be a Laplacian eigenfunction to (2.1). For a given point
x0 ∈ Ω, if there exists a number N ∈ N ∪ {0} such that

lim
ρ→0+

1

ρm

∫
Bρ(x0)

|u(x)|dx = 0 for m = 0, 1, · · · , N + 2, (2.2)

where Bρ(x0) is a ball centered at x0 with radius ρ ∈ R+, we say that u vanishes
at x0 up to the order N . The largest possible N such that (2.2) holds is called the
vanishing order of u at x0 and we denote

Vani(u; x0) = N.

If (2.2) holds for any N ∈ N at x0 ∈ Ω, then we say that the vanishing order of u
at x0 is infinity, i.e. Vani(u; x0) =∞.

In particular, for any two intersecting generalized singular planes Π1,Π2 ⊂ Ω
such that Π1 ∩ Π2 = l, if (2.2) is fulfilled for a point x0 ∈ l associated with the
edge corner E(Π1,Π2, l) b Ω, then we say that u vanishes at x0 associated with
E(Π1,Π2, l) up to the order N which is denoted as

Vani(u; x0,Π1,Π2) = N.

For a vertex corner x0 ∈ Ω which is intersected by Πi ⊂ Ω, i = 1, 2, ...n, the
vanishing order of u at x0 is defined by

Vani(u; x0) := max
{

max
i=1,2,...n−1

Vani(u; x0,Πi,Πi+1),Vani(u; x0,Πn,Π1)
}
.

With the above definitions, we are now in a position to investigate the vanishing
properties of the Laplacian eigenfunction at corners intersected by at least two gen-
eralized singular planes. Since −∆ is invariant under rigid motions, we can assume
that the edge corner E(Π1,Π2, l) fulfills

l =
{

x = (x′, x3) ∈ R3; x′ = 0, x3 ∈ (−H,H)
}
b Ω, (2.3)

for H ∈ R+ throughout the rest of our paper. Indeed, this indicates that the edge
corner coincides with the x3-axis. For simplification, we further assume that Π1

coincides with the (x1, x3)−plane and Π2 possesses a dihedral angle of α · π away
from Π1 in the anti-clockwise direction. The considering point x0 ∈ l is assumed to
be located at the origin x0 = 0. Similar to [13], with the help of analytic continuation
property for u, we can restrict our discussion to α ∈ (0, 1).

In order to utilize the spherical wave expansion method to discuss the vanishing
properties of u, we first introduce several propositions and lemmas based on the
spherical coordinates in R3. For any point x ∈ R3, we denote

x = (x1, x2, x3) = (r sin θ cosφ, r sin θ sinφ, r cos θ) := (r, θ, φ), (2.4)

where r ≥ 0, θ ∈ [0, π) and φ ∈ [0, 2π).
It is known that the Laplacian eigenfunction u possesses the spherical wave ex-

pansion as follows.
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Π1

Π2

φ0

θ

x3

x1

x2

Figure 1. A schematic illustration for an edge corner with the
dihedral angle φ0.

Lemma 2.3. [16, Theorem 2.8]The solution u to (2.1) has the spherical wave
expansion in spherical coordinates around the origin:

u(x) = 4π

∞∑
n=0

n∑
m=−n

inamn jn(
√
λr)Y mn (θ, φ), (2.5)

where jn(
√
λr) is the spherical Bessel function of order n, and Y mn (θ, φ) is the

spherical harmonics given by

Y mn (θ, φ) =

√
2n+ 1

4π

(n− |m|)!
(n+ |m|)!

P |m|n (cos θ)eimφ

with Pmn (cos θ) being the associated Legendre functions.

See also [16, equation (3.92)] for detailed representations. In particular, the as-
sociated Legendre polynomials Pmn fulfill the following orthogonal relation.

Lemma 2.4. [46, Theorem 2.4.4] In the spherical coordinate system, the associated
Legendre functions fulfill the following orthogonality condition for any fixed n ∈ N,
and any two integers m ≥ 0 and l ≤ n:

∫ π

0

Pmn (cos θ)P ln(cos θ)

sin θ
dθ =


0 if l 6= m,

(n+m)!
m(n−m)! if l = m 6= 0,

∞ if m = l = 0.

Furthermore, we know that the following recursive relations hold for Pmn [8] and

for the spherical Bessel function jn(
√
λr) [4].

Lemma 2.5. In the spherical coordinate system, the associated Legendre functions
Pmn fulfills the following recursive equations for any fixed n,m ∈ Z:

dP
|m|
n (cos θ)

dθ
=

1

2

(
(n+ |m|)(n− |m|+ 1)P |m|−1

n (cos θ)− P |m|+1
n (cos θ)

)
, (2.6)

and

|m|P
|m|
n (cos θ)

sin θ
= −1

2

(
P
|m|+1
n+1 (cos θ) + (n− |m|+ 1)(n− |m|+ 2)P

|m|−1
n+1 (cos θ)

)
,

(2.7)
which can also be represented as

|m|P
|m|
n (cos θ)

sin θ
= −1

2

(
P
|m|+1
n−1 (cos θ) + (n+ |m| − 1)(n+ |m|)P |m|−1

n−1 (cos θ)
)
,

(2.8)
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with slight changes of the lower index. Besides, the spherical Bessel function jn(
√
λr)

satisfies that

jn(
√
λr)

r
=

√
λ

2n+ 1

(
jn−1(

√
λr) + jn+1(

√
λr)
)
. (2.9)

We proceed to present our main theorem regarding the theoretical study of the
vanishing properties of Laplacian eigenfunctions at any edge corner intersected by
two generalized singular planes. For simplification in the subsequent study, we as-
sume the impedance boundary parameter η to be a nonzero constant. Nevertheless,
it is pointed out that the same results hold for any real analytic function η satisfying
the admissible conditions (a) to (c) in Definition 1.1.; see Corollary 2.10.

Theorem 2.6. Let u be a Laplacian eigenfunction to (2.1). Consider an edge corner
E(Π1,Π2, l) b Ω associated with two generalized singular planes Π1 and Π2, where
the corresponding surface parameter on Π1 and Π2 are two non-zero constants η1

and η2. If the corresponding dihedral angle can be written as

∠(Π1,Π2) = φ0 = α · π, α ∈ (0, 1),

where α satisfies that for any N ∈ N, N ≥ 2,

α 6= q

p
, p = 1, 2, · · · , N − 1, q = 0, 1, 2, · · · , p− 1, (2.10)

and the corresponding surface parameters ηi associated with Πi, i = 1, 2, fulfill that

2η1 cosφ0 + η2(1 + cos 2φ0) 6= 0, (2.11)

then u vanishes up to the order at least N at the edge corner 0.

