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Abstract

In this paper, we study the inverse electromagnetic medium scattering problem of estimating
the support and shape of medium scatterers from scattered electric/magnetic near-field data. We
shall develop a novel direct sampling method based on an analysis of electromagnetic scattering and
the behavior of the fundamental solution. It is applicable to a few incident fields and needs only
to compute inner products of the measured scattered field with the fundamental solutions located
at sampling points. Hence it is strictly direct, computationally very efficient, and highly robust to
the presence of data noise. Two- and three-dimensional numerical experiments indicate that it can
provide reliable support estimates for multiple scatterers in case of both exact and highly noisy data.

Key Words: inverse medium scattering, direct sampling method, scattering analysis, electromag-
netic wave propagation

1 Introduction

Inverse electromagnetic scattering represents an important noninvasive imaging technology for interro-
gating material properties, and it arises in many practical applications such as biomedical diagnosis
[7], nondestructive testing [34], and geophysical exploration [14]. In this work we are concerned with
the inverse medium scattering problem of determining electrical/magnetic properties of unknown inho-
mogeneous objects embedded in a homogeneous background from noisy measurements of the scattered
electric/magnetic field corresponding to one or several incident fields impinged on the objects. Mathe-
matically, the scattering problem is described by the time-harmonic Maxwell system:

iωεE +∇×H = 0 in Rd,

−iωµH +∇× E = 0 in Rd,

where the vectorial fields H and E denote the magnetic and electric fields, respectively. Here the con-
stant ω is the angular frequency, the functions ε and µ refer to the electrical permittivity and magnetic
permeability, respectively.

Let the domain Ω ⊂ Rd (d = 2, 3) be the space occupied by the inhomogeneous medium objects within
the homogeneous background Rd. We are interested in either electrical or magnetic inhomogeneities, but
shall focus our discussions on the case of electrical inhomogeneities since the case of magnetic inhomo-
geneities follows analogously. So we shall assume µ = µ0, with µ0 being the magnetic permeability of the
background. Then by taking the curl of the second equation of the system and eliminating H in the first
equation, we obtain the following vector Helmholtz equation for the electric field E

∇× (∇× E)− k2n2(x)E = 0, (1)
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where k is the wavenumber, with k2 = ω2ε0µ0 (ε0 is the background electrical permittivity), and

n =
1/
√
ε0µ0

1/
√
εµ0

is the refractive index function, i.e., the ratio of the wave velocity in the homogeneous

background to that in the medium with inhomogeneities. The refractive index n completely characterizes
the inhomogeneities, with a support supp(n2 − 1) = Ω. Further, we assume that the medium scattering
problem is excited by an incident plane wave Ei:

Ei = peikd·x,

where d ∈ Sd−1 and p ∈ Sd−1 are the incident direction and polarization, respectively. Since the incident
field Ei is solenoidal, i.e., ∇ · Ei = 0, the polarization p should be chosen such that it is perpendicular
to the incident direction d. Then the incident field Ei satisfies the Maxwell system (1) in the entire
homogeneous space Rd. The forward scattering problem is to find the total electric field E given the
refractive index n2 and the following Silver-Müller radiation condition for the scattered field Es = E−Ei:

lim
|x|→∞

|x|
d−1

2 (∇× Es × x̂− ikEs) = 0

uniformly for all directions x̂ = x/|x| ∈ Sd−1.
The inverse problem of our interest is the inverse medium scattering problem, which is to reconstruct

the inhomogeneous media from the scattered electric field Es corresponding to one (or several) incident
field Ei, measured over a certain closed curve/surface Γ. Due to the practical significance of the inverse
problem, there has been considerable interest in designing efficient and stable inversion techniques. How-
ever, this is very challenging because of a number of complicating factors: strong nonlinearity of the map
from the refractive index to the scattered field, severe ill-posedness of the inverse problem, complexity
of the forward model, and the limited availability of (noisy) data. Nonetheless, a large number of in-
verse scattering methods have been developed in the literature, which can be roughly divided into two
categories: direct and indirect methods. The former aims at detecting the scatterer support and shape,
and includes linear sampling method (LSM) [12, 8], multiple signal classification (MUSIC) [16, 5, 3, 9],
and factorization method [24] [25, Chapter 5]. In contrast, the latter provides a distributed estimate of
the refractive index n2 by applying regularization techniques. We just mention adjoint-based method
[17, 33, 26], recursive linearization (for multi-frequency data) [6], Gauss-Newton method [20, 15, 21], con-
trasted source inversion [2], and level set method [18] for an incomplete list. Generally, the estimates by a
method from the latter group can provide more details of inclusions/inhomogeneities, but at the expense
of much increased computational efforts, especially when the forward model is the full three-dimensional
Maxwell system.

