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Abstract. In this paper, we propose a parallel space-time domain decompo-

sition method for solving some unsteady inverse source identification problems
governed by the linear convection-diffusion equation. Traditional approaches

require to solve repeatedly a forward parabolic system, an adjoint system and a

system with respect to the unknowns. The three systems have to be solved one
after another. These sequential steps are not desirable for large scale parallel

computing. A fully implicit space-time coupled discretization scheme precon-

ditioned by a space-time restrictive additive Schwarz method is proposed to
recover the time-dependent pollutant source intensity functions. We show with

numerical experiments that the scheme works well with noise in the observa-

tion data. More importantly it is demonstrated that the parallel space-time
Schwarz preconditioner is scalable on a supercomputer with over 103 proces-

sors, thus promising for large scale applications.

1. Introduction. Pollutant source inversion problems have wide applications in,
for example, the detection and monitoring of indoor and outdoor air pollution, un-
derground water pollution, etc. In the last several decades, physical, chemical and
biological technologies have been developed to identify different types of sources
[3, 45, 46]. In this paper, assuming the pollutant concentration data is measured by
distributed sensors, we numerically reconstruct the source intensities using noise-
contaminated data. Like all inverse problems, such a reconstruction problem is
ill-posed in the sense of Hadamard [14, 34, 41]. The lack of stability with respect to
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the measurement data is a major issue, which means that small noise in the data
may lead to significant changes in the reconstructed source strength. This problem
has attracted much attention, and various methods have been developed, includ-
ing both deterministic and statistical methods [27, 37]. Among the deterministic
methods, quasi-explicit reconstruction formulas are available for one-dimensional
source location recovery problems [19, 20]; and quasi-reversibility methods can be
used to retrace the pollutant history as in [36]; optimization based methods are
also widely used [2, 22, 23, 35, 40, 42]. By reformulating an inverse problem into
an output least-squares PDE-constrained optimization problem complemented with
Tikhonov regularization, classical optimization methods such as regression methods
[17], linear and nonlinear programming methods [17], linear and nonlinear conju-
gate gradient methods [1, 40], Newton type methods, etc. can be used to obtain the
approximate solutions. These methods can be categorized as sequential quadratic
programming (SQP) methods. Reduced space SQP methods decouple the system
and iteratively update the state variable, the adjoint variable and the optimization
variables by solving each subsystem in a sequential order. In some sense this is
a block Gauss-Seidel iteration with three large blocks. Such methods require less
memory due to the reduced subproblem size but the number of outer-iterations for
a specified accuracy grows quickly with the increase of the optimization variables,
thus they are not ideal for supercomputers with a large number of processors.

We introduce in this paper a full space approach that does not have the three
large sequential steps as in the reduced space approaches. Similar approaches have
been applied to flow control problems in [31]. The full space method solves the state
variable, adjoint variable and the optimization variables simultaneously, thus avoids
repeatedly solving the subsystems. However the fully coupled system is several times
larger in size and more ill-conditioned, direct methods such as Gaussian elimination
or LU factorization as well as the classical iterative methods such as the Jacobi
method, the Gauss-Seidel method are not suitable. To ease the difficulty of solving
the large system, a preconditioned Krylov subspace technique is considered to reduce
the condition number and the computing time significantly [9, 44].

The inverse problem of recovering the pollutant source intensity functions can
be reformulated into a PDE-constrained optimization problem. In this paper, we
derive its continuous Karush-Kuhn-Tucker (KKT) system [24], including the state
equation, the adjoint equation and other derivative equations with respect to each
unknown source intensity. Two main challenges of the problem lie in that firstly
the adjoint equation needs the final state of the pollutant source distribution, which
implies that the state equation and the adjoint equation should be solved in a
sequential order; secondly the time marching of the unsteady problem is directional
and sequential, thus difficult to break down into parallel steps. For unsteady PDE-
constrained optimization problems, a steady state optimization subproblem is solved
at each time step [44]. And in [18], a block time-marching method is used to reduce
the number of sequential steps and increase the degree of parallelism. In this paper,
we propose a coupled space-time domain decomposition method that couples the
time with the space domain and decomposes the “space-time” domain into sub-
domains, then apply an additive Schwarz preconditioned Krylov subspace technique
to solve the “space-time” problem. Our algorithm is fully parallel in space and time,
avoids the sequential time marching steps, and does not need to solve optimization
subproblems. As far as we know, no published work has achieved such a degree of
parallelism for time-dependent inverse problems.



A PARALLEL SPACE-TIME METHOD FOR UNSTEADY SOURCE INVERSION 3

The rest of this paper is arranged as follows. The mathematical model and its
corresponding optimization functional, and the derivation of the KKT system are
formulated in Section 2. The discretization of the KKT system is given in Section 3.
The parallel algorithm for solving the KKT system is proposed in Section 4. Some
numerical experiments are shown in Section 5 and concluding remarks are given in
Section 6.

2. Model formulation. We consider a flow domain Ω ∈ R2 in which several
point pollutant sources are present. The distribution of the pollutant concentration
is denoted by C(x, t) at location x and time t. The transport process is modeled
by the following convection-diffusion equation [3, 32]:

∂C

∂t
= ∇ · (a(x)∇C)−∇ · (v(x)C) +

s∑
i=1

δ(x− x∗i )fi(t), 0 < t < T, x ∈ Ω, (1)

where fi(t) is the temporal intensity of the ith source at location x∗i , i = 1, · · · , s, s
is the number of sources, a(x) and v(x) are the diffusive and convective coefficient.
δ(·) is the Dirac delta distribution [5]. The model is complemented by the following
boundary conditions

