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A variety of effective methods have been developed for the numerical
reconstruction of scatterers in inverse scattering problems. One type of such
methods is based on some indicator functions which show significantly different
values inside and outside the scatterers. In this article, we propose a parallel radial
bisection algorithm for efficiently imaging the shapes of scatterers based on the
indicator methods. We show that the algorithm can essentially reduce the
computational complexity of the existing indicator methods, in fact it has optimal
computational complexity that does not depend on the space dimensions of the
concerned physical problems, namely the complexity is the same for any
dimensions. Such space-dimension independence is a significant advantage of the
method in three-dimensional applications. The method is easy to implement and
overcomes some dominant drawbacks of several existing reconstruction methods
for inverse scattering problems.

Keywords: radial bisection method; inverse obstacle scattering problems; optimal
computational complexity

1. Introduction

This work investigates some efficient numerical methods to reconstruct the shapes of
scatterers from the measurement of scattered fields in inverse scattering problems. The
shape reconstruction finds wide applications in geophysics, medicine, nondestructive
testing and biological studies, and a variety of numerical methods have been developed.
Among all the existing methods, one popular and effective type of methods is based on
some indicator functions that show significantly different values inside and outside the
scatterer. Using such indicators, one can determine if a sampling point lies inside or
outside the scatterer, thus estimating its location and geometric shape. Among all the
indicator methods, the linear sampling type methods have been widely studied and
extended in several directions; we refer to two comprehensive reviews [1,2] on the topics.
Many variants of the indicator function methods were proposed, such as the probe method
[3,4], the singular source method [5], the gap function method [6], the linear sampling
method (LSM) [7–10] and the generalized dual space indicator method (GDSIM) [11]. In
this work, we shall present a novel method to speed up the aforementioned indicator
methods for more efficiently imaging the shape of the scatterers. For the sake of
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exposition, we shall consider only the inverse acoustic obstacle scattering by time-
harmonic acoustic waves in this work, but our method can be equally applied to other
inverse problems, such as the electromagnetic obstacle scattering and inverse medium
scattering. Also, we will take two indicator function methods, the LSM and the GDSIM,
as examples to describe our new method for the inverse scattering problems.

First we describe the LSM. Consider a bounded obstacle : with a smooth boundary
embedded in a domain D�R

N(N¼ 2, 3), which may contain multiple separated obstacle
components. Given an incident field ui, the presence of the obstacle will give rise to a
scattered field us. We take the incident wave to be a time-harmonic plane wave, i.e.
ui(x)¼ eikx�d, where d2S

N�1 is the incident direction, k4 0 is the wave number and
i ¼

ffiffiffiffiffiffiffi
�1
p

. The total field u¼ uiþ us satisfies the following Helmholtz system (cf. [7]):

Duþ k2u ¼ 0 in R
N
n:,

Bu ¼ 0 on @:,

limr!1 rðn�1Þ=2
@us

@r
� ikus

� �
¼ 0,

8>>><
>>>:

ð1:1Þ

where we write r¼ jxj for any x2R
N, and Bu¼ 0 may be the sound-soft, sound-hard or

impedance boundary condition. The scattered field us has the asymptotic behaviour at
infinity [7]:

usðxÞ ¼
eikjxj

jxjðN�1Þ=2

�
u1ðx̂; d, kÞ þ O

�
1

jxj

��
as jxj ! 1,

uniformly for all directions x̂ ¼ x
jxj 2S

N�1, where u1ðx̂; d, kÞ is the far-field pattern,
defined on the unit sphere S

N�1. The inverse scattering problem of our interest is to
recover the shape of the obstacle : from the measurement of u1ðx̂; d, kÞ for x̂, d2S

N�1

and some fixed k4 0. Now we give a brief description of the LSM for this inverse
scattering problem.

