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Abstract
Stochastic variance reduced gradient (SVRG) is a popular variance reduction
technique for accelerating stochastic gradient descent (SGD). We provide a first
analysis of the method for solving a class of linear inverse problems in the lens
of the classical regularization theory. We prove that for a suitable constant step
size schedule, the method can achieve an optimal convergence rate in terms
of the noise level (under suitable regularity condition) and the variance of the
SVRG iterate error is smaller than that by SGD. These theoretical findings are
corroborated by a set of numerical experiments.
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1. Introduction

In this paper, we consider the numerical solution of the following finite-dimensional linear
inverse problem:

Ax = y†, (1.1)

where A ∈ R
n×m is the system matrix representing the data formation mechanism, and x ∈ R

m

is the unknown signal of interest. In practice, we only have access to a noisy version yδ of the
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exact data y† = Ax† (with x† being the minimum norm solution relative to the initial guess x0,
cf (2.1)), i.e.,

yδ = y† + ξ,

where ξ ∈ R
n denotes the noise in the data with a noise level δ = ‖ξ‖, with ‖ · ‖ being the

Euclidean norm of a vector (and also the spectral norm of a matrix). We denote the ith row of
the matrix A by a column vector ai ∈ R

m, i.e., A = [at
i]

n
i=1 (with the superscript t denoting the

matrix/vector transpose), and the ith entry of the vector yδ ∈ R
n by yδi . Linear inverse problems

of the form (1.1) arise in a broad range of practical applications, e.g., computed tomography
and optical imaging.

Over the last few years, stochastic iterative algorithms have received much interest in the
inverse problems community. The most prominent example is stochastic gradient descent
(SGD) due to Robbins and Monro [30]. The starting point is the following optimization
problem:

J(x) =
1
2n

‖Ax − yδ‖2 =
1
n

n∑
i=1

fi(x), with fi(x) =
1
2

(
(ai, x) − yδi

)2
, (1.2)

where (·, ·) denotes the Euclidean inner product on R
m. Then SGD reads as follows. Given an

initial guess x̂δ0 ≡ x0, the iterate x̂δk is constructed as

x̂δk+1 = x̂δk − ηk f ′ik(x̂δk),

where ηk > 0 is the step size at the (k + 1)th step, and the index ik is sampled uniformly from
the index set {1, . . . , n}. One attractive feature of the method is that the computational com-
plexity per iteration does not depend on the data size n, and thus it is directly scalable to large
data volume, which is especially attractive in the era of big data. SGD type methods have
found applications in several inverse problems, e.g., randomized Kaczmarz method [12, 32] in
computed tomography, ordered subset expectation maximization [13, 21] for positron emission
tomography, and more recently also some nonlinear inverse problems, e.g., optical tomography
[4] and phonon transmission coefficient recovery [8].

However, the relevant mathematical theory for inverse problems in the lens of regularization
theory [7, 14, 20] is still not fully understood. Existing works [15–18] focus on the standard
SGD for inverse problems, proving that SGD is a regularization method when equipped with
a suitable stopping criterion, and the SGD iterates converge at a certain rate. However, the
presence of stochastic gradient noise generally prevents SGD from converging to the solution
when a constant step size is used and leads to a slow, sublinear rate of convergence when a
diminishing step size schedule is employed. Among various acceleration strategies, variance
reduction (VR) represents one prominent idea that has achieved great success, including SAG
[24], SAGA [5], stochastic variance reduced gradient (SVRG) [19, 36] and SARAH [27] etc;
these methods take advantage of the finite-sum structure prevalent in machine learning prob-
lems, and exhibit improved convergence behavior over SGD; see the work [9] for a recent
overview of VR techniques in machine learning.

SVRG combines SGD with predictive VR and is very popular in stochastic optimization. It
was proposed independently by two groups of researchers, i.e., Johnson and Zhang [19] and
Zhang et al [36], for accelerating SGD for minimizing smooth and strongly convex objective
functions. When applied to problem (1.2), the basic version of SVRG reads as follows. Given
an initial guess xδ0 ≡ x0 ∈ R

m, SVRG updates the iterate xδk recursively by

xδk+1 = xδk − ηk

(
f ′ik (xδk) − f ′ik (xδkM

) + J′(xδkM
)
)

, k = 0, 1, . . . , (1.3)
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Algorithm 1. SGD for problem (1.1).

Algorithm 2. SVRG for problem (1.1).

where the row index ik is drawn uniformly from the index set {1, . . . , n}, ηk > 0 is the step
size at the kth iteration, M is the frequency of computing the full gradient, and kM = [ k

M ]M,
([·] takes the integral part of a real number). The choice of the frequency M can affect the
practical performance of the algorithm, and it was suggested to be 2n and 5n for convex and
nonconvex optimization, respectively [19]. In this study, we show that SVRG can achieve opti-
mal convergence rates when M is chosen such that M � O(n

1
2 ). When compared with SGD,

SVRG employs the anchor/snapshot point xδkM
to reduce the variance of the gradient estimate:

it computes the full gradient J′(xδkM
) of J at the anchor point xδkM

for every M iterates, and then
combines J′(xδkM

) with the gradient gap f ′ik (xδk) − f ′ik (xδkM
) to obtain a new gradient estimate for

updating the SVRG iterate xδk+1. In contrast, SGD employs the stochastic gradient f ′ik (x̂δk) only,
and the classical Landweber method (LM) uses only the gradient J′(x). Thus, SVRG can be
viewed as a hybridization between the LM and SGD. A detailed comparison between SGD
and SVRG are given in algorithms 1 and 2, where SVRG is stated in the form of double loop.
In practice, there are several variants of SVRG, dependent on the choice of the anchor point,
e.g., last iterate, iterate average, random choice and weighted iterate average (within the inner
loop). In this work, we study only the version given in algorithm 2.

It is known that VR enables speeding up the convergence of the algorithm in the sense of
optimization [3, 9]. Since its first introduction, SVRG has received a lot of attention within the
optimization community, and several convergence results of SVRG and its variants have been
obtained [1, 2, 11, 23, 29, 31, 34]. Note that here the precise meaning of convergence depends
crucially on the property of the objective function J(x): (i) the distance of the SVRG iterate xδk
to a global minimizer for a strictly convex J(x), (ii) the optimality gap (i.e., J(xδk) − minx J(x))
for a convex J(x) and (iii) the norm of the gradient ‖J′(xδk)‖ for a nonconvex J(x), in terms of the
iterate number k. For example, Allen-Zhu and Hazan [1] proved that SVRG (with a different
choice of the anchor point) converges at an O(n

2
3 ε−1) rate to an approximate stationary point x∗

(i.e., ‖J′(x∗)‖2 � ε) for a nonconvex but smooth J(x). Reddi et al [29] proved a nonasymptotic
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rate of convergence of SVRG for nonconvex optimization and identified a subclass of noncon-
vex problems (satisfied by gradient dominated functions) for which a variant of SVRG attains
linear convergence.

These important breakthroughs in the optimization literature naturally motivate the follow-
ing question: does the desirable convergence property of SVRG carry over to inverse problems
in the sense of regularization theory? The answer to this question is not self-evident, since
accelerated iterative schemes do not necessarily retain the optimal convergence in the sense of
regularization (see [22, 26] for studies on Nesterov’s accelerated scheme). For linear inverse
problems in (1.1), the objective J(x) in (1.2) is convex but not strictly so. Further, it is ill-posed
in the sense that a global minimizer often does not exist, and even if it does exists, it is unstable
with respect to the inevitable perturbation of the data yδ and is probably physically irrelevant.
Instead, we construct an approximate minimizer that converges to the exact solution x† as the
noise level δ tends to 0+ by stopping the iteration properly, a procedure commonly known
as iterative regularization (by early stopping) [20], and the accuracy of the approximation is
measured in terms of the noise level δ. To the best of our knowledge, the theoretical properties
of SVRG and other VR techniques have not been studied so far in the lens of regularization
theory.

In this work, we contribute to the theoretical analysis of SVRG for a class of linear inverse
problems from the perspective of classical regularization theory [7, 14, 20]. Under the constant
step size schedule and the canonical source condition, we prove that the epochwise SVRG
iterate xδKM converges to the minimum norm solution x† at an optimal rate (in terms of δ) when
combined with a priori stopping rule, and that due to the built-in VR mechanism, for the same
iterate number, the variance of SVRG iterate is indeed smaller than that of SGD, showing the
beneficial effect of VR; see theorems 2.1 and 2.2. In particular, SVRG allows using larger
step sizes than that for SGD while still overcoming the undesirable saturation phenomenon
(cf remark 2.1). See section 2 for precise statements of the theoretical findings and related
discussions in the context of inverse problems. These theoretical results are complemented by
extensive numerical results in section 6.

The rest of the paper is organized as follows. In section 2 we present and discuss the main
results of the work. In section 3, we recall preliminary results, especially a careful decompo-
sition of the error of the epoch SVRG/SGD iterate into the bias and variance components. In
section 4 we give the convergence rate analysis, and prove an optimal convergence rate, and
in section 5 we present a comparative study of SVRG versus SGD, and show that variance
component of the SVRG error is smaller than that of the SGD error. Finally, in section 6, we
present several numerical experiments to complement the theoretical analysis. For better read-
ability, the lengthy and technical proofs of several auxiliary results are deferred to the appendix.
Throughout, the notation c with suitable subscripts denotes a generic constant.

2. Main results and discussions

In this section, we state the main results of the work. First we state the standing assumption.
We denote by Fk the filtration generated by the random indices {i0, i1, . . . , ik−1}. Let F =∨∞

k=1Fk,F c
k = F\Fk, (Ω,F ,P) being the associated probability space, andE[·] denotes taking

the expectation with respect to the filtration F and E j[·] :=E[·|F c
j+1 ∪ F j]. The SVRG iterate

xδk is random, and measurable with respect to Fk. Let eδk = xδk − x† be the error of the SVRG
iterate xδk with respect to the unique minimum-norm solution x†, defined by

x† = arg min
x∈Rm:Ax=y†

‖x − x0‖. (2.1)
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Let B = E[aiat
i] = n−1AtA ∈ R

m×m. Throughout we assume that ‖B‖ � 1, which can easily be
achieved by scaling. In this work we consider a constant step size schedule, which is commonly
employed by SVRG. Assumption 2.1(b) is commonly known as the source condition in the
inverse problems literature [7], which implicitly assumes a certain regularity on the initial error.
This condition is central for deriving convergence rates. It is well known that in the absence
of source type conditions, the convergence for a regularization method can be arbitrarily slow
[7]. Assumption 2.1(c) enables an important commuting property (cf lemma 3.2), which greatly
facilitates the analysis. Numerically this property does not affect the performance of SVRG,
and thus it seems largely due to the limitation of the analysis technique.