In order to prove Theorem 2.6 more systematically and rigorously, we first give
the following lemmas in terms of the expressions of generalized singular planes and
the corresponding edge corner by recursive form.

Lemma 2.7. Let u be a Laplacian eigenfunction to (2.1). Consider an edge corner
E(Π1,Π2, l) b Ω associated with two generalized singular planes Π1 and Π2. Then

there holds the following recursive equations with respect to Pmn and jn(
√
λr) (n,m ∈

N) on Π1 and Π2, respectively:

∞∑
n=1

n∑
m=−n
m6=0

in+1mamn

√
λ

2n+ 1

(
jn−1(

√
λr) + jn+1(

√
λr)
)√2n+ 1

4π

√
(n− |m|)!
(n+ |m|)!

× 1

2|m|

(
P
|m|+1
n−1 (cos θ) + (n+ |m| − 1)(n+ |m|)P |m|−1

n−1 (cos θ)
)

+ η1

∞∑
n=0

n∑
m=−n

inamn jn(
√
λr)

√
2n+ 1

4π

√
(n− |m|)!
(n+ |m|)!

P |m|n (cos θ)= 0 on Π1,

(2.12)

and

−
∞∑
n=1

n∑
m=−n
m6=0

in+1mamn

√
λ

2n+ 1

(
jn−1(

√
λr) + jn+1(

√
λr)
)√2n+ 1

4π

√
(n− |m|)!
(n+ |m|)!e

imφ0

× 1

2|m|

(
P
|m|+1
n−1 (cos θ) + (n+ |m| − 1)(n+ |m|)P |m|−1

n−1 (cos θ)
)



UNIQUENESS RESULTS FOR INVERSE SCATTERING PROBLEMS 13

+ η2

∞∑
n=0

n∑
m=−n

inamn jn(
√
λr)

√
2n+ 1

4π

√
(n− |m|)!
(n+ |m|)!P

|m|
n (cos θ)eimφ0 = 0 on Π2.

(2.13)

Proof. Since Π1 and Π2 are two generalized singular planes such that Π1 ∩Π2 = l,
it can be seen that one has

∂u

∂ν1
+ η1u = 0 on Π1,

∂u

∂ν2
+ η2u = 0 on Π2, (2.14)

where νi, i = 1, 2, are the unit normal vectors perpendicular to Π1 and Π2, respec-
tively. η1 and η2 are the corresponding impedance parameters. Recall the spherical
wave expansion (2.5) of the Laplacian eigenfunction u in Lemma 2.3. Since we as-
sume that Π1 coincides with the (x1, x3)−plane, by taking φ = 0, we know that on
Π1, it holds that

− 1

r sin θ
4π

∞∑
n=0

n∑
m=−n

in+1mamn jn
√
λr

√
2n+ 1

4π

√
(n− |m|)!
(n+ |m|)!

P |m|n (cos θ)

+ η14π

∞∑
n=0

n∑
m=−n

inamn
√
λr

√
2n+ 1

4π

√
(n− |m|)!
(n+ |m|)!

P |m|n (cos θ) = 0 on Π1. (2.15)

Combining with the recursive equations (2.8) and (2.9) in Lemma 2.5 with respect

to Pmn and jn(
√
λr), we can deduce (2.12) from (2.15) directly.

Similarly, since Π2 possesses a dihedral angle of φ0 away from Π1 in the anti-
clockwise direction, rewriting ∂u

∂ν2
+ η2u = 0 in terms of (2.5) with φ = φ0, it yields

that

1

r sin θ
4π

∞∑
n=0

n∑
m=−n

in+1mamn jn(
√
λr)

√
2n+ 1

4π

√
(n− |m|)!
(n+ |m|)!

P |m|n (cos θ)eimφ0

+ η24π

∞∑
n=0

n∑
m=−n

inamn jn(
√
λr)

√
2n+ 1

4π

√
(n− |m|)!
(n+ |m|)!

P |m|n (cos θ)eimφ0 on Π2.

(2.16)

Combining with (2.8) and (2.9), we can obtain from (2.16) the recursive equation
(2.13) in the same manner.

Lemma 2.8. Let u be a Laplacian eigenfunction to (2.1). Consider an edge corner
E(Π1,Π2, l) b Ω associated with two generalized singular planes Π1 and Π2. Then

there holds the following recursive equations with respect to Pmn and jn(
√
λr) (n,m ∈

N) on l that

−
∞∑
n=1

in
√
λ

2n+ 1

(
jn−1(

√
λr) + jn+1(

√
λr)
)√2n+ 1

4π

1

2
n(n+ 1)

√
(n− 1)!

(n+ 1)!
sinφ0

× (a1
ne

i2φ0 + a−1
n e−i2φ0) + (η1 cosφ0 + η2)

∞∑
n=0

ina0
njn(
√
λr)

√
2n+ 1

4π
= 0, on l.

(2.17)

Proof. From Lemma 2.7, we know that

∂u

∂ν1
+ η1u = 0 on Π1 and

∂u

∂ν2
+ η2u = 0 on Π2.



14 XINLIN CAO, HUAIAN DIAO, HONGYU LIU AND JUN ZOU

Since Π1 locates in the (x1, x3)−plane and Π2 possesse a dihedral angle of φ0 away
from Π1 in the anti-clockwise direction, without loss of generality, we can denote
ν1 = (0,−1, 0) and ν2 = (− sinφ0, cosφ0, 0); seeing Figure 1 for the schematic
illustration in spherical coordinate system.