Define the far-field operator F: L2(SN�1) � L2(SN�1) as

ðFgÞðx̂Þ :¼

Z
S
N�1

u1ðx̂, d Þ gðd Þdsðd Þ 8 x̂2S
N�1,

then consider the far-field equation:

ðFgÞðx̂Þ ¼ �1ðx̂, zÞ 8 x̂2S
N�1, z2R

N, ð1:2Þ

where �1ðx̂, zÞ ¼ �e
�ikx̂�z, with � ¼ ei�=4ffiffiffiffiffiffi

8�k
p in R

2 and � ¼ 1
4� in R

3. The LSM is to make use of
the blow-up behaviour of the solution g in the integral equation (1.2) as an indicator
function to determine the shape of the unknown scatterer. The validity of such method is
based on the following theorem.

THEOREM 1.1. [1, Theorem 4.1] Assume that k2 is not a Dirichlet eigenvalue for �D in
H1

0ð:Þ when : is sound-soft, and is not a Neumann eigenvalue for �D in H1(:) when : is
sound-hard. Then the following properties hold:

(1) For z2: and a fixed "4 0 there exists a gz" 2L
2ðS

N�1
Þ such that

kFgz" � �1ð�, zÞkL2ðS
N�1
Þ
5 " and lim

z!@:
k gz"kL2ðS

N�1
Þ
¼ 1:
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(2) For z2R
N
n: and any given "4 0, every gz" 2L

2ðS
N�1
Þ that satisfies

kFgz" � �1ð�, zÞkL2ðS
N�1
Þ
5 "

ensures lim"!0 k g
z
"kL2ðS

N�1
Þ
¼ 1.

This theorem tells us the important blow-up behaviour of the solution gz to the far-field
equation (1.2), leading to the very popular LSM: (1) select a mesh T h of sampling points in
a region D which contains the obstacle :; (2) use the Tikhonov regularization and the
Morozov discrepancy principle to compute an approximate solution gz for each sampling
point z in T h; (3) determine if a sampling point is inside or outside : based on the
magnitude of the L2-norm of gz on S

N�1.
Next we describe the GDSIM, which is a variant of the LSM developed in [11] for the

shallow ocean environment as a parallel waveguide. We write the shallow ocean
waveguide as

R
N
h ¼ ðx1, x2Þ 2R

N; x1 2R
N�1, 0 � x2 � h

� �
,

where h4 0 stands for the depth of the ocean, and the positions at x2¼ 0 and x2¼ h4 0
represent the ocean surface and bottom, respectively. We consider two positive constants
x2,0 and x2,s0 and their corresponding planes

�s ¼ ðx1,s, x2,sÞ 2R
N; x2,s ¼ x2,s0

� �
, �r ¼ ðx1, x2Þ 2R

N; x2 ¼ x2,0
� �

such that both �r and �s are above the obstacle :. We assume that the source points and
the receivers are located, respectively, on �s and �r. Let u

i and us be an incident field and its
corresponding scattered field, then the total field u¼ uiþ us satisfies the system [11]

Duþ k2u ¼ �ðx� xsÞ in R
N
h n:,

u ¼ 0 at x2 ¼ 0,

@u

@n
¼ 0 at x2 ¼ h,

Bu ¼ 0 on @:,

8>>>>><
>>>>>:

ð1:3Þ

with some radiative conditions, Bu¼ 0 may be the sound-soft or sound-hard condition,
k4 0 is the wave number. In practice, the point source ui(x) is Green’s function for the
parallel waveguide without any obstacle [8]. The direct problem (1.3) has been studied in
[12,13]. The inverse problem of our interest is to determine the scatterer : from the
measurement of the scattered field us on a line above the unknown object. Let D be a
region containing the obstacle :, then we consider the integral equationZ