In this work, we develop a direct sampling method (DSM) for stably and accurately detecting the
scatterer support. It was first developed for the inverse acoustic scattering problems with near-field data
[22]; see also the closely related orthogonality sampling [30] for the far-field data. In [28], the performance
of the DSM using near-field and far-field data was evaluated and its effectiveness was also studied for
other scattering scenarios, e.g., obstacles, inhomogeneous media and cracks. The goal of this work is to
extend the DSM to electromagnetic scattering. Due to the much increased complexity of the Maxwell
system relative to its scalar counterpart, the Helmholtz equation, the extension is nontrivial and requires
several innovations. It is based on an integral representation of the scattered field, a careful analysis on
electromagnetic scattering and the behavior of the fundamental solution. Numerically, it involves only
computing inner products of the measured scattered field Es with fundamental solutions to the Maxwell
system located at sampling points over the measurement surface Γ. Hence it is strictly direct and does
not involve any matrix operations, and its implementation is straightforward and embarrassingly parallel.
Our extensive numerical experiments indicate that it can provide an accurate and reliable estimate of the
scatterer support, even in the presence of a fairly large amount of random noise in the data. Hence, it
represents an effective yet simple computational tool for reliable support detection. In practice, a rough
estimate of the scatterer support may be sufficient for many purposes [32]. If desired, one can obtain
an enhanced estimate by other indirect scattering methods [23], using the DSM estimate to determine
a small computational domain. Since indirect methods often involve expensive nonlinear optimization
processes, a small initial domain can essentially reduce the overall computational efforts.
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The rest of the paper is organized as follows. In Section 2, we recall an integral reformulation of the
Maxwell system recently derived in [27], which plays an essential role in the derivation of the DSM. Then
we develop the method in Section 3 in detail, where a preliminary analysis of its theoretical performance
is also provided. In Section 4, we provide two- and three-dimensional numerical experiments to illustrate
its accuracy and robustness for both exact and noisy data. Technical details of the forward scattering
simulation are provided in the appendix.

2 Integral representation of Maxwell System

In this part, we recall an equivalent integral formulation of the Maxwell system (1), which is fundamental
to the derivation of the direct sampling method. We begin with the definition of the fundamental solution
G(x, y) to the scalar Helmholtz equation, i.e.,

(−∆− k2)G(x, y) = δ(x− y),

where δ(x− y) is the Dirac delta function with the singularity located at y ∈ Rd. We know that G(x, y)
has the following representation (see, e.g., [13])

G(x, y) =


i

4
H

(1)
0 (k|x− y|), d = 2,

1

4π

eik|x−y|

|x− y|
, d = 3,

where the function H
(1)
l refers to Hankel’s function of the first kind and lth order. Using the scalar

function G(x, y) we can define a matrix-valued function Φ(x, y) by

Φ(x, y) = k2G(x, y) I +D2G(x, y), (2)

where I ∈ Rd×d is the identity matrix and D2G denotes the Hessian of G. Then we can verify by some
direct calculations that ∇ · Φ(x, y) = 0 and

∇×∇× Φ(x, y)− k2Φ(x, y) = δ(x− y)I, (3)

where (and in the sequel) the actions of the operators ∇· and ∇× on a matrix-valued function are always
understood to be columnwise operation. Hence, the matrix Φ(x, y) defined by (2) is a divergence-free
fundamental solution to the Maxwell system (1) in the homogeneous space Rd. Using the fundamental
solution Φ(x, y), the total electric field E(x) can be represented by the following integral equation

E(x) = Ei +

∫
Rd

Φ(x, y)(n2 − 1)E(y)dy. (4)

We note that the fundamental solution Φ(x, y) involves a non-integrable singularity at x = y. Hence care
must be exerted when interpreting the integral when the point x lies within the domain Ω [19]. Next we
let η = n2−1, which precisely characterizes the inhomogeneities in the medium. In particular, the support
of η coincides with the scatterer support Ω. Furthermore, we introduce the function J = (n2 − 1)E, i.e.,
the induced electrical current caused by the medium inhomogeneities. Then, the total electric field E(x)
satisfies [13, Theorem 9.1]

E(x) = Ei(x) + k2

∫
Rd

G(x, y)J(y) dy +∇x
∫
Rd

G(x, y)divyJ(y) dy.

Upon noting the reciprocity relation ∇xG(x, y) = −∇yG(x, y) and applying integration by parts to the
last term on the right hand side, we arrive at the following equivalent integral equation

E(x)−
∫
Rd

G(x, y)PJ(y) dy = Ei(x),

3



where the operator P is defined by

Pφ = k2Iφ+ grad(divφ).

Thus, by multiplying the equation with the coefficient η, we obtain an integral equation for the induced
electric current J

J(x)− η
∫

Ω

G(x, y)PJ(y) dy = ηEi(x), x ∈ Ω. (5)

Equation (5) was rigorously justified in suitable function spaces in [27], and it is very convenient for
solving related inverse problems; see [27] for an application to the inverse source problem and [26] for
inverse medium scattering. Compared with the whole-space Maxwell system, equation (5) is defined
only over the scatterer support Ω since the induced electrical current J vanishes identically outside Ω.
This reduces greatly the simulation domain, and hence brings significant computational benefits. We
shall adopt (5) for forward scattering simulation, which can be discretized numerically by a mid-point
quadrature rule (cf. Appendix A for details).

3 Direct sampling method

In this section, we develop the DSM to determine the locations, number and shape of the scatter-
ers/inhomogeneities in electromagnetic wave propagation. It is based on an analysis of electromagnetic
scattering, and extends our earlier work on acoustic scattering [22]. We shall also provide an analysis
of its theoretical performance by examining the behavior of the fundamental solution. For the sake of
convenience, we introduce the domain ΩΓ, which is the open domain enclosed by the measurement surface
Γ, and use (·, ·) for the real inner product on Cd and the overbar for the complex conjugate.

3.1 Derivation

The derivation relies essentially on the two basic facts. The first is a representation of the scattered
electric field Es using the fundamental solution Φ by, cf. (4):

Es(x) =

∫
Ω

Φ(x, y)J(y)dy ∀x ∈ Γ. (6)

The second fact is an important relation for the fundamental solution Φ(x, y) to the Maxwell system
(1). For any two arbitrary sampling points xp and xq that lie inside the domain ΩΓ and are far away
from the measurement boundary Γ, we have the following approximation∫

Γ

(Φ(x, xp)p,Φ(x, xq)q)ds ≈ k−1(p,=(Φ(xp, xq))q) ∀ p ∈ Cd, q ∈ Rd, (7)

where = denotes taking the imaginary part. Next, we derive this crucial relation. To do so, we first show
the following lemma.

