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Abstract

We shall derive and propose several efficient overlapping domain decomposition meth-
ods for solving some typical linear inverse problems, including the identification of the
flux, the source strength and the initial temperature in second order elliptic and parabolic
systems. The methods are iterative, and computationally very efficient: only local forward
and adjoint problems need to be solved in each subdomain, and the local minimizations
have explicit solutions. Numerical experiments are provided to demonstrate the robust-
ness and efficiency of the methods: the algorithms converge globally, even with rather
poor initial guesses; and their convergences do not deteriorate or deteriorate only slightly
when the meshes are refined.
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1 Introduction

Domain decomposition methods (DDMs) have been developed and proved to be one of the
most successful methodologies in the construction of efficient numerical solvers for solving
many boundary value and initial-boundary value problems, the so-called direct problems; see
[14] [17] [18] and the references therein. DDMs usually possess two important features for
solving a wide class of large-scale direct problems: first, they are natural parallel solvers and
can be easily implemented in parallel computers; second, their convergence may be made
nearly optimal in the sense that the resulting convergence rate is nearly independent of the
mesh size.

However, no much progress has been made in the construction of efficient DDMs for
solving mathematically ill-posed inverse problems, although the inverse problems are usually
much more challenging and time consuming than their corresponding direct problems. In
[5] [13], DDMs were applied indirectly for an elliptic identification problem, where classical
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iterative optimization algorithms were first adopted for solving the stabilized minimization
system of the identification problem, then the existing DDMs were introduced for solving the
direct problems and their adjoint systems involved at each iteration. This approach shares
the standard convergence behaviours of the traditional iterative methods, that is, with the
refinement of the mesh, the discretised minimization system becomes more ill-conditioned,
and the number of iterations required for a given accuracy increases rapidly and can not be
reduced no matter how the direct problem and its adjoint system involved are solved. New-
ton’s method was used in [3] for solving the optimality system of the stabilized minimization
of an elliptic identification problem, then an additive Schwarz type preconditioned algorithm
was applied to solve the linear system involved at each Newton’s iteration. As Newton’s
method requires the evaluations of the Hessian of the corresponding objective functional, the
approach of [3] is applicable only to a very special formulation of the parameter identification
problem, and as usual, the initial guesses are difficult to achieve for Newton’s method. There
are also efforts by DDMs for solving nonlinear optimizations arising, e.g., from optimal con-
trol problems with PDEs [6] [9] [10]. But these problems are quite different in nature from
inverse problems, e.g., optimal control problems are usually well-posed and the (target) data
is specified, mostly without any noise. In this work we shall develop some DDMs for directly
solving the stabilized minimization systems of some typical linear inverse problems so that
their convergences do not deteriorate or deteriorate only mildly as the entire degrees of free-
dom of the optimization system grow, and only subdomains are solved at each iteration and
all subdomains are solved in parallel. Next, we shall briefly address some major difficulties in
the construction of DDMs for inverse problems directly, then point out the new contributions
of this work.

We shall use q and u(q) to represent respectively the parameter function to be identified
and the solution to the forward model system associated with the parameter q, then one may
formulate a general inverse problem formally as the following forward operator equation

u(q) = zδ

where zδ is the measured data of the exact solution u in some subregion inside the physical
domain or on part of the boundary, or at the terminal time t = T when the problem is
time-dependent. And the parameter δ is used here to emphasize the existence of the noise in
the measured data.

Inverse problems are usually ill-posed as at least one of the following three conditions
is violated: the existence, uniqueness and stability of solutions [1][2][8]. Of the three condi-
tions stability is the most frequently encountered difficulty in numerical solutions of inverse
problems. One of the most stable and effective approaches to solve general ill-posed inverse
problems is to transform them into stabilized output least-squares minimizations with some
appropriately selected Tikhonov regularizations, namely to minimize the following type of
functionals over some constrained set K:

J(q) = ‖u(q)− zδ‖2V + βN(q) (1.1)

where V is a Hilbert or Banach space over the measurement subregion and is determined
based on the type of measurement data available, N(q) is the regularization term and β is a
regularization parameter to balance between the data fitting and regularization.

One of the major difficulties in the construction of DDMs for solving a nonlinear mini-
mization problem associated with J(q) lies in the global dependence of the forward operator
u(q) on the parameter q: a change of q in a small subregion of the global domain Ω causes
the change of u in the entire Ω. This is generally true no matter if u(q) is linear or nonlinear.
Due to this global dependence, a direct application of the DDM principle to solve the non-
linear minimization problem of J(q) may not work. To illustrate this point more clearly, we
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consider a decomposition of the global minimization of J(q) over the entire domain Ω into
a set of subproblems that involve only all sub-minimizations of functionals Ji(qi + q̃) on the
subdomains Ωi, where qi has support only in Ωi, and q̃ is the known contribution from other
subdomains, then Ji(qi + q̃) should be of the form

Ji(qi + q̃) = ‖u(qi + q̃)− zδ‖2Vi + βN(qi + q̃). (1.2)

Clearly the sub-minimization of functional Ji in (1.2) involves the solution u(qi + q̃), which
still needs to solve the forward problem in the global domain Ω even when operator u(q) is
linear and only the local quantity qi needs to be updated. Hence the direct application of the
DDMs does not really reduce the global computations to the ones in the local subdomains.

In this study, we will derive and propose several efficient overlapping DDMs for solving
some typical linear inverse problems, including the identification of the source strength, the
initial temperature inside a physical domain, and the fluxes on (inaccessible) part of the
boundary of a physical domain in second order elliptic and parabolic systems. These inverse
problems are all ill-posed, especially unstable with respect to the change of the noise in the
data [2]. The new algorithms will be constructed in a way that meets the true spirits of DDMs,
namely only sub-minimization problems are solved at each iteration on the subdomains of
the original global domain, and the number of the iterations required for a specified accuracy
grows nearly independent of (or very slowly on) the refinement of finite element meshes.

The rest of the paper is arranged as follows. In Section 2, we propose the Tikhonov
regularization for identifying the source strength. In Section 2.1, the overlapping domain
decomposition methods are first introduced and local minimizations are studied, then the
algorithms are further improved. In Sections 3 and 4, we derive DDMs for the reconstruction
of the fluxes on part of the boundary and the initial temperature inside a physical domain
respectively. In Section 5, numerical experiments are presented for the identification of source
strength, fluxes and initial temperature to illustrate the efficiency and robustness of the
proposed algorithms. Some concluding remarks are given in Section 6.

Throughout the paper, C is often used for a generic constant. We shall use the symbol
〈·, ·〉 for the general inner product, and write the norms of the spaces Hm(Ω), L2(Ω), H

1
2 (Γ)

and L2(Γ) (for some Γ ⊂ ∂Ω) respectively as ‖ · ‖m,Ω, ‖ · ‖Ω, ‖ · ‖1/2,Γ and ‖ · ‖Γ.

2 Domain decomposition algorithms for the reconstruction of
source strengths

The major task of this work is to propose some new overlapping DDMs for solving three
typical linear inverse problems, including the identification of the source strength, the flux
and the initial temperature. For ease of exposition, we shall take the inverse problem of
identifying the source strength in a diffusion system as an example to derive and discuss
the new DDMs in more detail in this section, and address the other two inverse problems in
sections 3 and 4. Let Ω be an open bounded and connected domain in Rd (d ≥ 1), with a
boundary ∂Ω. Then we consider the following diffusion system{

−∇ · (a(x)∇u) + c(x)u = f(x) in Ω,
u(x) = g(x) on ∂Ω

(2.1)

where a(x), c(x) and g(x) are all given functions, and a(x) ≥ a1 > 0, c(x) ≥ c1 > 0 in Ω.
Suppose that the source strength f(x) of the model system is unknown in Ω. Our inverse
problem is to recover the source strength distribution f(x) in Ω when the measurement data
of u, denoted by zδ, is available in Ω, or in a subregion Ω̃ of Ω. For convenience, we shall
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write the solution of system (2.1) as u(f) to emphasize its dependence on the source strength
f(x). This is a well-known ill-posed problem. As in (1.1), we formulate it in a mathematically
stabilized minimization system of the form

min
f∈L2(Ω)

J(f) = ‖u(f)− zδ‖2Ω + β‖f‖2Ω . (2.2)

One can show that the minimizer of the system is stable in the sense that it depends contin-
uously on the change of the noise in the data zδ [11] [16].

