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Abstract

In the reconstruction process of unknown multiple scattering objects in inverse
medium scattering problems, the first important step is to effectively locate some
approximate domains that contain all inhomogeneous media. Without such an
effective step, one may have to take a computational domain of the size that is
much larger than the actual sizes of all scattering objects, thus resulting in a huge
additional computational effort. In this work we propose a simple and efficient
multilevel reconstruction algorithm to help locate an accurate position and shape
of each inhomogeneous medium. Then other existing effective but computation-
ally more demanding reconstruction algorithms may be applied in these initially
located computational domains to achieve more accurate locations and shapes of
the scatterer and the contrast values over each medium domain. The new algorithm
exhibits several strengths: robustness against noise, requiring less incidences, fast
convergence, flexibility to deal with scatterers of special shapes, and advantages in
computational complexity.

Key Words. Inverse medium scattering, initial sampling domain, multilevel recon-

struction.
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1 Introduction
In this work we are concerned with numerical identifications of inhomogeneous medium

scatterers by scattered fields. The inverse scattering problem can find wide applications
in medicine, geophysics and biological studies. A large variety of numerical reconstruction
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methods are available in literature, such as the time-reversal multiple signal classification
(MUSIC) method [9, 15|, the contrast source inversion (CSI) method [1, 17, 18, 19],
the continuation method [2], the subspace-based optimization method (SBOM) [4, 5], the
linear sampling or probing methods (LSM) [7, 16, 12], the parallel radial bisection method
(PRBM) [14], etc. In order to carry out any of these methods for the reconstruction of
unknown multiple scattering objects, the first important step is to effectively locate some
approximate domains that contain all scattering objects. Without such an effective step,
one may have to take a computational domain of the size that is much larger than the
actual sizes of all scattering objects. In particular, when multiple separated objects are
present, and at least two of them are far away from each other, then one may need to set
an initial computational / sampling domain to be sufficiently large in order to ensure a
safe covering of all scattering objects, easily selecting a domain with an area or a volume
of 30 or 40 times as large as the actual region required to cover all inhomogeneous media.
A much larger computational domain results usually in a huge additional computational
effort for the entire numerical reconstruction process, considering the severe ill-posedness
and strong nonlinearity of inverse medium scattering problems.

So it is of great significance for the reconstruction process of an inverse medium prob-
lem to have an effective step that helps locate the initial regions covering each of the
scattering objects. In addition, this first step should be less expensive computationally
and easy to implement numerically. It is mostly challenging to realize this task, and to
provide an acceptable initial location of each scattering object at the same time. A direct
sampling method was proposed recently in [8] for the purpose. The algorithm is com-
putationally very cheap as it involves computing only the inner product of the scattered
field with fundamental solutions located at sampling points. In this work, we will propose
a new algorithm for the purpose, and it is completely different from the one in [8]. This
new algorithm is an iterative one, also very cheap; only three matrix-vector multiplica-
tions are needed at each iteration, without any matrix inversion or solutions of linear
systems involved. Most interestingly, the algorithm can first separate all disjoint inhomo-
geneous medium objects quickly, usually in a few iterations, then refine its approximation
successively and finally provide a good approximate domain for each separated object.

It is worth mentioning that the multilevel algorithm to be presented here is essentially
different in nature from the multilevel linear sampling method developed in [12]: the
new method is much less sensitive to the so-called cut-off values, it works with much
less incident fields, and it does not need to solve an ill-posed far-field equation at every
sampling point. In addition, the new algorithm is robust against noise in the data.
More importantly, unlike most existing methods, the new method does not involve any
optimization process or matrix inversions, so it can be viewed as a direct sampling method.
Another nice feature of the new algorithm is that it is self-adaptive, that is, at each
iteration it can remedy the possible errors from the previous iterations. With an effective
initial location of each scattering object, we may then apply any existing efficient but
computationally more demanding methods, e.g., the methods in [2] [5] [17] [18], for further
refinement of the estimated location and shape of each scattering object as well as for
recovery of the contrast profiles of different media. Finally, we would like to emphasize



that the new multilevel method aims only at weak scatterers. It is well known that it is of
great challenge to numerically reconstruct strong scatterers (i.e., scatterers with both high
contrast values and large electrical sizes), since the wave behaviors inside and among them
are highly complex. So far there is still no efficient method that can successfully tackle this
problem, neither can our multilevel algorithm deal with it. However, considering the fact
that the linear sampling method (LSM) does not need to involve the wave interactions
inside and among scatterers, it may still be possible to locate strong scatterers if the
number of incidences is sufficient.