Lemma 3.1. Let xp and xq be two distinct points in the domain ΩΓ, and ν be the unit outward normal
direction to the boundary Γ. Then for any constant vectors p ∈ Cd and q ∈ Rd, there holds∫

Γ

(∇× Φ(x, xq)q × ν,Φ(x, xp)p)− (∇× Φ(x, xp)p× ν,Φ(x, xq)q)ds = −2i(p,=(Φ(xp, xq))q). (8)

Proof. It is easy to verify directly that the identify (∇× ∇× Φ(x, xp))p = ∇× ∇× Φ(x, xp)p holds for
any constant vector p ∈ Cd. Using this identity and (3) we have

∇× ∇× Φ(x, xp)p− k2Φ(x, xp)p = δ(x− xp)p ∀ p ∈ Cd , (9)

∇×∇× Φ(x, xq)q − k2Φ(x, xq)q = δ(x− xq)q ∀ q ∈ Rd . (10)
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Taking the conjugate of equation (10) yields

∇×∇× Φ(x, xq)q − k2Φ(x, xq)q = δ(x− xq)q. (11)

By taking (real) inner products of equation (9) with Φ(x, xq)q and of equation (11) with Φ(x, xp)p, then
subtracting the two identities, we arrive at∫

ΩΓ

{
(Φ(x, xq)q,∇×∇× Φ(x, xp)p)− (Φ(x, xp)p,∇×∇× Φ(x, xq)q)

}
dx

= (p,Φ(xp, xq)q)− (q,Φ(xp, xq)p).

(12)

Next we apply the following integration by parts formula∫
ΩΓ

{
(Φ(x, xq)q,∇×∇× Φ(x, xp)p)− (Φ(x, xp)p,∇×∇× Φ(x, xq)q)

}
dx

=

∫
Γ

(∇× Φ(x, xq)q × ν,Φ(x, xp)p)− (∇× Φ(x, xp)p× ν,Φ(x, xq)q)ds

to the left hand side of (12) to obtain∫
Γ

(∇× Φ(x, xq)q × ν,Φ(x, xp)p)− (∇×Φ(x, xp)p× ν,Φ(x, xq)q)ds

= (p,Φ(xp, xq)q)− (q,Φ(xp, xq)p).

Now the real symmetry of the fundamental solution Φ(x, y) leads directly to the desired identity.

Next, note that on a circular curve/spherical surface Γ, we can approximate the left hand side of
identity (8) by means of the Silver-Müller radiation condition for the outgoing fundamental solution
Φ(x, y) to the Maxwell system, i.e.,

∇× Φ(x, xp)p× ν = ikΦ(x, xp)p+ h.o.t.

Thus we have the following approximations:

∇× Φ(x, xp)p× ν ≈ ikΦ(x, xp)p,

∇× Φ(x, xq)q × ν ≈ −ikΦ(x, xq)q,

which are valid if the points xp and xq are far away from the boundary Γ. Consequently, we arrive at the
following important approximate relation:

−
∫

Γ

{
(ikΦ(x, xp)p,Φ(x, xq)q) + (ikΦ(x, xq)q,Φ(x, xp)p)

}
ds ≈ −2i(p,=(Φ(xp, xq))q).

Upon simplifying the relation, we arrived at the desired relation (7).
The relation (7) leads to an important observation: the inner product over the surface Γ

〈Φ(·, xp)p,Φ(·, xq)q〉L2(Γ) =

∫
Γ

(Φ(x, xp)p,Φ(x, xq)q)ds (13)

can have a maximum if xp = xq and decays to 0 as |xp − xq| tends to ∞, in view of the decay property
of the fundamental solution Φ(x, y), i.e., an approximate “orthogonality” relation.

With these two basic facts (6) and (7) at hand, now we consider a sampling domain Ω̃ ⊂ ΩΓ enclosing
the scatterer support Ω, and divide it into a set of small elements {τj}. Then by a rectangular quadrature
rule, we arrive at the following discrete sum representation

Es(x) =

∫
Ω̃

Φ(x, y)J(y)dy ≈
∑
j

Φ(x, yj)J(yj) |τj |, (14)
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where the point yj lies within the jth element τj , and |τj | is the volume/area of the element τj . Since the
induced electrical current J vanishes identically outside the support Ω, the summation in (14) is actually
only over those elements that intersect with Ω. We point out that, in practice, the scatterer support Ω
may consist of several disjoint subregions, each being occupied by one homogeneous physical medium. By
elliptic regularity theory [13, 35], the induced current J = η E is smooth in each subregion, and thus the
approximation in (14) can be made arbitrarily accurate by refining the elements {τj}. Nonetheless, we
reiterate that the relation (14) is only to motivate our method, and it is not needed in the implementation.
Physically, it can be interpreted as follows: the scattered field Es at any point x ∈ Γ is a weighted average
of that due to point scatterers located at {yj} lying within the true scatterer Ω.

The relations (7) and (14) together indicate that for any sampling point xp ∈ Ω̃ and any constant
vector q ∈ Rd, there holds

〈Es,Φ(·, xp)q〉L2(Γ) ≈

〈∑
j

Φ(·, yj)J(yj)|τj |,Φ(·, xp)q

〉
L2(Γ)

=
∑
j

|τj |〈Φ(·, yj)J(yj),Φ(·, xp)q〉L2(Γ)

≈ k−1
∑
j

|τj |(J(yj),=(Φ(xp, yj))q).