�s

usðx, xsÞ gðxs, yÞdxs ¼ Gðx, yÞ for y2D, x2�r: ð1:4Þ

It can be shown [8] that there is no solution to the integral equation (1.4) for any y2D n:,
and for any y2:, the solution g(xs, y) to (1.4) satisfies

lim
y!@:
k gð�, yÞkL2ð�sÞ

¼ 1: ð1:5Þ

Based on the above results, we can formulate the so-called GDSIM [11]: (1) measure
the scattered field us along �r corresponding to each sound source located on �s; (2) select
a sampling region D that contains the unknown obstacle :; (3) for each sampling point

Inverse Problems in Science and Engineering 199
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z2D, solve Equation (1.4) by the Tikhonov regularization; (4) determine if the sampling

point is outside the scatterer based on the magnitude of the L2-norm g on �s.
Both the LSM and the GDSIM are proved to be numerically very robust. However,

they are both very expensive computationally: using an n� n or n� n� n mesh, one needs

to solve the far-field equation (1.2) or the integral equation (1.4) for n2 times (N¼ 2) or n3

times (N¼ 3). In this article, we shall propose some efficient algorithm to significantly

speed up these methods. It is known that if less prior information on : is available, then

larger initial guessing region D should be chosen. Moreover, one should need an extremely

fine mesh to achieve a high-resolution reconstruction of the obstacle :. When the scatterer

consists of more than one component where the distance between two of them is several

times larger than the sizes or diameters of these two objects, the initial guess of the region

D should be much larger than actually needed to contain all the obstacle components. It is

worth noting that the multilevel LSM (MLSM) [14] provided an effective technique which

is able to reduce the computational complexity of the LSM by one order, namely with a

complexity of order O(nN�1). Unfortunately the multilevel LSM fails to deal with

scatterers of complex geometry, and some obstacle components may be removed in the

reconstruction of the multilevel LSM; see a detailed example in Figure 4(a) and some

discussions about the example in Section 3. Our new method intends not only to avoid the

failure of the multilevel LSM but also to require much less computational efforts, in fact it

needs only to solve the far-field equation (1.2) or the integral equation (1.4) for O(log2 n)

times, independent of the space dimensions N of the concerned domain, so it improves

the computational complexity of the multilevel LSM by one order in three dimensions.

In addition, our algorithm is very easy to implement.
In the next section, we will state the motivation and implementation detail of our

new method and justify its optimal computational complexity. In Section 3, several

numerical examples are presented to demonstrate the robustness and efficiency of the

method for both the acoustic obstacle scattering system and the shallow water

waveguide model. Note that for the LSM case the data are given around the scatterer,

and for the GDSIM case, data are given on a line above the object in a shallow water

waveguide. We have considered only the constant refraction index for the water

waveguide model in this article, but the method can be equally applied to more

practical cases, including the varying refraction index and the ocean over elastic and

poroelastic sediments. For more discussions about inverse scattering problems in ocean

acoustics, we refer to [15].

2. A parallel radial bisection algorithm

In this section, we present a parallel radial bisection algorithm to speed up the

indicator type methods. As we will see, the algorithm can reduce the computational

complexity of the LSM and the GDSIM significantly. For simplicity, we will describe

the algorithm for R
2, but all of the results and conclusions can be straightforwardly

extended to R
3.

We now describe our parallel radial bisection algorithm for finding a scatterer :,

which may contain multiple separated components. Let :�R
2 or : � R

2
h (see Section 1)

be an unknown scatterer. We select a region D that contains the scatterer : as shown in

Figure 2.
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As the first step of our algorithm we need to locate some interior points inside the

scatterer :, possibly at least one interior point for each separated component in :. This

process is formulated as the following interior point algorithm.

Interior point algorithm

(1) Choose a uniformly distributed coarse mesh T h of n� n points, Z1,Z2, . . . ,Zn2 ,

with mesh size h over the sampling region D; then choose a cut-off value c and a

positive parameter �5 1.
(2) For i¼ 1, 2, . . . , n2, at the grid point Zi:

Select m radii ZiC0, ZiC1, . . . ,ZiCm on the circle S centred at Zi with radius h; see

Figure 1 with m¼ 7.