Assumption 2.1. The following assumptions hold.

(a) The step size η j = c0, j = 0, 1, . . . , with c0 �
(
max(maxi‖ai‖2, ‖B‖2)

)−1
.

(b) There exist some ν > 0 and w ∈ R
m such that the exact solution x† satisfies x† − x0 =

Bνw.
(c) The matrix A = ΣVt with Σ being diagonal and nonnegative and V column orthonormal.

The next result represents the main theoretical contribution of the work. It implies that
SVRG can achieve the optimal convergence rate for linear inverse problems under the given
assumption on the step size. The step size restriction originates from the fact that SVRG still
employs a randomized gradient estimate for the iterate update, albeit with reduced variance,
when compared with the LM. Nonetheless, the restriction on the step size is more benign than
that for SGD: it allows achieving optimal convergence rate under larger step size than that in
SGD.

Theorem 2.1. Let assumption 2.1 hold, and c∗ > 1 satisfy

(4 + 2(Mc0‖B‖)2)nM−2cBcB,M � 1 − c−1
∗ (2.2)

with cB,M =

M−1∑
i=1

(1 − (1 − c0‖B‖)i)2 and cB = (1 − c0‖B‖)−M.

Then with constants cν = νν(Mc0)−ν and c∗∗ = (3 + 2(Mc0‖B‖)2)nMcBc2
0‖B‖, there holds

E[‖eδKM‖2] �
(
2 + 22ν‖B‖c∗∗c∗

)
c2
νK−2ν‖w‖2 + (2Mc0 + c∗∗c∗)Kδ̄2.

Remark 2.1. Let c = c0‖B‖M, which implies cB = (1 − cM−1)−M and cB,M =∑M−1
i=1 (1 − (1 − cM−1)i)2, the condition (2.2) is satisfied whenever

nM−2 � (1 − c−1
∗ )(4 + 2c2)−1c−1

B c−1
B,M ,

which holds for M = O(n
1
2 ) and sufficiently small c = O(1). It is instructive to compare the

conditions ensuring an optimal convergence rate of SVRG and SGD: SGD requires the con-
dition c0 = O(n−1) [18], whereas SVRG requires only M = O(n

1
2 ) and c = c0‖B‖M = O(1).

The latter implies c0 = O(n− 1
2 ) for SVRG. Since O(n− 1

2 ) is much larger than O(n−1) when
the data size n is large, SVRG should perform better for truly large-scale problems.

It is known that SGD with an inadvertent choice of the step size schedule can lead to the
undesirable saturation phenomenon, i.e., the convergence rate does not improve with the reg-
ularity index ν in assumption 2.1(b), whenever ν exceeds the critical value 1/2 [15, 18]. This
is attributed to the inherent variance of the stochastic gradient estimate used by SGD, and one
important issue is to overcome the saturation phenomenon. The next result sheds further insight
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into this phenomenon by comparing the mean squared error of the (epochwise) SVRG iterate
with that of the corresponding SGD iterate: it gives a refined comparison between the variance
components of SVRG and SGD iterates, in view of the bias-variance decomposition. In partic-
ular, it shows that the built-in VR mechanism of SVRG does reduce the variance component
of the error, which represents a distinct feature of SVRG over SGD, especially alleviating the
step size restriction for achieving the optimal convergence.

Theorem 2.2. Let assumption 2.1(a) and (c) be fulfilled and the constants c0, n and M
satisfy, with the constant c′B = (1 − c0‖B‖)−2(M−1),

(M − 1)2c2
0‖B‖2 � (2c′B)−1 and (M + 1)2 � (2c′B)−1(n − 1). (2.3)

For any K � 0, let R1 and R2 be measurable with respect to F c
KM and R1 is combination of M0

and Hk (cf (3.1) for the definition). Then for ζ defined in section 3.1, there holds

E[‖R1(eδKM − B−1ζ) + R2‖2] � E[‖R1(êδKM − B−1ζ) + R2‖2].

Remark 2.2. Let c := c0‖B‖(M − 1), which implies c′B = (1 − c(M − 1)−1)−2(M−1). Then
condition (2.3) can be rewritten as

c2 � 2−1(c′B)−1 and (M + 1)2 � 2−1(c′B)−1n.

The first essentially requires c < 1
2 . For any M � 2, c′B � 2e2c, the condition can be satisfied

by 2cec � 1 and M + 1 � 2−1e−cn
1
2 .

Last we briefly comment on the overall analysis strategy for proving theorems 2.1 and 2.2.
The overall strategy is to derive the recursion of the epochwise SVRG iterate xδKM (and also
the SGD iterate x̂δKM), for any K = 0, 1, . . . , i.e., at the anchor points only, and then bound the
error eδKM := xδKM − x† by bias-variance decomposition

E[‖xδKM − x†‖2] = ‖E[xδKM] − x†‖2 + E[‖xδKM − E[xδKM]‖2].

The two terms on the right-hand side represent respectively the bias of the error due to early
stopping and data noise and the computational variance of error due to randomness of the
gradient estimate. These are analyzed in proposition 3.1 and lemma 4.1, respectively, and allow
proving the convergence rate in theorem 2.1. The analysis of the variance component relies on
a novel refined decomposition into terms that are more tractable to estimate for both SVRG
and SGD. This decomposition is also crucial for the comparative study between SVRG and
SGD, where a careful componentwise comparison of the decomposition allows establishing
theorem 2.2. Note that the decomposition relies heavily on the constant step size schedule,
and thus the overall analysis differs greatly from existing analysis of the SGD in the lens of
regularization theory [16–18] or the analysis of SGD in statistical learning theory [6, 25, 28,
33, 35]. The extension of the analysis to a general step size schedule represents an interesting
future research problem.

3. Error decomposition

In this part, we present several preliminary results, especially error decompositions for SVRG
and SGD iterates. The decompositions play a central role in the convergence rates analysis and
comparative analysis in sections 4 and 5, respectively.
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3.1. Notation and preliminary estimates

First we introduce several shorthand notation. Below, we denote the SVRG iterates for the
exact data y† and noisy data yδ by xk and xδk , respectively, and that for SGD by x̂k and x̂δk ,
respectively. We use extensively the following shorthand notation for any k = 0, 1, . . .:

ek = xk − x†,

eδk = xδk − x†,

êk = x̂k − x†,

êδk = x̂δk − x†,

Ā = n− 1
2 A,

ξ̄ = n− 1
2 ξ,

δ̄ = n− 1
2 δ,

M0 = I − c0B,

ζ = Ātξ̄,

Pk = I − c0aikat
ik

,

Nk = B − aikat
ik

,

ζk = aikξik .

Note that Pk is the random update operator for the iteration, and we have the identity Pk =
M0 + c0Nk trivially. For all k ∈ N, let

Hk = Gk+1Nk, with Gk =

⎧⎪⎨
⎪⎩

kM+M−1∏
i=k

Pi, k 	= KM,

I, k = KM.

(3.1)

Clearly, HKM−1 = NKM−1. By definition, we have the following identity

GKM+ j = GKM+ j+1PKM+ j = GKM+ j+1(M0 + c0NKM+ j)

= GKM+ j+1M0 + c0HKM+ j, j = 1, . . . , M − 1. (3.2)

These notations are useful for representing the (epochwise) SVRG iterates xδKM , cf proposition
3.1. The following simple identity will be used extensively.

Lemma 3.1. The following identity holds

GKM+i = MM−i
0 + c0

M−i−1∑
j=0

HKM+i+ jM
j
0, i = 1, . . . , M − 1. (3.3)

7
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Proof. It follows directly from the definition of Gk and Hk and the identity (3.2) that

GKM+i = GKM+i+1M0 + c0

0∑
j=0

HKM+iM
j
0

= GKM+i+2M2
0 + c0

1∑
j=0

HKM+i+ jM
j
0

= · · · = MM−i
0 + c0

M−i−1∑
j=0

HKM+i+ jM
j
0.

This shows the desired identity. �
We use extensively the following direct consequence of assumption 2.1(c).

Lemma 3.2. Under assumption 2.1(c), the matrices M0, B, Pi j and Ni j′ are commutative for
any j and j′.

Proof. Note that, for any j and j′, we have

B = n−1
n∑

i=1

aia
t
i,

M0 = I − c0B = I − c0n−1
n∑

i=1

aia
t
i,

Pi j = I − c0ai ja
t
i j

,

Ni j′ = B − ai j′ a
t
i j′
= n−1

n∑
i=1

aia
t
i − ai j′a

t
i j′
.

It suffices to show the claim that aiat
i and a jat

j are commutative for any i, j = 1, . . . , n. This
claim is trivial when i = j. If i 	= j, by assumption 2.1(c), there holds at

ia j = 0 = at
jai. �

We also state an identity which is crucial for the proofs of theorems 2.1 and 2.2.

Lemma 3.3. Let assumption 2.1(c) be fulfilled. Then for any diagonal matrix D ∈ R
m×m

and any vector v ∈ R
m, which are independent of ij, the following identities hold

E[‖VDVtNjv‖2] = (n − 1)E[‖VDVtBv‖2],

E[‖VDVt(ζ j − ζ)‖2] = (n − 1)E[‖VDVtζ‖2].

Proof. Recall the standard bias-variance decomposition: for any matrix R and filtration Fa,

E[‖R − E[R|Fa]‖2|Fa] = E[‖R‖2|Fa] − ‖E[R|Fa]‖2.