C(x, t) = p(x, t), x ∈ Γ1; a(x)
∂C

∂n
= q(x, t), x ∈ Γ2 (2)

and the initial condition

C(x, 0) = C0(x), x ∈ Ω, (3)

where Γ1 and Γ2 cover the physical boundary ∂Ω = Γ1

⋃
Γ2, p(x, t) and q(x, t)

are given functions for Dirichlet and Neumann boundary condition respectively.
If the source locations x∗i (i = 1, · · · , s) and the corresponding time-dependent
intensities fi(t) (i = 1, · · · , s) in (1) are all known, then the distribution of the
pollutant concentration C(x, t) can be obtained by solving the convection-diffusion
equation (1)-(3). This is usually called a forward or direct problem. In this paper,
we are concerned about the inverse problem, that is, using the noise-contaminated
data Cε(x, t) (ε is the noise level) of the concentration C(x, t) in Ω at terminal
time T to recover the source intensity functions fi(t) (i = 1, · · · , s). In practice,
the data Cε(x, t) is measured by a sensor network placed at some points in Ω
[26, 30]. A discussion of the sensor network can be found in [26]. Here we assume
the measurement data is available anywhere in Ω, which implies we uniformly put
sensors at each mesh point, and the mesh is used later for the source inversion
algorithms.

The Tikhonov optimization algorithm is popular for time-dependent parameter
identification problems [22, 23]. The main ingredient of the algorithm includes refor-
mulating the reconstruction process as the minimization of the following functional:

J(f) =
1

2

∫
Ω

(C(x, T )− Cε(x, T ))2 dx +Nβ(f), (4)

where f = (f1, f2, · · · , fs)T , and Nβ(f) denotes some Tikhonov regularization. Pos-
sible choices for the regularizations include L2, H1 and BV regularizations. Here
we consider a combination of the L2 and H1 regularizations in the following form

Nβ(f) =

s∑
i=1

βi1
2

∫ T

0

(fi(t))
2dt+

s∑
i=1

βi2
2

∫ T

0

|f ′i(t)|2dt, (5)
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where βi1, β
i
2, i = 1, · · · , s, are the L2 or H1 regularization parameters for the source

intensity f1(t), · · · , fs(t) respectively. The formulation of Nβ(f) guarantees that
J(f) is a least-squares functional. The minimization of the functional (4) is subject
to the constraints that C(x, t) satisfies the state equation (1) with the boundary
conditions (2) and the initial condition (3). Now we have transformed the original
inverse problem into a PDE-constrained optimization problem.

Two kinds of approaches for the optimization problem (4) are available, the
discretize-then-optimize approach and the optimize-then-discretize approach. The
solutions from both approaches are credible, although they are not necessarily the
same [31]. We use the optimize-then-discretize approach here.

Let W 1,p(Ω) and W 1,q(Ω) be standard Sobolev spaces with p, q > 0 such that
1/p + 1/q = 1 and p > 2, q < 2. We formally write (1) as an operator equation
L(C, f) = 0, then introduce a corresponding Lagrange multiplier G ∈W 1,p(Ω) and
the following Lagrange functional [2, 22, 23]:

J (C, f , G) =
1

2

∫
Ω

(C(x, T )− Cε(x, T ))2dx +Nβ(f) + (G,L(C, f)), (6)

where G is the Lagrange multiplier or the adjoint variable, and (G,L(C, f)) denotes
the inner product.

Taking the variations of (6) with respect to G, C and fi, i = 1, · · · , s, a system
of partial differential equations is derived to characterize the first-order optimality
conditions for this optimization problem (6). They are the so-called Karush-Kuhn-
Tucker (KKT) optimality conditions [24]. It has been verified that the minimiza-
tion problem (4) is equivalent to solving the KKT system [24] of the Lagrangian
functional J (C, f , G) in [11]. The three sets of equations in the KKT system are
obtained as follows:

(a) The Gâteaux derivative of J with respect to G at direction v is given by

JG(C, f , G)v = (v, L(C, f))

=

(
∂C

∂t
, v

)
+ (a∇C,∇v) + (∇ · (vC), v)

−
s∑
i=1

v(x∗i , t)fi(t)− 〈q, v〉Γ2

for all v ∈W 1,p(Ω).
(b) The Gâteaux derivative of J in (6) with respect to C at direction w ∈W 1,q(Ω)

is given by

JC(C, f , G)w =

∫
Ω

(C(x, T )− Cε(x, T ))wdx

+

∫ T

0

∫
Ω

G

(
∂w

∂t
−∇ · (a(x)∇w) +∇ · (v(x)w)

)
dxdt.

(7)

For convenience, we write

L̃w :=
∂w

∂t
−∇ · (a(x)∇w) +∇ · (v(x)w,
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integrating by part for the second term of (7), yields

(G, L̃w) =

∫ T

0

∫
Ω

G

(
∂w

∂t
−∇ · (a(x)∇w) +∇ · (v(x)w)

)
dxdt

=

∫
Ω

Gw|T0 dx−
∫ T

0

∫
Ω

w
∂G

∂t
dxdt−

∫ T

0

∫
∂Ω

a(x)G
∂w

∂n
dΓdt

+

∫ T

0

∫
Ω

a(x)∇w · ∇Gdxdt+

∫ T

0

∫
Ω

∇ · (v(x)w)Gdxdt

=

∫
Ω

Gw|T0 dx +

∫ T

0

∫
∂Ω

(
−a(x)

∂w

∂n
G

)
dΓdt

+

∫ T

0

∫
Ω

(
−w∂G

∂t
+ a(x)∇w · ∇G+∇ · (v(x)w)G

)
dxdt

and applying the boundary and initial conditions of w, i.e. w = 0 on Γ1 and
a(x)∂w∂n = 0 on Γ2, w(x, 0) = 0 then

(G, L̃w) =

∫
Ω

G(x, T )w(x, T )dx +

∫ T

0

∫
Γ1

(
−a(x)G

∂w

∂n

)
dΓdt

+

∫ T

0

∫
Ω

(
−w∂G

∂t
+ a(x)∇w · ∇G+∇ · (v(x)w)G

)
dxdt.