Linearity of the forward solutions. The forward solution u(f) of the system (2.1) is
basically linear in terms of f . It is easy to check directly that

u(λ1f1 + λ2f2) = λ1u(f1) + λ2u(f2) ∀ f1, f2 ∈ L2(Ω) and λ1, λ2 ∈ R

if and only if g(x) = 0. This leads us to consider the solution U to the following system:{
−∇ · (a(x)∇U) + c(x)U = f(x) in Ω,

U = 0 on ∂Ω .
(2.3)

We can verify that u(f1)−u(f2) = U(f1− f2) for any f1, f2 ∈ L2(Ω), or equivalently we have

u(f) = U(f) + u(0). (2.4)

From now on we shall view the solution U(f) to (2.3) as a mapping from L2(Ω) to L2(Ω).
Adjoint operator. It is easy to verify that operator U(f) is self-adjoint. In fact, we

have by integration by parts for any ω ∈ L2(Ω) that

〈f, U(ω)〉L2(Ω) = 〈−∇ · (a(x)∇U(f)) + c(x)U(f), U(ω)〉L2(Ω)

= 〈U(f), −∇ · (a(x)∇U(ω)) + c(x)U(ω)〉L2(Ω) = 〈U(f), ω〉L2(Ω). (2.5)

2.1 Overlapping DDMs with explicit local solvers

Using the relation (2.4) we can rewrite the minimization (2.2) as

min
f∈L2(Ω)

J(f) = ‖U(f)− zδ0‖2Ω + β‖f‖2Ω , (2.6)

with zδ0 = zδ−u(0). As U(f) is linear, J(f) is convex with respect to f . And the minimizers
of (2.6) exist and are unique.

Next, we shall derive some effective DDMs to solve the optimization system (2.6). We
shall not intend to solve this optimization system on the global domain Ω, as most existing
numerical solvers do. Instead we plan to construct some DDMs so that the nonlinear system
(2.6) can be effectively solved on local subdomains. To do so, we divide the global domain Ω
into a finite number of overlapping subdomains Ω1, Ω2, ... , Ωl, where l is a positive integer.
Though our new DDMs work for a general number of subdomains, we shall focus all our
discussions only on 4 subdomains with a cross-point for ease of exposition; see Figure 2.1.
It is well-known that the case of 4 subdomains with a cross-point is the most representative
case of general multiple subdomains [14] [18].
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Figure 2.1: Domain Ω with its 4 overlapping subdomains Ω1,Ω2,Ω3,Ω4

Based on the partition of Ω into 4 overlapping subdomains, we shall often need a local
subspace of L2(Ω) on each subdomain Ωi:

Vi =
{
f ∈ L2(Ω); supp(f) ⊂ Ωi

}
, i = 1, 2, 3, 4.

Next we start to derive some new DD algorithms for solving the optimization system
(2.6). The algorithms are based on the local optimizations on the subspaces Vi associated
with subdomain Ωi. For some given fj ∈ Vj (j = 1, 2, 3, 4), let us consider the following local
minimization over Ωi:

min
vi∈Vi

J
(
vi +

∑
j 6=i

fj

)
. (2.7)

Here and in the sequel, we often write
∑4

j=1,j 6=i as
∑

j 6=i for simplicity. By the definition
of J in (2.6) we know that each local update vi in Ωi still needs to compute the quantity
U(vi +

∑
j 6=i fj), which involves the solution of the forward system (2.3) in the entire domain

Ω. To avoid this, we construct an auxiliary functional J̃si of J , called the surrogate functional
in [7], by introducing an auxiliary variable a. For a given a ∈ Vi and fj ∈ Vj (j = 1, 2, 3, 4),
we define

J̃si (
4∑
j=1

fj , a) = J(
4∑
j=1

fj) +A ‖fi − a‖2Ω − ‖U(fi − a)‖2Ω (2.8)

where A is a positive constant to be selected such that

A‖fi − a‖2Ω − ‖U(fi − a)‖2Ω ≥ (A− ‖U‖2)‖fi − a‖2Ω ≥ 0 . (2.9)

This implies for any f =
∑4

j=1 fj that J̃si (f, a) = J(f) when a = fi, and

J(f) = J̃si (f, fi) ≤ J̃si (f, a) = J(f) +A‖fi − a‖2Ω − ‖U(fi − a)‖2Ω ∀ a ∈ Vi . (2.10)

So J̃si (f, a) can be viewed as a small perturbation of J(f) when a is close to fi.

In order to justify the surrogate functional, we can naturally extend the arguments in [7]
to prove the following convergence of the iteration suggested by the surrogate functional.

Lemma 2.1 Suppose A is a constant such that A‖f‖2Ω ≥ ‖U(f)‖2Ω for f ∈ Vi, then the
following sequence produced by the surrogate functional (2.8) for any f0

i ∈ Vi and n = 1, 2, · · ·,

fni = argminfi∈ViJ
(
fi +

∑
j 6=i

fj

)
+A‖fi − fn−1

i ‖2Ω − ‖U(fi − fn−1
i )‖2Ω

converges strongly to the minimizer of system (2.7).
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Now we shall convert (2.8) into a more explicit representation. Using (2.6), (2.8) and the
adjoint relation (2.5) we can rewrite J̃si as follows:

J̃si (
4∑
j=1

fj , a) = ‖U(fi)‖2Ω − 2〈fi, U(zδ0 − U(
∑
j 6=i

fj)〉Ω + ‖zδ0 − U(
∑
j 6=i

fj)‖2Ω + β‖
4∑
j=1

fj‖2Ω

+A〈fi, fi − 2a〉Ω +A‖a‖2Ω − ‖U(fi)‖2Ω + 2〈fi, U(U(a))〉Ω − ‖U(a)‖2Ω
= A

〈
fi, fi − 2

{
a+

1

A
U
(
zδ0 − U(

∑
j 6=i

fj)− U(a)
)}〉

Ωi

+β‖
4∑
j=1

fj‖2Ω + ‖zδ0 − U(
∑
j 6=i

fj)‖2Ω +A‖a‖2Ω − ‖U(a)‖2Ω

= A‖fi −
{
a+

1

A
U
(
zδ0 − U(

∑
j 6=i

fj + a)
)}
‖2Ωi

+ β‖
4∑
j=1

fj‖2Ω

+
{
‖zδ0 − U(

∑
j 6=i

fj)‖2Ω +A‖a‖2Ω − ‖U(a)‖2Ω

−A‖a+
1

A
U
(
zδ0 − U(

∑
j 6=i

fj + a)
)
‖2Ωi

}
. (2.11)

We can see that the last term in (2.11) does not depend on fi, so it will not affect the
local minimization over Ωi if we drop it in the functional J̃si . This leads us to consider the
following functional for a given a ∈ Vi:

min
fi∈Vi

J̃si (fi +
∑
j 6=i

fj , a) = min
fi∈Vi

A‖fi − z̃i‖2Ωi
+ β‖

4∑
j=1

fj‖2Ω (2.12)

where z̃i is given by

z̃i = a+
1

A
U(zδ0 − U(

∑
j 6=i

fj + a)). (2.13)

Noting that (2.12) is a simple quadratic minimization, we can find its exact minimizer f∗i :

f∗i =
1

A+ β

(
Az̃i − β

∑
j 6=i

fj

)
|Ωi . (2.14)

Clearly, the new functional J̃si in (2.12) has an obvious advantage over the functional J in
(2.6) or (2.7): it is completely local, and the minimization can be solved explicitly within the
subdomain Ωi. However, for the solution of the local minimization (2.12) we need the data
z̃i from (2.13), which involves the evaluations of U(

∑
j 6=i fj +a) and U(zδ0−U(

∑
j 6=i fj +a)).

Unfortunately, these two evaluations are both global, and require the solutions of the forward
system (2.3) in the entire domain Ω. This is surely not expected in an efficient DD algorithm.