Then the identity Nj = B − ai ja
t
i j
= E j[ai ja

t
i j

] − ai ja
t
i j

gives

E j[‖VDVtNjv‖2] = E j[‖VDVtai ja
t
i j
v‖2] − ‖VDVtBv‖2

= n−1
n∑

i=1

‖VDVtaia
t
iv‖2 − ‖VDVtBv‖2,

8
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where aiat
iv = At(at

iv)bi with bi = (0, . . . , 0, 1, 0, . . . , 0)t ∈ R
n being the ith canonical Carte-

sian basis vector. By assumption 2.1(c), DVtAt = DΣ is diagonal, and hence

n−1
n∑

i=1

‖VDVtaia
t
iv‖2 = n−1

n∑
i=1

‖VDVtAt(at
iv)bi‖2

= n−1‖VDVtAt
n∑

i=1

(at
iv)bi‖2 = n‖VDVtBv‖2.

This shows the first identity. Similarly, since E j[ζ j] = ζ, by rewriting ζ j as ζ j = ai jξi j = Atξi jbi j ,
we obtain the second identity. This completes the proof of the lemma. �

Next we recall two technical estimates; see the appendix for the proof.

Lemma 3.4. Let assumption 2.1(a) be fulfilled. For any s � 0, t ∈ [0, 1] and K ∈ N, there
hold

‖B−t(I − MKM
0 )‖ � (Mc0)tKt,

‖BsMKM
0 ‖ � ss(Mc0)−sK−s := csK

−s.

3.2. Error decomposition

Now we derive error decompositions for the (epochwise) SVRG error eδKM ≡ xδKM − x† and
the SGD error êδKM ≡ x̂δKM − x† into the bias and variance components. These representations
follow from direct but lengthy computation using the definitions the SVRG and SGD iterates,
and the detailed proof is deferred to the appendix.

Proposition 3.1. Under assumption 2.1(a), for any K � 1, there hold

E[eδ(K+1)M] = M(K+1)M
0 eδ0 + (I − M(K+1)M

0 )B−1ζ

eδ(K+1)M − E[eδ(K+1)M] =
K∑

j=0

M(K− j)M
0 L j(ζ − BeδjM),

with the random matrices Lj defined by

L j = c0

M−1∑
i=1

H jM+i(I − Mi
0)B−1.

The next result gives an analogous bias-variance decomposition for the SGD iterate x̂δKM .
Note that when compared with proposition 3.1, the expressions of E[xδKM] and E[x̂δKM]
are actually identical, since both methods use an unbiased estimate for the gradient. Their
difference lies in the variance component, which will be the main focus of the analysis
below.

9
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Proposition 3.2. Under assumption 2.1(a), for any K � 0, êδ(K+1)M satisfies

E[êδ(K+1)M] = M(K+1)M
0 êδ0 + (I − M(K+1)M

0 )B−1ζ,

êδ(K+1)M − E[êδ(K+1)M] = c2
0

K∑
j=0

M−2∑
i=0

M−i−2∑
t=0

M(K− j)M
0 H jM+i+t+1Mt

0(ζ jM+i − ζ)

+ c0

K∑
j=0

M−1∑
i=0

M(K− j)M
0

(
H jM+i

(
Mi

0êδjM + (I − Mi
0)B−1ζ

)

+ MM−i−1
0 (ζ jM+i − ζ)

)
.

Remark 3.1. Equation (A.4) in the proof (in the appendix) indicates that at the snapshot
point xδKM , SVRG performs a gradient descent step, and in-between the snapshot points, the
update direction is a linear combination between gradient and gradient offset (between the
current iterate and the anchor point). Thus in this sense, SVRG is actually a hybridization of
the Landweber method and SGD. Note that since J′(xδkM

) is independent of the random index
ik and the gap f ′ik(xδk) − f ′ik(xδkM

) is independent of the noise ξik for linear inverse problems,
the SVRG iterate xδk does not actually depend on ξik . This property contributes to the variance
reduction, and constitutes one major difference between SVRG and SGD in terms of the noise
influence.

4. Proof of theorem 2.1

Now we prove the convergence rate for SVRG in theorem 2.1. We begin with bounding
the mean squared residual E[‖R1(eδKM − B−1ζ) + R2‖2] and weighted variance E[‖R1(eδKM −
E[eδKM])‖2], where the quantities R1 and R2 are measurable with respect to the filtration F c

KM

and commutative with B, M0, {Pk} and {Nk} for any k � 0. The specific forms of R1 and
R2 arise from the refined decompositions of SVRG errors in lemma 4.1 and SGD errors in
lemma 5.1, in order to carry out the componentwise comparison between them; see the proof
of theorem 2.2 in section 5 for further details.

Lemma 4.1. Under assumption 2.1(a) and (c), for any K � 0, let R1 and R2 be measurable
with respect to F c

(K+1)M and commutative with B, M0, {Pk} and {Nk}, for any k � 0. Then
there hold

E[‖R1(eδ(K+1)M − B−1ζ) + R2‖2] = I0 +
K∑

j=0

I1, j,

E[‖R1(eδ(K+1)M − E[eδ(K+1)M])‖2] =
K∑

j=0

I1, j,

with the terms I0 and I1,j given by

I0 = E[‖R1M(K+1)M
0 (eδ0 − B−1ζ) + R2‖2], (4.1)

I1, j = c2
0

M−1∑
i=1

E[‖R1M(K− j)M
0 H jM+i(I − Mi

0)(eδjM − B−1ζ)‖2]. (4.2)

10
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Now we bound the mean squared (generalized) residual E[‖R1(eδKM − B−1ζ)‖2] of the
epochwise SVRG iterate xδKM . This bound is useful in the proof of theorem 2.1 below. The
proof relies on mathematical induction, and the decomposition in lemma 4.1.

Theorem 4.1. Let assumption 2.1(a) and (c) be fulfilled, R1 be a combination of M0 and B,
and c∗ > 1 be chosen such that (2.2) holds. Then for any K � 0, there holds

E[‖R1(eδKM − B−1ζ)‖2] � c∗‖R1M
KM

2
0 (eδ0 − B−1ζ)‖2.

Proof. We prove the theorem by mathematical induction. The case K = 0 holds true trivially.
Now assume that the assertion holds up to some K � 0, i.e.,

E[‖R1(eδjM − B−1ζ)‖2] � c∗‖R1M
jM
2

0 (eδ0 − B−1ζ)‖2, j = 0, 1, . . . , K, (4.3)

and we prove it for the case K + 1. Lemma 4.1 with R2 = 0 gives

E[‖R1(eδ(K+1)M − B−1ζ)‖2] = I0 +

K∑
j=0

I1, j,

with the terms I0 and I1, j given by (4.1) (with R2 = 0) and (4.2). Note that VtR1M(K− j)M
0 V is

diagonal, then direct computation with lemmas 3.2 and 3.3, the inequalities ‖GjM+i+1‖ � 1
and ‖I − Mi

0‖ = 1 − (1 − c0‖B‖)i and the definition of the constant cB,M in theorem 2.1 gives

I0 � E

[
‖R1M

(K+1)M
2

0 (eδ0 − B−1ζ)‖2

]
,

I1, j � c2
0

M−1∑
i=1

‖I − Mi
0‖2‖G jM+i+1‖2

E[‖R1M(K− j)M
0 NjM+i(eδjM − B−1ζ)‖2]

� nc2
0cB,ME[‖R1M(K− j)M

0 B(eδjM − B−1ζ)‖2]

� nc2
0cB,M‖M

−M
2

0 ‖2‖M
(K− j)M

2
0 B‖2

E

[
‖R1M

(K− j+1)M
2

0 (eδjM − B−1ζ)‖2

]
.

This, the induction hypothesis (4.3), and the identity

‖M
− M

2
0 ‖2 = (1 − c0‖B‖)−M := cB, (4.4)

give

K∑
j=0

I1, j � nc2
0cBcB,Mc∗

K∑
j=0

‖M
(K− j)M

2
0 B‖2‖R1M

(K+1)M
2

0 (eδ0 − B−1ζ)‖2.

By lemma 3.4,

‖M
(K− j)M

2
0 B‖ � 2((K − j)Mc0)−1, j = 0, . . . , K − 2,

11
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and consequently,

K∑
j=0

‖M
(K− j)M

2
0 B‖2 � 2‖B‖2 + 4c−2

0 M−2
K−2∑
j=0

(K − j)−2

� (4 + 2(Mc0‖B‖)2)c−2
0 M−2. (4.5)

The preceding estimates together imply

E[‖R1(eδ(K+1)M − B−1ζ)‖2] �
(
1 + (4 + 2(Mc0‖B‖)2)nM−2cBcB,Mc∗

)
× ‖R1M

(K+1)M
2

0 (eδ0 − B−1ζ)‖2.

The condition on c∗ from (2.2) shows the induction step, and this completes the proof of the
theorem. �

Setting R1 = n
1
2 B

1
2 in theorem 4.1 gives an upper bound on the mean squared residual

E[‖AxδKM − yδ‖2] of the (epochwise) SVRG iterate xδKM . Note that the mean squared resid-
ual consists of one decaying term related to the source condition in assumption 2.1(b) and one
constant term related to the noise level. In particular, it is essentially bounded, independent of
the iteration index. This behavior is similar to that for the standard LM.

Corollary 4.1. Under assumption 2.1 and condition (2.2), there holds

E[‖AxδKM − yδ‖2] � 22ν+2c2
ν+ 1

2
nc∗K

−2ν−1‖w‖2 + 2nc∗δ̄
2.

Proof. Theorem 4.1 and the triangle inequality imply (noting eδ0 = e0)

E[‖AxδKM − yδ‖2] = E

[
‖n

1
2 B

1
2 (eδKM − B−1ζ)‖2

]
� nc∗‖B

1
2 M

KM
2

0 (eδ0 − B−1ζ)‖2,

� 2nc∗‖M
KM

2
0 B

1
2 eδ0‖2 + 2nc∗‖M

KM
2

0 B− 1
2 ζ‖2.

Meanwhile, it follows from lemma 3.4 and the source condition in assumption 2.1(b) that

‖M
KM

2
0 B

1
2 e0‖ � 2ν+ 1

2 cν+ 1
2
K−ν− 1

2 ‖w‖,

‖M
KM

2
0 B− 1

2 ζ‖2 � ‖M
KM

2
0 B− 1

2 Āt‖2‖ξ̄‖2 � δ̄2.