2 Problem description

Consider an inverse scattering problem where the scatterer €2, possibly consisting of
several separated disjoint components, is located in a homogeneous background medium
R? (d = 2,3). We assume that the scattered obstacles are illuminated successively by

a number of plane wave incident fields ué”c(w), 7 =1,2--- N,;. For each plane wave
incidence, the scattered field ujca(:cg) is measured by the receivers at locations 7, -- -,
xyy,; see Figure 1 for the incidences and receivers located on a circle S.
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Figure 1: Geometrical model of the scattering problem.

The inverse scattering problem is to determine the contrast function or index of refraction,
x(z) for any point & varying in the scatterer (), given a set of scattering data u;*(x;).
The contrast y has a very important property, i.e., it vanishes outside the scattering
objects. For each incident field ué-"c, the total field u; satisfies the Helmholtz equation [7]:

Auj(z) + B (x(x) + Duj(x) =0, x€RY (2.1)

where k is the wavenumber of the homogeneous background medium. The total field u;
can be represented by the intergral equation [7]:

uy(@) = u (@) + i /Q o(@, &)y (@ )u; (2 )do (), (2.2)



where g(x, ) is the Green’s function of the homogeneous background medium:

(2. 2) LHD (Ko — 2'|) for d=2,
T, T - ik|le—a'
I Mol oy d=3

An|lxe—a’|

where Hél) is the zero-order Hankel function of first kind. We note that the total field
u; may stand for the acoustic pressure in an acoustic scattering problem, or for the
electric field vector in an electromagnetic scattering, or for the particle-velocity vector
in an elastodynamic scattering. The scattered field is measured on the boundary S of a
domain, which is sitting outside the scatterer 2. We introduce a sampling domain D that
completely cover the scatterer €). As the contrast function y vanishes outside €2, with the
help of (2.2) we can write the scattered field as

u (@) = (@)~ (@) = K [ glo.o)x@)u@)dla), e (23)
D
For the sake of convenience, we shall often introduce the contrast source function
wy(@) = x(@)u;(@), @ eD. (2.4)
Then we can write (2.2) and (2.3) in the following more compact forms

wji(x) = x(x)u'™(x) + x(x)(Gpw;)(x), x €D, (2.5)

J

and
w(x) = (Gswj)(x), = €S8, (2.6)

J

where Gp and Gg are two integral operators given by
(Cow)(@) = K2 / g(@, @' Yw(@)dv(z') ¥z eD,
D
(Gsw)(x) = kQ/ g(z, 2 Yw(x)dv(z') VxeS.
D

Equations (2.5) and (2.6) will be two fundamental equations for our proposed multilevel
initialization algorithm.

3 Approximate contrast source by backpropagation

We can easily see that the support of the contrast source function w = yu describes
the exact locations and geometries of all the inhomogeneous media, which generate the
scattered field u*“*. The aim of this work is to propose a fast and less expensive algorithm
that can help locate all the inhomogeneous media and provide good initial guesses for some
computationally more demanding iterative algorithms to find more accurate locations and
shapes of all the inhomogeneous media and approximations of the contrast function y.
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Our algorithm will rely on the approximate contrast source obtained by backpropa-
gation. Backprogation is widely used in inverse medium scatterings, see [18] [11] and the
references therein. In this section we shall give a rigorous mathematical explanation of
the approximate contrast source by backpropagation. Let (-,-)2(s) and (-, -)z2(p) be the
scalar products respectively in L?*(S) and L?(D), and G*: L*(S) — L?(D) be the adjoint
of operator G: L?(D) — L*(S). G* is called the backpropagation operator and given by

(Gw) () = K / o(m @) wia) ds(x') Ve eD.

We shall need the following backpropagation subspace of L?(D),
V, = span {Giu*“} |

which is formed by all the fields generated by the backpropagation G} on the scattered
data u*®. It follows from (2.6) that

uw(x) = (Gsw)(x), x€S. (3.1)

The backpropagation is to seek a best approximate solution wy to the equation (3.1) in
the backpropagation subspace V;, namely

sca

[0 = Gwp|[12(s) = min [[u*" = Govy[[12(s). (3.2)

v €VY
It is easy to see that the solution wy to (3.2) solves the variational system:
(usca — Gy, Gsvb)LQ(S) =0 Vv, €V, (33)

or equivalently,
(Gswb, Gsvb)Lz(S) = (G:usm, ’Ub)LQ(D) va < VE, (34)

As wy, vy € Vj, we can write
wy = NG, v, = pGiu (3.5)
for some constants A, . Substituting the two expressions into (3.4) we obtain

1GZw™ |2 p)