Thus, we can derive

∂u

∂ν1
+ η1u = − ∂u

∂x2
+ η1u = 0, on Π1, (2.18)

∂u

∂ν2
+ η2u = − ∂u

∂x1
sinφ0 +

∂u

∂x2
cosφ0 + η2u = 0, on Π2. (2.19)

Substituting (2.19) into (2.18), we have

− ∂u

∂x1
sinφ0 + (η1 cosφ0 + η2)u = 0 on l = Π1 ∩Π2. (2.20)

By utilizing the chain rule of spherical coordinate system, there holds

∂u

∂x1
=
∂u

∂r
· ∂r
∂x1

+
∂u

∂θ
· ∂θ
∂x1

+
∂u

∂φ
· ∂φ
∂x1

=
∂u

∂r
sin θ cosφ+

∂u

∂θ
· cos θ cosφ

r
− ∂u

∂φ
· sinφ

r sin θ
. (2.21)

Restricting (2.21) on l, by taking θ = 0 and φ = φ0, we know that on l

∂u

∂x1

∣∣∣∣
l

=
∂u

∂θ

∣∣∣∣
θ=0

cosφ0

r
− lim
θ→0

∂u

∂φ

sinφ0

r sin θ

∣∣∣∣
φ=φ0

.

We first prove that

lim
θ→0

∂u

∂φ

sinφ0

r sin θ

∣∣∣∣
φ=φ0

=− 2π

∞∑
n=0

in+1(a1
n − a−1

n )
jn(
√
λr)

r

√
2n+ 1

4π

√
(n− 1)!

(n+ 1)!
n(n+ 1)

× eimφ0 sinφ0

exists. Indeed, by the spherical wave expansion (2.5) of u in Lemma 2.3, we have

∂u

∂φ

sinφ0

r sin θ

∣∣∣∣
φ=φ0

=4π

∞∑
n=0

n∑
m=−n

in+1mamn
jn(
√
λr)

r

√
2n+ 1

4π

√
(n− |m|)!
(n+ |m|)!

P
|m|
n (cos θ)

sin θ

× eimφ0 sinφ0.

Recall the recursive equation (2.7). Since

lim
θ→0

P
|m|
n (cos θ)

sin θ
= − 1

2|m|

(
P
|m|+1
n+1 (1) + (n− |m|+ 1)(n− |m|+ 2)P

|m|−1
n+1 (1)

)
,

(2.22)
where we can know from [8] that

P |m|n (±1) ≡ 0, for m 6= 0, P 0
n(1) ≡ 1, (2.23)

it is easy to obtain

lim
θ→0

P
|m|
n (cos θ)

sin θ
=

{
0 if |m| 6= 1,

− 1
2n(n+ 1) if |m| = 1.
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Thus we can derive

lim
θ→0

∂u

∂φ

sinφ0

sin θ

∣∣∣∣
φ=φ0

= 4π

∞∑
n=0

n∑
m=−n

in+1mamn
jn(
√
λr)

r

√
2n+ 1

4π

√
(n− |m|)!
(n+ |m|)!

× lim
θ→0

P
|m|
n (cos θ)

sin θ
eimφ0 sinφ0

= −2π

∞∑
n=0

in+1(a1
n − a−1

n )
jn(
√
λr)

r

√
2n+ 1

4π

√
(n− 1)!

(n+ 1)!
n(n+ 1)

× eimφ0 sinφ0. (2.24)

Then, by restricting (2.21) on l, (2.20) can be rewritten in terms of (2.21) as(
−∂u
∂θ

∣∣∣∣
θ=0

cosφ0

r
+ lim
θ→0

∂u

∂φ

sinφ0

r sin θ

)
· sinφ0 + (η1 cosφ0 + η2)u = 0 on l. (2.25)

Substituting the spherical wave expansion (2.5) of the Laplacian eigenfunction u
into (2.25) again, with the help of the recursive equations (2.6) and (2.7) associated

with P
|m|
n in Lemma 2.5, we can obtain that

(−
∞∑
n=0

m∑
m=−n

inamn
jn
√
λr

r

√
2n+ 1

4π

√
(n− |m|)!
(n+ |m|)!

dP
|m|
n (cos θ)

dθ

∣∣∣∣
θ=0

eimφ0 cosφ0

+

∞∑
n=0

n∑
m=−n

in+1mamn
jn
√
λr

r

√
2n+ 1

4π

√
(n− |m|)!
(n+ |m|)!

eimφ0 sinφ0
P
|m|
n (cosφ0)

sinφ0

∣∣∣∣
θ=0

)

× sinφ0 + (η1 cosφ0 + η2)

∞∑
n=0

n∑
m=−n

inamn jn(
√
λr)

√
2n+ 1

4π

√
(n− |m|)!
(n+ |m|)!

× P |m|n (1)eimφ0 = 0, (2.26)

where

dP
|m|
n (cos θ)

dθ

∣∣∣∣
θ=0

=
1

2

(
(n+ |m|)(n− |m|+ 1)P |m|−1

n (1)− P |m|+1
n (1)

)
, (2.27)

and
P |m|n (cos θ)

sin θ

∣∣∣∣
θ=0

is given by (2.22). Therefore, (2.26) can be further simplified as

the following equation by virtue of (2.23) as

(−
∞∑
n=0

in
jn(
√
λr)

r

√
2n+ 1

4π
(a0
n

1

2
n(n+ 1)P−1

n (1) + (a1
ne

iφ0 + a−1
n e−iφ0)

√
(n− 1)!

(n+ 1)!

× (n+ 1)n

2
) cosφ0 −

∞∑
n=0

in+1 jn(
√
λr)

r

√
2n+ 1

4π

√
(n− 1)!

(n+ 1)!
(a1
ne

iφ0 − a−1
n e−iφ0)

× sinφ0
n(n+ 1)

2
) sinφ0 + (η1 cosφ0 + η2)

∞∑
n=0

ina0
njn(
√
λr)

√
2n+ 1

4π
= 0, (2.28)

where

P−1
n (1) = (−1)1 (n− 1)!

(n+ 1)!
P 1
n(1) = − 1

n(n+ 1)
P 1
n(1) = 0.
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By substituting the recursive expression (2.9) of jn(
√
λ) into (2.28), we can obtain

(2.17).

With the help of Lemma 2.7 and Lemma 2.8, we are now in a position to give
the rigorous proof of Theorem 2.6 as follows.

Proof of Theorem 2.6. We apply mathematical induction by investigating the co-
efficients with respect to rn for n = 0, 1, 2, · · · in (2.17) on l ,(2.12) on Π1 and
(2.13) on Π2, separately, to prove our main results. For simplification of notations,
we denote O(rn), n = 0, 1, · · · , by the n-th order term of r.