Combining the preceding estimates gives the desired assertion. �
Now we can present the proof of theorem 2.1. The proof employs the representation in

theorem 4.1, and follows by directly bounding the involved terms using lemma 3.4 (under
assumption 2.1(b)) and theorem 4.1.

Proof. By lemma 4.1, setting R1 = I and R2 = B−1ζ gives

E[‖eδ(K+1)M‖2] � I0 +

K∑
j=0

I1, j,

12
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with the terms I0 and I1, j given by (4.1) and (4.2), respectively. Now we bound them separately.
By the triangle inequality, assumption 2.1(b) and lemma 3.4, we deduce

I0 = ‖M(K+1)M
0 e0 + (I − M(K+1)M

0 )B−1ζ‖2

� 2‖M(K+1)M
0 e0‖2 + 2‖(I − M(K+1)M

0 )B−1Ātξ̄‖2

� 2c2
ν(K + 1)−2ν‖w‖2 + 2Mc0(K + 1)δ̄2.

Meanwhile, (4.2) with R1 = I gives

I1, j = c2
0

M−1∑
i=1

E[‖M(K− j)M
0 (I − Mi

0)H jM+i(e
δ
jM − B−1ζ)‖2].

Note that by lemma 3.2, the matrices I − Mi
0 and H jM+i are commuting, and H jM+i =

G jM+i+1N jM+i. Thus by lemma 3.3 (with VtM(K− j)M
0 (I − Mi

0)G jM+i+1V being diagonal) and
‖GjM+i+1‖ � 1, we obtain

I1, j = (n − 1)c2
0

M−1∑
i=1

‖M(K− j)M
0 (I − Mi

0)G jM+i+1B(eδjM − B−1ζ)‖2

� nc2
0

M−1∑
i=1

E[‖M(K− j)M
0 B(I − Mi

0)(eδjM − B−1ζ)‖2].

Next by the identity

c0

j−1∑
i=0

Mi
0 = (I − M j

0)B−1,

the trivial inequality (
∑i−1

t=0at)2 � i
∑i−1

t=0a2
t , and ‖M0‖ � 1, we have

I1, j � nc4
0

M−1∑
i=1

E

[
‖M(K− j)M

0 B2
i−1∑
t=0

Mt
0(eδjM − B−1ζ)‖2

]

� nc4
0

M−1∑
i=1

i
i−1∑
t=0

E[‖M(K− j)M
0 BMt

0(BeδjM − ζ)‖2]

� nc4
0

M−1∑
i=1

i2E[‖M(K− j)M
0 B(BeδjM − ζ)‖2].

Since
∑M−1

i=1 i2 � 3−1M3, it follows from theorem 4.1 and (4.4) that

I1, j � 3−1nM3c4
0E[‖M(K− j)M

0 B(BeδjM − ζ)‖2].

� 3−1nM3c4
0‖M

−M
2

0 ‖2‖M
(K− j)M

2
0 B‖2

E

[
‖M

(K− j+1)M
2

0 (BeδjM − ζ)‖2

]

� 3−1ncBM3c4
0c∗‖M

(K− j)M
2

0 B‖2‖M
(K+1)M

2
0 (Beδ0 − ζ)‖2.

13
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This and the inequality (4.5) imply

K∑
j=0

I1, j � 3−1(4 + 2(Mc0‖B‖)2)nMcBc2
0c∗‖M

(K+1)M
2

0 (Beδ0 − ζ)‖2

� (3 + 2(Mc0‖B‖)2)nMcBc2
0c∗

(
22ν‖B‖2c2

ν(K + 1)−2ν‖w‖2 + ‖B‖δ̄2
)
.

The last two estimates together yield

E[‖eδ(K+1)M‖2] �
(
2 + 22ν(3 + 2(Mc0‖B‖)2)nMcBc2

0‖B‖2c∗
)

× c2
ν(K + 1)−2ν‖w‖2 + (2Mc0

+ (3 + 2(Mc0‖B‖)2)nMcBc2
0‖B‖c∗

)
(K + 1)δ̄2.

This completes the proof of the theorem. �

5. Proof of theorem 2.2

This section is devoted to the proof of theorem 2.2, and presents a comparative study on the
variance E[‖eδKM − E[eδKM]‖2] of SVRG iterates with E[‖êδKM − E[êδKM]‖2] of SGD iterates.
First we give a bias-variance decomposition of the SGD iterate x̂δKM , in analogy with lemma
4.1. The representations in lemmas 4.1 and 5.1 facilitate the comparison between the vari-
ance components directly, which, under certain conditions, enables comparing the variance of
SVRG and SGD iterates.

Lemma 5.1. Under assumption 2.1(a) and (c), for any K � 0, let R1 and R2 be measurable
with respect to F c

(K+1)M and commutative with B, M0, {Pk} and {Nk}, for any k � 0. Then
there hold

E[‖R1(êδ(K+1)M − B−1ζ) + R2‖2] = I0 +

K∑
j=0

(I2, j + I3, j),

E[‖R1(êδ(K+1)M − E[êδ(K+1)M])‖2] =
K∑

j=0

(I2, j + I3, j),

with I0 given by (4.1) and I2,j and I3,j given by

I2, j = c2
0

M−1∑
i=0

E

[
‖R1M(K− j)M

0

(
H jM+iM

i
0(êδjM − B−1ζ)

+ H jM+iB
−1ζ + MM−i−1

0 (ζ jM+i − ζ)
)
‖2

]
, (5.1)

I3, j = c4
0

M−1∑
i=1

i−1∑
t=0

E[‖R1M(K− j)M
0 H jM+iM

t
0(ζ jM+i−1−t − ζ)‖2]. (5.2)

Now, we can prove theorem 2.2. This result states that the variance component of the SVRG
iterate xδKM is indeed smaller than that of the SGD iterate x̂δKM , as one may expect from the con-
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struction of VR, and thus the VR step does reduce the variance of the iterate, thereby alleviating
the deleterious effect of the stochastic iteration noise on the convergence of the SVRG iterates.
The proof relies heavily on the explicit representations of the variances for the iterates xδKM and
x̂δKM derived in lemmas 4.1 and 5.1, and employs mathematical induction, certain independence
relations (cf (5.5)–(5.7)) as well as lengthy computation.

Proof. Recall that the assumption on R1 implies that it is commutative with B, M0, {Pk}
and {Nk} for any k � 0, and that in the inequality, R1 and R2 are measurable with respect to
F c

jM (when considering eδjM). These facts will be used extensively without explicit mentioning
below. The proof proceeds by mathematical induction. The case K = 0 is trivial since êδ0 = eδ0.
Now suppose that the assertion holds up to some K, i.e.,

E[‖R1(eδjM − B−1ζ) + R2‖2] � E[‖R1(êδjM − B−1ζ) + R2‖2], j = 0, 1, . . . , K, (5.3)

and we prove it for j = K + 1. By lemmas 4.1 and 5.1, we deduce

E[‖R1(eδ(K+1)M − B−1ζ) + R2‖2] = I0 +

K∑
j=0

I1, j,

E[‖R1(êδ(K+1)M − B−1ζ) + R2‖2] = I0 +

K∑
j=0

(I2, j + I3, j),

with the terms I1, j, I2, j and I3, j are given by (4.2), (5.1) and (5.2), respectively. Thus, it suffices
to show

I1, j � I2, j + I3, j, j = 0, 1, . . . , K. (5.4)

By the inequality (
∑i

t=1ai)2 � i
∑i

t=1a2
i , (A.5) and the identity ‖M−1

0 ‖ = (1 − c0‖B‖)−1, we
have

I1, j = c4
0

M−1∑
i=1

E

[
‖R1M(K− j)M

0 H jM+iB
i−1∑
t=0

Mt
0(eδjM − B−1ζ)‖2

]

� c4
0

M−1∑
i=1

i
i−1∑
t=0

‖M−i
0 ‖2

E

[
‖Mi

0R1M(K− j)M
0 H jM+iBMt

0(eδjM − B−1ζ)‖2
]

� c4
0

M−1∑
i=1

i(1 − c0‖B‖)−2i
i−1∑
t=0

E

[
‖Mi

0R1M(K− j)M
0 H jM+iM

t
0B(eδjM − B−1ζ)‖2

]

� c4
0

M−1∑
i=1

i(1 − c0‖B‖)−2i
i−1∑
t=0

E

[
‖Mi

0R1M(K− j)M
0 H jM+iM

t
0B(êδjM − B−1ζ)‖2

]
,

where the last step is due to the induction hypothesis (5.3). Then by lemma 3.2, adding and sub-
tracting suitable terms, and the triangle inequality, since ‖M0‖ � 1, we deduce (with shorthand
notation c′B = (1 − c0‖B‖)−2(M−1))
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I1, j � c4
0

M−1∑
i=1

i(1 − c0‖B‖)−2i
i−1∑
t=0

E

[
‖R1M(K− j)M+t

0 B

×
(
H jM+iM

i
0(êδjM − B−1ζ) + H jM+iB

−1ζ + MM−i−1
0 (ζ jM+i − ζ)

)
− R1M(K− j)M+t

0

(
H jM+iζ + MM−i−1

0 B(ζ jM+i − ζ)
)
‖2
]

� 2(M − 1)2‖B‖2c′Bc2
0I2, j + c4

0

M−1∑
i=1

i(1 − c0‖B‖)−2i

×
i−1∑
t=0

(
4E[‖R1M(K− j)M+t

0 H jM+iζ‖2]

+ 4E[‖R1M(K− j+1)M+t−i−1
0 B(ζ jM+i − ζ)‖2]

)
.