(15)

The analysis in Section 3.2 indicates that the quantity |〈J(yj),Φ(·, xp)q〉| achieves its maximum magnitude
for some probing polarization q when the sampling point xp approaches the physical point scatterer yj ,
and decays quickly when xp moves away from yj . Therefore the quantity |〈Es,Φ(·, xp)q〉| may act as an
indicator function to the presence of scatterers, and equivalently provides an estimate of the scatterer
support Ω. These observations lead us to the following index function:

Ψ(xp; q) =
|〈Es,Φ(·, xp)q〉L2(Γ)|

‖Es‖L2(Γ)‖Φ(·, xp)q‖L2(Γ)
, ∀xp ∈ Ω̃. (16)

Here Φ(·, xp)q acts as a probe/detector for the scatterers. In principle, the choice of the polarization
q in the index Ψ(xp; q) can be quite arbitrary. Naturally, it is expected that the choice of q will affect
the probing capability of the function Φ(x, xp)q. The analysis in Section 3.2 below will shed insights
into the probing mechanism and provide useful guidelines for the choice of q. In particular, the choice
q = p, i.e., the polarization of the incident field Ei, works well in practice. We note that, apart from
providing an estimate of the scatterer support, the index Ψ(xp; q) provides a likelihood distribution of

the inhomogeneities in Ω̃, which up to a multiplicative constant may be used as an initial estimate for
further refinement [23].

3.2 Analysis of the index function Ψ

In this part, we analyze the theoretical performance and the probing mechanism of the DSM by an-
alytically and numerically studying the fundamental solution Φ(x, y) and the index Ψ for one single
point scatterer. First, we recall the crucial role of the approximate relation (7): the fundamental solution
Φ(xp, xq) is nearly singular, and assumes very large values for xp close to xq. More precisely, the extremal
property of =(Φ(xp, xq)) is the basis for accurate support detection. This observation is self evident for
the scalar Helmholtz equation in view of the identity =(G(xp, xq)) = 1

4J0(k|xp−xq|) (in two-dimension),
where J0 is the Bessel function of the first kind of order zero. However, for the Maxwell system, the
fundamental solution Φ(x, y) contains multiple entries, and each exhibits drastically different behavior.
So for different polarization q, the probing function Φ(x, xp)q, as well as the index function Ψ(xp; q),
mixes the components together differently and the probing capability may differ considerably. Below we
shall investigate more closely the properties of Φ(x, y) to shed light into Ψ(xp; q).

We begin with an important observation on the trace of the fundamental solution Φ(x, y).
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Proposition 3.1. For d = 2, 3, the fundamental solution Φ(x, y) satisfies the following relation

tr(Φ(x, y)) = (d− 1)k2G(x, y). (17)

Proof. Let us begin with the two-dimensional case, i.e., transverse electric mode, i.e., E = (E1, E2, 0)t

and H = (0, 0, H3)t. Then the Maxwell system (1) should be understood as

iωµ0H3 = (∇× E)3 = ∂E2

∂x1
− ∂E1

∂x2
, −iωεE = ∇×H =

(
∂H3

∂x2
,−∂H3

∂x1
, 0
)t

.

The fundamental solution G(x, y) is given by G(x, y) = i
4H

(1)
0 (k |x − y|). To evaluate the Hessian

D2G(x, y), we first recall the recursive relation for the derivative of Hankel functions [1]

d
dzH

(1)
n (z) =

nH(1)
n (z)
z −H(1)

n+1(z).

Hence, by the chain rule and product rule, we deduce that

∂2

∂xi∂xj
H

(1)
0 (k|x− y|) = k2H

(1)
2 (k|x− y|) (x−y)i(x−y)j

|x−y|2 − k 1
|x−y|H

(1)
1 (k|x− y|)δi,j ,

where δij is the Kronecker delta function. Consequently, the fundamental solution Φ(x, y) is given by

Φ(x, y)i,j = ik2

4

[(
H

(1)
0 (k|x− y|)− H

(1)
1 (k|x−y|)
k|x−y|

)
δi,j +H

(1)
2 (k|x− y|) (x−y)i(x−y)j

|x−y|2

]
.

Upon noting the recursive relation
2H

(1)
1 (z)
z = H

(1)
0 (z) +H

(1)
2 (z) for Hankel functions [1], we deduce that

the trace of the fundamental solution satisfies

tr(Φ(x, y)) = ik2

4

[
2H

(1)
0 (k|x− y|)− 2

H
(1)
1 (k|x−y|)
k|x−y| +H

(1)
2 (k|x− y|)

]
= ik2

4 H
(1)
0 (k|x− y|) = k2G(x, y).

Next we turn to the three-dimensional case, i.e., G(x, y) = 1
4π

eik|x−y|

|x−y| . A direct calculation yields

Φ(x, y)ij =G(k|x− y|)
[
k2
(
δij − (x−y)i(x−y)j

|x−y|2

)
−
(
δi,j − 3(x−y)i(x−y)j

|x−y|2

)
1

|x−y|2

+ik
(
δi,j − 3(x−y)i(x−y)j

|x−y|2

)
1
|x−y|

]
.

Consequently, there holds tr(Φ(x, y)) = 2k2G(x, y). This completes the proof.

It follows from (17) that the sum of the diagonals of Φ(x, y) resembles the scalar counterpart G(x, y),
which, according to [22, 28], can detect well the scatterer support. In other words, this yields

k−1=(tr Φ(x, y)) =


k2

4

J0(k|x− y|)
k

, d = 2,

2k2 sin(k|x− y|)
k|x− y|

, d = 3.