A= , (3.6)
||GSGZUSCG||%2(5)
which gives the approximate contrast source by backpropagation:
|| Grwsee |7
wy L) Gru®. (3.7)

N ||GSG§USCQH%2(S)



4 A multilevel sampling algorithm

In this section we propose a fast multilevel sampling algorithm to find the locations
and geometric shapes of all the inhomogeneous media, which are described by the contrast
function y in (2.1). The algorithm proceeds iteratively, and carries out two important
steps at each iteration based on the two fundamental equations (2.5) and (2.6), namely
the state and field equations. In the first step, we apply the backpropagation technique
to compute an approximate contrast source w; corresponding to each incident ué-"c (j =
1,2,--+ ,N;). It follows from (3.7) that this approximation is given by

|G us| (72 p)
W; = * ) SCa *Sus‘cav j:1727 7Ni~ (41>
T IGsGEus Pagsy,

With these approximate contributions w; of the exact contrast source w corresponding to
each incident u3", we approximate the contrast y pointwise by minimizing the residual
equation corresponding to the state equation (2.5), namely

N.
: , 2
(oin (XUE-"C —wj+ XGij) («’L‘)‘ ; (4.2)
j=1

which yields an explicit formula to compute an approximate contrast value x(x) at every
point & € D when an approximate contrast source w; is available:

Lty 0+ Gou)(a)). s

> | (Ui + Gpw;) ()2

x(x) = Re(

where the overbear denotes the complex conjugate and Re means taking the real part of
a complex number. We remark that it may not be always effective by considering only
the real part like in (4.3), especially for those lossy scatterers, whose contrast values may
have small real part but large imaginary part. In those cases we may take the absolute
value of the reconstructed contrast function in (4.3).

Clearly both (4.1) and (4.3) are rather crude in general, and may provide rather poor
approximations for the exact contrast source w and contrast profile x [6]. But as it will
be seen, when we combine these two poor approximations in a novel manner with some
multilevel technique, it generates a very efficient and robust algorithm for locating an
accurate position and shape of each inhomogeneous medium.

We emphasize that the unique goal of this work is to develop a simple and less ex-
pensive algorithm that can help locate an approximate position and shape of each inho-
mogeneous medium, but it is not designed for an accurate approximation of the contrast
values of the inhomogeneous media.

The basic idea that motivates our algorithm is based on the following simple observa-
tion. We know that the exact contrast function y(«) vanishes outside the scatterer €2, so
its support provides the location and shape of the scatterer €2, which is formed by all the
inhomogeneous media. This observation, along with the previous two explicit evaluation



formulae (4.1) and (4.3) and a novel multilevel technique, forms the foundation of our
new multilevel sampling algorithm.

For the description of the algorithm, we first introduce two new concepts, the smallest
distance and the first gap interval with index M. For a given finite positive non-decreasing
sequence, {X1, X2, -+, Xm}, its smallest distance is the positive smallest one among all the
distances between two neighboring elements, namely dist(x;, xi+1), @ = 1,2,--+ ,m — 1.
Among all these m — 1 distances, if there exists some j such that 2 < j < m — 1 and
the distance dist(x;, x;j+1) is M times larger than the smallest distance of the sequence
{x1,x2, -, x;}, then [x;, xj+1] is called a gap interval. The first such interval is called
the first gap interval.

Now we are ready to state our new algorithm.

Multilevel Sampling Algorithm.

1. Choose a sampling domain D that contains the scatterer €2;
Select a uniform (coarse) mesh on D, consisting of square (2D) or cubic (3D) ele-
ments; write the mesh as Dy;
Select a tolerance ¢ and an index M set an initial cut-off value ¢y := 0 and £k := 1.

2. Compute an approximate value of the contrast xx(x) at each grid point @ € Dy _4,
using the formulae (4.1) and (4.3). Then do the following:

2.1 Order all the values of yx(x) satisfying xr(®) > ¢x_1 into a non-decreasing
sequence;
Find the first gap interval of the sequence with index M,
Choose the right endpoint of this first gap interval with index M as the next
cut-off value ¢.

2.2 If xx(x) > ¢ at a grid point x, select all the grid points of the elements which
share & as one of their vertices;
Remove all the grid points in Dj_q, which are not selected;
Update Djy_; by all those selected grid points.

3. If |ex — ex1| < &, set Dy := Dy_1 and go to Step 4;
otherwise refine the mesh Djy_; to get Dy; set k:= k + 1 and go to Step 2.