Now assumption 2.1(c) and the condition on R1 imply that VtR1Ms1
0 Gk+1Ns3

k Bs2V is diagonal
for any s1, s2 � 0, s3 = 0, 1 and k ∈ N. Thus, by lemma 3.3, we obtain

E[‖R1M(K− j)M+t
0 H jM+iζ‖2] = (n − 1)E[‖R1M(K− j)M+t

0 G jM+i+1Bζ‖2], (5.5)

E[‖R1M(K− j+1)M+t−i−1
0 B(ζ jM+i − ζ)‖2]

= (n − 1)E[‖R1M(K− j+1)M+t−i−1
0 Bζ‖2], (5.6)

E[‖R1M(K− j)M+t
0 H jM+i(ζ jM+i−1−t − ζ)‖2]

= (n − 1)E[‖R1M(K− j)M+t
0 H jM+iζ‖2]

= (n − 1)2
E[‖R1M(K− j)M+t

0 G jM+i+1Bζ‖2]. (5.7)

Using the relation H jM+M−1 = N jM+M−1 and (5.7) leads to

I3, j = c4
0

M−2∑
i=1

i−1∑
t=0

E[‖R1M(K− j)M+t
0 H jM+i(ζ jM+i−1−t − ζ)‖2]

+ c4
0

M−2∑
t=0

E[‖R1M(K− j)M+t
0 NjM+M−1(ζ jM+M−2−t − ζ)‖2]

= (n − 1)c4
0

M−2∑
i=1

i−1∑
t=0

E[‖R1M(K− j)M+t
0 H jM+iζ‖2]

+ (n − 1)2c4
0

M−2∑
t=0

E[‖R1M(K− j)M+t
0 Bζ‖2].
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Let II j,i,t = E[‖R1M(K− j)M+t
0 H jM+iζ‖2], and II j,0,t = E[‖R1M(K− j)M+t

0 Bζ‖2]. Similarly, with the
identities (5.5) and (5.6), we deduce

I1, j � 2(M − 1)2‖B‖2c′Bc2
0I2, j + 4c4

0

M−2∑
i=1

i(1 − c0‖B‖)−2i

×
i−1∑
t=0

E[‖R1M(K− j)M+t
0 H jM+iζ‖2]

+ 4c′Bc4
0(M − 1)

M−2∑
t=0

E[‖R1M(K− j)M+t
0 NjM+M−1ζ‖2]

+ 4c4
0

M−1∑
i=1

i(1 − c0‖B‖)−2i

×
i−1∑
t=0

E[‖R1M(K− j+1)M+t−i−1
0 B(ζ jM+i − ζ)‖2]

� 2(M − 1)2‖B‖2c′Bc2
0I2, j + 4(M − 2)cBc4

0

M−2∑
i=1

i−1∑
t=0

II j,i,t

+ 4(n − 1)(M − 1)c′Bc4
0

M−2∑
t=0

E[‖R1M(K− j)M+t
0 Bζ‖2]

+ 4(n − 1)c′Bc4
0

M−1∑
i=1

i
i−1∑
t=0

E[‖R1M(K− j+1)M+t−i−1
0 Bζ‖2].

Note that ‖MM−i−1
0 ‖2 � 1 for any 1 � i � M − 1. The last two terms on the right-hand side of

the inequality, denoted by II, can be bounded by

II � 4(n − 1)c′Bc4
0

(
(M − 1)

M−2∑
t=0

+

M−1∑
i=1

i
i−1∑
t=0

)
E[‖R1M(K− j)M+t

0 Bζ‖2]

= 4(n − 1)c′Bc4
0

M−2∑
t=0

(
M − 1 +

M−1∑
i=t+1

i

)
II j,0,t

� 2(n − 1)(M + 1)2c′Bc4
0

M−2∑
t=0

II j,0,t,

since M − 1 +
∑M−1

i=t+1i � 1
2 (M + 1)2, for 0 � t � M − 2. Consequently,

I1, j � 2(M − 1)2‖B‖2c′Bc2
0I2, j + 4(M − 2)c′Bc4

0

M−2∑
i=1

i−1∑
t=0

II j,i,t

+ 2(n − 1)(M + 1)2c′Bc4
0

M−2∑
t=0

II j,0,t.
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Now the condition (2.3) implies (5.4), which shows the induction step and completes the proof
of the theorem. �

Remark 5.1. For exact data, i.e., δ = 0, ζ = 0, ζ i = 0 for any i � 0, the comparative analysis
can be greatly simplified. Indeed, setting R1 = I and R2 = 0 in the analysis leads to

E[‖e(K+1)M‖2] � I0 +

K∑
j=0

I1, j,

with

I0 = ‖M(K+1)M
0 e0‖2 and I1, j = c2

0

M−1∑
i=1

E[‖M(K− j)M
0 H jM+i(I − Mi

0)e jM‖2].

Straightforward computation with lemma 3.3 gives

I1, j � (n − 1)c4
0

M−1∑
i=1

i2E[‖M(K− j)M
0 G jM+i+1B2e jM‖2]

� (n − 1)(M − 1)2c′Bc4
0‖B‖2

M−1∑
i=1

E[‖M(K− j)M+i
0 G jM+i+1Be jM‖2].

Similarly, lemma 5.1 with R1 = I and R2 = 0 implies

E[‖ê(K+1)M‖2] = I0 +

K∑
j=0

I2, j,

with

I2, j = c2
0

M−1∑
i=0

E[‖M(K− j)M
0 H jM+iM

i
0ê jM‖2]

= (n − 1)c2
0

M−1∑
i=0

E[‖M(K− j)M+i
0 G jM+i+1Bê jM‖2].

When c0‖B‖(M − 1) � (1 − c0‖B‖)(M−1), the conditions for the optimal convergence rate of
SVRG is weaker than that of SGD. With c = c0‖B‖(M − 1) and c1 = (1 − c(M − 1)−1)(M−1),
the conditions can be satisfied if c � c1. This short analysis clearly shows the beneficial effect
of VR on the variance of the iterates xδk, and hence SVRG allows larger step size while
maintaining the optimal convergence.

6. Numerical experiments and discussions

In this section, we provide numerical experiments to complement the theoretical findings in
section 2. The experimental setting is identical with that in [18]. Specifically, we employ three
academic examples, i.e., s-phillips (mildly ill-posed), s-gravity (severely ill-posed)
and s-shaw (severely ill-posed), generated from phillips, gravity and shaw, taken
from the MATLAB package Regutools [10] (available at http://people.compute.dtu.dk/pcha/
Regutools/, last accessed on 20 August 2020), all of size n = m = 1000. To explicitly control
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the regularity index ν in assumption 2.1(b), we generate x† by x† = ‖(AtA)νxe‖−1
�∞(AtA)νxe,

where xe is the exact solution given by the package, and ‖ · ‖�∞ denotes the Euclidean maxi-
mum norm. The index ν in assumption 2.1(b) is slightly larger than the one defined above. The
corresponding exact data y† is given by y† = Ax† and the noise data yδ generated by

yδi := y†i + ε‖y†‖�∞ξi, i = 1, . . . , n,

where ξis follow the standard Gaussian distribution, and ε > 0 is the relative noise level. The
maximum number of epochs is fixed at 9 × 105, where one epoch refers to nM

n+M SVRG itera-
tions or n SGD iterations so that the computational complexity of each method is comparable.
All statistical quantities are computed from 100 runs. We present also numerical results for the
LM [7, chapter 6] (with a step size ‖A‖−2), since it enjoys order optimality. All methods are
initialized with x0 = 0.

The accuracy of the reconstructions is measured by the mean squared errors esvrg =
E[‖xδk∗ − x†‖2], esgd = E[‖x̂δk∗ − x†‖2] for SVRG and SGD, respectively, and the squared error
elm = ‖xδk∗ − x†‖2 for LM. The stopping index k∗ (measured in epoch count) is taken such that
the error is smallest along the respective iteration trajectory, due to a lack of rigorous a pos-
teriori stopping rules for SVRG and SGD (the discrepancy principle is indeed convergent for
SGD, without a rate [15]). The constant c in the step size c0 is c = (maxi(‖ai‖2))−1, so that
c0 = O(cM−1) for SVRG and c0 = O(cn−1) for SGD.

6.1. Numerical results for general A

The numerical results for the three examples with different regularity index ν and different
noise levels are shown in tables 1–3, where the employed constant step size is determined in
order to achieve optimal convergence (while maintaining good computational efficiency). For
each fixed regularity index ν, all the errors esvrg, esgd and elm decrease to zero as the (relative)
noise level ε tends to zero with a certain rate, and the precise convergence rate depends on the

index ν roughly as the theoretical prediction O(δ
4ν

2ν+1 ) (cf theorem 2.1 for SVRG, and remark
2.1 for SGD). Generally a larger ν leads to a faster convergence with respect to δ as the theory
indicates, but the required number of iterations to reach the optimal error may not necessarily
decrease, due to the use of smaller step sizes. The latter contrasts sharply with that for LM, for
which a smoother exact solution x† requires fewer iterations to reach optimal accuracy (when δ
is fixed). Note that for both SVRG and SGD, optimal convergence holds only for a sufficiently
small step size, and otherwise they suffer from the undesirable saturation phenomenon, i.e., the
error decay may saturate when the index ν exceeds a certain value, which also concurs with
the observation for SGD in [15, 18].

Now we examine more closely the convergence behavior of the SVRG iterates, and compare
it with that of SGD and LM. For all these three examples and all ν values, both SVRG and SGD
can achieve an accuracy comparable with that by LM, thereby achieving the order optimality
of these methods, when the step size c0 for SVRG and SGD is taken to be of orderO(M−1) and
O(n−1), respectively. This observation agrees well with the analysis in theorem 2.1. Generally,
the larger the index ν is, the smaller the value c0 should be taken in order to achieve the optimal
rate. This can also be seen partly from the constant 22νcν in the error bound in theorem 2.1. Next
we discuss the computational complexity. For all three examples, SVRG takes fewer epochs
to reach the optimal error than SGD for a large index ν, and LM requires fewest iterations
among the three methods. For small ν, SVRG stops earlier than LM, and can be faster than
SGD for suitably chosen c0 (see, e.g., the case ν = 0 in table 1). These empirical observations
agree with the fact that SVRG hybridizes SGD and LM. Since in practice the index ν is rarely
known, SVRG is an excellent choice, due to its low sensitivity with respect to ν.
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Table 1. Comparison between SVRG (with M = 100), SGD and LM for s-phillips.