(I). Comparing the coefficients of O(r0).
From (2.17), we can know that the coefficient of r0 on l fulfills

− i

√
λ

3

√
3

4π

√
1

2
sinφ0(a1

1e
i2φ0 + a−1

1 e−i2φ0) + (η1 cosφ0 + η2)a0
0

√
1

4π
= 0 on l,

(2.29)
by taking r → 0 in (2.17) under (1.2). Similarly, we can show that the coefficients
of r0 in (2.12) and (2.13) respectively satisfy

− (a1
1 − a−1

1 )

√
λ

3

√
3

4π

√
1

2
P 0

0 (cos θ) + η1a
0
0

√
1

4π
P 0

0 (cos θ) = 0 on Π1, (2.30)

and

(a1
1e

iφ0−a−1
1 e−iφ0)

√
λ

3

√
3

4π

√
1

2
P 0

0 (cos θ)+η2a
0
0

√
1

4π
P 0

0 (cos θ) = 0 on Π2. (2.31)

For simplification, we further rewrite (2.29), (2.30) and (2.31) more briefly as the
following system:
−i
√

λ
6 sinφ0e

i2φ0 −i
√

λ
6 sinφ0e

−i2φ0 η1 cosφ0 + η2√
λ
6 −

√
λ
6 −η1√

λ
6 e

iφ0 −
√

λ
6 e
−iφ0 η2


 a1

1

a−1
1

a0
0

 =

 0
0
0


(2.32)

It is easy to see that the determinant of the coefficient matrix of (2.32) with respect
to a±1

1 and a0 fulfills∣∣∣∣∣∣∣∣∣
−i
√

λ
6 sinφ0e

i2φ0 −i
√

λ
6 sinφ0e

−i2φ0 η1 cosφ0 + η2√
λ
6 −

√
λ
6 −η1√

λ
6 e

iφ0 −
√

λ
6 e
−iφ0 η2

∣∣∣∣∣∣∣∣∣
=
λ

6
((η1 cosφ0 + η2)2i sinφ0 + η1i sin 2φ0 + η22i sinφ0 cos 2φ0)

=
iλ

3
sinφ0(2η1 cosφ0 + η2(cos 2φ0 + 1)). (2.33)

By the condition (2.55), we can know that φ0 6= 0, π. Due to (2.11), one has

a±1
1 = a0

0 = 0. (2.34)

(II).Comparing the coefficients of O(r1).
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We proceed to compare the coefficients of r1 on the both sides of (2.17), (2.12)
and (2.13), where we can derive that

√
λ

5

√
λ

3

√
5

4π
3

√
1

6
sinφ0(a1

2e
i2φ0+a−1

2 e−i2φ0)+(η1 cosφ0+η2)ia0
1

√
λ

3

√
3

4π
= 0 on l,

− i

(
2(a2

2 − a−2
2 )

√
1

4!
3P 1

1 (cos θ) + (a1
2 − a−1

2 )

√
1

3!
3P 0

1 (cos θ)

) √
λ

5

√
λ

3

√
5

4π

+ η1i

√
λ

3

√
3

4π

(
(a1

1 + a−1
1 )

√
1

2!
P 1

1 (cos θ) + a0
1P

0
1 (cos θ)

)
= 0 on Π1, (2.35)

and

i

√
λ

5

√
λ

3

√
5

4π

(
2(a2

2e
i2φ0 − a−2

2 e−i2φ0)

√
1

4!
3P 1

1 (cos θ) + (a1
2e

iφ0 − a−1
2 e−iφ0)

×
√

1

3!
3P 0

1 (cos θ)

)
+ η2i

√
λ

3

√
3

4π

(
(a1

1e
iφ0 + a−1

1 e−iφ0)

√
1

2!
P 1

1 (cos θ)

+ a0
1P

0
1 (cos θ)

)
= 0 on Π2. (2.36)

From (2.34), by substituting a±1
1 = a0

0 = 0 into (2.35) and (2.36), we have√
3λ

10
sinφ0(a1

2e
i2φ0 + a−1

2 e−i2φ0) + (η1 cosφ0 + η2)ia0
1

√
3 = 0 on l,

− i

(
6(a2

2 − a−2
2 )

√
1

4!
P 1

1 (cos θ) + 3(a1
2 − a−1

2 )

√
1

3!
P 0

1 (cos θ)

)√
λ

5

+ η1i
√

3a0
1P

0
1 (cos θ) = 0 on Π1,

i

√
λ

5

(
6(a2

2e
i2φ0 − a−2

2 e−i2φ0)

√
1

4!
P 1

1 (cos θ) + 3(a1
2e

iφ0 − a−1
2 e−iφ0)

√
1

3!
P 0

1 (cos θ)

)
+ η2i

√
3a0

1P
0
1 (cos θ) = 0 on Π2. (2.37)

After rearranging (2.37) in terms of P 1
1 (cos θ) and P 0

1 (cos θ), we can know that there
holds respectively on l, Π1 and Π2 the following equations:√

λ

10
sinφ0(a1

2e
i2φ0 + a−1

2 e−i2φ0) + (η1 cosφ0 + η2)ia0
1 = 0, (2.38)

−i6

√
1

4!

√
λ

5
(a2

2−a−2
2 )P 1

1 (cos θ)+i

(
√

3η1a
0
1 − 3(a1

2 − a−1
2 )

√
1

3!

√
λ

5

)
P 0

1 (cos θ) = 0,

(2.39)
and

i6

√
1

4!

√
λ

5
(a2

2e
i2φ0 − a−2

2 e−i2φ0)P 1
1 (cos θ) + i

(√
3η2a

0
1

+ 3(a1
2e

iφ0 − a−1
2 e−iφ0)

√
1

3!

√
λ

5

)
P 0

1 (cos θ) = 0.

(2.40)
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In (2.39) and (2.40), using the orthogonal property of the associated Legendre poly-
nomials in Lemma 2.4, we can obtain that{

a2
2 − a−2

2 = 0,

η1

√
3a0

1 − 3
√

1
3!

√
λ
5 (a1

2 − a−1
2 ) = 0,

(2.41)

and {
a2

2e
i2φ0 − a−2

2 e−i2φ0 = 0,

η2

√
3a0

1 + 3
√

1
3!