(18)

Therefore, the crucial quantity k−1=(tr(Φ(xp, xq))) attains its maximum at xp = xq, indicating the
presence of a scatterer. We note that apart from the global maximum, there are also a number of local
maxima, which introduce “ripples” into the resulting index function. Nonetheless, the locations of these
maxima depend only on the wavenumber k, and can be strictly calibrated.

Next, we examine combinations of the components of the fundamental solution Φ(x, y). We first note
that each independent component =(Φij(x, xq)) does have a significant maximum at x = xq like (18).
However, the magnitude of each component differs dramatically. In Fig. 1, we show the inner products

7



of the components Φ11, Φ22, Φ12 with themselves (termed cross product for short) and the diagonal sum

as a function of the sampling point xp ∈ Ω̃, i.e., |〈Φ11(xp, x),Φ11(xq, x)L2(Γ)〉| etc. We note that these
cross products form the building blocks of the index function Ψ(xp; q), and their behavior completely
determines the performance of the DSM. The cross products for both Φ11 and Φ22 exhibit strong di-
rectional resonances but their sum, i.e., 〈Φ11(x, xq),Φ11(x, xp)〉L2(Γ) + 〈Φ22(x, xq),Φ22(x, xp)〉L2(Γ) does
only assume one significant maximum at xq = xp with weak resonances. In practice, due to the mixing
of these components in Ψ(xp; q), the performance of the DSM may not be as good as that for the scalar
counterpart in the case of the scattered electric field Es for one polarization. Nonetheless, with multiple
polarizations pk and all components of the respective scattered field Es, one might be able to extract
the trace tr(Φ(x, y)), and (18) can be applied. If this were indeed the case, then the performance of the
sampling method would equal that for the scalar case.

|〈Φ11(x, xp),Φ11(x, xq)〉L2(Γ)| |〈Φ22(x, xp),Φ22(x, xq)〉L2(Γ)|

|〈Φ12(x, xp),Φ12(x, xq)〉L2(Γ)| diagonal sum

Figure 1: Cross products of Φ11, Φ22, and Φ12, with the point scatterer located at the xq = (− 1
4 , 0), and

the diagonal sum, over the sampling domain Ω̃ = [−2, 2]2. The measurement curve Γ is a circle of radius
5 centered at the origin. The quantities are normalized.

Index function for multiple incident fields. To arrive at an applicable index function for multiple
incident fields (with different incident directions/polarizations), we examine the behavior of the two-
dimensional fundamental solution Φ(x, y) more closely. We first consider the incident direction d1 =√

2
2 (1, 1)t and the polarization p1 =

√
2

2 (1,−1)t, and assume that the local induced electrical current J is
proportional to the polarized incident wave Ei within the inhomogeneity located at xq. Upon ignoring
the normalization, the index function Ψ(xp; q) with the choice q = p1 is roughly determined by

2〈Φ(x, xq)p1,Φ(x, xp)p1〉L2(Γ) =〈Φ11(x, xq)− Φ12(x, xq),Φ11(x, xp)− Φ12(x, xp)〉L2(Γ)

+ 〈Φ12(x, xq)− Φ22(x, xq),Φ12(x, xp)− Φ22(x, xp)〉L2(Γ),
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where each term in the inner products, like Φ11(x, xp) − Φ12(x, xq) and so on, corresponds to one com-

ponent of the vector field Es. Similarly, for the incident direction d2 =
√

2
2 (1,−1)t and the polarization

p2 =
√

2
2 (1, 1)t, the index function Φ(xp; q) with the choice q = p2 is roughly determined by

2〈Φ(x, xq)p2,Φ(x, xp)p2〉L2(Γ) =〈Φ11(x, xq) + Φ12(x, xq),Φ11(x, xp) + Φ12(x, xp)〉L2(Γ)

+ 〈Φ12(x, xq) + Φ22(x, xq),Φ12(x, xp) + Φ22(x, xp)〉L2(Γ).

The quantities |〈Φ(x, xq)p1,Φ(x, xp)p1〉L2(Γ)| and |〈Φ(x, xq)p2,Φ(x, xp)p2〉L2(Γ)| after normalization are
shown in Fig. 2: both exhibit strong resonances. This is attributed to the ripples predicted from the
relation (18) and mixing of different components of Φ. Note that the resonances show up in different
regions, with their locations depending on the incident direction/polarization. We reiterate that in case
of one single point scatterer, the resonance is completely predictable and one might be able to remove
them from the support estimates with suitable postprocessing. However, for multiple scatterers, the
discrimination of resonances from true scatterers can be highly nontrivial. Hence, it is highly desirable to
design a sampling method that is free from significant resonances ab initio, by suitably adapting the choice
of polarization q in the probing function Φ(x, xp)q and combining the indices for multiple polarizations.

Let us consider two polarizations p1 =
√

2
2 (1,−1)t and p2 =

√
2

2 (1, 1)t, and measure all components of the
scattered electric field Es, in the hope of focusing on the genuine inhomogeneities. Then the performance

of the combined index with p1 =
√

2
2 (1,−1)t and p2 =

√
2

2 (1, 1)t is approximately given by

〈Φ(x, xq)p1,Φ(x, xp)p1〉L2(Γ) + 〈Φ(x, xq)p2,Φ(x, xp)p2〉L2(Γ)

=〈Φ11(x, xq),Φ11(x, xp)〉L2(Γ) + 2〈Φ12(x, xq),Φ12(x, xp)〉L2(Γ) + 〈Φ22(x, xq),Φ22(x, xp)〉L2(Γ).