Method SVRG SGD LM

ν ε c0 esvrg ksvrg c0 esgd ksgd elm klm

0 1 × 10−3 5c/M 1.67 × 10−2 4134.35 4c/n 1.66 × 10−2 4691.28 1.65 × 10−2 5851
1 × 10−2 5c/M 1.31 × 10−1 180.95 4c/n 1.29 × 10−1 204.90 1.28 × 10−1 249
5 × 10−2 5c/M 5.42 × 10−1 96.25 4c/n 5.42 × 10−1 108.90 5.34 × 10−1 136

1 1 × 10−3 1.5c/M 3.31 × 10−4 430.65 c/n 3.48 × 10−4 539.19 2.28 × 10−4 157
1 × 10−2 1.5c/M 5.96 × 10−3 41.25 c/n 6.64 × 10−3 57.81 5.12 × 10−3 16
5 × 10−2 1.5c/M 3.22 × 10−2 21.45 c/n 3.52 × 10−2 29.40 3.16 × 10−2 8

2 1 × 10−3 c/(2M) 7.16 × 10−5 155.10 c/(30n) 7.02 × 10−5 2115.54 3.22 × 10−5 19
1 × 10−2 c/(2M) 1.07 × 10−3 68.75 c/(30n) 1.09 × 10−3 938.70 9.82 × 10−4 8
5 × 10−2 c/(2M) 2.90 × 10−2 46.75 c/(30n) 2.92 × 10−2 636.51 1.57 × 10−2 5

4 1 × 10−3 c/(5M) 3.05 × 10−5 202.95 c/(30n) 9.77 × 10−5 1966.38 1.30 × 10−5 8
1 × 10−2 c/(5M) 2.41 × 10−3 142.45 c/(30n) 2.56 × 10−3 785.94 1.42 × 10−3 5
5 × 10−2 c/(5M) 5.20 × 10−2 110.00 c/(30n) 5.23 × 10−2 596.73 2.49 × 10−2 3
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Table 2. Comparison between SVRG (with M = 100), SGD and LM for s-gravity.

Method SVRG SGD LM

ν ε c0 esvrg ksvrg c0 esgd ksgd elm klm

0 1 × 10−3 c/10 9.50 × 10−2 5495.05 c/20 9.37 × 10−2 1000.50 9.39 × 10−2 27201
1 × 10−2 c/10 5.98 × 10−1 217.80 c/20 5.81 × 10−1 34.11 5.73 × 10−1 793
5 × 10−2 c/10 2.16 × 100 35.75 c/20 2.23 × 100 5.61 2.07 × 100 149

1 1 × 10−3 c/(5M) 5.78 × 10−4 1019.15 c/(30n) 5.90 × 10−4 5604.80 5.68 × 10−4 99
1 × 10−2 c/(5M) 1.14 × 10−2 246.40 c/(30n) 1.15 × 10−2 1356.87 1.12 × 10−2 24
5 × 10−2 c/(5M) 6.47 × 10−2 112.20 c/(30n) 6.48 × 10−2 613.41 6.19 × 10−2 11

2 1 × 10−3 c/(10M) 7.57 × 10−5 474.10 c/(50n) 1.32 × 10−4 2441.85 6.82 × 10−5 23
1 × 10−2 c/(10M) 1.80 × 10−3 229.90 c/(50n) 1.92 × 10−3 1047.03 1.47 × 10−3 10
5 × 10−2 c/(10M) 2.32 × 10−2 156.75 c/(50n) 2.35 × 10−2 708.72 1.61 × 10−2 6

4 1 × 10−3 c/(10M) 2.51 × 10−5 250.80 c/(60n) 1.03 × 10−4 2212.26 1.30 × 10−5 10
1 × 10−2 c/(10M) 1.14 × 10−3 170.50 c/(60n) 1.29 × 10−3 941.19 6.42 × 10−4 6
5 × 10−2 c/(10M) 2.23 × 10−2 138.05 c/(60n) 2.25 × 10−2 746.67 8.58 × 10−3 3
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Table 3. Comparison between SVRG (with M = 100), SGD and LM for s-shaw.

Method SVRG SGD LM

ν ε c0 esvrg ksvrg c0 esgd ksgd elm klm

0 1 × 10−3 c 2.81 × 10−1 30246.15 c 2.81 × 10−1 2704.92 2.81 × 10−1 760 983
1 × 10−2 c 6.92 × 10−1 503.25 c 7.08 × 10−1 42.42 6.67 × 10−1 12 385
5 × 10−2 c 3.01 × 100 139.15 c 3.91 × 100 10.59 2.91 × 100 3392

1 1 × 10−3 c/M 6.80 × 10−5 579.15 c/(2n) 7.05 × 10−5 1047.60 5.95 × 10−5 144
1 × 10−2 c/M 5.35 × 10−3 222.75 c/(2n) 5.42 × 10−3 394.00 5.21 × 10−3 54
5 × 10−2 c/M 1.50 × 10−1 148.50 c/(2n) 1.50 × 10−1 271.00 1.47 × 10−1 36

2 1 × 10−3 c/(2M) 6.94 × 10−5 434.50 c/(20n) 7.08 × 10−5 4147.00 6.36 × 10−5 50
1 × 10−2 c/(2M) 5.80 × 10−3 246.95 c/(20n) 5.80 × 10−3 2242.50 5.71 × 10−3 30
5 × 10−2 c/(2M) 7.84 × 10−2 52.80 c/(20n) 7.79 × 10−2 480.80 7.08 × 10−2 5

4 1 × 10−3 c/(4M) 3.83 × 10−5 184.25 c/(30n) 5.79 × 10−5 1966.38 3.13 × 10−5 9
1 × 10−2 c/(4M) 1.96 × 10−3 121.55 c/(30n) 1.99 × 10−3 828.45 1.01 × 10−3 4
5 × 10−2 c/(4M) 3.61 × 10−2 95.15 c/(30n) 3.61 × 10−2 645.75 6.45 × 10−3 1
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Figure 1. The convergence of the bias or variance with generic term e versus iteration
number for the examples with ν = 1. The rows from top to bottom rows are for ε = 0,
ε = 1 × 10−3 and ε = 5 × 10−2, respectively.

To verify the analysis in section 5, we examine the bias bias = ‖E[xδk] − x†‖2 = ‖E[x̂δk] −
x†‖2, and the variances varsvrg = E[‖xδk − E[xδk]‖2] and varsgd = E[‖x̂δk − E[x̂δk]‖2]. The
numerical results are shown in figure 1, for the examples with ν = 1, with the step size c0

for SVRG used for both methods. Although not presented, we note that any other suitable
c0 under condition (2.3) leads to nearly identical observations. Note that the iteration index k
in the figures refers to the exact number of iterations (not counted in epoch), to facilitate the
comparison of the convergence behavior. For both exact and noisy data, when the iteration
number k is fixed, the SVRG variance varsvrg is always orders of magnitude smaller than the
SGD variance varsgd, which is fully in line with theorem 2.2. This shows clearly the role of the
VR effect, which in particular allows using larger step size. Note that the frequency M = 100
is selected by the condition (2.2) for optimal accuracy, but actually does not satisfy condition
(2.3). Nonetheless, we still observe the assertion in theorem 2.2.

Further, in the experiments, bias (which is equal to the error elm of LM) is always much
larger than the SVRG variance varsvrg (of similar magnitude during a few iterations before
stopping), and thus the variance has little influence on the optimal accuracy, especially for
noisy data. In contrast, the SGD variance varsgd dominates the error sometimes and causes the
undesirable saturation phenomenon. These observations also agree with theorem 2.1, which
states that the saturation of SVRG does not exist by choosing suitable frequency M and initial
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Table 4. SVRG with different M for s-phillips.

ν = 0 ν = 2

M ε c0 e k c0 e k

0.1n 1 × 10−3 5c/M 1.67 × 10−2 4134.35 c/(2M) 7.16 × 10−5 155.10
1 × 10−2 5c/M 1.31 × 10−1 180.95 c/(2M) 1.07 × 10−3 68.75
5 × 10−2 5c/M 5.42 × 10−1 96.80 c/(2M) 2.90 × 10−2 46.75

0.5n 1 × 10−3 5c/M 1.66 × 10−2 5650.35 c/(2M) 4.18 × 10−5 204.30
1 × 10−2 5c/M 1.31 × 10−1 125.70 c/(2M) 9.90 × 10−4 93.30
5 × 10−2 5c/M 5.40 × 10−1 66.15 c/(2M) 2.90 × 10−2 63.75

n 1 × 10−3 10c/M 1.67 × 10−2 3757.40 c/M 5.83 × 10−5 139.50
1 × 10−2 10c/M 1.29 × 10−1 163.80 c/M 1.04 × 10−3 62.20
5 × 10−2 10c/M 5.38 × 10−1 87.40 c/M 2.92 × 10−2 42.50

2n 1 × 10−3 15c/M 1.67 × 10−2 3781.35 1.5c/M 7.63 × 10−5 144.38
1 × 10−2 15c/M 1.30 × 10−1 164.70 1.5c/M 1.08 × 10−3 62.25
5 × 10−2 15c/M 5.39 × 10−1 87.08 1.5c/M 2.93 × 10−2 42.53

5n 1 × 10−3 25c/M 1.66 × 10−2 4519.86 2c/M 7.33 × 10−5 214.32
1 × 10−2 25c/M 1.29 × 10−1 197.28 2c/M 1.05 × 10−3 93.60
5 × 10−2 25c/M 5.40 × 10−1 104.64 2c/M 2.90 × 10−2 63.84

step size c0. They also confirm the theoretical prediction in remark 5.1, i.e., the condition for
the optimality of SVRG is weaker than that of SGD, partly concurring with theorem 2.2. These
empirical observations show clearly the beneficial effect of incorporating VR into stochastic
iterative methods from the perspective of regularization theory.