Next, we shall propose some techniques to get rid of the aforementioned two global eval-
uations so that the resulting DD algorithm involves only local minimizations over the local
subdomains. For convenience, we write the boundary of Ωi inside Ω by Γ̃i, i.e., Γ̃i = ∂Ωi ∩Ω
for i = 1, 2, 3, 4. Then we introduce a local forward operator Ui(f, p) associated with the
forward problem (2.3):

−∇ · (a(x)∇Ui(f, p)) + c(x)Ui(f, p) = f in Ωi,
Ui(f, p) = 0 on ∂Ω ∩ ∂Ωi

Ui(f, p) = p on Γ̃i.

(2.15)
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Clearly we can split Ui(f, p) as Ui(f, p) = Ui(f, 0) + Ui(0, p), and Ui(f, 0) is self-adjoint, i.e.,

〈Ui(f, 0), ω〉Ωi = 〈f, Ui(ω, 0)〉Ωi ∀ω ∈ L2(Ωi). (2.16)

Using the local operators Ui(f, p) in (2.15), we introduce the following local functional
for fj ∈ Vj , j = 1, 2, 3, 4:

Ji(
4∑
j=1

fj , p) = ‖Ui(
4∑
j=1

fj , p)− zδ0‖2Ωi
+ β‖

4∑
j=1

fj‖2Ωi
,

and its surrogate functional Jsi for any given a ∈ Vi:

Jsi (
4∑
j=1

fj , p, a) = Ji(
4∑
j=1

fj , p) +A‖fi − a‖2Ωi
− ‖Ui(fi − a, 0)‖2Ωi

.

Using the important fact that Ui(
∑4

j=1 fj , p) = Ui(
∑

j 6=i fj , p) + Ui(fi, 0) and the adjoint
relation (2.16), we can write

Jsi (
4∑
j=1

fj , p, a) = ‖Ui(fi, 0)‖2Ωi
− 2〈fi, Ui

(
zδ0 − Ui(

∑
j 6=i

fj , p), 0
)
〉Ωi

+‖zδ0 − Ui(
∑
j 6=i

fj , p)‖2Ωi
+ β‖

4∑
j=1

fj‖2Ωi
+A〈fi, fi − 2a〉Ωi +A‖a‖2Ωi

−‖Ui(fi, 0)‖2Ωi
+ 2〈fi, Ui(Ui(a, 0), 0)〉Ωi − ‖Ui(a, 0)‖2Ωi

= A〈fi, fi − 2
{
a+

1

A
Ui

(
zδ0 − Ui(

∑
j 6=i

fj + a, p), 0
)}
〉Ωi + β‖

4∑
j=1

fj‖2Ωi

+‖zδ0 − Ui(
∑
j 6=i

fj , p)‖2Ωi
+A‖a‖2Ωi

− ‖Ui(a, 0)‖2Ωi

= A‖fi −
{
a+

1

A
Ui

(
zδ0 − Ui(

∑
j 6=i

fj + a, p), 0
)}
‖2Ωi

+ β‖
4∑
j=1

fj‖2Ωi

+
{
‖zδ0 − Ui(

∑
j 6=i

fj , p)‖2Ωi
+A‖a‖2Ωi

− ‖Ui(a, 0)‖2Ωi

−A‖a+
1

A
Ui

(
zδ0 − Ui(

∑
j 6=i

fj + a, p), 0
)
‖2Ωi

}
. (2.17)

We can easily see that the last term above does not depend on fi, so it will not affect the
local minimization over Ωi if we drop it in the functional Jsi . This leads us to consider the
following functional for a given a ∈ Vi:

min
fi∈Vi

Jsi (

4∑
j=1

fj , p, a) = min
fi∈Vi

A‖fi − zi‖2Ωi
+ β‖

4∑
j=1

fj‖2Ωi
, (2.18)

where zi = a + 1
AUi

(
zδ0 − Ui(

∑
j 6=i fj + a, p), 0

)
. (2.18) is a simple quadratic minimization,

and we can find its exact minimizer f∗i :

f∗i =
1

A+ β

{
Aa+ Ui

(
zδ0 − Ui(

∑
j 6=i

fj + a, p), 0
)
− β

∑
j 6=i

fj |Ωi

}
. (2.19)
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We can see from this expression that as long as the inner boundary value p is available,
the minimization (2.18) does not involve any global data and is completely local. Noting that
U(f)|Ωi = Ui(f, U(f)) and the definitions of Ji(f, p) and Jsi (f, p, a), we can connect Ji(f, p)
and Jsi (f, p, a) with functional J(f) (cf. (2.6)) restricted in Ωi:

‖U(
4∑
j=1

fj)− zδ0‖2Ωi
+ β‖

4∑
j=1

fj‖2Ωi

= ‖Ui(
4∑
j=1

fj , U(
4∑
j=1

fj))− zδ0‖2Ωi
+ β‖

4∑
j=1

fj‖2Ωi

= Ji(

4∑
j=1

fj , U(

4∑
j=1

fj)) = Jsi (

4∑
j=1

fj , U(

4∑
j=1

fj), fi). (2.20)

So using (2.18), we are now ready to apply the multiplicative or additive Schwarz principle
[14] [18] to establish two DD algorithms for solving the optimization system (2.6). For the
description of the algorithms, we introduce an index function for any point x ∈ Ω:

n(x) =
{
i; x ∈ Ωi, i ∈ {1, 2, 3, 4}

}
; |n(x)| = number of elements in n(x) . (2.21)

Algorithm 2.1 (Multiplicative Schwarz Algorithm (MSA)) Choose a tolerance param-

eter ε1 > 0, an initial value f (0) =
∑4

i=1 f
(0)
i with f

(0)
i ∈ Vi (i = 1, 2, 3, 4), and solve (2.3)

for U(f (0)); set p
(0)
i := U(f (0))|Γ̃i

and n := 0.

1. Compute f
(n+1)
i ∈ Vi sequentially for i = 1 to 4 by

f
(n+1)
i = argminvi∈ViJ

s
i (
∑
j<i

f
(n+1)
j + vi +

∑
j>i

f
(n)
j , p

(n)
i , f

(n)
i ); (2.22)

update Ui in Ωi:

U
(n)
i = Ui(

∑
j≤i

f
(n+1)
j +

∑
j>i

f
(n)
j , p

(n)
i );

update the inner boundary values on Γ̃j for j > i if Γ̃j ∈ Ωi:

p
(n)
j = U

(n)
i |Γ̃j

.

2. Compute f (n+1) =
∑4

i=1 f
(n+1)
i .

3. If ‖f (n+1) − f (n)‖Ω ≤ ε1, stop the iteration;

otherwise update Ui in subdomain Ωi (i = 1, 2, 3, 4):

U
(n+1)
i = Ui(f

(n+1), p
(n)
i );

update the inner boundary values on Γ̃i (i = 1, 2, 3, 4):

p
(n+1)
i (x) =

1

|n(x)|
∑
j∈n(x)

U
(n+1)
j (x), ∀x ∈ Γ̃i.

set n := n+ 1, go to Step 1.
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We can easily see that Algorithm 2.1 is sequential or multiplicative. The next algorithm
proposes a parallel version of Algorithm 2.1. For this purpose, we introduce a bounded
uniform partition of unity {χi}4i=1 such that

∑4
i=1 χi = 1 and ‖χi‖∞ ≤ 1 and supp(χi) ⊂ Ωi.

Algorithm 2.2 (Additive Schwarz Algorithm (ASA)) Choose a tolerance parameter ε1 >

0, a relaxation parameter λ ∈ (0, 1), an initial value f (0) =
∑4

i=1 f
(0)
i with f

(0)
i ∈ Vi

(i = 1, 2, 3, 4), and solve (2.3) for U(f (0)); set p
(0)
i := U(f (0))|Γ̃i

and n := 0.

1. Compute f
(n+1)
i ∈ Vi in parallel for i = 1, 2, 3, 4 by

f
(n+1)
i = argminvi∈ViJ

s
i (
∑
j 6=i

f
(n)
j + vi, p

(n)
i , f

(n)
i ). (2.23)

2. Compute f (n+1) = λ
∑4

i=1 f
(n+1)
i + (1− λ)f (n).