4. Output all grid points in Dy, for the domains of all inhomogeneous media.

We would like to make an important remark about the index M used in the Multilevel
Sampling Algorithm. This index is basically a limit value to help separate numerically
the contrast values of the homogeneous background medium from the ones of the inho-
mogeneous media. Its motivation lies in the fact that the exact contrast value of the
homogeneous background medium is 0, while the ones for the inhomogeneous media are
usually significantly larger in magnitude since we are comparing 0 (homogeneous medium)
and non-zero (inhomogeneous media), so it is reasonable to locate the interval where the
contrast values have the first expected large jump (namely the first gap interval with index



M, and M is to measure the jump), then classify the grid points with the small contrast
values (less than the cut-off value, i.e., the right endpoint of the first gap interval) as the
background medium region, while the grid points with the larger contrast values (larger
than the cut-off value) as the inhomogeneous medium regions.

The effectiveness of the multilevel algorithm is not so sensitive to the choice of the
index M, and mostly we can take it in the range of 80 to 120. For all the numerical
experiments we show in the next section, we have simply fixed M to be 100.

We can easily see that the above Multilevel Sampling Algorithm does not involve any
optimization process or matrix inversions, and its major cost is to update the contrast
values using the explicit formulae (4.1) and (4.3) at each iteration, and the computational
sampling domain D) shrinks as the iteration goes. So the algorithm is rather simple
and less expensive. In addition, as the cut-off values are basically to distinguish the
homogeneous background medium where x(x) vanishes and the inhomogeneous media
where x(x) should be essentially different from 0 (it can be small, say 0.3, which is still
relatively large in magnitude when it is compared with zero), so our cut-off values are
rather easy to choose and insensitive to the size and physical features of scatterers. In
fact, the cut-off value can start simply with zero, then it is updated automatically with
the iteration. As we shall see from numerical examples in the next section, the algorithm
works well with few incidents, even with one; and it is self-adaptive, namely it can recover
some elements that have been removed at the previous iterations due to the computational
errors. In terms of these aspects this new Multilevel Sampling Algorithm outperforms the
popular linear sampling methods [16], including the improved multilevel variant [12].

Remark 4.1. Many existing refinement techniques can be used for the mesh refinement
required in Step 3. In all our numerical experiments, we have adopted the simple bisection
technique, namely, we divide each square element into 4 equal sub-squares in 2D, or divide
each cubic element into 8 equal smaller cubes in 3D.

5 Numerical simulations

In this section we present several examples to verify the effectiveness and robustness
of the newly proposed multilevel sampling algorithm.

We first use the state and field equations (2.5) and (2.6) (more accurately their discrete
forms (A.1) and (A.2)) to generate the synthetic scattered field data. To do so, equation
(A.1) is solved first for the field w; for each incident field v/, then the scattered data u3™
is computed from (A.2). Sufficiently fine meshes are used to ensure reliable accuracies of
the synthetic data.

Now we list the parameters that are used in our numerical simulations. The wave
number k and wave length \ are taken to be k = 27 and A = 1. For two dimensions, the
number of incidences and receivers are set to be N; = 6 and N, = 30 respectively, and
the incident wave directions are evenly distributed on the unit circle, while the receivers
are equally distributed on the circle of radius bA. For three dimensions, the number of
incidences and receivers are set to be N; = 20 and Ny = 182 respectively, the incident



wave directions are evenly distributed on the unit sphere, while the receivers are equally
distributed on the surface of the sphere of radius 5A. The index M of the first gap interval
and the tolerance parameter € are chosen to be 100 and 102 respectively. In the two-
dimensional numerical simulations, the mesh refinement during the multilevel algorithm
is carried out based on the simple bisection rule, namely each square element is divided
into 4 equal subsquares, so we have hj, = 0.4\/2%, where k is the k-th refinement, and
ho and hj are respectively the mesh sizes of the initial mesh and the mesh after the
kth refinement. Moreover, random noises are added to the exact scattering data in the
following form:

sca

U;

(@) == ui(@)[1 + &(r1(®) +iry;(x))], j=1,2,-- N
where 7 ;(x) and ry;(x) are two random numbers varying between -1 and 1, and ¢
corresponds to the level of the noise, which is usually taken to be 10% unless specified
otherwise. All the programs in our experiments are written in MATLAB and run on a

2.83GHz PC with 4GB memory.

5.1 Two-dimensional reconstructions

Example 1. This example shows a scatterer {2 consisting of two squares of side length
0.3, located respectively at (—0.3\, —0.3X) and (0.3\,0.3)), with their contrast values
being 1 and 2 respectively; see the two red squares in Figure 3(a). We take the sampling
domain D = [—1.2), 1.2)\] x [—1.2), 1.2)], which is quite large compared to the scatterer
), with its area of 64 times of the area of one scatterer component. More importantly,
we see that these two small objects are quite close to each other.