Even though the index function for p1 or p2 alone has its own shadows of the point scatterer; see Figs. 2(a)-
(b); the combination can isolate the point scatterer very well, cf. Fig. 2(c). Hence, combining multiple
polarizations does remedy the undesirable rippling phenomenon. This motivates the following combined
index Ψc(xp) for multiple polarizations {pl}Ll=1:

Ψc(xp) =
1

L

L∑
l=1

Ψ(xp; pl) (19)

where Ψ(xp; pl) is the index function for the polarization pl (hence the lth incident field), cf. (16).

(a) |〈Φ(x, xp)p1,Φ(x, xq)p1〉L2(Γ)| (b) |〈Φ(x, xp)p2,Φ(x, xq)p2〉L2(Γ)| (c) combination

Figure 2: The cross products for polarizations p1, p2 and the combination with direct sum over the
sampling domain Ω̃ = [−2, 2]2. The point scatterer is located at xq = (− 1

4 , 0). The measurement curve
Γ is a circle of radius 5 centered at the origin. The quantities are normalized.

3.3 Comparisons with existing methods

There are several existing sampling-type methods for inverse scattering, including linear sampling method
(LSM), factorization method [24, 25], MUSIC [16, 4, 9], and orthogonality sampling etc; see [8, 10, 24,

9



25, 29] for detailed overviews on these methods. In this subsection, we briefly discuss the connections
and differences between the DSM and the LSM and MUSIC.

The LSM was introduced in 1996 [12]. Numerically, for each sampling point, it solves one linear integral
equation of the first kind with the measured far-field data as the kernel, and then takes the solution norm
as an indicator function. Hence, the LSM takes the far-field map, and involves solving linear ill-posed
integral equations, which necessitates the application of regularization methods. In comparison with
optimization-based indirect methods, it is much faster. Further, with a full range of scattered field data,
the reconstructions are generally accurate, but a full range may not be required for the method to yield
a (sometimes reasonable) result. However, the data noise is treated indirectly via linear solvers, thus the
value of the indicator function is usually sensitive to the noise. We refer to [11, 8] for overviews on the
LSM for inverse electromagnetic scattering problems. In contrast, as we shall see below, the DSM can
work with a few incident fields, and treats directly the data noise.

In inverse scattering, MUSIC was often applied to retrieve the locations of point-like scatterers from the
multistatic response (MSR) matrix; see, e.g., [4, 16] for acoustic scattering, and [5, 9] for electromagnetic
scattering. Numerically, it involves projecting test functions Φ(x, xp)q into a noise subspace, which is
computed by the eigendecomposition of the MSR matrix. We note that for one incident field and a
point-like scatterer, the indicator functions for the DSM and MUSIC are very similar, which roughly are
the cosine and cosecant of the angle between the scattered field and the test function, respectively. This
underlies their close connection. Nonetheless, there are several notable differences in their motivation,
derivation and implementation. First, by the MSR matrix, MUSIC generally requires multiple incident
fields, but the DSM uses very few (e.g., one or two) incidents. Further, we note that for the case of
one incident field, the interpretation of the index function developed herein is new, i.e., crucial roles of
the relations (6) and (7). Second, the derivation of MUSIC ignores multiple scattering [25], whereas the
DSM is based on a scattering analysis and accommodates multiple scattering. Third, MUSIC is based
on a range condition and aims mainly at point scatterers, whereas the DSM relies on formula (15) of the
probing function and profiles the distributed induced current of the scatterers, which are not necessarily
point-like. Fourth, MUSIC requires computing the noise subspace, which is relatively sensitive to the
presence of noise. In the DSM, noisy data enters into the index function (16) directly via the integral
over the surface Γ against the fundamental solution. By the smoothness of the fundamental solution, the
high frequency modes (noise) in the data are less influential; see the numerical experiments in Section 4.
Last, in case of multiple incidents, the DSM first forms one index function for each incident, and then
sum them up to yield the combined index Ψc, to enhance the probing effect based on the analysis in
Section 3.2. This is distinctly different from MUSIC, where the scattered data is first combined into a
signal subspace, and it represents one of the main novelties of the DSM. Further, MUSIC generally uses
one fixed but possibly space dependent polarization in the test function Φ(x, xp)q, which can limit its
probing capability. The reconstruction quality depends crucially on the choice of the polarization q, and
an inadvertent choice may miss degenerate scatterers [3, 9]. In contrast, in the DSM, one can adapt the
polarization in the probing function Φ(x, xp)q to each incident field, then sum the indices together for an
improved reconstruction resolution. Altogether, these differences essentially distinguish the DSM from
the standard MUSIC.

Now we summarize the distinct features of the DSM. First, it involves only computing inner products
of the measured scattered field with closed-form probing functions Φ(x, xp)q, hence it is strictly direct.
Second, it is applicable to the case of a few (e.g., one or two) incident fields, which is particularly
important in applications. Surely with such a limited amount of data, the reconstruction accuracy has
to be somewhat compromised in comparison with that from a full range of scattered fields. However, as
we shall see below, the reconstructions are still reasonable. Third, the noise is treated directly, thus the
method is usually robust with respect to the noise.
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4 Numerical experiments and discussions

In this section, we present two- and three-dimensional numerical examples to showcase the features, e.g.,
the accuracy and robustness, of the proposed DSM for detecting scatterers. The examples are designed
to illustrate the features of the method and to validate the theoretical findings in Section 3. Numerical
results for both exact and noisy data will be presented. In all examples, the wavelength λ is set to 1, and
the wavenumber k is 2π. The noisy scattered electric data Esδ is generated pointwise by

Esδ (x) = Es(x) + εmax
x∈Γ
|Es(x)|ζ(x),

where ε denotes the relative noise level, and both real and imaginary parts of the random variable ζ(x)
follow the standard Gaussian distribution with zero mean and unit variance. All the computations were
performed on a dual-core laptop using MATLAB R2009a.