3. If ‖f (n+1) − f (n)‖Ω ≤ ε1, stop the iteration;

otherwise update Ui in subdomains Ωi (i = 1, 2, 3, 4):

U
(n+1)
i = Ui(f

(n+1), p
(n)
i );

update the inner boundary values on Γ̃i (i = 1, 2, 3, 4):

p
(n+1)
i (x) =

1

|n(x)|
∑
j∈n(x)

U
(n+1)
j (x) ∀x ∈ Γ̃i.

set f
(n+1)
i := χif

(n+1), and n := n+ 1, go to Step 1.

Remark 2.1 The same as for (2.19), we have explicit expressions for the minimizers f
(n+1)
i

in (2.22) and (2.23). In our numerical implementations, we will simply take the partition of
unity {χi}4i=1 used in Algorithm 2.2 as follows:

χi(x) = 1/|n(x)| for x ∈ Ωi ; χi(x) = 0 for x ∈ Ω\Ω̄i.

3 Domain decomposition algorithms for flux reconstruction

In this section, we propose a DD algorithm to solve the inverse problem of identifying fluxes
on part of the boundary. Let Ω ⊂ Rd (d ≥ 1) be an open bounded and connected domain,
with a boundary ∂Ω, which is split into two parts, i.e., ∂Ω = Γ0 ∪ Γ1. Then we consider the
following elliptic system

−∇ · (a(x)∇u) + c(x)u = f(x) in Ω ,

a(x)∂u∂n = g(x) on Γ0 ,

a(x)∂u∂n = h(x) on Γ1 ,

(3.1)

where a(x), c(x), f(x), g(x) are all given functions, and a(x) ≥ a1 > 0, c(x) ≥ c1 > 0 in Ω.
Suppose that the flux h(x) of the model system is unknown on the inaccessible part Γ1 of ∂Ω,
our inverse problem is to recover the flux distribution on Γ1 when some measurement data
uδ of u is available on the accessible part Γ0 of ∂Ω. We shall write the solution of system
(3.1) as u(h) to emphasize its dependence on the flux h(x).
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As discussed in section 2, we formulate the ill-posed inverse problem of recovering the flux
into a mathematically stabilized minimization system of the form

min
h∈L2(Γ1)

J(h) = ‖u(h)− zδ‖2Γ0
+ β‖h‖2Γ1

. (3.2)

This formulation is stable in the sense that the minimizer h to (3.2) depends continuously on
the change of the noise in the data uδ [16].

Similarly to the discussions in Section 2, we can write the solution u(h) to (3.1) as

u(h) = U(h) + u(0) , (3.3)

where U(h) is the solution to the following system:
−∇ · (a(x)∇U) + c(x)U = 0 in Ω,

a(x)∂U∂n = 0 on Γ0,

a(x)∂U∂n = h on Γ1 .

(3.4)

Adjoint operator of U(h). For any ω ∈ L2(Γ0), consider the solution U∗(ω) ∈ H1(Ω)
to the following system:

−∇ · (a(x)∇U∗(ω)) + c(x)U∗(ω) = 0 in Ω,

a(x)∂U
∗(ω)
∂n = ω on Γ0,

a(x)∂U
∗(ω)
∂n = 0 on Γ1.

(3.5)

This mapping U∗ : L2(Γ0)→ L2(Γ1) is the adjoint operator of U , namely, it holds that

〈U(h), ω〉Γ0 = 〈h, U∗(ω)〉Γ1 ∀ω ∈ L2(Γ0). (3.6)

This relation follows directly from (3.4), (3.5) and an application of integration by parts:

〈U(h), ω〉Γ0 = 〈U(h), a(x)
∂U∗(ω)

∂n
〉Γ0

= 〈U(h), a(x)
∂U∗(ω)

∂n
〉∂Ω +

∫
Ω
U(h)(−∇ · (a(x)∇U∗(ω)) + c(x)U∗(ω))dx

=

∫
Ω

(−∇ · (a(x)∇U(h)) + c(x)U(h))U∗(ω)dx + 〈a(x)
∂U(h)

∂n
, U∗(ω)〉∂Ω

= 〈a(x)
∂U(h)

∂n
, U∗(ω)〉Γ1 = 〈h, U∗(ω)〉Γ1 .

3.1 Overlapping DDMs with explicit local solvers

In this subsection, we follow section 2.1 to derive some overlapping domain decomposition
method for solving the minimization in (3.2). As in section 2.1, Ω is divided into the over-
lapping subdomains Ωi (i = 1, 2, 3, 4), accordingly the feasible constraint space L2(Γ1) can
be decomposed into the subspaces

Vi =
{
h ∈ L2(Γ1); supp(h) ⊂ ∂Ωi ∩ Γ1

}
, i = 1, 2, 3, 4.

Next we introduce an auxiliary surrogate functional J̃si of J(h) in (3.2) for any given
a ∈ Vi and hj ∈ Vj (j = 1, 2, 3, 4):

J̃si (

4∑
j=1

hj , a) = J(

4∑
j=1

hj) +A‖hi − a‖2Γ1
− ‖U(hi − a)‖2Γ0

. (3.7)
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We note that the same justification as it was stated in Lemma 2.1 is true here for the surrogate
functional (3.7). Now by similar derivations to (2.11) but using the adjoint relation (3.6), we
can rewrite J̃si as

J̃si (
4∑
j=1

hj , a) = A‖hi −
{
a+

1

A
U∗
(
zδ0 − U(

∑
j 6=i

hj + a)
)}
‖2∂Ωi∩Γ1

+ β‖
4∑
j=1

hj‖2Γ1

+
{
‖zδ0 − U(

∑
j 6=i

hj)‖2Γ0
+A‖a‖2Γ1

− ‖U(a)‖2Γ0

−A‖a+
1

A
U∗
(
zδ0 − U(

∑
j 6=i

hj + a)
)
‖2∂Ωi∩Γ1

}
, (3.8)

where zδ0 = zδ − u(0). We can see that the last term in (3.8) does not depend on hi, so we
can drop it in the minimization of functional J̃si . This suggests us to consider the following
local minimization for any a ∈ Vi:

min
hi∈Vi

J̃si (hi +
∑
j 6=i

hj , a) = min
hi∈Vi

A‖hi − z̃i‖2∂Ωi∩Γ1
+ β‖

4∑
j=1

hj‖2Γ1
(3.9)

where z̃i is given by

z̃i = a+
1

A
U∗(zδ0 − U(

∑
j 6=i

hj + a)). (3.10)

This is a quadratic minimization, so we can find its exact minimizer h∗i :

h∗i =
1

A+ β

(
Az̃i − β

∑
j 6=i

hj

)∣∣∣
∂Ωi∩Γ1

. (3.11)

We observe that the minimization (3.9) is completely local, and its solution can be
achieved explicitly within the subdomain Ωi. However, its solution h∗i needs the data z̃i
from (3.10), which involves two global solutions of the forward and adjoint systems (3.4)
and (3.5), and is clearly not expected in an efficient DD algorithm. Next, we propose some
techniques to avoid these two global evaluations so that the resulting DD algorithm involves
only local minimizations over the local subdomains. To do so, we introduce two local forward
and adjoint operators Ui(h, p) and U∗i (ω, q) associated with the global forward and adjoint
systems (3.4) and (3.5):

−∇ · (a(x)∇Ui(h, p)) + c(x)Ui(h, p) = 0 in Ωi,

a(x)∂Ui(h,p)
∂n = 0 on Γ0 ∩ ∂Ωi,

a(x)∂Ui(h,p)
∂n = h on Γ1 ∩ ∂Ωi,

Ui(h, p) = p on Γ̃i

(3.12)

and 
−∇ · (a(x)∇U∗i (ω, q)) + c(x)U∗i (ω, q) = 0 in Ωi,

a(x)
∂U∗i (ω,q)

∂n = ω on Γ0 ∩ ∂Ωi,

a(x)
∂U∗i (ω,q)

∂n = 0 on Γ1 ∩ ∂Ωi,

U∗i (ω, q) = q on Γ̃i.