We first show some figures to compare the exact data with the noisy data. When
the exact data is polluted with 10% noise, and 30 receivers are used to measure the data
corresponding to 1 incidence , the exact and noisy data are shown in Figure 2(a) for the
real part of the data, and Figure 2(b) for the imaginary part.

The numerical reconstructions are shown in Figure 3(b) - 3(d) respectively for the 1st,
3rd and 5th iterations. One can observe from the figures that the algorithm converges
very fast and provides quite accurate locations of the two medium components in only
5 iterations. Moreover, we can see an important advantage of the algorithm, i.e., it can
separate the disjoint medium components quickly. One can find more detailed behavior
of the algorithm from the following Table 1 that lists the number of grid points that
remained or were removed after each iteration.

Iteration 11213 ] 4 5)

number of removed grid points | 32 | 18 | 41 | 64 | 59
number of remaining grid points | 17 | 31 | 56 | 118 | 401
number of total grid points 49 [ 49 | 97 | 182 | 460

Table 1: Information of grid points at each iteration of Example 1.
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Figure 2: Comparisons of the noise-free data (blue circles) and the data with 10% noise (red
stars) for Example 1: the real part (a) and imaginary part (b) on the circle of radius 5, with
the x-axis representing the angles from 0 to 2.

Example 2. This example is the same as Example 1, except that the contrast values
of two medium components are now variable functions, namely

10|z| — 1.5 10jy| = 1.5
7(10js] = 15)  m(10]y| — 1.5)

The numerical reconstructions are shown in Figure 4(b)- 4(d) for the 1st, 3rd and 6th
iterations. Again, we observe from the figures that the algorithm converges fast, provides
very satisfactory locations of the two medium components in only 6 iterations, and it can
separate the disjoint medium components quickly.

For a better understanding of the first gap interval, we present in Figure 5 the recon-
structed contrast values of the remaining grid points and the first gap intervals obtained
in the first 6 iterations. For the plots of the Hth and 6th iterations we have selected
only the first 200 and 300 grid points (in a non-decreasing order as the algorithm did),
otherwise the points are too many to show in one plot, and the first gap intervals are also
difficult to see. As we observe from Fig. 5(f) that there is nearly no first gap interval at
iteration 6, indicating that the remaining grid points are nearly all inhomogeneous media
when the algorithm converges.

To see the more detailed behavior of the algorithm in terms of grip points, we have
listed in Table 2 the number of grid points that remained or were removed after each
iteration.

Example 3. This example considers a scatterer ) of a thin annulus with the inner
and outer radii being 0.3\ and 0.5\ respectively and centered at the origin. The contrast
value x () is 2 inside the thin annulus. The sampling domain D is taken to be a square
of side length with 5.6, as shown in Figure 6(a).

It is easy to see the sampling domain D has an area of about 62 times as large
as the annulus, and the annulus has a very thin thickness, i.e., 0.2\. The numerical

10
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Figure 3: (a) The initial (coarse) mesh on the sampling domain for Example 1; (b)-(d) Recon-
structions at the 1st, 3rd and 5th iterations.

Iteration 11213 4 ) 6

number of removed grid points | 32 | 18 | 33 | 84 | 13 10
number of remaining grid points | 17 | 31 | 64 | 98 | 452 | 1604
number of total grid points 49 [ 49 | 97 | 182 | 465 | 1614

Table 2: Information of grid points at each iteration of Example 2.

reconstructions are shown in Figure 6(b)- 6(d) for the 1st, 3rd and 4th iterations. Same as
for the previous two examples, the reconstructions are quite satisfactory and the accurate
locations of the scatterer can be achieved. From Table 3, we can see more detailed
information on the number of grid points that remained or were removed after each
iteration of the multilevel algorithm.

Example 4. This example considers a scatterer €2 of the Austria profile with two
cylinders of radii 0.2\ and the ring of the inner and outer radii being 0.3\ and 0.6\
respectively. The contrast value x(x) is set to 1 inside the Austria. The sampling domain
D is taken to be a square of side length with 4.8\, as shown in Figure 7(a).

11
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Figure 4: (a) The initial (coarse) mesh on the sampling region for Example 2; (b)-(d) Recon-
structions at the 1st, 3rd and 6th iterations.

Iteration 1 2 3 4
number of removed grid points | 204 | 20 | 37 | 76

number of remaining grid points | 21 | 45 | 111 | 303
number of total grid points 225 | 65 | 148 | 379

Table 3: Information of grid points at each iteration of Example 3.