Now noting the arbitrariness of w, we can deduce the adjoint system for the
Lagrange multiplier G, namely G(x, T ) = 0 for x ∈ Ω, G(x, t) = 0 on Γ1 and
G(x, t) satisfies

− (Gt, w) + (a∇G,∇w) + (∇ · (vw), G) = −(δ(t− T )(C(·, t)− Cε(·, t)), w) (8)

for all w ∈ W 1,q(Ω) such that w = 0 on Γ1. δ(t − T ) is the Dirac delta
distribution which is 1 when t = T and is 0 otherwise.

(c) The Gâteaux derivative of J in (6) with respect to fi at direction g ∈ H1(0, T )
is given by

Jfi(C, f , G)g = βi1

∫ T

0

fi(t)g(t)dt+ βi2

∫ T

0

f ′i(t)g
′(t)dt

−
∫ T

0

(G(x, t), δ(x− x∗i )g(t))dt

=

∫ T

0

(βi1fi(t)−G(x∗i , t))g(t)dt+ βi2

∫ T

0

f ′i(t)g
′(t)dt.

(9)

Putting (a)-(c) together, the KKT system is formulated as follows:
JG(C, f , G)v = 0

JC(C, f , G)w = 0

Jfi(C, f , G)g = 0, i = 1, · · · , s,
(10)



6 X. M. DENG, X.-C. CAI AND J. ZOU

that is, for any v ∈W 1,p(Ω) and w ∈W 1,q(Ω), we have



(
∂C

∂t
, v

)
+ (a∇C,∇v) + (∇ · (vC), v)−

s∑
i=1

v(x∗i )fi(t)− 〈q, v〉Γ2
= 0

−
(
∂G

∂t
, w

)
+ (a(x)∇G,∇w) + (∇ · (v(x)w), G)

+(δ(t− T )(C(·, t)− Cε(·, t), w)) = 0

−(G(x∗i , ·), g) + βi1(fi, g) + βi2(f ′i , g
′) = 0, i = 1, · · · , s

(11)

with C(x, 0) = C0(x), G(x, T ) = 0. The rest of the paper is devoted to solving (11)
as a coupled space-time system. It is noted that the first equation in (11) is the
state equation, and the second equation is the adjoint equation, and the last set of
equations are elliptic equations with respect to each unknown source intensity.

3. Finite element discretization. Let T h be a triangulation of Ω with triangular
elements, then we define V h as the finite element space [12] consisting of continuous

piecewise linear functions on T h, and V̊ h the subspace of V h with functions vanish-
ing on the Dirichlet boundary Γ1. To fully discretize the system (11), we partition
the time interval [0, T ] as 0 = t0 < t1 < · · · < tM = T, with tn = nτ, τ = T/M .
Define Uτ as a piecewise linear continuous finite element space in time. For a given
sequence {Hn(x) = H(x, tn)}, we define the difference quotient and the averaging
function respectively by

∂τH
n(x) =

Hn(x)−Hn−1(x)

τ
, H̄n =

H(x, tn−1) +H(x, tn)

2
. (12)

Let πh be the finite element interpolation associated with the space V h, and
Cnh (x) be the finite element approximation of C(x, tn), then we discretize the state
and adjoint equations of the system (11) by the Crank-Nicolson scheme in time and
piecewise linear finite elements in space, and lastly we use piecewise linear finite
element in time to discretize the equations with respect to f . The finite element
approximation of the KKT system (11) can be formulated as follows:

Find a sequence of approximations Cnh , Gnh ∈ V h (0 ≤ n ≤ M), fτi ∈ Uτ , i =
1, · · · , s, such that C0

h = πhC0, GMh = 0 and Cnh (x) = πhp(x, t
n), Gnh(x) = 0 for

x ∈ Γ1 satisfying

(∂τC
n
h , vh) + (a∇C̄nh ,∇vh) + (∇ · (vC̄nh ), vh)

=
∑s
i=1 vh(x∗i )f̄

n
i + 〈q̄n, vh〉Γ2

, ∀ vh ∈ V̊ h, n = 1, · · · ,M
−(∂τG

n
h, wh) + (a∇Ḡnh,∇wh) + (∇ · (vwh), Ḡnh)

= −χn((Cnh − Cε), wh), ∀wh ∈ V̊ h, n = M, · · · , 1
−(Gτ (x∗i , ·), gn) + βi1(fτi , g

n) + βi2((fτi )′, (gn)′) = 0, i = 1, · · · , s, n = 0, · · · ,M,

(13)

where χn = 1
2 when n = M and 0 when 1 ≤ n < M . We denote the basis functions

of finite element spaces V h and Uτ by φi, i = 1, · · · , N and gj , j = 0, · · · ,M ,
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respectively, and introduce the following matrices:

A = (aij)i,j=1,··· ,N , aij = (a∇φi,∇φj)
B = (bij)i,j=1,··· ,N , bij = (φi, φj)

E = (eij)i,j=1,··· ,N , eij = (∇ · (vφi), φj)
K = (knm)n,m=0,··· ,M , knm = ((gn)′, (gm)′)

D = (dnm)n,m=0,··· ,M , dnm = (gn, gm)

and the vectors

Cn = (Cn1 , C
n
2 , · · · , CnN )T , for n = 0, · · · ,M

Gn = (Gn1 , G
n
2 , · · · , GnN )T , for n = 0, · · · ,M

fk = (f0
k , f

1
k , · · · , fMk )T , for k = 1, · · · , s

rn = (rn1 , r
n
2 , · · · , rnN )T , for j = 1, · · · , N, n = 1, · · · ,M with

rnj = −τ

(
s∑

k=1

φj(x
∗
k)

(fnk + fn−1
k )

2
+

〈
(qn + qn−1)

2
, φj

〉
Γ2

)
g∗k = (g0

k, g
1
k, · · · , gMk )T , with gnk = G(x∗k, t

n), for k = 1, · · · , s, n = 0, · · · ,M
d = (d1, d2, · · · , dN ), with dj = (Cε, φj) for j = 1, · · · , N.