6.2. Influence of M

SVRG involves one free parameter, the frequency M of evaluating the full gradient. Clearly, the
parameter M will influence the overall computational efficiency of SVRG: ideally one would
like to make it as large as possible, but a too large M would bring too little VR into SGD
iteration. The theoretical analysis in this work indicates that SVRG can achieve optimal con-
vergence rates when M � O(n

1
2 ) (cf remark 2.1), and that M � O(n

1
2 ) is sufficient for ensuring

the SVRG variance smaller than SGD variance (cf remark 2.2). Nonetheless, a complete the-
oretical analysis of the influence of the frequency M on the performance of SVRG is still
unknown. To gain insight, we present the numerical results for s-phillipswith noisy data
by SVRG with different M ranging from 0.1n to 5n in table 4. Note that the choices 2n and
5n were recommended for convex and nonconvex optimization problems, respectively [19].
The numerical results indicate that SVRG with all these frequencies can actually achieve an
accuracy comparable with that by the LM when the constant step size is chosen suitably. In
general, a larger M requires smaller step sizes in order to maintain the optimal convergence
rate, agreeing well with the theoretical analysis in section 4. Interestingly, the overall computa-
tional complexity for these different M does not vary too much. Thus, the choice of M within a
certain range actually has little impact on the performance of SVRG. Although not presented,
the same observations can be drawn from the numerical results for the examples s-shaw and
s-gravity.
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Table 5. Comparison between SVRG (with M = 100) for s-phillipswith A and Ã.

Method SVRG with A SVRG with Ã

ν ε c0 e k e k

0 1 × 10−3 5c/M 1.67 × 10−2 4134.35 1.65 × 10−2 4129.40
1 × 10−2 5c/M 1.31 × 10−1 180.95 1.28 × 10−1 176.55
5 × 10−2 5c/M 5.42 × 10−1 96.80 5.36 × 10−1 96.25

1 1 × 10−3 1.5c/M 3.31 × 10−4 430.65 2.29 × 10−4 372.35
1 × 10−2 1.5c/M 5.96 × 10−3 41.25 5.32 × 10−3 40.70
5 × 10−2 1.5c/M 3.22 × 10−2 21.45 3.17 × 10−2 20.90

2 1 × 10−3 c/(2M) 7.16 × 10−5 155.10 3.49 × 10−5 148.50
1 × 10−2 c/(2M) 1.07 × 10−3 68.75 9.77 × 10−4 68.75
5 × 10−2 c/(2M) 2.90 × 10−2 46.75 2.89 × 10−2 46.75

4 1 × 10−3 c/(5M) 3.05 × 10−5 202.95 2.46 × 10−5 201.30
1 × 10−2 c/(5M) 2.41 × 10−3 142.45 2.41 × 10−3 142.45
5 × 10−2 c/(5M) 5.20 × 10−2 110.00 5.21 × 10−2 110.00

6.3. On assumption 2.1(c)

Assumption 2.1(c) is crucial to the analysis in sections 4 and 5. It is natural to ask whether the
assumption is actually necessary. We examine the issue numerically as follows. Let A = UΣVt

be the SVD of A, and Ã by Ã = UtA, and then replace A in (1.1) by Ã and yδ by ỹδ = Utyδ .
Then preconditioned system Ãx = ỹδ satisfies assumption 2.1(c). The numerical results for
s-phillips are shown in table 5, and the trajectories of eδk for the examples with ν = 1 in
figure 2. It is observed that for noisy data, the SVRG results for A and Ã are nearly identical with
each other in terms of the accuracy, stopping index, and convergence trajectory. For exact data
(cf the top row of figure 2), the trajectories overlap up to a certain point around 1 × 10−3 for
s-phillips and 1 × 10−5 for s-gravity and s-shaw, which can be further decreased
by choosing smaller c0. These observations resemble closely the empirical observations for
SGD, see, especially figure 4.3 of [18]. Thus, assumption 2.1(c) is probably due to a limi-
tation of the proof technique, and there might be alternative proof strategies that circumvent
the restriction.

Data availability statement

All data that support the findings of this study are included within the article (and any
supplementary files).

Appendix A. Technical proofs

In this appendix, we collect the proofs of several technical estimates.

A.1. Proof of lemma 3.4

The proof relies on spectral decomposition. Let Sp(B) be the spectrum of B. Then by direct
computation, we have

cs
0‖BsMKM

0 ‖ = cs
0 sup
λ∈Sp(B)

|λs(1 − c0λ)KM| � sup
a∈[0,1]

as(1 − a)KM.
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Figure 2. The convergence of the error e versus iteration number for the examples with
ν = 1, computed using A and Ã. The rows from top to bottom rows are for ε = 0, ε = 1
× 10−3 and ε = 5 × 10−2, respectively.

Let g(a) = as(1 − a)KM . Then g′(a) = (s(1 − a) − KMa) as−1(1 − a)KM−1, so that g(a)
achieves its maximum over the interval [0, 1] at a∗ = s(s + KM)−1. Consequently,

cs
0‖BsMKM

0 ‖ � g(a∗) =

(
KM

s + KM

)s+KM

ss(KM)−s � ssM−sK−s.

This shows the second estimate. Similarly,

c−t
0 ‖B−t(I − MKM

0 )‖ = sup
λ∈Sp(B)

|(c0λ)−t(1 − (1 − c0λ)KM)|

� sup
a∈[0,1]

a−t(1 − (1 − a)KM).

Note that for any a ∈ [0, 1], there holds 1 − (1 − a)KM � 1, and mint∈[0,1](aKM)t =
min(aKM, 1), since (aKM)t is monotone with respect to t. Let h(a) := aKM − (1 − (1 − a)KM)
which is increasing over [0, 1], that implies h(a) � h(0) = 0. Thus

1 − (1 − a)KM � min(aKM, 1) � (aKM)t.

This shows the first estimate and completes the proof of the lemma.
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A.2. Proof of proposition 3.1

To prove proposition 3.1, we first give a representation of the (epochwise) SVRG iterate xδKM .

Lemma A.1. The following recursion holds for any K � 0,

eδ(K+1)M = (MM
0 − LKB)eδKM +

(
c0

M−1∑
i=0

Mi
0 + LK

)
ζ, (A.1)

where the random matrix LK is given by

LK = c0

M−1∑
i=1

HKM+i(I − Mi
0)B−1. (A.2)

Proof. Note that the SVRG iterate xδk+1, k = 0, 1, . . . , can be rewritten as

xδk+1 = xδk − c0

(
(aik , eδk − eδkM

)aik + BeδkM
− ζ

)
= xδk − c0aik at

ik
(eδk − eδkM

) − c0(BeδkM
− ζ).

Using the definitions of Pk and Nk, the error eδk ≡ xδk − x† of the SVRG iterate xδk satisfies

eδk+1 = (I − c0aik at
ik

)eδk + c0(aikat
ik
− B)eδkM

+ c0ζ = Pkeδk − c0NkeδkM
+ c0ζ.

(A.3)

For any K � 0, it follows from (A.3) and direct computation that

eδKM+1 = PKMeδKM − c0NKMeδKM + c0ζ = M0eδKM + c0ζ. (A.4)

Meanwhile, setting k = (K + 1)M − 1 in the recursion (A.3), then repeatedly applying the
recursion (A.3) and using the definitions of the matrices Gk and Hk lead to

eδ(K+1)M = P(K+1)M−1eδ(K+1)M−1 − c0N(K+1)M−1eδKM + c0ζ

= G(K+1)M−2eδ(K+1)M−2 − c0
(
P(K+1)M−1N(K+1)M−2

+ N(K+1)M−1
)

eδKM + c0(P(K+1)M−1 + I)ζ

= · · · = GKM+1eδKM+1 − c0

M−1∑
i=1

HKM+ie
δ
KM + c0

M∑
i=2

GKM+iζ.

This identity and (A.4) imply that for any K � 0,

eδ(K+1)M =

(
GKM+1M0 − c0

M−1∑
i=1

HKM+i

)
eδKM +

(
c0

M∑
i=1

GKM+i

)
ζ.

Next we simplify the two terms in the brackets using the identity (3.3). It follows directly from
(3.3) that

GKM+1M0 − c0

M−1∑
i=1

HKM+i = MM
0 − c0

M−1∑
i=1

HKM+i(I − Mi
0).
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Similarly, by the identity (3.3), we deduce

c0

M∑
i=1

GKM+i = c0I + c0

M−1∑
i=1

⎛
⎝MM−i

0 + c0

M−i−1∑
j=0

HKM+i+ jM
j
0

⎞
⎠

= c0

M∑
i=1

MM−i
0 + c2

0

M−1∑
i=1

M−i−1∑
j=0

HKM+i+ jM
j
0

= c0

M−1∑
i=0

Mi
0 + c2

0

M−1∑
i=1

HKM+i

⎛
⎝ i−1∑

j=0

M j
0

⎞
⎠

= c0

M−1∑
i=0

Mi
0 + c0

M−1∑
i=1

HKM+i(I − Mi
0)B−1,

where the last line follows from the identity

c0

j−1∑
i=0

Mi
0 = (I − M j

0)B−1. (A.5)

Combining the preceding identities completes the proof of the lemma. �

Now we can give the proof of proposition 3.1.

Proof. By the definitions of the matrices Ni and Gi+1, they are independent. Thus, there hold

E[Hi] = E[Gi+1]E[Ni] = 0 and E[L j] = 0.

Then by lemma A.1, we have

E[eδ(K+1)M] = MM
0 E[eδKM] + c0

M−1∑
i=0

Mi
0ζ.

Repeatedly applying this identity gives

E[eδ(K+1)M] = MM
0

(
MM

0 E[eδ(K−1)M] + c0

M−1∑
i=0

Mi
0ζ

)
+ c0

M−1∑
i=0

Mi
0ζ

= M2M
0 E[eδ(K−1)M] + c0

2M−1∑
i=0

Mi
0ζ = · · · = M(K+1)M

0 eδ0

+ c0

(K+1)M−1∑
i=0

Mi
0ζ.

This and the identity (A.5) show the expression for E[eδKM]. Let zK := eδKM − E[eδKM]. Then for
any K � 0, it follows from lemma A.1 that

zK+1 = MM
0 zK + RK , with RK := LK(ζ − BeδKM),
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and z0 = 0. Repeatedly applying the recursion directly gives

zK+1 = M(K+1)M
0 z0 +

K∑
j=0

M jM
0 RK− j =

K∑
j=0

M(K− j)M
0 R j.

This completes the proof of the proposition. �

A.3. Proof of proposition 3.2

The following recursion is direct from the definition of SGD iteration in (1.3)

êδk+1 = (I − c0aik at
ik

)êδk + c0ξik aik = Pkêδk + c0ζk.