It is easy to see the sampling domain D has an area of about 21 times as large as
the Austria profile, and the annulus has a very thin thickness, i.e., 0.3\. The numerical
reconstructions are shown in Figures 7(b)- 7(d) for the 2nd, 3rd and 4th iterations. Same
as for the previous three examples, the reconstructions are quite satisfactory and the
accurate locations of the scatterer are achieved. Moreover, the algorithm can separate
the top two small circles from the annulus, although the distances between them are
rather small.

As we have emphasized earlier, a good feature of the multilevel algorithm is its
self-adaptiveness. We may see from Figure 7 that the result from the second iteration

12
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Figure 5: The reconstructed contrast values and the first gap intervals of the first 6 iterations
for Example 2.

(Fig. 7(b)) has excluded 4 subregions (two on the top middle and two on the near bottom
left and right) of the inhomogeneous media, but they are basically recovered at the next
iteration (Fig.7(c)). So the self-adaptiveness of the algorithm may remedy some possible
errors from the previous iterations at a current step.

Example 5. In this example, we test the algorithm with some partial data to recon-
struct an inhomogeneous scatterer. We use only 2 incidences at directions d = ‘/75(1, 1)

and ‘/75(—1, 1), and 9 receivers evenly distributed on the top half of the circle of radius
5A. The sampling domain D is selected to be a square of side length with 5.6, as shown
in Fig.8(a). The inhomogeneous medium is a small circle of radius 0.5 with a contrast
value 1, and the result is shown in Figure 8. We can compute that the sampling domain
D has an area of about 40 times as large as the small circular profile.

As one may see, the location of the inhomogeneous medium is basically accurate,
with the top boundary quite well reconstructed but the bottom boundary less accurately
reconstructed. The reconstructions seem reasonable as we have only two incidences and
measurements on the top part.

5.2 Reconstruction for the contrast function y

Many numerical methods are available in the literature for reconstructing the contrast
profile function x. These methods are usually more refined and accurate than the new
multilevel method for recovering both the geometric shapes and the contrast functions of

13
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Figure 6: (a) The initial (coarse) mesh on the sampling region for Example 3; (b)-(d) Recon-
structions at the 1st, 3rd and 4th iterations.

the inhomogeneous media, but they are usually more complicated technically and much
more demanding computationally, as they mostly involve nonlinear optimizations and
matrix inversions. Without a reasonably good initial location for each inhomogeneous
medium, we may have to take a much larger sampling domain than the actual size of
the inhomogeneous media for these methods, so they can be extremely time consuming,
especially in three dimensions. Using the newly proposed multilevel algorithm in Sec-
tion 4, we can first locate a much smaller sampling domain than usual (or the one we
originally selected) in a numerical reconstruction for the contrast xy. Then we can apply
any existing reconstruction algorithms for more accurate reconstructions, starting with
an initial sampling domain provided by the multilevel algorithm. This may save us a
great fraction of the entire computational costs. Based on above few observations, we
think that there is a significant advantage to apply an optimization type method to the
domain achieved by the multilevel sampling algorithm. For the comparisons, we show
some numerical tests by the popular extended contrast source inversion (ECSI) method
[18] and the newly proposed multilevel method combined with ECSI.

14
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Figure 7: (a) The initial (coarse) mesh on the sampling region for Example 4; (b)-(d) Recon-
structions at the 2nd, 3rd and 4th iterations.

We consider the same scatterer €2 and the set-ups as in Examples 1 and 3 of Section 5.1;
see Figs. 9(a) and 9(d). Then we apply the ECSI method [18] with mesh size h = 0.015 re-
spectively to the originally selected computational regions and the reconstructed domains
(cf. Figs.3(d) and 6(d)) by the multilevel algorithm. The reconstructions are shown in
Figs.9(b), 9(c), 9(e) and 9(f). The four figures are the inverted images of ECSI when it
is terminated at the relative L?-norm error ¢ = 1072 of the reconstructed contrast values.
Clearly, Figs.9(c) and 9(f) give much better reconstructions than Figs.9(b) and 9(e),
with quite satisfactory reconstructions of both locations and contrast values. Figure 10
shows the convergence curves in terms of the relative L?-norm errors against the number
of iterations. It is obvious that the ECSI with the help of the multilevel algorithm gives
more accurate reconstructions, and with much less computational efforts.

5.3 Three-dimensional reconstructions

Example 6. This example tests a three-dimensional scatterer {2 consisting of two
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Figure 8: (a) The initial (coarse) mesh on the sampling region for Example 5; (b)-(d) Recon-
structions at the first 3 iterations.

small cubic components:
O = [-0.45), —0.15M]*, €y = [0.15), 0.45)]%.