(3.13)

Using the systems (3.12), (3.13) and the integration by parts formula, we derive the
following important relation that will be needed later on:

〈Ui(h, 0), ω〉Γ0∩∂Ωi
= 〈h, U∗i (ω, 0)〉Γ1∩∂Ωi

∀ω ∈ L2(Γ0 ∩ ∂Ωi). (3.14)
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By means of the local operators Ui(h, p) in (3.12), we introduce the local functional
Ji(
∑4

j=1 hj , p) for hj ∈ Vj (j = 1, 2, 3, 4):

Ji(
4∑
j=1

hj , p) = ‖Ui(
4∑
j=1

hj , p)− zδ0‖2Γ0∩∂Ωi
+ β‖

4∑
j=1

hj‖2Γ1∩∂Ωi
,

and a surrogate functional Jsi for a given a ∈ Vi:

Jsi (
4∑
j=1

hj , p, a) = Ji(
4∑
j=1

hj , p) +A‖hi − a‖2Γ1∩∂Ωi
− ‖Ui(hi − a, 0)‖2Γ0∩∂Ωi

. (3.15)

Using the important fact that Ui(
∑4

j=1 hj , p) = Ui(
∑

j 6=i hj , p) + Ui(hi, 0) and the adjoint

relation (3.14), we can rewrite Jsi (
∑4

j=1 hj , p, a) as

Jsi (

4∑
j=1

hj , p, a) = A‖hi −
{
a+

1

A
U∗i

(
zδ0 − Ui(

∑
j 6=i

hj + a, p), 0
)}
‖2Γ1∩∂Ωi

+ β‖
4∑
j=1

hj‖2Γ1∩∂Ωi

+
{
‖zδ0 − Ui(

∑
j 6=i

hj , p)‖2Γ0∩∂Ωi
+A‖a‖2Γ1∩∂Ωi

− ‖Ui(a, 0)‖2Γ0∩∂Ωi

−A‖a+
1

A
U∗i

(
zδ0 − Ui(

∑
j 6=i

hj + a, p), 0
)
‖2Γ1∩∂Ωi

}
. (3.16)

As the last term does not depend on hi, we are led to the following quadratic minimization:

min
hi∈Vi

Jsi (
4∑
j=1

hj , p, a) = min
hi∈Vi

A‖hi − zi‖2Γ1∩∂Ωi
+ β‖

4∑
j=1

hj‖2Γ1∩∂Ωi
(3.17)

where zi is given by

zi = a+
1

A
U∗i

(
zδ0 − Ui(

∑
j 6=i

hj + a, p), 0
)
.

We can easily find the minimizer to the quadratic optimization (3.17) in explicit form:

h∗i =
1

A+ β

{
Aa+ U∗i

(
zδ0 − Ui(

∑
j 6=i

hj + a, p), 0
)
− β

∑
j 6=i

hj |Γ1∩∂Ωi

}
. (3.18)

As in Section 2.1, we are now ready to formulate two new DD algorithms for the mini-
mization system (3.2) for identifying the heat flux. For the description of the DD algorithms,
the same index function n(x) as in (2.21) is used below for any x ∈ Ω and we also introduce
an index function for any point x ∈ Γ1:

n̄(x) =
{
i; x ∈ ∂Ωi ∩ Γ1, i ∈ {1, 2, 3, 4}

}
; |n̄(x)| = number of elements in n̄(x) .

Algorithm 3.1 (Multiplicative Schwarz Algorithm (MSA)) Choose a tolerance param-

eter ε1 > 0, an initial value h(0) =
∑4

i=1 h
(0)
i with h

(0)
i ∈ Vi (i = 1, 2, 3, 4), and solve (3.4) for

U(h(0)); set p
(0)
i := U(h(0))|Γ̃i

and n := 0.

1. Compute h
(n+1)
i ∈ Vi sequentially for i = 1 to 4 by

h
(n+1)
i = argminvi∈ViJ

s
i (
∑
j<i

h
(n+1)
j + vi +

∑
j>i

h
(n)
j , p

(n)
i , h

(n)
i ); (3.19)
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update Ui in Ωi:

U
(n)
i = Ui(

∑
j≤i

h
(n+1)
j +

∑
j>i

h
(n)
j , p

(n)
i );

update the inner boundary values on Γ̃j for j > i if Γ̃j ∈ Ωi:

p
(n)
j = U

(n)
i |Γ̃j

.

2. Compute h(n+1) =
∑4

i=1 h
(n+1)
i .

3. If ‖h(n+1) − h(n)‖Γ1 ≤ ε1, stop the iteration;

otherwise update Ui in subdomains Ωi (i = 1, 2, 3, 4):

U
(n+1)
i = Ui(h

(n+1), p
(n)
i );

update the inner boundary values on Γ̃i (i = 1, 2, 3, 4):

p
(n+1)
i (x) =

1

|n(x)|
∑
j∈n(x)

U
(n+1)
j (x), ∀x ∈ Γ̃i.

set n := n+ 1, go to Step 1.

The next algorithm proposes a parallel version of Algorithm 3.1. For this purpose, we
introduce a uniform partition of unity {χi}4i=1 such that

∑4
i=1 χi = 1 and ‖χi‖∞ ≤ 1 and

supp(χi) ⊂ ∂Ωi ∩ Γ1.

Algorithm 3.2 (Additive Schwarz Algorithm (ASA)) Choose a tolerance parameter ε1 >

0, a relaxation parameter λ ∈ (0, 1), an initial value h(0) =
∑4

i=1 h
(0)
i with h

(0)
i ∈ Vi

(i = 1, 2, 3, 4), and solve (3.4) for U(h(0)); set p
(0)
i := U(h(0))|Γ̃i

and n := 0.

1. Compute h
(n+1)
i ∈ Vi in parallel for i = 1, 2, 3, 4 by

h
(n+1)
i = argminvi∈ViJ

s
i (
∑
j 6=i

h
(n)
j + vi, p

(n)
i , h

(n)
i ). (3.20)

2. Compute h(n+1) = λ
∑4

i=1 h
(n+1)
i + (1− λ)h(n).

3. If ‖h(n+1) − h(n)‖Γ1 ≤ ε1, stop the iteration;

otherwise update Ui in subdomains Ωi (i = 1, 2, 3, 4):

U
(n+1)
i = Ui(h

(n+1), p
(n)
i );

update the inner boundary values on Γ̃i (i = 1, 2, 3, 4):

p
(n+1)
i (x) =

1

|n(x)|
∑
j∈n(x)

U
(n+1)
j (x) ∀x ∈ Γ̃i.

set h
(n+1)
i := χih

(n+1), and n := n+ 1, go to Step 1.

Remark 3.1 The same as for (3.18), we have explicit expressions for the minimizers h
(n+1)
i

in (3.19) and (3.20). In our numerical implementations, we will simply take the partition of
unity {χi}4i=1 used in Algorithm 3.2 as follows:

χi(x) = 1/|n̄(x)| for x ∈ ∂Ωi ∩ Γ1; and χi(x) = 0 for x ∈ Γ1\∂Ωi.
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4 Domain decomposition algorithms for the reconstruction of
initial temperature

In this section, we are interested in extending the DD algorithms proposed in sections 2 and
3 for solving the stationary inverse source and flux problems to a time-dependent inverse
problem, the identification of the initial temperature in the heat conduction system:

ut −∇ · (a(x)∇u) = f(x, t) in Ω× (0, T ),
u = 0 on ∂Ω× (0, T ),

u(x, 0) = ϕ(x) in Ω.
(4.1)

We assume that some observation data zδ of the temperature u(x, t) are available in Ω or in
some small subregion ω ⊂ Ω, but with a time history in the range [T − σ, T ]. The inverse
problem of our interest is to recover the initial temperature distribution ϕ(x), using the
observation data zδ. We shall write the solution of system (4.1) as u(ϕ) to emphasize its
dependence on the initial temperature ϕ(x).