4.1 Two-dimensional examples

Now we present numerical results for two-dimensional examples. Unless otherwise specified, two incident

fields, i.e., d1 =
√

2
2 (1, 1)t and d2 =

√
2

2 (−1, 1)t (accordingly, the polarizations p1 =
√

2
2 (1,−1)t and

p2 =
√

2
2 (1, 1)t), are employed. For each incident field Ei, the scattered electric field Es is measured at

30 points uniformly distributed on a circle of radius 5 centered at the origin. The sampling domain Ω̃ is
fixed at [−2, 2]2, which is divided into small squares of equal side length h = 0.01. The index function Ψ
as an estimate to the scatterer support will be displayed for each example.

Our first example shows the method for one single scatterer, which confirms the theoretical analysis
of the index Ψc in Section 3.2.

Example 1. The example considers one square scatterer of side length 0.3 centered at the point (− 1
4 , 0).

The true inhomogeneity coefficient η(x) of the scatterer is set to be 1, namely n(x) =
√

2.

(a) true scatterer (b) index Ψ(xp; p1) (c) index Ψ(xp; p2) (d) index Ψc

Figure 3: Numerical results for Example 1. The first and second row refers respectively to the index
function for the exact data and the noisy data with ε = 20% noise.

The numerical results for Example 1 are shown in Fig. 3. We observe that for sampling points close to
the physical scatterer, the index function Ψ is relatively large; otherwise it takes relatively small values.
Note that the image for one incident field Ei exhibits obvious resonances, with resonance locations
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depending on the incident direction. Here, the resonance behavior agrees excellently with the theoretical
analysis for one single point scatterer in Section 3.2, hence it might be removed by applying a suitable
postprocessing procedure. The use of two incident fields can greatly mitigate the resonances. Hence the
index function Ψc does provide an accurate and reliable indicator for the location of the scatterer; see
Fig. 3(d). The presence of ε = 20% noise in the measured data does not affect the shape of Ψc, thereby
showing the robustness of the DSM.

Our second example illustrates the DSM for two separate scatterers.

Example 2. We consider two square scatterers, with the inhomogeneity coefficient η being 1 in both
scatterers. The following two cases are investigated:

(a) The two scatterers are of side length 0.2, and located at (−0.8,−0.7) and (0.3, 0.8), respectively.

(b) The two scatterers are of side length 0.3, and located at (−0.45,−0.35) and (0.05, 0.15), respectively.

(a) true scatterers (b) index Ψ(xp; p1) (c) index Ψ(xp; p2) (d) index Ψc

Figure 4: Numerical results for Example 2(a). The first and second row refers respectively to the index
function for the exact data and the noisy data with ε = 20% noise.

The two scatterers in Example 2(a) are well apart from each other. Here each of the two incident
fields tends to highlight only one of the two scatterers, with the index value for one scatterer being much
higher than that for the other; see Figs. 4(b)-(c). Since the two scatterers are well apart, the interactions
between them are weak, and the resonance pattern for the point scatterer is well kept. However, the two
incident fields together give a clear discrimination of the two scatterers, with their locations satisfactorily
recovered for both exact data and the data with ε = 20% noise; see Fig. 4(d).

The two scatterers in Example 2(b) stay very close to each other. We observe that, for the incident
direction d2, apart from the strong resonances, the locations for the scatterers cannot be directly inferred
since the index function Ψ relates the two scatterers into an elongated ellipse shape. The resonances
were almost completely removed from the estimate when using two incident fields. Hence the estimate of
the locations of the scatterers is very impressive: the two scatterers are still well separated despite their
closeness, with their locations correctly estimated, for up to ε = 20% noise in the data. Although not
presented, we would like to remark that in the case of very high noise levels, e.g., ε = 40%, the estimate
tends to connect the two scatterers, and also some spurious modes may emerge.

Our next example considers the more challenging case of three neighboring scatterers.
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(a) true scatterers (b) index Ψ(xp; p1) (c) index Ψ(xp; p2) (d) index Ψc

Figure 5: Numerical results for Example 2(b). The first and second row refers respectively to the index
function for the exact data and the noisy data with ε = 20% noise.

Example 3. This example consists of three neighboring square scatterers of width 0.15: one located at
(− 5

8 ,−
5
8 ), one located at (− 17

40 ,−
17
40 ), and one located at (− 21

40 ,
1
8 ). The inhomogeneity coefficients of all

three scatterers are set to be η = 1.

In this example, the three scatterers stay very close to each other, especially the upper two, thus it
is numerically very challenging to separate them. This is also reflected in the fact that each individual
incident field tends to combine two of the three scatterers into one larger chunk, which is true for both the
exact data and noisy data; see Figs. 6 (b)-(c). Thus it is difficult to tell from either Fig. 6(b) or Fig. 6(c)
the number and locations of the scatterers. The latter is effectively remedied by using two incident
fields together; see Fig. 6(d), where the scatterers are vividly separated from each other. However, the
interactions between the scatterers focus the strength on the scatterer to the right, and diminish slightly
the strength of the scatterer to the left.

Next we consider a ring-shaped scatterer.

Example 4. This scatterer is one ring-shaped square scatterer located at the origin, with the outer and
inner side lengths being 0.6 and 0.4, respectively. The coefficient η of the scatterer is 1.