The two squares are quite close to each other, both with constant contrast values 2; see
Figure 11(a). We take the sampling domain to be D = [—1.2X, 1.2A]*, which is about 500
times of the volume of € or €.

We take an initial mesh size of hy = 0.8\ in the multilevel algorithm. The mesh
refinement during the multilevel algorithm is carried out based on the bisection rule,
namely hy, = 0.8\/2% where k is the k-th refinement, and h;, is the mesh size after the
kth refinement. The numerical reconstructions are shown in Figure 12. Same as for
the previous two-dimensional examples, the reconstructions are quite satisfactory and
the accurate locations of the scatterer can be achieved, and two inhomogeneous medium
objects can be quickly separated. From Table 4, we can see more detailed information
on the number of grid points that remained or were removed after each iteration of the
multilevel algorithm.
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Figure 9: True scatterer for (a) Example 1 and (d) Example 3; The reconstructions by ESCI
applied to the originally selected computational region for (b) Example 1 and (e) Example 3; The
reconstructions by ESCI applied to the domain provided by the multilevel sampling algorithm
for (c¢) Example 1 and (f) Example 3.

1

Iteration 1 2 3 4
number of removed grid points | 18 | 170 | 122 | 287

number of remaining grid points | 46 | 53 | 127 | 398
number of total grid points 64 | 223 | 249 | 685

Table 4: Information of grid points at each iteration of Example 6.

Example 7. In this test we consider a torus scatterer (see Figure 11(b)), with a
contrast value 2. The torus has the following representation,

2

where 7 = 0.1\ and R = 0.4)\ (R is the radius from the center of the hole to the center
of the torus tube, r is the radius of the tube). The sampling doman is taken to be
D = [—1.2),1.2)]?, which is about 170 times of the volume of the torus.

We take an initial mesh size of hg = 0.4\ in the multilevel algorithm. The mesh refine-
ment during the multilevel algorithm is carried out based on the rule h; = 0.4\ /2%, where
k is the k-th refinement, and A, is the mesh size after the kth refinement. The numerical
reconstructions are shown in Figure 13. Same as for the previous two-dimensional exam-
ples, the reconstructions are quite satisfactory and the accurate locations of the scatterer
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Table 5: Information of grid points at each iteration of Example 7.
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Iteration 1 2 3
number of removed grid points | 244 | 390 | 516
number of remaining grid points | 99 | 135 | 249
number of total grid points 343 | 525 | 765

6 Concluding remarks

Figure 10: Convergence curve by ECSI applied to the originally selected computational region
for (a) Example 1 and (b) Example 3; Convergence curve by ECSI applied to the domain
achieved from the multilevel sampling algorithm for (¢) Example 1 and (d) Example 3.

can be achieved. Again, we can find more information from Table 5 on the number of grid
points that remained or were removed after each iteration of the multilevel algorithm.

This work proposes a multilevel sampling algorithm which helps locate an initial com-
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Figure 11: Scatterers imbedded in a large sampling domain:
to each other in Example 6; (b) a torus in Example 7.

A

Figure 12: Numerical reconstructions by the first 4 iterations for Example 6.
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Figure 13: Numerical reconstructions by the first 3 iterations for Example 7; (d) is the same as
(c), but viewed in a different angle.

medium scatterings. The algorithm is an iterative process which starts with a large sam-
pling domain, and reduces the size of the domain iteratively based on the cut-off values,
which are computed adaptively by using the updated contrast source strengths and con-
trast values at each iteration. The iterative algorithm can be viewed actually as a direct
method, since it involves only matrix-vector operations and does not need any optimiza-
tion process or to solve any large-scale ill-posed linear systems. The algorithm works with
very few incident fields and its cut-off values are easy to compute and insensitive to the
sizes and shapes of the scatterers, as well as the noise in the data. This is a clear advantage
of the algorithm over some popular existing sampling methods such as the linear sampling
type methods, where the cut-off values are sensitive to the noise and difficult to choose,
and the number of incident fields can not be small. In addition, the multilevel algorithm
converges fast and can easily separate multiple disjoint scattering components, often with
just a few iterations to find a satisfactory initial location of each object. Another nice
feature of the new algorithm is that it is self-adaptive, that is, it can remedy the possible
errors from the previous levels at each current level. With an effective initial location of
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each object, we may then apply any existing efficient but computationally more demand-
ing methods for further refinement of the estimated shape of each scattering object as
well as for recovery of the contrast profiles of different media. However, we would like to
emphasize that the new multilevel method aims only at weak scatterers. We know from
the numerical point of view that it is rather challenging to reconstruct strong scatterers.
There is still no efficient method that can successfully tackle this problem, neither can
our multilevel algorithm deal with it. Nevertheless, the linear sampling method may still
be possible to locate the strong scatterers if the number of incidences is sufficient, since
it does not involve the wave interactions inside and among scatterers.
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A Discretization