As described in Section 2, it is easy to verify that u(ϕ) = U(ϕ) + u(0), where U(ϕ) is
linear with respect to ϕ and satisfies the following system

Ut −∇ · (a(x)∇U) = 0 in Ω× (0, T ),
U = 0 on ∂Ω× (0, T ),

U(x, 0) = ϕ(x) in Ω,
(4.2)

whose variational formulation is given by∫ T

0

∫
Ω
Utψdxdt+

∫ T

0

∫
Ω
a(x)∇U · ∇ψdxdt = 0 ∀ ψ ∈ L2(0, T ;H1

0 (Ω)) . (4.3)

Let zδ0 = zδ − u(0), then we can formulate our inverse problem as the following regularized
output least-squares minimization:

min
ϕ∈L2(Ω)

J(ϕ) = min
ϕ∈L2(Ω)

∫ T

T−σ
‖U(ϕ)− zδ0‖2L2(Ω)dt+ β‖ϕ‖2L2(Ω). (4.4)

Now we introduce the adjoint system of the forward problem (4.2):
U∗t +∇ · (a(x)∇U∗) = 0 in Ω× (0, T ),

U∗ = 0 on ∂Ω× (0, T ),
U∗(x, T ) = ω in Ω,

(4.5)

which is linear with respect to ω. Next we derive a very useful relation:

〈U(ϕ)(·, t), ω〉L2(Ω) = 〈ϕ, U∗(ω)(·, T − t)〉L2(Ω) ∀ t ∈ [0, T ] . (4.6)

Clearly, this is true for t = 0 by the initial and terminal conditions in (4.2) and (4.5). To
verify it for t ∈ (0, T ], we define U∗,s(ω) for s ∈ (0, T ]:

U∗,st +∇ · (a(x)∇U∗,s) = 0 in Ω× (0, s),
U∗,s = 0 on ∂Ω× (0, s),

U∗,s(x, s) = ω in Ω.
(4.7)

It is easy to find the following relation,

U∗(ω)(x, T − s) = U∗,s(ω)(x, 0), (4.8)
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and the variational formulation of (4.7),

−
∫ s

0

∫
Ω
U∗,st ψdxdt+

∫ s

0

∫
Ω
a(x)∇U∗,s · ∇ψdxdt = 0 ∀ψ ∈ L2(0, s;H1

0 (Ω)). (4.9)

Using U∗,s in (4.7) and its property (4.8), we see (4.6) immediately from the following relation

〈U(ϕ)(·, s), ω〉L2(Ω) = 〈ϕ, U∗,s(ω)(·, 0)〉L2(Ω) . (4.10)

To check this relation, we use (4.3) with the terminal time T replaced by s, then take ψ = U∗,s

and integrate by parts with respect to t to obtain∫
Ω
U(x, s)U∗,s(x, s)dx−

∫
Ω
U(x, 0)U∗,s(x, 0)dx−

∫ s

0

∫
Ω
UU∗,st dxdt

+

∫ s

0

∫
Ω
a(x)∇U · ∇U∗,sdxdt = 0. (4.11)

Now the desired relation (4.10) follows readily from the initial and terminal conditions in
(4.2) and (4.7) and equation (4.9) with ψ = U .

Next we shall follow sections 2 and 3 to derive some overlapping domain decomposition
method for solving the time-dependent minimization (4.4). As in section 2.1, Ω is divided
into the overlapping subdomains Ωi (i = 1, 2, 3, 4), and the feasible constraint space L2(Ω)
can be decomposed accordingly into the following subspaces:

Vi =
{
ϕ ∈ L2(Ω); supp(ϕ) ⊂ Ωi

}
, i = 1, 2, 3, 4.

In order to avoid any global solution of the forward and adjoint systems (4.2) and (4.5)
in our DD algorithms, we introduce their local variants, namely, the solutions Ui(ϕ, p) and
U∗i (ω, p) to the following systems:

Ui(ϕ, p)(x, t)t −∇ · (a(x)∇Ui(ϕ, p)(x, t)) = 0 in Ωi × (0, T ),
Ui(ϕ, p)(x, t) = 0 on (∂Ω ∩ ∂Ωi)× (0, T ),

Ui(ϕ, p)(x, t) = p(x, t) on Γ̃i × (0, T ),
Ui(ϕ, p)(x, 0) = ϕ(x) in Ωi

and
U∗i (ω, p)(x, t)t +∇ · (a(x)∇U∗i (ω, p)(x, t)) = 0 in Ωi × (0, T ),

U∗i (ω, p)(x, t) = 0 on (∂Ω ∩ ∂Ωi)× (0, T ),

U∗i (ω, p)(x, t) = p(x, t) on Γ̃i × (0, T ),
U∗i (ω, p)(x, T ) = ω(x) in Ωi.

Noting that Ui(ϕ, 0) = U∗i (ω, 0) = 0 on ∂Ωi, we can derive as we did for (4.6) that

〈Ui(ϕ, 0)(·, t), ω〉L2(Ωi) = 〈ϕ, U∗i (ω, 0)(·, T − t)〉L2(Ωi) . (4.12)

Now we can define a local functional Ji(
∑4

j=1 ϕj , p) for ϕj ∈ Vj (j = 1, 2, 3, 4):

Ji(

4∑
j=1

ϕj , p) =

∫ T

T−σ
‖Ui(

4∑
j=1

ϕj , p)(·, t)− zδ0‖2L2(Ωi)
dt+ β‖

4∑
j=1

ϕj‖2L2(Ωi)

and introduce a surrogate functional Jsi for any a ∈ Vi:

Jsi (
4∑
j=1

ϕj , p, a) = Ji(
4∑
j=1

ϕj , p) +Aσ‖ϕi − a‖2L2(Ωi)
−
∫ T

T−σ
‖Ui(ϕi − a, 0)(·, t)‖2L2(Ωi)

dt.
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We note that the same justification as it was stated in Lemma 2.1 is true here for the above
surrogate functional. Now using the fact that Ui(

∑4
j=1 ϕj , p) = Ui(

∑
j 6=i ϕj , p)+Ui(ϕi, 0) and

the adjoint relation (4.12), we can rewrite

Jsi (

4∑
j=1

ϕj , p, a)

=

∫ T

T−σ
{‖Ui(ϕi, 0)(·, t)‖2Ωi

− 2〈Ui(ϕi, 0)(·, t), zδ0 − Ui(
∑
j 6=i

ϕj , p)(·, t)〉Ωi

+‖zδ0 − Ui(
∑
j 6=i

ϕj , p)(·, t)‖2Ωi
}dt+ β‖

4∑
j=1

ϕj‖2Ωi
+Aσ〈ϕi, ϕi − 2a〉Ωi +Aσ‖a‖2Ωi

−
∫ T

T−σ
{‖Ui(ϕi, 0)(·, t)‖2Ωi

− 2〈Ui(ϕi, 0)(·, t), Ui(a, 0)(·, t)〉Ωi + ‖Ui(a, 0)(·, t)‖2Ωi
}dt

= Aσ〈ϕi, ϕi − 2{a+
1

Aσ

∫ T

T−σ
U∗i (zδ0 − Ui(

∑
j 6=i

ϕj + a, p)(·, t), 0)(·, T − t)dt}〉Ωi

+β‖
4∑
j=1

ϕj‖2Ωi
+

∫ T

T−σ
{‖zδ0 − Ui(

∑
j 6=i

ϕj , p)(·, t)‖2Ωi
− ‖Ui(a, 0)(·, t)‖2Ωi

}dt+Aσ‖a‖2Ωi

= Aσ‖ϕi − {a+
1

Aσ

∫ T

T−σ
U∗i (zδ0 − Ui(

∑
j 6=i

ϕj + a, p)(·, t), 0)(·, T − t)dt}‖2Ωi

+β‖
4∑
j=1

ϕj‖2Ωi
+
{∫ T

T−σ
{‖zδ0 − Ui(

∑
j 6=i

ϕj , p)(·, t)‖2Ωi
− ‖Ui(a, 0)(·, t)‖2Ωi

}dt+Aσ‖a‖2Ωi

−Aσ‖a+
1

Aσ

∫ T

T−σ
U∗i (zδ0 − Ui(

∑
j 6=i

ϕj + a, p)(·, t), 0)(·, T − t)dt}‖2Ωi

}
. (4.13)

We can easily see that the last term above does not depend on ϕi, so it will not affect the
local minimization over Ωi if we drop the term in the functional Jsi . This leads us to consider
the following functional for a given a ∈ Vi:

min
ϕi∈Vi

Jsi (

4∑
j=1

ϕj , p, a) = min
ϕi∈Vi

Aσ‖ϕi − zi‖2Ωi
+ β‖

4∑
j=1

ϕj‖2Ωi
, (4.14)

where zi is given by

zi = a+
1

Aσ

∫ T

T−σ
U∗i (zδ0 − Ui(

∑
j 6=i

ϕj + a, p)(·, t), 0)(·, T − t)dt.