√
λ
5 (a1

2e
iφ0 − a−1

2 e−iφ0) = 0.
(2.42)

From the first equations in (2.41) and (2.42), it is easy to see that under condition
(2.55), which indicates φ0 6= 0, π2 , π, the determinant of the coefficient matrix of a±2

2

fulfills that ∣∣∣∣ 1 −1
eiφ0 e−iφ0

∣∣∣∣ = 2i sin 2φ0 6= 0,

and therefore we have a±2
2 = 0. Now combining with (2.38), (2.41) and (2.42), we

can derive the deteminant of the coefficient matrix with respect to a0
1, a±1

2 fulfills∣∣∣∣∣∣∣∣∣
i(η1 cosφ0 + η2)

√
λ
10 sinφ0e

i2φ0

√
λ
10 sinφ0e

−i2φ0

√
3η1 −3

√
1
3!

√
λ
5 3

√
1
3!

√
λ
5

√
3η2 3

√
1
3!

√
λ
5 e

iφ0 −3
√

1
3!

√
λ
5 e
−iφ0

∣∣∣∣∣∣∣∣∣
=

3λ

5
sinφ0(2η1 cosφ0 + η2 + η2 cos 2φ0) 6= 0,

due to the fact that φ0 6= 0, π. Under the condition (2.11), we derive a0
1 = a±1

2 = 0.
(III). Comparing the coefficients of O(rN−1) by mathematical induction.
By utilizing mathematical induction method, we assume that a0

N−2 = a±mN−1 = 0
for m = 1, 2, · · · , N − 1, where N ≥ 3. Following the fact that

lim
z→0

jn(z)

zn
=

1

(2n+ 1)!!
,

by comparing the coefficients of rN−1 on the both sides of (2.17), (2.12) and (2.13),
respectively, we can know that on l there holds:

− i

√
λ

2N + 1

1

2
N(N + 1)

√
(N − 1)!

(N + 1)!

(
√
λ)N−1

(2N − 1)!!
sinφ0(a1

Ne
i2φ0 + a−1

N e−i2φ0)

+ (η1 cosφ0 + η2)a0
N−1

√
2N − 1

(
√
λ)N−1

(2N − 1)!!
= 0, (2.43)

and on Π1,

−
√

λ

2N + 1

N∑
m=−N
m6=0

mamN

√
(N − |m|)!
(N + |m|)!

1

2|m|
(P
|m|+1
N−1 (cos θ) + (N + |m| − 1)

× (N + |m|)P |m|−1
N−1 (cos θ)) + η1

√
2N − 1a0

N−1P
0
N−1(cos θ) = 0, (2.44)

as well as on Π2, we have√
λ

2N + 1

N∑
m=−N
m6=0

mamNe
imφ0

√
(N − |m|)!
(N + |m|)!

1

2|m|
(P
|m|+1
N−1 (cos θ)
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+ (N + |m| − 1)(N + |m|)P |m|−1
N−1 (cos θ)) + η2

√
2N − 1a0

N−1P
0
N−1(cos θ) = 0.

(2.45)

From the fact that

Pmn = 0 for |m| > n,

we can further deduce from (2.44) that

−
√

λ

2N + 1
[N(aNN − a−NN )

√
1

(2N)!
(2N − 1)PN−1

N−1 (cos θ) + (N − 1)

× (aN−1
N − a−(N−1)

N )

√
1

(2N − 1)!
(2N − 1)PN−2

N−1 (cos θ)

+

N−2∑
m=−(N−2)

m 6=0

mamN

√
(N − |m|)!
(N + |m|)!

1

2|m|
(P
|m|+1
N−1 (cos θ) + (N + |m| − 1)(N + |m|)

× P |m|−1
N−1 (cos θ))] + η1

√
2N − 1a0

N−1P
0
N−1(cos θ) = 0 on Π1. (2.46)

Rearranging terms in (2.46) by virtue of P
|m|
N−1, we have

N−1∑
m=2

[
−
√

λ

2N + 1
( (m− 1)(am−1

N − a−(m−1)
N )

√
(N −m+ 1)!

(N +m− 1)!

1

2(m− 1)
+ (m+ 1)

× (am+1
N − a−(m+1)

N )

√
(N −m+ 1)!

(N +m− 1)!

1

2(m+ 1)
(N +m)(N +m+ 1) )

]
PmN−1(cos θ)

+
[
−
√

λ

2N + 1
2(a2

N − a−2
N )

√
(N − 2)!

(N + 2)!

1

4
(N + 1)(N + 2)

]
P 1
N−1(cos θ)

+
[
−
√

λ

2N + 1
(a1
N − a−1

N )

√
(N − 1)!

(N + 1)

1

2
N(N + 1) + η1

√
2N − 1a0

N−1

]
× P 0

N−1(cos θ) = 0, (2.47)

where N ≥ 3. With the help of the orthogonal property of the associated Legendre
polynomials in Lemma 2.4, we can derive from (2.47) that

−
√

λ

2N + 1

1

2

[√ (N −m+ 1)!

(N +m− 1)!
(am−1
N − a−(m−1)

N )

+

√
(N −m− 1)!

(N +m+ 1)!
(N +m)(N +m+ 1)(am+1

N − a−(m+1)
N )

]
= 0, (2.48)

where m = 2, 3, · · · , N − 1 (N ≥ 3), and

−
√

λ

2N + 1

1

2

√
(N − 2)!

(N + 2)!
(N + 1)(N + 2)(a2

N − a−2
N ) = 0, (2.49)

−
√

λ

2N + 1

1

2

√
(N − 1)!

(N + 1)!
(N + 1)N(a1

N − a−1
N ) + η1

√
2N − 1a0

N−1 = 0. (2.50)



20 XINLIN CAO, HUAIAN DIAO, HONGYU LIU AND JUN ZOU

For further simplification of the expressions, we can deduce from (2.48), (2.49)
and (2.50) the following system√

(N −m+ 1)!

(N +m− 1)!
(am−1
N − a−(m−1)

N ) +

√
(N −m− 1)!

(N +m+ 1)!
(N +m)(N +m+ 1)

× (am+1
N − a−(m+1)

N ) = 0,

a2
N − a−2

N = 0,

−
√

λ

2N + 1

1

2

√
(N − 1)!

(N + 1)!
(N + 1)N(a1

N − a−1
N ) + η1

√
2N − 1a0

N−1 = 0, (2.51)

where m = 2, 3, · · · , N − 1 (N ≥ 3).
Following the similar arguments above in the analyses of (2.44) on Π1, from

(2.45), we can deduce that on Π2, there holds

(am−1
N ei(m−1)φ0 − a−(m−1)

N e−i(m−1)φ0)

√
(N −m+ 1)!