The matrix form of the KKT system is then reformulated by using the above nota-
tions as the following:

(
B +

τ

2
(A+ E)

)
Cn +

(
−B +

τ

2
(A+ E)

)
Cn−1 + rn = 0, n = 1, · · · ,M(

−B +
τ

2
(A+ ET )

)
Gn +

(
B +

τ

2
(A+ ET )

)
Gn−1

+τχn(BCn − d) = 0, n = M, · · · , 1
−Dg∗k + (βk1D + βk2K)fk = 0, k = 1, · · · , s.

(14)

We can follow the approaches in [21, 22, 23, 42] to obtain the convergence of the
discretized problem (13) to the continuous optimization problem (6).

4. A space-time domain decomposition method for the KKT system.

4.1. Fully coupled KKT system with special ordering of unknowns. The
ordering of the unknowns for the discretized KKT system (13) has significant in-
fluence in the convergence and computing efficiency of the iterative solver. Tra-
ditional reduced space SQP methods split the system into three subsystems and
solve each subsystem for C, G, and f one by one in sequential steps [13], in this
case the unknowns are ordered physical variable by physical variable. To develop
a scalable and fully coupled method for solving the KKT system, we use the so-
called fully coupled ordering, the unknowns C and G are ordered mesh point by
mesh point and time step by time step. At each mesh point xj , j = 1, · · · , N , and
time step tn, n = 0, · · · ,M , the unknowns are ordered in the order of Cnj , G

n
j , j =

1, · · · , N, n = 0, · · · ,M . Such ordering contains unknowns of the same space-time
subdomain in a subblock, preconditioners such as additive Schwarz can be applied
naturally to each subblock of the fully coupled KKT system and the ordering also
improves the cache performance of the LU factorization based solvers. Since f is
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defined only in the time dimension, we put all the unknowns of f at the end after
C and G. More precisely, we define the solution vector U by

U = (C0
1 , G

0
1, · · · , C0

N , G
0
N , C

1
1 , G

1
1, · · · , C1

N , G
1
N , · · · , CM1 , GM1 ,

· · · , CMN , GMN , f
0
1 , · · · , f0

s , · · · , fM1 , · · · , fMs )T

then the linear system (13) with unknowns Cnj and Gnj , j = 1, · · · , N , n = 0, · · · ,M ,
and fnk , k = 1, · · · , s, n = 0, · · · ,M , is reformulated into the following linear system:

FU = b, (15)

where F is a sparse matrix of size (M + 1)(2N + s) × (M + 1)(2N + s) derived
from the finite element discretization for KKT system (14) with the following block
structure:

F =



S00 S01 0 · · · 0 S0,M+1

S10 S11 S12 · · · 0 S1,M+1

...
. . .

. . .
. . .

...
...

0 · · · SM−1,M−2 SM−1,M−1 SM−1,M SM−1,M+1

0 · · · 0 SM,M−1 SM,M SM,M+1

SM+1,0 SM+1,1 SM+1,2 · · · SM+1,M SM+1,M+1


,

and b correspondingly has the form:

b = (b0, b1, · · · , bM+1)T .

In the matrix F, the block matrices Sij , with 0 ≤ i, j ≤ M are of size 2N × 2N
and are zero matrices except the ones in tridiagonal stripes {Si,i−1}, {Si,i}, {Si,i+1}.
The stripe {Si,M+1}, 0 ≤ i ≤ M are nonzero sparse blocks of size 2N × s(M + 1);
furthermore {SM+1,i}, 0 ≤ i ≤M are nonzero sparse blocks of size s(M + 1)× 2N
and SM+1,M+1 is a nonzero tridiagonal matrix of size s(M + 1)× s(M + 1).

4.2. Space-time Schwarz preconditioners. The KKT system (15) is usually
large in size and severely ill-conditioned. In reduced space SQP methods, the sub-
systems corresponding to unknowns C and G are time-dependent, time-marching
algorithms starting from the initial or terminal moment are applied. In addition,
we notice that the adjoint equation needs the concentration distribution of C at the
terminal time t = T , which means that the state equation and the adjoint equation
should be solved in a sequential order. Sequential steps within reduced space SQP
methods exist between both the KKT subsystems and the time marching for time-
dependent inverse problems, thus are quite challenging for efficient parallelization.
To overcome the lack of parallelism in SQP methods, we shall propose to solve the
fully coupled system (15) all at once. This ia a very large system, the all-at-once
method is traditionally regarded as a very expensive approach and not suitable for
small computers. But on high-performance computers, especially on the upcoming
exascale computers, we believe this approach is more attractive than the reduced
space methods. It is well known that a direct solver such as Gaussian elimination
or LU factorization is not suitable for very large problems due to the lack of parallel
scalability. We shall use a preconditioned Krylov subspace method, where some
preconditioning technique will be introduced for reducing the condition number
of the KKT system and accelerating the convergence rate of the Krylov subspace
method. Various preconditioners have been developed and applied for various el-
liptic and parabolic systems, such as the (block) Jacobi method, (incomplete) LU
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factorization, (multiplicative) additive Schwarz method, multigrid method, multi-
level method, etc. [7, 8, 9]. Among these preconditioners the Schwarz type domain
decomposition method is shown to have excellent preconditioning effect and parallel
scalability [9, 31].