For l¼ 0, 1, . . . ,m, implement the following procedure on the radius ZiCl (we take

the radius ZiC0 in Figure 1 to illustrate below):

Choose the middle point of ZiC0, say, the red point A1 in Figure 1. Solve

Equation (1.2) for gz or Equation (1.4) for g(�, z) and evaluate the norm k gzkL2ðS
N�1
Þ

or k gð�, zÞkL2ð�sÞ
. If the norm is less than c, i.e. point A1 is inside the scatterer :,

STOP and take A1 to be the desired interior point. Otherwise, repeat the above

bisecting procedure for the segment ZiA1. In this way, stop at an interior point, or

generate a sequence of middle points, A1,A2, . . . , and stop till we find some point

Ak is found such that dist(Zi,Ak)��h. In this case, no desired interior point

located on this radius is found.

Select one from m (possibly less than m) interior points randomly.
(3) Return all n2 (possibly less than n2) selected interior points.

This algorithm is very effective in finding initial interior points, as we will see in our

numerical experiments. When the scatterer : is not so complicated, a quite coarse mesh,

say 5� 5, is usually sufficient to locate all necessary interior points, one for each separate

component of :.

A
3

A
1

C3

C5

C6

C
7

S

C0
A

2
Z

i

C1

C4

C2

Figure 1. The procedure of the interior point algorithm.
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Now we are ready to present our parallel radial bisection algorithm.

Parallel radial bisection algorithm

(1) Choose a tolerance parameter "4 0 and a cut-off value c; then choose a domain D

which contains the scatterer : and a radius parameter R.
(2) Run the interior point algorithm with an n� n mesh to generate a set of interior

points inside :, say Y1,Y2, . . . ,YI.
(3) For i¼ 1, 2, . . . , I, select a circle Si with radius R, centred at the interior point Yi

such that the union of all Si enclose D. Then select m uniformly distributed radii on

the circle Si; see the radii Y1B0,Y1B1, . . . ,Y1Bm�1 on S1 in Figure 2.

For j¼ 0, 2, . . . ,m� 1, do a bisection procedure to locate a boundary point of the

scatterer on the radius Y1Bj. We take the green radius Y1B0 in Figure 2 below to

illustrate the procedure:

Choose the middle point of the radius, say, the red point P1 in Figure 2. Solve

Equation (1.2) for gz or Equation (1.4) for g(�, z) and evaluate the norm k gzkL2ðS
N�1
Þ

or k gð�, zÞkL2ð�sÞ
. If the norm is less than c, i.e. point P1 is inside:, we bisect the line

segmentP1B0. Otherwise pointP1 is outside:, we bisect the line segmentY1P1. This

will produce a bisecting point, denoted as P2. Then we do the same as we did for P1

above. By repeating this procedure we can generate a sequence of bisecting points,

P1,P2, . . . . We stop the bisecting process when we obtain a bisecting point such that
the corresponding norm of gz or for g(�, z) at the point lies between c�" and cþ "; see
pointP3 in Figure 2, and this point,P3, is viewed as an approximate boundary point.

(4) Form an approximate boundary of the scatterer : using the set of approximate

boundary points achieved on each circle Si, i¼ 1, 2, . . . , I.

Remark 2.1 In the first step of the parallel radial bisection algorithm, we can choose the

cut-off value c by the strengthened LSM [16]. And the tolerance " may be chosen
differently in each different application, based on the specified accuracy.

D

B
3

B
4

B
5

B
6

B
7

B
2

B
1

B
0P

3
P

2

Ω

S
1

P
1

Y
1

Figure 2. The procedure of the radial bisection method.
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Remark 2.2 If one component of the scatterer is not well reconstructed for one interior

point, we may choose some other interior points and run the last two steps of the Parallel

radial bisection algorithm to improve the reconstruction. The interior point may be easily

seen from the reconstructed results in most applications, without running the interior point

algorithm again.