(N +m− 1)!
+ (N +m)(N +m+ 1)

×

√
(N −m− 1)!

(N +m− 1)!
(am+1
N ei(m+1)φ0 − a−(m+1)

N e−i(m+1)φ0) = 0,

for m = 2, · · · , N − 1,

a2
Ne

i2φ0 − a−2
N e−i2φ0 = 0,√

λ

2N + 1

1

2
N(N + 1)

√
(N − 1)!

(N + 1)!
(a1
Ne

iφ0 − a−1
N e−iφ0) + η2

√
2N − 1a0

N−1 = 0.

(2.52)

Combining with (2.43), (2.51) and (2.52), we can directly see that since φ0 6=
0, π2 , π, the determinant of the coefficient matrix with respect to a±2

N satisfies∣∣∣∣ 1 −1
ei2φ0 e−i2φ0

∣∣∣∣ = 2i sin 2φ0 6= 0,

which indicates that a±2
N = 0. Moreover, denoting

c(N,λ) :=

√
λ

2N + 1

N

2
(N + 1)

√
(N − 1)!

(N + 1)!
,

the determinant of the coefficient matrix associated with a±1
N , and a0

N−1 fulfills∣∣∣∣∣∣
−ic(N,λ) sinφ0e

i2φ0 −ic(N,λ) sinφ0e
−i2φ0 (η1 cosφ0 + η2)

√
2N − 1

−c(N,λ) c(N,λ) η1

√
2N − 1

c(N,λ)eiφ0 −c(N,λ)e−iφ0 η2

√
2N − 1

∣∣∣∣∣∣
= −2i sinφ0

√
2N − 1

λ

2N + 1

N2

4
(N + 1)2 (N − 1)!

(N + 1)!
(2η1 cosφ0 + η2(1 + cos 2φ0)) .

(2.53)

Therefore, under the condition (2.11), in view of φ0 6= 0, π, we can obtain that
a±1
N = a0

N−1 = 0.
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Now, by substituting a0
N−1 = a±1

N = a±2
N = 0 into (2.51) and (2.52), respectively,

we can deduce that for m = 2, there holds(
1 −1

ei3φ0 −e−i3φ0

)(
a3
N

a−3
N

)
=

(
0
0

)
.

Since φ0 6= qπ
3 (q = 0, 1, 2,) under condition (2.55), we have a±3

N = 0. Following

the similar argument, by taking a±3
N = 0 into (2.51) and (2.52), we can generally

derive that for m = 2, 3, · · · , N , since φ0 6= qπ
m (q = 0, 1, 2, · · · ,m− 1), there holds

a±mN = 0 for m = 1, 2, · · · , N .
The proof is complete.

Remark 2.9. If the impedance parameters ηi associated with Πi (i = 1, 2) fulfill

η1 = η2 = η 6= 0,

where η ∈ C is a constant, then the condition (2.11) can be directly satisfied when
φ0 6= 0, π/2, and π. Indeed, we have

2η1 cosφ0 + η2(cos 2φ0 + 1) = 2η cosφ0(1 + cosφ0) 6= 0.

Corollary 2.10. Let u be a Laplacian eigenfunction to (2.1). Consider an edge
corner E(Π1,Π2, l) b Ω associated with two generalized singular planes Π1 and
Π2, where the corresponding surface parameters on Π1 and Π2 have the following
absolute convergence series expansion

η1 =

∞∑
`=0

α
(1)
` (θ, φ)r` and η2 =

∞∑
`=0

α
(2)
` (θ, φ)r`, α

(i)
` ∈ C, α(i)

0 6= 0, i = 1, 2.

(2.54)
If the corresponding dihedral angle can be written as

∠(Π1,Π2) = φ0 = α · π, α ∈ (0, 1),

where α satisfies that for any N ∈ N, N ≥ 2,

α 6= q

p
, p = 1, 2, · · · , N − 1, q = 0, 1, 2, · · · , p− 1, (2.55)

and the corresponding surface parameters ηi associated with Πi, i = 1, 2, fulfill that

2α
(1)
0 cosφ0 + α

(2)
0 (cos 2φ0 + 1) 6= 0, (2.56)

then u vanishes up to the order at least N at the edge corner 0.

Proof. Since the proof this corollary is similar to the proof of Theorem 2.6, in
the following we only give a sketched proof of this corollary. Recall the equations
(2.17), (2.12) and (2.13). Substituting (2.54) into (2.17), we can obtain that on l,
there holds

−
∞∑
n=1

in
√
λ

2n+ 1

(
jn−1(

√
λr) + jn+1(

√
λr)
)√2n+ 1

4π

1

2
n(n+ 1)

√
(n− 1)!

(n+ 1)!
sinφ0

× (a1
ne

i2φ0 + a−1
n e−i2φ0) +

(
(α

(1)
0 +

∞∑
`=1

α
(1)
` r`) cosφ0 + (α

(2)
0 +

∞∑
`=1

α
(2)
` r`)

)

×
∞∑
n=0

ina0
njn(
√
λr)

√
2n+ 1

4π
= 0,
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which can be written more explicitly as

−
∞∑
n=1

in
√
λ

2n+ 1

(
jn−1(

√
λr) + jn+1(

√
λr)
) 1

2
n(n+ 1)

√
(n− 1)!

(n+ 1)!
sinφ0

× (a1
ne

i2φ0 + a−1
n e−i2φ0) +

(
(α

(1)
0 cosφ0 + α

(2)
0 ) +

∞∑
`=1

(α
(1)
` cosφ0 + α

(2)
` )r`)

)

×
∞∑
n=1

in−1a0
n−1jn−1(

√
λr) = 0. (2.57)

Assume that

a0
N−2 = a±mN−1 = 0 for m = 1, 2, · · · , N − 1. (2.58)

The lowest order of r on the left side of (2.57) is N − 1. Comparing the coefficients
of rN−1 on both sides of (2.57), it yields that

− i

√
λ

2N + 1

1

2
N(N + 1)

√
(N − 1)!

(N + 1)!