We shall propose a “space-time” Schwarz type preconditioner for the unsteady
inverse problems. Different from the classical Schwarz type preconditioning tech-
nique which only decomposes the space domain, we want full parallelization in both
space and time. The idea of space-time parallel algorithm comes from the parareal
algorithm, proposed by Lions et al. in [25]. The parareal algorithm is an iterative
method which involves a coarse (coarse grid in the time dimension) solver for pre-
diction and a fine (fine grid in the time dimension) solver for correction. An insight
on the stability and convergence of the parareal algorithm was given in [16, 38].
Parareal algorithm has been applied to solve problems in molecular dynamics [4],
fluid and structural mechanics [15], quantum control [28] etc. However in the im-
plementation of the parareal algorithm, the scalability is determined largely by the
coarse time step and the space discretization scheme. In [29], the parareal algorithm
was combined with domain decomposition in space to achieve higher degree of par-
allelization. Different from the parareal algorithm, the new “space-time” Schwarz
type preconditioner treats the time variable and the space variables equally, so the
physical domain is a “space-time” domain, instead of the conventional space do-
main. We apply a domain decomposition technique to the coupled “space-time”
domain.

In each “space-time” subdomain, a time-dependent subproblem with vanishing
space boundary conditions and vanishing data at “artificial” initial and terminal
time is solved. The same as the global problem, no time-marching is performed in
each subproblem, all unknowns associated to the same space-time subdomain are
solved simultaneously. The proposed “space-time” Schwarz preconditioner elimi-
nates all sequential steps and all unknowns are treated at the same level of priority.
We use a right-preconditioned restarted GMRES to solve the system (15):

FM−1U ′ = b,

where M−1 is a “space-time” additive Schwarz preconditioner and U = M−1U ′.
To formally define the preconditioner M−1 we need to introduce a partition of

the space-time domain Ω× [0, T ], denoted by Θ. Firstly we decompose the domain
Ω into nonoverlapping subdomains Ωi, i = 1, · · · , N1, and then divide the time
interval [0, T ] into subintervals Tj = [tj−1, tj ], j = 1, 2, · · · , N2, and 0 = t0 < t1 <
· · · < tN2

= T . We remark that the time partition here is coarser than that used
in the full finite element discretization described in Section 3, and each interval Tj
contains a few consequent time intervals [tk, tk+1]. Θ consists of Θij = Ωi × Tj ,
i = 1, · · · , N1, j = 1, · · · , N2. In order to obtain an overlapping decomposition
of Θ, we extend each subdomain Ωi to a larger region Ω′i and each subinterval
Tj to a longer interval T ′j , satisfying Ωi ⊂ Ω′i, Tj ⊂ T ′j . Now each Θij can be
straightforwardly extended to Θ′ij = Ω′i × T ′j with Θij ⊂ Θ′ij . The sizes of Θ′ij are
chosen so that the overlap is as uniform as possible around the perimeter of interior
domains Θ′ij ⊂ Θ. For boundary subdomains we neglect the part outside of Θ. See
Figure 1 for an illustration of the space-time domain decomposition.

We denote the size of the KKT matrix F by Ñ× Ñ , clearly there are two degrees
of freedom at each mesh point corresponding to the state variable C and the adjoint
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Figure 1. “Space-time” domain decomposition - an overlapping
subdomain with boundary conditions.

variable G. The unknown time-dependent source intensity variables are allocated
on the same processor as the last space-time subdomain Θ′N1,N2

.

On each extended subdomain Θ′ij , we define the Ñij × Ñ matrix Rδij , its 2 × 2

block element (Rδij)l1,l2 is either an identity block if the integer indices l1 and l2
are related to the same mesh point and time step and they belong to Θ′ij or a

zero block otherwise. The multiplication of Rδij with an Ñ × 1 vector generates a

shorter vector by keeping all components corresponding to the subdomain Θ′ij . R
0
ij

is defined similarly as Rδij , with the difference that its application to a Ñ × 1 vector
excludes the mesh points in Θ′ij\Θij . Now for each space-time subdomain we have
defined the following local problem:

∂G

∂t
= −∇ · (a(x)∇G)− v(x) · ∇G

+ δ(t− T )(C(x, t)− Cε(x, t)), (x, t) ∈ Θ′ij
∂C

∂t
= ∇ · (a(x)∇C)−∇ · (v(x)C) +

s∑
i=1

δ(x− x∗i )fi(t), (x, t) ∈ Θ′ij .

(16)

It is complemented by the following boundary conditions

C(x, t) = 0; G(x, t) = 0, x ∈ ∂Ω′i (17)

along with the “initial” and “terminal” time boundary conditions

C(x, tj−1) = 0; G(x, tj−1) = 0 (18)

C(x, tj) = 0; G(x, tj) = 0. (19)

For the last subdomain, we include the additional variables corresponding to the
source intensities fi, i = 1, · · · , s satisfying

βi2f
′′
i + βi1fi +G(x∗, ·) = 0, (20)

with the Neumann condition

f ′i(t) = 0, t = 0, T. (21)

We remark that (16) is a parabolic system and it is usually “illegal” to impose
both initial and terminal conditions (18)-(19). However, as inexact local solvers
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on space-time subdomains that form the global preconditioner, such local bound-
ary conditions work well as we shall see from our numerical experiments. Similar
boundary conditions are used in the context of hyperbolic subdomain problems [43].

Let Mij be a discretization of (16)-(19) and M−1
ij be an exact or approximate

inverse of Mij . The space-time additive Schwarz preconditioner is defined as

M−1
asm =

N2∑
j=1

N1∑
i=1

(Rδij)
TM−1

ij R
δ
ij .

It is noted that the last space-time subdomain solver M−1
N1,N2

is an inverse or an
approximate inverse of the matrix arising from the discretization of the subproblem
(16)-(19) of Θ′N1,N2

and (20)-(21). Although its construction is slightly different
from that of the other subdomain inverse matrices, we still use the same notation.

In addition to the standard additive Schwarz method (ASM) described above,
the restricted version (RAS) of the method developed in [10] for standard space
domain decompositions is also widely used. So we extend it to our current space-
time domain decomposition, then the space-time RAS preconditioner is defined as

M−1
ras =

N2∑
j=1

N1∑
i=1

(Rδij)
TM−1

ij R
0
ij .

For some applications, RAS achieves better preconditioning effect with less commu-
nication time since one of the restriction or extension operations does not involve
any overlap. We use the restricted version in our experiments to be presented in
the next section.