Repeatedly applying the recursion and using the identity (3.3) (and its proof) yield that for any
K � 0,

êδ(K+1)M = GKM+1PKMêδKM + c0

M−1∑
i=0

GKM+i+1ζKM+i

=

(
MM

0 + c0

M−1∑
i=0

HKM+iM
i
0

)
êδKM + c0ζ(K+1)M−1

+ c0

M−1∑
i=1

(
MM−i

0 + c0

M−i−1∑
t=0

HKM+i+tM
t
0

)
ζKM+i−1.

Since E[HKM+i] = 0, for i = 0, . . . , M − 1, and HKM+i+t, t � 0, and ζKM+i−1 are independent,
by the identity (A.5),

E[êδ(K+1)M] = MM
0 E[êδKM] + c0

M−1∑
i=0

Mi
0ζ

= M(K+1)M
0 êδ0 +

(
I − M(K+1)M

0

)
B−1ζ.

This gives the desired expression of E[x̂δKM]. Next, the variance component êδ(K+1)M −
E[êδ(K+1)M] is given by

êδ(K+1)M − E[êδ(K+1)M] = MM
0 (êδKM − E[êδKM]) + c0

M−1∑
i=0

HKM+iM
i
0êδKM

+ c0

M∑
i=1

MM−i
0 (ζKM+i−1 − ζ) + c2

0

M−1∑
i=1

M−i−1∑
t=0

HKM+i+tM
t
0ζKM+i−1

= c0

K∑
j=0

M−1∑
i=0

M(K− j)M
0 HjM+iM

i
0êδjM + c0

K∑
j=0

M∑
i=1

M(K− j+1)M−i
0 (ζ jM+i−1 − ζ)

+ c2
0

K∑
j=0

M−1∑
i=1

M−i−1∑
t=0

M(K− j)M
0 HjM+i+tM

t
0(ζ jM+i−1 − ζ)

+ c2
0

K∑
j=0

M−1∑
i=1

M−i−1∑
t=0

M(K− j)M
0 HjM+i+tM

t
0ζ.
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Then it follows from the identity (A.5) that

c0

M−1∑
i=1

M−i−1∑
t=0

H jM+i+tM
t
0 = c0

M−1∑
i=1

H jM+i

(
i−1∑
t=0

Mt
0

)

=

M−1∑
i=1

H jM+i(I − Mi
0)B−1.

Finally we derive

êδ(K+1)M − E[êδ(K+1)M] = c0

K∑
j=0

M−1∑
i=0

M(K− j)M
0 H jM+iM

i
0êδjM

+ c0

K∑
j=0

M−1∑
i=0

M(K− j+1)M−i−1
0 (ζ jM+i − ζ)

+ c2
0

K∑
j=0

M−2∑
i=0

M−i−2∑
t=0

M(K− j)M
0 H jM+i+t+1Mt

0(ζ jM+i − ζ)

+ c0

K∑
j=0

M−1∑
i=1

M(K− j)M
0 H jM+i(I − Mi

0)B−1ζ

= c0

K∑
j=0

M−1∑
i=0

M(K− j)M
0

(
H jM+i

(
Mi

0êδjM

+ (I − Mi
0)B−1ζ

)
+ MM−i−1

0 (ζ jM+i − ζ)
)

+ c2
0

K∑
j=0

M−2∑
i=0

M−i−2∑
t=0

M(K− j)M
0 H jM+i+t+1Mt

0(ζ jM+i − ζ).

This completes the proof of the proposition.

A.4. Proof of lemma 4.1

The proof employs the standard bias-variance decomposition and certain independence. By
proposition 3.1, the following identities hold

E[R1(eδ(K+1)M − B−1ζ) + R2|F c
(K+1)M]

= R1(M(K+1)M
0 eδ0 − B−1ζ) + R2,

R1(eδ(K+1)M − B−1ζ) + R2 − E[R1(eδ(K+1)M − B−1ζ) + R2|F c
(K+1)M]

= R1(eδ(K+1)M − E[eδ(K+1)M]) = R1

K∑
j=0

M(K− j)M
0 L j(ζ − BeδjM),

where the random matrices L j are defined in (A.2). Then we claim the following identity for
any i, i′ = 0, . . . , M − 1,

E[〈H jM+ie
δ
jM , H j′M+i′e

δ
j′M〉] = 0, if i 	= i′ or j 	= j′. (A.6)
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Clearly, it suffices to analyze the two cases 0 � i < i′ � M − 1, and j < j′ and 0 � i, i′ �
M − 1 separately. Indeed, for any 0 � i < i′ � M − 1, the random matrix N jM+i is independent
of G jM+i+1eδjM and NjM+i′G jM+i′+1eδjM. Thus, using the identity E jM+i[NjM+i] = 0, for any i =
0, . . . , M − 1, we obtain

E jM+i[〈H jM+ie
δ
jM , H jM+i′e

δ
jM〉]

= E jM+i[〈NjM+iG jM+i+1eδjM, NjM+i′G jM+i′+1eδjM〉]

= 〈E jM+i[NjM+i]G jM+i+1eδjM, NjM+i′G jM+i′+1eδjM〉 = 0.

Similarly, for any j < j′ and 0 � i, i′ � M − 1, the random matrix N j′M+i′ is independent of
NjM+iG jM+i+1eδjM and G j′M+i′+1eδj′M , and hence

E j′M+i′[〈H jM+ie
δ
jM, H j′M+i′e

δ
j′M〉]

= E j′M+i′ [〈NjM+iG jM+i+1eδjM , Nj′M+i′G j′M+i′+1eδj′M〉]

= 〈NjM+iG jM+i+1eδjM,E j′M+i′[Nj′M+i′]G j′M+i′+1eδj′M〉 = 0.

The desired claim (A.6) follows by taking full conditional of the last two identities. Note that by
assumption, R1 is independent of eδ(K+1)M − E[eδ(K+1)M]. Then the bias-variance decomposition
and the claim (A.6) imply

E[E[‖R1(eδ(K+1)M − B−1ζ) + R2‖2|F c
(K+1)M]]

= I0 + E

⎡
⎣‖R1

K∑
j=0

M(K− j)M
0 L1

j(ζ − BeδjM)‖2

⎤
⎦

= I0 + c2
0

K∑
j=0

M−1∑
i=1

E[‖R1M(K− j)M
0 H jM+i(I − Mi

0)(eδjM − B−1ζ)‖2].

This and the definitions of the terms I0 and I1, j complete the proof of the lemma.

A.5. Proof of lemma 5.1

The proof of the lemma is similar to lemma 4.1, and employs suitable independence relation
crucially. By proposition 3.2 and the standard bias-variance decomposition, we have

E[‖R1(êδ(K+1)M − B−1ζ) + R2‖2] = I0 + E[‖R1(êδ(K+1)M − E[êδ(K+1)M])‖2],

with

êδ(K+1)M − E[êδ(K+1)M] :=
K∑

j=0

M−1∑
i=0

d j,i,
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where d j,i, in view of proposition 3.2, are given by

d j,i = sgn(M − 1 − i)c2
0

M−i−2∑
t=0

M(K− j)M
0 H jM+i+t+1Mt

0(ζ jM+i − ζ)

+ c0M(K− j)M
0

(
H jM+i

(
Mi

0êδjM + (I − Mi
0)B−1ζ

)
+ MM−i−1

0 (ζ jM+i − ζ)
)

:=
M−i−2∑

t=0

d j,i,t + d j,i,−1,

where the notation sgn(·) denotes the sign function with the convention sgn(0) = 0. Next
we repeat the argument for deriving (4.2), and claim that E jM+i[R1d j,i] = 0 and d j,i|F jM+i ∪
F c

jM+i+1 is independent of d j′,i′ |F jM+i ∪ F c
jM+i+1 for any j 	= j′ or i 	= i′ where 0 � j′ �

j � K, 0 � i, i′ � M − 1. Indeed, the random variable d j′,i′ is measurable with respect to
F jM+i ∪ F c

jM+i+1. Then the direct computation using the identities E jM+i[ζ jM+i − ζ] = 0 and
E jM+i[H jM+i] = 0 implies that for any 0 � j � K and 0 � i � M − 1, the following identity
holds

E jM+i[R1d j,i] = sgn(M − 1 − i)c2
0

M−i−2∑
t=0

R1M(K− j)M
0

× H jM+i+t+1Mt
0E jM+i[ζ jM+i − ζ] + c0R1M(K− j)M

0

×
(
E jM+i[H jM+i]

(
Mi

0êδjM + (I − Mi
0)B−1ζ

)
+ MM−i−1

0 E jM+i[ζ jM+i − ζ]
)
= 0.

Thus we derive

E[‖R1(êδ(K+1)M − E[êδ(K+1)M])‖2] =
K∑

j=0

M−1∑
i=0

E[‖R1d j,i‖2].

Similarly, for fixed j, i and any 0 � t, t′ � M − i − 2, E[d j,i,t|F jM+i+t+1] = 0 and
d j,i,t|F jM+i+t+1 is independent of d j,i,t′ |F jM+i+t+1 when t > t′. Consequently,

E[‖R1d j,i‖2] =
M−i−2∑
t=−1

E[‖R1d j,i,t‖2].

Thus, we obtain

E[‖R1(êδ(K+1)M − E[êδ(K+1)M])‖2]

= c2
0

K∑
j=0

M−1∑
i=0

E

[
‖R1M(K− j)M

0

(
H jM+i

(
Mi

0êδjM + (I − Mi
0)B−1ζ

)

+ MM−i−1
0 (ζ jM+i − ζ)

)
‖2

]

+ c4
0

K∑
j=0

M−2∑
i=0

M−i−2∑
t=0

E[‖R1M(K− j)M
0 H jM+i+t+1Mt

0(ζ jM+i − ζ)‖2].
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Reorganizing the last summation gives

M−2∑
i=0

M−i−2∑
t=0

E[‖R1M(K− j)M
0 H jM+i+t+1Mt

0(ζ jM+i − ζ)‖2]

=

M−1∑
i=1

i−1∑
t=0

E[‖R1M(K− j)M
0 H jM+iM

t
0(ζ jM+i−1−t − ζ)‖2].

This completes the proof of the lemma.
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