(
√
λ)N−1

(2N − 1)!!
sinφ0(a1

Ne
i2φ0 + a−1

n e−i2φ0)

+ (α
(1)
0 cosφ0 + α

(2)
0 )a0

N−1

√
2N − 1

(
√
λ)N−1

(2N − 1)!!
= 0. (2.59)

Similarly, substituting (2.54) into (2.12) and (2.13), under the assumption (2.58),
comparing the coefficients of rN−1 on both sides of the resulting equations, one has

−
√

λ

2N + 1

N∑
m=−N
m6=0

mamN

√
(N − |m|)!
(N + |m|)!

1

2|m|
(P
|m|+1
N−1 (cos θ)

+ (N + |m| − 1)(N + |m|)× P |m|−1
N−1 (cos θ)) + α

(1)
0

√
2N − 1a0

N−1P
0
N−1(cos θ) = 0,

(2.60)√
λ

2N + 1

N∑
m=−N
m6=0

mamNe
imφ0

√
(N − |m|)!
(N + |m|)!

1

2|m|
(P
|m|+1
N−1 (cos θ) + (N + |m| − 1)

× (N + |m|)P |m|−1
N−1 (cos θ)) + α

(2)
0

√
2N − 1a0

N−1P
0
N−1(cos θ) = 0. (2.61)

By virtue of (2.59) , (2.60) and (2.61) , under the assumption (2.56) and α
(i)
0 6= 0

(i = 1, 2), following the similar mathematical argument in the proof of Theorem
2.6, we can prove this corollary.

Remark 2.11. Compared with the study on the geometric structure of Laplacian
eigenfunctions in [13, Theorem 2.11], it is direct to see that our results in Corollary
2.10 are more general by relaxing the technical condition u|Bε(0)∩l ≡ 0, which is
relatively hard to be fulfilled in the study on the application of inverse problems
for an edge corner. Moreover, the condition (2.11) implies that the rationality on
the dihedral angle of two intersecting adjacent planes is sufficient to determine the
vanishing orders of Laplacian eigenfunctions. Indeed, we need certain assumption
on the roots of the associated Legendre polynomials to study the vanishing order
of the underlying Laplacian eigenfunction at a vertex corner; see [13, Theorem 3.1]
for more details.
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3. Unique identifiability for inverse problems. In this section, we shall estab-
lish the unique identifiability results for the inverse scattering problems by using
the geometric results established in the previous section.

3.1. Unique recovery for the inverse obstacle problem. Recalling the math-
ematical setup for the inverse obstacle problem in Subsection 1.1, we are going to
present the proofs of the uniqueness results for the inverse problem (1.4) for certain
admissible complex polyhedral obstacles defined by Definitions 1.1 and 1.6.

Proof of Theorem 1.7(Irrational case). We prove the theorem by contradiction. As-
sume that there exists a corner xc on ∂G, which is either located at ∂Ω1\∂Ω2 or
∂Ω2\∂Ω1. Without loss of generality, we assume that xc is a corner on ∂Ω2, i.e.
xc ∈ Ω2\Ω1. Suppose that Bh(xc) is an open ball centered at xc with sufficiently
small h ∈ R+ fulfilling that Bh(xc) b R3\Ω1. Let

Bh(xc) ∩ ∂Ω2 =
⋃
i

Πi, i = 1, 2, · · · , n, (3.1)

for n ≥ 2.
Recall that G is the unbounded connected component of R3\(Ω1 ∪ Ω2). From

(1.6), by the Rellich theorem (cf. [16]), we have

u1(x; k,d) = u2(x; k,d), x ∈ G. (3.2)

Since Bh(xc) b R3\Ω1, in view of (3.1), we can claim that Πi ⊂ ∂G. Furthermore,
it can be directly to see that

−∆u1 = k2u1 in Bh(xc). (3.3)

Combining with (3.2) and the generalized singular boundary condition defined on
∂Ω2, it is easy to know that

∂νu
1 + η2u

1 = ∂νu
2 + η2u

2 = 0 on Πi, i = 1, 2, · · · , n. (3.4)

Pick up any fixed point x0 ∈ Π1 ∩ Π2. Since −∆ is invariant under rigid motion,
without loss of generality, we assume that x0 = 0. Recall that Ω2 is an admissible
complex polyhedral obstacle, according to Definitions 1.1 and 1.6, we know that the
surface impedance parameter η2 on Πi (i = 1, 2) is a real-analytic function with an
absolutely convergent series

η(x)
∣∣
Πi

= α
(i)
0 +

∞∑
`=1

α
(i)
` r`, α(i)

m ∈ C, m = 0, 1, 2, . . . , (3.5)

where r = |x−x0| with x ∈ Πi. By the assumptions (a) and (c) in Definition 1.1, we

know that α
(1)
0 = α

(2)
0 = α0 6= 0. Therefore the condition (2.11) in Corollary 2.10

is satisfied by Remark 2.9. It is clear that the impedance parameter with the form
(3.5) satisfies the assumption (2.54) in Corollary 2.10. Utilizing Corollary 2.10 for
the Laplacian eigenfunction u1 to (3.3) in Bh(xc), since the dihedral angle of two
adjacent plane associated with xc is irrational, we can obtain that Vani(u1; 0) =∞,
which implies

u1(x; k,d) ≡ 0 in Bh(xc). (3.6)

Here we use the fact that u1 is analytic in Bh(xc). According to (3.6), each com-
ponent of Ω2 is simply connected and disjoint pairwisely, it yields by the analytic
continuation that

u1(x; k,d) = 0 in R3\Ω. (3.7)
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In particular, one has from (3.7) that

lim
|x|→∞

∣∣u1(x; k,d)
∣∣ = 0. (3.8)

However, we know from the formulations of the forward scattering problem that

lim
|x|→∞

∣∣u1(x; k,d)
∣∣ = lim

|x|→∞

∣∣eikx·d + us(x; k,d)
∣∣ = 1, (3.9)

which induce the contradiction to (3.8).
Now, we show that η1 = η2. Suppose that Γ ⊂ ∂Ω1 ∩ ∂Ω2 is an open subset such

that η1 6= η2 on Γ. From (3.2), we have already known that u1 = u2 in R3\(Ω1 ∪ Ω2),
from which we can directly derive that

∂νu
1 + η1u

1 = 0, ∂νu
2 + η2u

2 = 0, u1 = u2, ∂νu
1 = ∂νu

2 on Γ. (3.10)

After rearranging terms in (3.10), we have

(η1 − η2)u1 = 0 on Γ. (3.11)

Since η1 6= η2 on Γ, we can deduce by direct computing that

u1 = ∂νu
1 = 0 on Γ.