We remark that, computationally, the matrixMij can be obtained as RδijF(Rδij)
T .

Moreover, if N2 = 1, then no time partition is performed in the time dimension,
M−1
ras is a “space-only” domain decomposition preconditioner for the fully coupled

KKT system.

5. Numerical examples. We present in this section some numerical examples
of recovering the intensity functions fi(t) (i = 1, · · · , s) at given source locations
x∗1, · · · ,x∗s. We set the test domain to be Ω = (−2, 2) × (−2, 2), and the terminal
time at T = 1. We denote the time step by nt and the number of mesh points in x
and y directions by nx and ny, respectively. Homogeneous Dirichlet and Neumann
boundary conditions are imposed on Γ1 = {x = (x1, x2); |x1| = 2} and Γ2 = {x =
(x1, x2); |x2| = 2}, respectively. The diffusive coefficient a(x) and the convective
coefficient v(x) are chosen to be 1.0 and (1.0, 1.0)T , respectively.

The preconditioned KKT system is solved with a restarted GMRES method (the
restart is 50) [33]. For definiteness, we shall denote as a cell the smallest space-time
element after the space triangulation of Ω and time partition of the interval [0, T ].
The size of overlap, that is the number of overlapping cells, is denoted by iovlp and
set to be 4 unless otherwise specified. The subsystem is solved with a sparse LU
factorization or an incomplete LU factorization (ILU) with the fill-in level denoted
by ilulevel [33]. For the scalability test we use LU factorization as the subdomain
solver and incomplete LU factorization with ilulevel = 3 for the other tests if not
specified. The relative residual convergence tolerance of GMRES is set to be 10−5.
The algorithm is implemented based on the package Portable, Extensible Toolkit
for Scientific computation (PETSc) [6] and run on a Dawning TC3600 blade server
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system at the National Supercomputing Center in Shenzhen, China with a 1.271
PFlops/s peak performance.

We use a high resolution numerical solution of the concentration at the terminal
time t = T as the noise-free observation data. In other words, we first solve the
forward convection-diffusion system (1)-(3) on a very fine mesh, 640 × 640, with a
small time stepsize τ = 1/160, then add a random noise of the following form to
the terminal concentration

Cε(x) = (1 + ε r)C(x, T ),

where r is a random function with uniform distribution in [−1, 1], and ε is the noise
level. In our numerical experiments, ε is set to 1% if not specified.

5.1. Reconstruction results and parallel efficiency tests. The tests are de-
signed to investigate the recovery effect of the pollutant source intensity functions
and to understand how the solution of the KKT system behaves when using dif-
ferent mesh sizes, time steps, regularization parameters and number of processors,
which is denoted by np. We consider the following four examples.

(1) f = t2, x∗1 = (1.0, 1.0)T .

(2) f =
75

4
t(1− t)

(
1

6
− t
)2

+ 1.0, x∗1 = (1.0, 1.0)T .

(3) f1 = t2, x∗1 = (1.0,−1.0)T

f2 =
75

4
t(1− t)

(
1

6
− t
)2

+ 1.0, x∗2 = (0.0, 0.0)T .

(4) f1 = t2, x∗1 = (34/79, 24/79)T

f2 =
75

4
t(1− t)

(
1

6
− t
)2

+ 1.0, x∗2 = (14/79, 14/79)T

f3 = 3− t, x∗3 = (25/79, 15/79)T .

Example 1. This is an example of recovering a quadratic polynomial source
intensity function. An H1 regularization is applied and the parameter is chosen
to be β2 = 10−4 (β1 = 0). Figure 2 shows the reconstructed result with mesh
nx = 80, ny = 80 and time step nt = 320, when 64 processors are used. The
blue dotted line represents the reconstructed source intensity which is quite close
to the red true shape. This shows that the time-dependent intensity is successfully
recovered by the algorithm.

We present the strong scalability results in Table 1. Sparse LU factorization is
applied as the subdomain solver. The spatial mesh is 160 × 160 and the number
of time steps is 160. The total degrees of freedom is 8, 192, 160. As the number
of processors increases, the computing time decreases significantly and superlinear
speedup is obtained, for np ≤ 1024, in Figure 3. Since the number of processors
is the same as the number of subdomains, more processors lead to an increasing
number of iterations. This suggests that the condition number of the preconditioned
KKT matrix depends on the number of subdomains. Similar dependency was proved
for elliptic problems [39].

We fix the number of processors to np = 128, the mesh to nx = 80, ny = 80 and
the time step nt = 320, then test several choices of regularization parameters. ILU
factorization is used as the subdomain solver with the fill-in level being ilulevel = 3.
From the results in Table 2, as β2 becomes smaller, the number of GMRES iterations
increases, and no significant change is observed for the total computing time.
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Figure 2. Comparison of the analytical and computed solutions
for Example 1.

np Its Time(sec) Speedup Ideal
256 145 794.70 1 1
512 181 377.16 2.11 2
1024 242 161.23 4.93 4

Table 1. Scalability test for Example 1: nt = 160, nx =
160, ny = 160, DOF = 8, 192, 160.
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Figure 3. The speedup (left) and computing time (right) for Ex-
ample 1.

β2 Its Time(sec)
10−4 88 54.91
10−5 93 55.75
10−6 96 56.68

Table 2. H1 regularization parameter test for Example 1: nt =
320, nx = 80, ny = 80, DOF = 4, 096, 320, np = 128.
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Figure 4. Comparison of the analytical and computed solutions
for Example 2.

np Its Time(sec) Speedup Ideal
256 178 852.23 1 1
512 184 379.75 2.24 2
1024 247 176.23 4.84 4

Table 3. Scalability test for Example 2: nt = 160, nx =
160, ny = 160, DOF = 8, 192, 160.