Next, we show that the parallel radial bisection algorithm has an optimal

computational complexity.

THEOREM 2.3 When the parallel radial bisection algorithm is applied to reconstruct a

scatterer :, the far-field equation (1.2) or integral equation (1.4) is solved O(log2 n) times in

both two and three dimensions.

Proof When we apply the parallel radial bisection algorithm on the set of selected radii on

a specified circle, the total computational cost is the same as the one of longest radius. On

this longest radius we do our search for a desired boundary point by bisection, so the far-

field Equation (1.2) or integral Equation (1.4) will be solved O(log2 n) times in total. g

Remark 2.4 The radial bisection algorithm is also easier to implement than the MSLM

[14]. For implementation of MLSM, one should store the information of those mesh

points to be kept for the subsequent reconstruction and determine the grid points to keep

or drop at each level, which may take much memory and computational time. The parallel

radial bisection algorithm is implemented in parallel on each selected radius, which will

save the memory and the computational time essentially, and reduces an n-dimensional

reconstruction to a one-dimensional reconstruction.

3. Numerical simulations with discussions

In this section, we present several numerical examples for both inverse acoustic obstacle

model and the shallow ocean waveguide model to illustrate the robustness and efficiency of

the newly proposed parallel radial bisection algorithm. All the testings are done under the

MATLAB environment.
We consider an infinite homogeneous background medium and select the following

scatterers:

Ball: xðtÞ ¼ ðcos t, sin tÞ, 0 � t � 2�,

Pear: xðtÞ ¼ ð2þ 0:3 cos 3tÞðcos t, sin tÞ, 0 � t � 2�,

Peanut: xðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 cos2 tþ 1
p

ðcos t, sin tÞ, 0 � t � 2�:

The synthetic far-field data from the direct problem are generated by solving the

combined-layer potential operator equation with the Nyström method [7], which

converges exponentially for analytic boundaries. We compute the far-field patterns at 64

equidistantly distributed observation points (cos tj, sin tj), tj¼ 2j�/64, j¼ 0, 1, . . . , 63,

corresponding to 64 equidistantly distributed incident directions (cos �j, sin �j), �j¼ 2j/64,

j¼ 0, 1, . . . , 63, around the unit circle. In the numerical experiments, we add the random

noise to the far-field data in the following form:

u�1 :¼ u1 þ �r1ju1je
i�r2 ,
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where r1 and r2 are two uniform random numbers, both ranging from �1 to 1, � is the

noise level, which is always taken to be 3% unless otherwise specified. At each sampling

point z on a selected radius, the corresponding far-field equation (1.2) is solved by the

Tikhonov regularization method in combination with the Morozov discrepancy principle,

and the regularization parameter equals 10�6. The wave number k is taken to be 3, and the

tolerance " is chosen to be 10�5.
We will take the sampling region D to be [�5, 15]� [�5, 15] in the first two numerical

simulations, and the mesh size of the coarse mesh is chosen to be 5, so we have a total of 25

grid points on the coarse mesh. We always choose 10 radii corresponding to the each

coarse mesh point for finding the interior points, and all the radii are evenly distributed in

the circle. In the following numerical experiments the number of radii considered in the

selected circle is always chosen to be 50, and all the radii are evenly distributed in the circle.
The first numerical simulation is concerned to reconstruct a peanut-shaped object,

which is located at (0, 0), see the dark peanut in Figure 3(a). Applying the parallel radial

bisection algorithm in Section 2 to this example, we can first locate several interior points

from the coarse mesh as mentioned previously, see the blue ones in Figure 3(a). From the

interior points we find in Figure 3(a), we select one, see the blue one in Figure 3(c). Finally,

with the help of the selected interior point and a radius 20, we obtain the approximate

boundary points of the peanut-shaped obstacle as shown in Figure 3(c) (see the red

points).