The ring-shaped scatterer represents one of the most challenging objects to resolve, and it is highly
nontrivial even with multiple data sets. The results with the exact data and ε = 20% noise in the data
are shown in Fig. 7. It is observed that with just two incident waves, the method can provide a quite
reasonable estimate of the ring shape, and it remains very stable for up to ε = 20% noise in the data.

4.2 Three-dimensional example

The last example shows the feasibility of the method for three-dimensional problems.

Example 5. We consider two cubic scatterers with side length 0.2: one centered at (0.4, 0.3, 0.3) and the
other at (−0.4, 0.3, 0.3), respectively, and the coefficient η in both scatterers is taken to be 1.

Here we take two incident fields, with the incident directions d1 = d2 = 1√
3
(1, 1, 1)t and the polariza-

tion vectors p1 = 1√
6
(1,−2, 1)t and p2 = 1√

6
(1, 1,−2)t. The scattered field Es is measured at the points

on a uniformly distributed mesh of 10 × 10 on each face of the cube of edge length 10. The sampling
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(a) true scatterers (b) index Ψ(xp; p1) (c) index Ψ(xp; p2) (d) index Ψc

Figure 6: Numerical results for Example 3. The first and second row refer to the index function for the
exact data and the noisy data with ε = 20% noise.

(a) true scatterers (b) index Ψ(xp; p1) (c) index Ψ(xp; p2) (d) index Ψc

Figure 7: Numerical results for Example 4. The first and second row refers respectively to the index
function for the exact data and the noisy data with ε = 20% noise.

domain Ω̃ for evaluating the index functions is taken to be [−2, 2]3. The problem is discretized with a
mesh size 0.02. The numerical results are shown in Fig. 8. We observe that the support estimated by
the index Ψ agrees very well with the exact one, the magnitude of the index Ψ decreases quickly away
from the boundary of the true scatterers. The presence of ε = 20% data noise (cf. Fig. 9) seems to cause
no obvious deterioration of the accuracy of the index Ψ when compared with that for the exact data.
By examining the cross-sectional images of the index, we found that in comparison with two-dimensional
problems, the rippling phenomenon seems far less pronounced for this three-dimensional example, i.e.,
one incident field is sufficient for the DSM to yield a reasonable scatterer support estimate.
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(a) exact scatterers (b) index Ψ(xp; p1)

(c) index Ψ(xp; p2) (d) index Ψc

Figure 8: Numerical results for Example 5 with exact data.

5 Conclusions

We have developed a novel direct sampling method for the inverse electromagnetic medium scattering
problem of estimating the support of inhomogeneities from near-field scattered electric data. It was de-
rived from an integral representation of the scattered field via the fundamental solution, a careful analysis
on electromagnetic scattering and the behavior of the fundamental solution. It is particularly suited to
the case of a few incident fields. It involves only computing inner products of the scattered electric field
with fundamental solutions located at the sampling points, hence it is strictly direct, straightforward
to implement, computationally very efficient, and very robust to noise presence. The numerical results
indicate that it can provide satisfactory estimates of the scatterer shapes from the measured near-field
data for a few incident fields, even in the presence of a large amount of noise in the data.

In the present study, we have focused on scatterer support estimation. It is natural to enhance the
reconstructions by other indirect inverse scattering methods [23]. Also it is of interest to see its extensions
for other important scattering scenarios, e.g., scattering from lines (cracks), far-field measurements and
multiple-frequency data, as well as their theoretical justifications.
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Figure 9: Numerical results for Example 5 with ε = 20% data noise.
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A Numerical method for forward scattering

In this part we describe our numerical method for the integral equation (5) on a two-dimensional domain
Ω. We denote by J the index set of grid points xj = (x1

j1
, x2
j2

), j = (j1, j2) ∈ J, of a uniformly distributed
mesh with a mesh size h > 0 and the square cells Bj given by

Bj = Bj1,j2 = (x1
j1 , x

2
j2) + [−h2 ,

h
2 ]× [−h2 ,

h
2 ]

for every tuple j = (j1, j2) in the index set J. Further, we assume that the set ∪j∈JBj contains the
scatterer support Ω. We shall approximate the integral equation (5) by a mid-point quadrature rule, i.e.,

Jk + ηk
∑
j∈J

Gk,j(PJ)jh
2 = ηk E

i(xk), k ∈ J, (20)

where Jk = J(xk) and ηk = η(xk), and the off-diagonal entries Gk,j and the diagonal entries Gk,k are
given by Gk,j = G(xk, xj) and Gk,k = 1

h2

∫
(−h

2 ,
h
2 )

2 G(x, 0)dx, respectively. The diagonal entries Gk,k

can be accurately computed by a tensor-product Gaussian quadrature rule. To arrive at a fully discrete
scheme, we further approximate the crucial term PJ in equation (20) by the central finite difference
scheme:

PJ = k2

(
J

J

)
+

(
Dx1x1 Dx1x2

Dx1x2
Dx2x2

)
J,
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where Dxixj
refers to taking the second-order derivative with respect to xi and xj . In practice, we shall

approximate Dxixj
by central finite difference scheme, i.e.,

Dx1x1
= H ⊗ I, Dx2x2

= I ⊗H, Dx1x2
= D ⊗D,

where ⊗ is the Kronecker product for matrices, H and D are the tridiagonal matrices for the second and
the first derivative, respectively. The extension of the method to 3D problems is straightforward. The
resulting system can be solved using standard linear solvers, e.g., Gaussian elimination, if the cardinality
of the index set J is medium. Iterative solvers, e.g., generalized minimal residual method (GMRES) [31]
should be applied if the cardinality of J is large. Our numerical experiences indicate that tens of GMRES
iterations already yield a very accurate solution to the linear system.
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