Example 2. This is an example of recovering a polynomial source intensity
function of degree 4. We set β1 = 0 and use an H1 regularization with β2 = 10−4.
Satisfactory result is shown in Figure 4 with mesh nx = 80, ny = 80 and time step
nt = 160, when 64 processors are used for the computation.

Using the same parameter settings as in Example 1, we perform the strong scal-
ability test and the results are given in Table 3 and Figure 5. Superlinear speedup
is obtained when np ≤ 1024. Next we test three sets of mesh and time step size
in Table 4. The H1 regularization parameter is set to be β2 = 10−6, and 64 pro-
cessors are used. The overlap iovlp = 4 and the fill-in level of ILU ilulevel = 3.
We observe from Table 4 that as the mesh and the time step size become finer, the
number of GMRES iterations grows slightly, and the computing time increases with
the problem size.

Now we investigate the performance of the space-time Schwarz preconditioner.
An important feature of the proposed space-time Schwarz preconditioner lies in
the parallelization in the time dimension. If the time range is not partitioned as
mentioned in the end of Section 4.2, the preconditioner also works from the result in
Figure 6, but it is observed from Table 5, under the same settings, that the “space-
only” Schwarz preconditioner costs more iterations and computing time compared
to the space-time Schwarz preconditioner. Thus the Schwarz preconditioner with a
partition in the time is more efficient than the “space-only” domain decomposition
preconditioner. In the end of this example, we perform the noise level test and
the results are given in Figure 7. The results agree with our expectation that
the reconstruction accuracy deteriorates with the increasing level of noise in the
measurement data.
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Figure 5. The speedup (left) and computing time (right) for Ex-
ample 2.

nt nx × ny DOF Its Time(sec)
100 40× 40 320 100 40 8.44
240 64× 64 1 966 320 46 33.25
320 80× 80 4 096 320 49 69.28

Table 4. Test with mesh sizes and time step sizes for Example 2:
β2 = 10−6, np = 64.
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Figure 6. Space-only ASM preconditioner (left) vs. space-time
ASM preconditioner (right) for Example 2.

Preconditioner np Its Time(sec) np Its Time(sec)
space-only 64 49 114.34 256 129 230.29
space-time 64 39 37.60 256 83 156.64

Table 5. Comparison of two preconditioners for Example 2: β2 =
10−5, nt = 100, nx = 40, ny = 40, DOF = 320, 100 for np = 64;
β2 = 10−6, nt = 320, nx = 80, ny = 80, DOF = 4, 096, 320 for
np = 256.

Example 3. In this example, we test the recovery of two source intensities.
Compared with the cases of a single source intensity, more regularization parameters
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Figure 7. Test with noise levels for Example 2: ε = 1% (top left),
ε = 5% (top right), ε = 10% (bottom), with nt = 240, nx =
64, ny = 64, DOF = 1, 966, 320, β2 = 10−5, np = 64.

are needed. Here we test the following two sets of regularization parameters with
np = 64:

(1) β1
1 = 0, β2

1 = 10−4 for the source intensity function f1 and β1
2 = 10−6, β2

2 =
10−5 for f2. The mesh is nx = 80, ny = 80 and the time step is nt = 80;

(2) β1
1 = 0, β2

1 = 10−6 for f1 and β1
2 = 0, β2

2 = 10−6 for f2. The mesh and the
time step are set to be nx = 64, ny = 64 and nt = 256.

The numerical results are shown in Figure 8. The computed f1 matches with its
original data perfectly, but the computed f2 is less accurate. As we see in the
tests for Example 1 and Example 2, f2 is physically harder to recover than the
simpler function f1. Overall the reconstruction effect for both source intensities are
reasonable.

Next we show the strong scalability results in Figure 9 and Table 6. We still
observe a superlinear speedup, although it is a bit worse than that of Examples 1
and 2. It implies that it is more difficult to separate and identify multiple source
intensities than the single source case. And from our previous experiments with
reduced space SQP methods, the recovery of multiple sources is much more difficult
to converge than that of the single source case.

Lastly, we test the algorithm with parameters such as the fill-in level of ILU
factorization and the size of overlap in Table 7 and Table 8, respectively.

It is observed that the number of iterations decreases with the increase of the
overlapping size or the fill-in level, however, it costs more communication time when
we increase the overlap between “space-time” subdomains, and more computing
time is used in the preconditioning stage when we raise the fill-in level of the ILU
factorization.
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Figure 8. Recovery of two source intensities using two sets of reg-
ularization parameters. Left: β1

1 = 0, β2
1 = 10−4, β1

2 = 10−6, β2
2 =

10−5; Right: β1
1 = 0, β2

1 = 10−6, β1
2 = 0, β2

2 = 10−6.

np Its Time(sec) Speedup Ideal
256 148 765.80 1 1
512 150 360.88 2.12 2
1024 211 178.37 4.29 4

Table 6. Scalability test for Example 3 with two point-sources:
nt = 160, nx = 160, ny = 160, DOF = 8, 192, 320.
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Figure 9. The speedup (left) and the computing time (right) for
Example 3.

ilulevel Its Time(sec)
1 496 75.98
2 295 85.12
3 247 116.11

Table 7. Fill-in level of ILU test for Example 3: β2
1 = 10−6, β2

2 =
10−6, nt = 400, nx = 80, ny = 80, DOF = 5, 120, 400, np = 128.

Example 4. We now test the numerical reconstruction for 3 point sources, and
observe how the speedup changes with increasing number of sources.
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iovlp Its Time(sec)
1 - -
2 432 114.22
4 247 121.26
6 238 400.12

Table 8. Overlap test for Example 3: β2
1 = 10−6, β2

2 = 10−6,
nt = 400, nx = 80, ny = 80, DOF = 5, 120, 400, np = 128.
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Figure 10. The reconstruction for 3 point-sources.

np Its Time(sec) Speedup Ideal
256 148 794.19 1 1
512 150 383.56 2.07 2
1024 211 194.14 4.09 4

Table 9. Scalability test for Example 4 with three point sources:
nt = 160, nx = 160, ny = 160, DOF = 8, 192, 480.