Clearly the minimization (4.14) is quadratic, so we can find its exact minimizer ϕ∗i :

ϕ∗i =
1

Aσ + β

{
Aσa+

∫ T

T−σ
U∗i (zδ0 − Ui(

∑
j 6=i

ϕj + a, p)(·, t), 0)(·, T − t)dt− β
∑
j 6=i

ϕj |Ωi

}
.(4.15)

By means of the local minimizations (4.14), we are now ready to formulate two new DD
algorithms for solving the minimization (4.4) for the reconstruction of the initial temperature.
The same index function n(x) as in (2.21) is used below for any x ∈ Ω.
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Algorithm 4.1 (Multiplicative Schwarz Algorithm (MSA)) Choose a tolerance param-

eter ε1 > 0, an initial value ϕ(0) =
∑4

i=1 ϕ
(0)
i with ϕ

(0)
i ∈ Vi (i = 1, 2, 3, 4), and solve (4.2)

for U(ϕ(0)); set p
(0)
i := U(ϕ(0))|Γ̃i

and n := 0.

1. Compute ϕ
(n+1)
i ∈ Vi sequentially for i = 1 to 4 by

ϕ
(n+1)
i = argminvi∈ViJ

s
i (
∑
j<i

ϕ
(n+1)
j + vi +

∑
j>i

ϕ
(n)
j , p

(n)
i , ϕ

(n)
i ); (4.16)

update Ui in Ωi:

U
(n)
i = Ui(

∑
j≤i

ϕ
(n+1)
j +

∑
j>i

ϕ
(n)
j , p

(n)
i );

update the inner boundary values on Γ̃j for j > i if Γ̃j ∈ Ωi:

p
(n)
j = U

(n)
i |Γ̃j

.

2. Compute ϕ(n+1) =
∑4

i=1 ϕ
(n+1)
i .

3. If ‖ϕ(n+1) − ϕ(n)‖Ω ≤ ε1, stop the iteration;

otherwise update Ui in subdomain Ωi (i = 1, 2, 3, 4):

U
(n+1)
i = Ui(ϕ

(n+1), p
(n)
i );

update the inner boundary values on Γ̃i (i = 1, 2, 3, 4):

p
(n+1)
i (x) =

1

|n(x)|
∑
j∈n(x)

U
(n+1)
j (x), ∀x ∈ Γ̃i.

set n := n+ 1, go to Step 1.

The next algorithm is a parallel version of Algorithm 4.1.

Algorithm 4.2 (Additive Schwarz Algorithm (ASA)) Choose a tolerance parameter ε1 >

0, a relaxation parameter λ ∈ (0, 1), an initial value ϕ(0) =
∑4

i=1 ϕ
(0)
i with ϕ

(0)
i ∈ Vi

(i = 1, 2, 3, 4), and solve (4.2) for U(ϕ(0)); set p
(0)
i := U(ϕ(0))|Γ̃i

and n := 0.

1. Compute ϕ
(n+1)
i ∈ Vi in parallel for i = 1, 2, 3, 4 by

ϕ
(n+1)
i = argminvi∈ViJ

s
i (
∑
j 6=i

ϕ
(n)
j + vi, p

(n)
i , ϕ

(n)
i ). (4.17)

2. Compute ϕ(n+1) = λ
∑4

i=1 ϕ
(n+1)
i + (1− λ)ϕ(n).

3. If ‖ϕ(n+1) − ϕ(n)‖Ω ≤ ε1, stop the iteration;

otherwise update Ui in subdomains Ωi (i = 1, 2, 3, 4):

U
(n+1)
i = Ui(ϕ

(n+1), p
(n)
i );

update the inner boundary values on Γ̃i (i = 1, 2, 3, 4):

p
(n+1)
i (x) =

1

|n(x)|
∑
j∈n(x)

U
(n+1)
j (x) ∀x ∈ Γ̃i.

set ϕ
(n+1)
i := χiϕ

(n+1), and n := n+ 1, go to Step 1.

Remark 4.1 The same as for (4.15), we have explicit expressions for the minimizers ϕ
(n+1)
i

in (4.16) and (4.17).
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5 Numerical experiments

In this section, we shall apply the DD algorithms that were proposed in the previous Sec-
tions 2-4 to identify the source strength in the elliptic system (2.1), the heat flux in the
system (3.1) and the initial temperature in the parabolic system (4.1) respectively.

We choose the domain Ω = (0, 1) × (0, 2) and decompose it into four overlapping sub-
domains: Ω1 = (0, 4/7) × (6/7, 2), Ω2 = (3/7, 1) × (6/7, 2), Ω3 = (0, 4/7) × (0, 8/7), Ω4 =
(3/7, 1) × (0, 8/7). Then we triangulate domain Ω into N ×M small squares of equal size
and further divide each square through its diagonal into two triangles. This results in a finite
element triangulation of domain Ω, which is done in such a way that it is consistent with the
subdomain decompositions. All the elliptic problems involved in DD algorithms are solved
by the continuous linear finite element method, while all the parabolic problems are solved
by the continuous linear finite element method in space and the Crank-Nicolson scheme in
time.

The parameters involved in the DD algorithms are chosen as follows. The initial guesses
are set to be identically equal to some constants, which as we see are rather poor initial
guesses for all our testing inverse problems. We take the relaxation parameter λ = 1/2 in all
the numerical experiments. The noisy data zδ is obtained by adding some uniform random
noise to the exact data, i.e., zδ = u+ δRu, where R is a uniform random function varying in
the range [-1,1].

Next, we discuss about some appropriate tools we should use to better measure the con-
vergence of the DDMs. We take the first inverse problem of recovering the source strength
in the elliptic system (2.1) as an example. The exact source strength f in (2.1) is approxi-
mated through the minimisation problem (2.6), which is solved by the new DDMs, namely
Algorithms 2.1 and 2.2. We solve the finite element discretised system of the minimisation
problem (2.6) by the regularized Landweber iteration, and write by f∗i the finite element

minimiser corresponding to a mesh Thi on domain Ω, and by f
(k)
i the approximate solution

of f∗i obtained by the kth iteration of the DDMs.
For a direct problem, the exact solution is usually obtained or approximated using a

sufficiently fine mesh. But based on the general regularisation theory [8] and convergence of
discrete solutions of inverse problems [15], an exact solution achieved with a sufficiently fine
mesh is often not the desired approximate solution one should have in most applications, as
such a solution is not the approximate solution with the best accuracy. After many numerical
tests, we find that the finite element discrete solution f∗i with the mesh Thi = 28 × 56 gives
the “best” approximate solution when the noise level is δ = 2%. Based on this observation,
we first apply the regularized Landweber iteration to compute the discrete minimiser f∗i for
three nested meshes Thi = (7 × 2i−1) × (14 × 2i−1), i = 1, 2, 3. Then in order to test the
convergence of DDMs, for each mesh Thi we apply the newly proposed DDMs to compute f∗i
and record the approximate solution f

(k)
i of f∗i obtained by the kth iteration of the DDMs.

For the noise level δ = 2%, DDMs will be terminated when the relative L2-norm error reaches

0.08, namely ‖f (k)
i − f∗i ‖/‖f∗i ‖ ≤ 0.08, and the corresponding numbers of DDM iterations

are then listed for each numerical example.
In all the subsequent numerical results, the same measurements for testing the convergence

of DDMs as we have discussed above for the inverse source strength in system (2.1) are applied
for the inverse problems of recovering the heat flux in system (3.1) and the initial temperature
in the parabolic system (4.1).

We first show three numerical examples for reconstructing the source strength f(x) in
the system (2.1), with a(x) = (x + y)/100, c(x) = 1 in Ω and g(x) = 0 on ∂Ω. We take a
constant initial guess f (0) = 0 in Ω and the noise level δ = 2% and A = 1.
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Table 5.1: Number of iterations by MSA and ASA for Example 5.1

Algorithm N M β k

MSA 7 14 10−5 10

14 28 10−5 13

28 56 10−5 16

ASA 7 14 10−5 19

14 28 10−5 26

28 56 10−5 31

Example 5.1 We take the exact source strength f = sin(2πx) sin(2πy).