By the classcial Holmgren’s uniqueness result (cf. [41]), it is easy to obtain that
u1 = 0 in R3\Ω. Therefore, we derive the same contradiction as in (3.8), which
leads to the conslusion.

In the following, we shall give the detailed proof of Theorem 1.8 regarding the
unique determination for an admissible rational complex obstacle by a single far-
field measurement.

Proof of Theorem 1.8(Rational case). We prove the theorem by contradiction. As-
sume that there exists a corner xc on ∂G. Without loss of generality, we still assume
that xc is a corner on ∂Ω2, i.e. xc ∈ Ω2\Ω1. Following the same notation of Bh(xc)
in Theorem 1.7 such that Bh(xc)∩∂Ω2 =

⋃
i

Πi, i = 1, 2, · · · , n, for n ≥ 2. With the

help of the condition (1.6) and the Rellich lemma, it is direct to verify that (3.2)
and (3.4) still hold. Moreover, we can know by Theorem 2.6 that u1 fulfills (3.6)
and

u1(xc) = 0, ∇u1(xc) 6= 0. (3.12)

under the condition (1.10). However, for the admissible rational complex obstacle
Ω2, under the assumption (1.9), we can know that xc is either an irrational corner or
a rational corner of degree p ≥ 3. In either of the above case, by Theorem 2.6 we can
obtain that u1 vanishes at least to the second order, which implies that there holds
∇u1(xc) = 0, and this contradicts to (3.12). Similar to the proof of Theorem 1.7, if
we further assume that η1 6= η2, then the uniqueness for the impedance parameter
η can be deduced immediately by the Holmgren’s uniqueness principle.

Remark 3.1. The uniqueness results with respect to the admissible impedance
obstacles and the corresponding argument in Theorem 1.7 and Theorem 1.8 are
“localized” in the neighborhood of Bh(xc) based on the generalized Holmgren’s
principle obtained from Section 2. Therefore, the results are also applicable to other
different types of wave incidences such as the point source.
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Remark 3.2. In Theorem 1.7 and Theorem 1.8, if the considering adimissible
polyhedral obstacles are convex, then we can achieve the global unique identifiaility
results which indicate that Ω1 = Ω2 and also η1 = η2 simultaneously by a single
far-field measurement. The detailed proof of Corollary 1.10 is omitted.

3.2. Unique recovery for the inverse diffraction grating problem. In this
subsection, we consider the inverse diffraction grating problem in determining a
diffraction grating profile as well as its surface parameter in R3 by a single far-field
pattern.

Lemma 3.3. [12, Lemma 8.1] Let ξ` ∈ R3, ` = 1, 2, · · · , n, be n vectors which are
distinct from each other. Let U ⊂ R3 be any open subset. Then all the functions in
the following set are linearly independent:

{eiξ`·x; x ∈ U, ` = 1, 2, · · · , n}.

Proof of Theorem 1.14(Irrational case). We prove this theorem by contradiction.
Without loss of generality, we assume that there exists a corner point xc of Λf lies
on ∂G\Λg. By the wellposedness of the diffraction grating problem (1.14) and the
unique continuation property, we can know from (1.19) that

uf (x; k,d) = ug(x; k,d) for x ∈ G.

Indeed, define

v(x; k,d) := uf (x; k,d)− ug(x; k,d).

Denote Σ := G ∩ {x ∈ R3; x′ ∈ R2, x3 > b} ⊂ R3, then it is obvious that v(x; k,d)
fulfills

∆v + k2v = 0 in Σ; v = 0 on Γb,

and the Rayleigh series expansion (1.15), where Γb is the boundary of Σ. Thus, from
the uniqueness of the diffraction grating scattering problem (1.14), we can know that
v = 0 in Σ. Since uf (x; k,d) and ug(x; k,d) are analytic in G, it is direct to derive
that v(x; k,d) is analytic in G, which implies v = 0 in G. Therefore, we have
uf (x; k,d) = ug(x; k,d) in G.

Since xc ∈ Λf lying on ∂G\Λg, for suffictiently small h ∈ R+, suppose Bh(xc) b
Ωg such that

Bh(xc) ∩ Λf =
⋃
i

Πi, i = 1, 2, · · · , n, n ≥ 2. (3.13)

It is clear that Πi ⊂ Λf\Λg ⊂ ∂G, i = 1, 2, · · · , n. Following a similar argument in
the proof of Theorem 1.7, we can obtain that

ug(x; k,d) = 0 for x3 > max
x′∈[0,2π)2

g(x′),

by utilizing Corollary 2.10. Moreover, we know that ug(x; k,d) satisfies the Rayleigh
series expansion as follows

ug(x; k,d) = eikd·x +
∑
n∈Z2

une
iξn·x for x3 > max

x′∈[0,2π)2
g(x′), (3.14)

where ξn is defined in (1.16).
Combining with (1.13) and (1.16), it is easy to calculate that in (3.14),

kd = (k sinφd cos θd, k sinφ sin θ,−k cosφd) = (α0,−β0),

with

α0 = α := (k sinφd cos θd, k sinφd sin θd).
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Clearly, kd /∈ {ξn|n ∈ Z2} since φ ∈ (−π/2, π/2) and θ ∈ [0, 2π). Besides, from
(1.15) and (1.16), we can know that any two vectors of {ξn|n ∈ Z2} are distinct
from each other. Therefore, we can deduce the contradiction in view of (3.14) by
Lemma 3.3.

The proof of the uniqueness of η is similar to the proof of Theorem 1.7 and we
skip the details here to avoid repetition.

Finally, we sketch the proof of the unique determination results for admissible
rational polyhedral diffraction gratings as follows.

Proof of Theorem 1.15 (Rational case). We prove by absurdity. Following the same
notations and assumptions above in the proof of Theorem 1.14, we suppose that
there exists a corner point xc ∈ Λf which lies on ∂G\Λg such that Bh(xc) b Ωg
and (3.13) holds. Using (1.20), by Theorem 2.6, we know that ug(x; k,d) satisfies

ug(xc) = 0, ∇ug(xc) = 0,

which contradicts with (1.21). The uniqueness result can now be attained by a
similar absurdity as stated in the proof of Theorem 1.8.
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