In numerical implementations of the multilevel sampling algorithm proposed in Sec-
tion 4, we have to discretize all the integrals involved. In this appendix, we discuss briefly
the numerical discretization of these integrations. We illustrate only the discretizations
of the state and field equations (2.5) and (2.6), as all other integrations involved in the
algorithm can be approximated similarly. To do so, we divide the domain D into smaller
rectangular or cubic elements, whose centers are denoted as xi,xs,...,x. Using the
coupled-dipole method (CDM) or discrete dipole approximation (DDA) [3, 10], we can
discretize (2.5) by

wj(x;) = x(@)u" (@) + K x () Z Ang(xm, z)wi(x;), 1=1,2,... L, (A.1)

n#m

where A, is the area or volume of the n-th element. Similarly, we can discretize equation
(2.6) at every point & € S by

L
wi (@) = kY Angle, @)w;(@) for j=1,2,-- N (A.2)

J
=1

References

[1] A. Abubakar and P. M. van den Berg, The contrast source inversion method for
location and shape reconstructions, Inverse Problems 18 (2002), pp. 495-510.

[2] G. Bao and P. Li, Inverse medium scattering for the Helmholtz equation at fixed
frequency, Inverse Problems 21 (2005), pp.1621-1641.

21



3]

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

K. Belkebir, P. C. Chaumet and A. Sentenac, Superresolution in total internal re-
flection tomography, J. Opt. Soc. Amer. A 22 (2005), pp. 1889-1897.

X. Chen, Application of signal-subspace and optimization methods in reconstructing
extended scatterers, J. Opt. Soc. Amer. A 26 (2009), pp. 1022-1026.

X. Chen, Subspace-based optimization method for solving inverse-scattering prob-
lems, IEEE Trans. Geosci. Remote Sensing 48 (2010), pp. 42-49.

W. Chew, Y. Wang, G. Otto, D. Lesselier and J. Bolomey, On the inverse source
method of solving inverse scattering problems, Inverse Problems 10 (1994), pp. 547-
553.

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,
2nd ed., Springer Verlag, Berlin, 1998.

K. Ito, B. Jin and J. Zou, A direct sampling method to an inverse medium scattering
problem, Inverse Problems 28 (2012), 025003 (11pp).

A. Kirsch, The MUSIC-algorithm and the factorization method in inverse scattering
theory for inhomogeneous media, Inverse Problems 18 (2002), pp. 1025-1040.

A. Lakhtakia, Strong and weak forms of the method of momoents and the coupled
dipole method for scattering of time-harmonic electromagnetics fields, Int. J. Modern

Phys. C 3 (1992), pp. 533-603.

B. Levy and C. Esmersoy, Variable background Born inversion by wavefield back-
propagation, STAM J. Appl. Math. 48 (1988), pp. 952-972.

J. Li, H. Liu and J. Zou, Multilevel linear sampling method for inverse scattering
problems, STAM J. Sci. Comp. 30 (2008), pp. 1228-1250.

J. Li, H. Liu and J. Zou, Strengthened linear sampling method with a reference ball,
SIAM J. Sci. Comp. 31 (2009), pp. 4013-4040.

K. Liu, Y. Xu and J. Zou, A parallel radial bisection algorithm for inverse scattering
problems, Inv. Prob. Sci. Eng. (2012), pp. 1-13.

E. A. Marengo, F. K. Gruber and F. Simonetti, Time-reversal MUSIC imaging of
extended targets, IEEE Trans. Image Proc. 16 (2007), pp. 1967-1984.

R. Potthast, A survey on sampling and probe methods for inverse problems, Inverse
Problems 22 (2006), pp. R1-R47.

P. M. van den Berg and R. E. Kleinman, A contrast source inversion method, Inverse
Problems 13 (1997), pp. 1607-1620.

22



[18] P. M. van den Berg, A. L. van Broekhoven and A. Abubakar, Extended contrast
source inversion, Inverse Problems 15 (1999), pp. 1325-1344.

[19] P. M. van den Berg and A. Abubakar, Contrast source inversion method: state of
art, Progress in Electromagnetics Research, 34 (2001), pp. 189-218.

[20] Y. Xu, C. Mawata and W. Lin, generalized dual space indicator method for under-
water imaging, Inverse Problems, 16 (2000), pp. 1761-1776.

23