For this test, we take the spatial mesh 160 × 160 and the number of time steps
160. Regularization parameters are respectively set to be β1

1 = 0, β1
2 = 10−5,

β2
1 = 10−4, β2

2 = 10−5 and β3
1 = 10−7, β3

2 = 8× 10−6. From Figure 10 we see that,
apart from the initial part of the third intensity which is not quite close to the true
values, the rest are recovered satisfactorily. Now we use a 160 × 160 space mesh
and 160 time step to test the strong scalability and compute time in Figure 11 and
Table 9. LU factorization is used as the subdomain solver. It was observed that
the speedup for 3 point sources was almost linear, still satisfactory but a bit worse
than Examples 1,2 and 3. As a conclusion the speedup deteriorates slowly with the
number of unknown point sources.

5.2. Comparison with two reduced space SQP methods. A reduced space
method for reconstruction of the location and intensity of a single point pollutant
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Figure 11. The speedup (left) and the computing time (right) for
Example 4.

source was developed in [13]. With the source location known in our current case,
the process of reconstructing the source intensity described in [13] can be stated as
follows:

Nonlinear CG method. Select the initial guesses f0, and set k := 0.

1. Solve the state system (first one of (13)) for {Cnh (fk)};
2. Solve the adjoint system (second one of (13)) for {Gnh(fk)};
3. Apply the nonlinear CG method to update fk: fk+1 = fk + αk1d

k.
4. Stop the iteration if the stopping criteria are satisfied; otherwise set k := k+1

and go to step 1.

We use the Fletcher-Reeves (FR) formula to update the nonlinear CG direction dk:
dk = J ′k + γkd

k−1, with d0 = J ′0 and γk = ‖J ′k‖2/‖J ′k−1‖2 and J ′k = −(Jτh )′(fk)
being the negative gradient direction which is obtained from formula (9). That is,

J ′k = −

(∫ T

0

(β1f
k(t)−Gτh(x∗, t))gτ (t)dt+ β2

∫ T

0

(fk)′(t)(gτ )′(t)dt

)
We select the stepsize αk1 such that αk1 = argminγ>0J

τ
h (fk + γdk). For the L2 and

H1 regularizations in (5), we can work out the exact formulae:

αk1 = − (CMh (fk)− Cε, AMh ) + β1(fk, dk)

(AMh , A
M
h ) + β1(dk, dk)

(L2 regularization),

αk1 = − (CMh (fk)− Cε, AMh ) + β2((fk)′, (dk)′)

(AMh , A
M
h ) + β2((dk)′, (dk)′)

(H1 regularization),

where AMh = CMh (fk)′dk is obtained by solving the following sensitivity equation,

(∂τA
n
h, vh)+(a∇Ānh,∇vh)+(∇·(vĀnh), vh) = vh(x∗)(d̄k)n, ∀ vh ∈ V̊ h, n = 1, · · · ,M.

At each iteration, three time-dependent subsystems are solved. When we implement
this nonlinear CG method on parallel computers, we need to develop a parallel
solver for each subsystem. We will test two cases: the first one uses the space
domain decomposition preconditioner but keeps the time marching process, while
the second one uses a space-time domain decomposition preconditioner as it is
developed for the fully coupled system in this work and solves each time-dependent
subsystem all-at-once. These two parallel solvers are denoted by RS(1) and RS(2)
respectively. We shall compare the computing times between our proposed space-
time preconditioning method, denoted by FS, and the two reduced space SQP
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np nt nx × ny Solver Time(sec)
64 40 40× 40 FS 12.064

RS(1) 418.580
RS(2) 125.484

128 80 80× 80 FS 15.525
RS(1) 682.794
RS(2) 99.528

256 160 80× 80 FS 23.736
RS(1) 994.962
RS(2) 200.543

512 320 160× 160 FS 136.717
RS(1) 7240.881
RS(2) 1094.886

Table 10. The computing times of the proposed full space method
FS, the reduced space method RS(1) and RS(2).

methods RS(1) and RS(2); see Table 10. We use the three aforementioned methods
to implement Example 2 with four sets of meshes, and the number of processors
increases with the refinement of meshes. The subdomain solvers for all these three
methods are ILU. We firstly compute the result by the FS method with zero initial
guess and record the accuracy e = ‖f − f∗‖. Then we use the same initial guess
and the error bound e for the reduced space methods RS(1) and RS(2), and set the
stopping criterium as ‖fk − f∗‖ < e. In this way we can compare the computing
times for all these methods.

As shown in Table 10, the computing time of the FS method is much less than
the ones of RS(1) and RS(2). For the two reduced space methods, RS(2) using
the space-time domain decomposition solver is faster than RS(1) keeping the time
marching process and using a space domain decomposition solver. We can see that
the space-time fully coupled preconditioner is much better for parallellization, and
the all-at-once method for the fully coupled KKT system is always more efficient
than the reduced space iterative optimization methods on parallel systems.

6. Concluding remarks. We developed a new space-time domain decomposition
method for source inversion problems. The main ingredient of our algorithm in-
cludes solving the fully coupled KKT system by GMRES with a space-time Schwarz
preconditioner. Although the size of the linear system is significantly increased
compared to the reduced space SQP methods, the one-shot method avoids the se-
quential step between the state equation and the adjoint equation, as well as the
time-marching process in the time dimension, and thus achieves higher degree of
parallelism. This is well confirmed by the numerical results shown in the last sec-
tion. Another advantage of the new method is that the recovery of multiple sources
is obtained using the same algorithmic and software framework as the single source
case, and the framework is easily extended to recover other kinds of source terms.

We have observed from the numerical examples that the new space-time additive
Schwarz method is quite robust also with respect to the noise in the observation
data. It is important to note that the new space-time method is highly parallel and
scalable, and extensible naturally to three-dimensional problems.
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