Figure 5.1 shows the exact and numerically recovered source strengths, while Table 5.1
gives the number of iterations by Algorithms 2.1 and 2.2 with the relative L2-norm error
being 0.08.
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Figure 5.1: Exact and numerically recovered source strengths for Example 5.1

Example 5.2 We take the exact source strength f = 2 sin(2πx)y(y − 1)(y − 2).

Figure 5.2 shows the exact and numerically recovered source strengths, while Table 5.2
gives the number of iterations by Algorithms 2.1 and 2.2 with the relative L2-norm error
being 0.08.
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Table 5.2: Number of iterations by MSA and ASA for Example 5.2

Algorithm N M β k

MSA 7 14 10−5 8

14 28 10−5 13

28 56 10−5 16

ASA 7 14 10−5 13

14 28 10−5 24

28 56 10−5 30

Table 5.3: Number of iterations by MSA and ASA for Example 5.3

Algorithm N M β k

MSA 7 14 10−5 11

14 28 10−5 14

28 56 10−5 16

ASA 7 14 10−5 23

14 28 10−5 29

28 56 10−5 34
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Figure 5.2: Exact and numerically recovered source strengths for Example 5.2

Example 5.3 We take the exact source strength f = 10y sin(2πy)x(x− 1/2)(x− 1).

Figure 5.3 shows the exact and numerically recovered source strengths, while Table 5.3
gives the number of iterations by Algorithms 2.1 and 2.2 with the relative L2-norm error being
0.08, and Table 5.4 shows the relative L2-norm errors achieved with different regularisation
parameters β for the mesh 14× 28 by MSA and ASA respectively.
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Table 5.4: L2-norm errors with different β by MSA & ASA for Example 5.3

Algorithm β error k

MSA 10−3 0.0568 18

10−4 0.0590 18

10−5 0.0592 18

10−6 0.0592 18

10−7 0.0592 18

ASA 10−3 0.0570 37

10−4 0.0589 37

10−5 0.0591 37

10−6 0.0592 37

10−7 0.0592 37
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Figure 5.3: Exact and numerically recovered source strengths for Example 5.3

We can see from Figures 5.1-5.3 that the numerical reconstructed source strengths, with a
2% noise in the data, appear to be quite satisfactory, in view of the severe ill-posedness of the
inverse source problem and the complicated profiles of the exact source strengths, especially
in Example 5.1, where the source strength oscillates frequently between 8 peaks and valleys.
More importantly, we observe from Tables 5.1-5.3 that the convergence of the DD algorithms
are rather reasonable: the number of iterations grows only mildly with the mesh refinement.

In addition, we observe from Table 5.4 that the DDMs are rather robust with respect to
the choice of the regularisation parameter β: the accuracy of the numerical reconstruction
does not change much when the parameter is taken in a specific range of large scale.

Next, we demonstrate three numerical examples for the reconstructions of the initial
temperature in the heat conductive system (4.1), by two DD algorithms, namely Algorithms
4.1 and 4.2 proposed in Section 4. In our experiments, we take A = 1, the noise level δ = 2%,
a(x) = 1, f(x, t) = 0, the terminal time T = 4, and the constant initial guess ϕ(0) = 0.

Example 5.4 We take the exact initial temperature ϕ = sin(2πx) sin(2πy).
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Table 5.5: Number of iterations by MSA and ASA for Example 5.4
Algorithm N M β k

MSA 7 14 5 ∗ 10−5 7

14 28 5 ∗ 10−5 9

28 56 5 ∗ 10−5 9

ASA 7 14 5 ∗ 10−5 16

14 28 5 ∗ 10−5 19

28 56 5 ∗ 10−5 20

Table 5.6: Number of iterations by MSA and ASA for Example 5.5

Algorithm N M β k

MSA 7 14 5 ∗ 10−5 20

14 28 5 ∗ 10−5 23

28 56 5 ∗ 10−5 25

ASA 7 14 5 ∗ 10−5 41

14 28 5 ∗ 10−5 48

28 56 5 ∗ 10−5 50

Figure 5.4 shows the exact and numerically recovered initial temperature, while Table
5.5 gives the number of iterations by Algorithms 4.1 and 4.2 with the relative L2-norm error
being 0.08.
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Figure 5.4: Exact and numerically recovered initial temperatures for Example 5.4

Example 5.5 We take the exact initial temperature ϕ = 2 sin(2πx)y(y − 1)(y − 2).

Figure 5.5 shows the exact and numerically recovered initial temperature, while Table
5.6 gives the number of iterations by Algorithms 4.1 and 4.2 with the relative L2-norm error
being 0.08.
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Table 5.7: Number of iterations by MSA and ASA for Example 5.6

Algorithm N M β k

MSA 7 14 5 ∗ 10−5 7

14 28 5 ∗ 10−5 9

28 56 5 ∗ 10−5 10

ASA 7 14 5 ∗ 10−5 17

14 28 5 ∗ 10−5 20

28 56 5 ∗ 10−5 21
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Figure 5.5: Exact and numerically recovered initial temperatures for Example 5.5

Example 5.6 We take the exact initial temperature ϕ = 10y sin(2πy)x(x− 1/2)(x− 1).

Figure 5.6 shows the exact and numerically recovered initial temperature, while Table
5.7 gives the number of iterations by Algorithms 4.1 and 4.2 with the relative L2-norm error
being 0.08.
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Table 5.8: Number of iterations by MSA and ASA for Example 5.7

Algorithm N M β k

MSA 7 14 10−5 27

14 28 10−5 19

28 56 10−5 18

ASA 7 14 10−5 52

14 28 10−5 42

28 56 10−5 41
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Figure 5.6: Exact and numerically recovered initial temperatures for Example 5.6

We can see from Figures 5.4-5.6 that the numerical reconstructed initial temperatures,
with a 2% noise in the data, appear to be quite satisfactory, in view of the severe ill-posedness
of the inverse initial temperature problem and the complicated profiles of the exact initial
temperatures, especially in Example 5.4 where the initial temperature oscillates frequently
between 8 peaks and valleys. More importantly, we observe from Tables 5.5-5.7 that the
convergence of the DD algorithms are rather reasonable: the number of iterations grows
still mildly with the mesh refinement. These important features of the algorithms are also
observed in other examples of this section.

Finally, We present a numerical test for the reconstruction of fluxes on the partial bound-
ary Γ1 = {(x, y); x = 1, 0 ≤ y ≤ 2} in the system (3.1), where we take g(x) = 0 on Γ0,
f(x) = 0 and a(x) = c(x) = 1 in Ω.

Example 5.7 We take the exact flux h(x, y) = (y − 1)2 + 1 on Γ1 with a constant initial
guess h(0) = 1, δ = 2% and A = 5.

Figure 5.7 shows the exact and numerically recovered heat flux, while Table 5.8 gives the
number of iterations by Algorithms 3.1 and 3.2 with the relative L2-norm error being 0.08.
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Figure 5.7: Exact and numerically recovered fluxes for Example 5.7

We can see from Figure 5.7 that the numerical reconstructed fluxes, with a 2% noise in
the data, appear to be quite satisfactory, in view of the severe ill-posedness of the inverse flux
problem. More importantly, we observe that the algorithms converge globally, starting with
a rather poor initial guess, and its convergence behaves very well (see Table 5.8): the number
of iterations grows mildly with the mesh refinement except when the mesh is too coarse.

6 Concluding remarks

We have proposed in this work several overlapping domain decomposition algorithms for
solving some representative linear inverse problems, including the identification of the fluxes,
the source intensity and the initial temperature in second order elliptic and parabolic systems.
The algorithms are constructed in a way that only small sub-minimizations are needed to
solve on the subdomains of the original global domain at each iteration. The algorithms
can be realised easily and very efficiently, with explicit solutions for all the sub-minimizations
involved. And we have observed from many numerical examples that the algorithms converge
globally, and converge with rather poor initial guesses. More importantly, the convergences
of these algorithms do not deteriorate or deteriorate only mildly with the refinement of finite
element mesh.

Our future work includes the extension of the proposed overlapping domain decompo-
sition algorithms to nonlinear inverse problems, such as the constructions of the diffusivity
coefficient, the radiative coefficient and Robin coefficient in elliptic and parabolic systems.
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