D D

D D

(a) (b)

(c) (d)

Figure 3. (a) Interior points found in the first numerical simulation; (b) interior points found in the
second numerical simulation; (c) exact (black) and reconstructed (red) peanut-shaped obstacle;
(d) exact (black) and reconstructed (red) pear-shaped obstacle.
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In the second simulation we investigate a pear-shaped obstacle located at (0, 10), see

the dark pear in Figure 3(b). Apply the parallel radial bisection algorithm to this case.

Firstly, several interior points are located from the same coarse mesh in the first numerical

simulation, see Figure 3(b). From the interior points we found in Figure 3(b), we select

one, see the blue one in Figure 3(d). Finally, with the help of the selected interior point and

a radius 20, we obtain the approximate boundary points of the pear-shaped obstacle as

shown in Figure 3(d) (see the red points).
The final numerical experiment for the acoustic obstacle model concerns a more

complicated scatterer which contains three separated obstacle components, a ball, a

peanut and a pear, see Figure 4(a). Now we consider the sampling region D as

[�6.3, 13.7]� [�6.3, 13.7].
We will first select a sampling mesh on the region D as shown in Figure 4(a). We start

with the illustration that the existing multilevel LSM [14] may fail to recover one or two

obstacle components in this example. In fact, we can see from Figure 4(a) that there is only

one obstacle which contains a mesh point, see the red grid point in Figure 4(a). When we

apply the multilevel LSM, and remove the so-called remote and inner cells at its first level,

the two obstacle components, namely the ball and the peanut, are also removed. So

multilevel LSM will be able to recover only one obstacle component among the three,

namely the pear. Eventhough we refine the mesh in Figure 4(a) once, we will still miss the

ball. So the multilevel LSM may need to start with a relatively fine mesh, thus increase the

computational cost greatly. But our new parallel radial bisection method will be able to

overcome such difficulty.
Now we use the parallel radial bisection algorithm to solve the complicated example.

Firstly, we generate a coarse mesh as is shown in Figure 4(b). Secondly, we find several

interior points, see the blue ones in Figure 4(b). Next we select three interior points from

the interior points in Figure 4(b), see the blue ones in Figure 5(a)–(c), respectively. Thirdly,

we find a set of approximate red boundary points for each select interior point which are

shown in Figure 5(a)–(c), where we observe that some separated boundary points may be

found, e.g. one red point on both the ball and peanut in Figure 5(a) and (c); and three red

points on the pear in Figure 5(b). But we do not need to care about those separated points

at this moment. Finally, we put all the approximate red boundary points together which

yields the final approximate boundaries of the three components, see Figure 5(d).
In the remainder of this section, we shall present some numerical examples with our

PRBM for the second mathematical model, the shallow ocean waveguide model. As we

D D
(a) (b)

Figure 4. (a) Failure of the MLSM; (b) interior points found in the final numerical experiment.
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will see, the algorithm works equally robustly and effectively as for the acoustic obstacle
model.

The synthetic near-field data of the direct problem are generated by solving the double-
layer potential operator equation with the boundary integral method [10], which converges

with an order O(N�3). In the direct problem, the boundary of the scatterer is represented
by 64 points {(r, �j)}, with �j¼ 2j�/64, j¼�31,�30, . . . , 32, and the source points (which

are also detecting points) are located at (�30þ 0.5j, 2), j¼ 0, 1, . . . , 120. In the numerical
experiments, 3% random white noise is added to the near-field data. For each relevant
point z on the radii, the corresponding integral equation (1.4) is solved by the Tikhonov

regularization method in combination with the Morozov discrepancy principle, and the
regularization parameter equals to 10�8. The wave number is taken to be 3, the depth h of

the shallow ocean environment is set to be 10 and the tolerance " is chosen to be 10�5.
We will take the sampling region D as [�3, 3]� [3, 9], the mesh size of the coarse mesh

is 3, so we have a total of 9 grid points on the coarse mesh. We always choose 10 radii
corresponding to the each coarse mesh point for finding the interior points, and all the

radii are evenly distributed in the circle. The number of radii on the selected circle is always
set to be 50, and all the radii are evenly distributed along the circle.

The first experiment investigates a floriform scatterer, see the dark obstacle in
Figure 6(a), whose boundary can be parametrized by

x ¼ r cosð�Þ, y ¼ r sinð�Þ þ 6,

where r¼ 0.5(1� 0.6 sin(3�)), 0� �� 2�.

D D

D D

(a)

(c)

(b)

(d)

Figure 5. Several obstacles embedded in the region D.
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Apply the parallel radial bisection algorithm to this example. Firstly, we find several

interior points from the coarse mesh as mentioned previously, see the blue ones in

Figure 6(a). Select one interior point, see the blue one in Figure 6(c). Finally, with the help

of the selected interior point and a radius 5, we obtain the approximate boundary points of

the floriform obstacle as shown in Figure 6(c) (see the red points).
In the second experiment, we consider a heart-shaped object embedded in the region D,

see the dark object in the Figure 6(b). The boundary of the scatterer can be

parametrized as

x ¼ r cosð�Þ, y ¼ r sinð�Þ þ 6,

where r¼ 1� cos(�), 0� �� 2�. As before, we apply the parallel radial bisection algorithm

to this case. Firstly, several interior points are found from the coarse mesh as mentioned

previously, see the Figure 6(b). Select one interior point, see the blue one in Figure 6(d).

Finally, with the help of the selected interior point and a radius 5, we obtain the

approximate boundary points of the heart-shaped obstacle as shown in Figure 6(d) (see the

red points).

D D

D D

(a)

(c)

(b)

(d)

Figure 6. (a) Interior points found in the first experiment; (b) interior points found in the second
experiment; (c) exact (black) and reconstructed (red) floriform obstacle; (d) exact (black) and
reconstructed (red) heart-shaped obstacle.

Inverse Problems in Science and Engineering 207

D
ow

nl
oa

de
d 

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f 
H

on
g 

K
on

g]
, [

K
ej

i L
IU

] 
at

 2
0:

23
 1

3 
M

ay
 2

01
3 



Finally, we compare the computational times of the LSM, the MLSM, and the PRBM,

which are listed in Table 1.
The comparison of the GDSIM and the PRBM is shown in Table 2.
As we see from Tables 1 and 2, the parallel radial bisection algorithm outperforms the

classical LSM, the multilevel LSM and the GDSIM essentially.
At last, we compare the theoretic computational time for solving the integral equation

and the theoretic storage for the sampling points of the previous methods in Table 3.

4. Conclusion

A novel PRBM is proposed for the reconstruction of scatterers from either far-field or

near-field measurements. Both the analysis and the numerical simulations have

demonstrated the robustness and the optimal computational complexity of the algorithm.

The new method is easy to implement, and can essentially reduce the computational cost

of the indicator type reconstruction methods such as the LSM, the MLSM and the

GDSIM, without deterioration of the quality of the reconstruction. In addition, this new

method can be equally applied to inverse electromagnetic obstacle scattering.

Table 3. Comparison of the computational time and storage.

LSM GDSIM MSLM PRBM

Computational time 2D n2 n2 O(n) O(log2 n)
3D n3 n3 O(n2) O(log2 n)

Storage 2D n2 n2 O(n) O(n)
3D n3 n3 O(n2) O(n2)

Table 1. Computational times of the the acoustic obstacle model.

Time (s) Pear Peanut Pear, peanut and ball

LSM 25.62 26.01 35.78
MLSM 5.99 5.15 12.23
PRBM 0.19 0.18 0.19

Table 2. Computational times of the shallow ocean waveguide model.

Time (s) Obstacle with three leaves Heart-shaped obstacle

GDSIM 31.14 30.82
PRBM 0.11 0.12
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