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Abstract

In this paper we propose an algorithm for solving the large-scale discrete ill-conditioned linear
problems arising from the discretization of linear or nonlinear inverse problems. The algorithm
combines some existing regularization techniques and regularization parameter choice rules with a
randomized singular value decomposition (SVD) so that only much smaller-scale systems are needed
to solve, instead of the original large-scale regularized system. The algorithm can directly apply to
some existing regularization methods such as the Tikhonov and truncated SVD methods, with some
popular regularization parameter choice rules such as the L-curve, GCV function, quasi-optimality
and discrepancy principle. The error of the approximate regularized solution is analyzed and the
efficiency of the method is well demonstrated by the numerical examples.

Keywords. Inverse problems, SVD, L-curve, GCV, TSVD, Tikhonov regularization, randomized
algorithm.

1 Introduction

We will consider the ill-conditioned linear system Ax = b arising from the discretization of some linear
inverse problem [10] or of the linearized system of some nonlinear inverse problem [2, 13], where A
is an m × n matrix and b is obtained from measurement data. For an ill-posed inverse problem, its
solution is usually very sensitive to the perturbation in the measurement data b. In order to achieve a
meaningful solution that changes stably with respect to the perturbation in the data, one often adopts
some regularization techniques [13]. Tikhonov regularization is one of the most popular and effective
techniques, which converts the solution of the system Ax = b into the solution of the regularized least-
squares system

min
x
{||Ax− b||2 + µ2||x||2}, (1)

where constant µ is the so-called regularization parameter. The minimization problem (1) is equivalent
to the system

(ATA+ µ2I)x = AT b . (2)

Suppose that we have the singular value decomposition (SVD) of matrix A ∈ Rm×n(m ≥ n), namely,
we can write A = UΣV T , where U = (u1, · · · , um), V = (v1, · · · , vn) are orthonormal matrices, and
Σ = diag(σ1, · · · , σn) ∈ Rm×n, with σ1, σ2, · · · , σn being the singular values and σ1 ≥ σ2 ≥ · · · ≥ σn.
Then the solution of (2), i.e., the Tikhonov regularized solution xµ, can be expressed as

xµ =

n∑
i=1

fi
uTi b

σi
vi, (3)
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where fi = σ2
i /(σ

2
i + µ2) is the Tikhonov filter factor [29]. When replacing the filter factors fi by

0’s and 1’s appropriately, we have the truncated SVD method (TSVD) [25], which is another popular
regularization method using the best low rank approximation of A. The TSVD regularized solution xk is
given by

xk =

k∑
i=1

uTi b

σi
vi,

where the positive integer k is the truncation parameter and is chosen such that the noise-dominated
small singular values are discarded.

As A arises mostly from the discretization of some compact operator, it has singular values of quite
small magnitude. One can easily see from (3) that the solution can be easily contaminated by the
perturbation in the measurement data b without the regularization, i.e., µ = 0. By introducing the regu-
larization (µ 6= 0), we may make a comprise between the sensitivity of the problem and the perturbation
of the measured data and greatly reduce the effect caused by the contamination of the noise in the data.

A key issue for the success of the Tikhonov regularization is how to determine a reasonable regular-
ization parameter µ. There are several popular techniques in the literature for the selection of effective
regularization parameters. When the noise level is unknown, we may use some heuristic methods, for
example, the so-called L-curve method [26, 31], which uses the plot of (log ||Axµ − b||, log ||xµ||) over a
range of µ, i.e., the norm of the regularized solution versus the corresponding residual norm. If there is a
corner on the L-curve, one can take the corresponding parameter µ as the desired regularization param-
eter. Many other heuristic methods can be found in literature, such as the generalized cross-validation
(GCV) function [15], the quasi-optimality criterion [46, 47], Brezinski-Rodriguez-Seatzu estimators [4],
Hanke-Raus rule [24], and so on. When the noise level is known, the discrepancy principle [39, 41], the
monotone error rule [45], and the balancing principle [35, 38] may be applied.

Once we have the knowledge of the SVD of matrix A, we can determine the regularization parameter
by some of the aforementioned techniques, such as the L-curve, the GCV function, or the Brezinski-
Rodriguez-Seatzu estimators. To see this, we can compute the regularized solution xµ and the corre-
sponding residual rµ = b − Axµ using (3) for a range of µ values. Then either the L-curve, the GCV
function or the Brezinski-Rodriguez-Seatzu estimators can be easily applied to determine the desired
parameter µ, and the corresponding solution xµ will be viewed as our final regularized solution. So we
can see that the SVD is a simple and efficient tool for solving ill-posed discrete problems by Tikhonov
regularization if we can afford the computing of the SVD for the corresponding coefficient matrix A.

However, it is widely known that it may be infeasible or extremely expensive to compute SVD when
the concerned discrete inverse problem is of large scale. In this work we shall investigate how to use the
SVD to solve large-scale discrete inverse problems in a more feasible and efficient manner. Certainly we
should not work on the original large systems directly, due to the computational complexity, instability
and memory limitation. Our approach is to first greatly reduce the size of the original large-scale discrete
system, then apply some existing regularizations combined with the SVD to solve the much reduced
discrete system. Clearly the solution of the reduced system must be still a good approximation of the
original large system in order to ensure this approach to work effectively. This is a challenging problem,
and will be the central focus of this study.

In the remainder of this work we will introduce some more efficient strategies to deal with the large-
scale discrete inverse problems, namely some randomized algorithms. These strategies are based on
some new randomized algorithms that have been developed recently in the theoretical computer science
community. They can greatly reduce the size of the original discrete inverse problem, but requiring to
access the large matrix A only twice, which is very crucial when the matrix is of large size. Moreover,
these algorithms work also well for the noisy data, due to their randomness.
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2 Algorithms and complexities

2.1 Randomized algorithms

The randomized algorithm becomes more and more popular in matrix approximation in the last decade. It
was realized that low-rank approximations can be obtained by randomly sampling columns of A according
to a probability distribution that depends on the Euclidean norms of the columns [14]. This has motivated
many studies in the direction. By choosing columns and rows simultaneously one can obtain the so-called
CUR matrix decomposition A ≈ CUR [12, 37], where C and R are randomly chosen from the columns
and rows of A respectively, and U is a generalized inverse of their intersections. A low rank approximation
in the form of an interpolative decomposition was derived in [36, 50] by using randomized algorithms.

For large-scale systems the randomized algorithms can be used to approximate the SVD of the con-
cerned coefficient matrices. This is the major interest of the current work since we need SVD to help find
some reasonable regularization parameters through some parameter choice rules that need to compute
the SVD such as the L-curve and the GCV techniques, for the use in the Tikhonov regularizations for
solving discrete inverse problems.

An approximation to SVD was provided in [50] by means of the interpolative decomposition, and was
compared with the classical pivoted QR decomposition algorithm in [9]. Randomized algorithms for the
principle component analysis (PCA) were given and analyzed in [42]. One of such algorithms is listed
here; see Algorithm 1, which gives the best rank-k approximation of A ∈ Rm×n, i.e., A ≈ UΣV T , and
meets the following error estimate

||A− UΣV T || ≤ Cm1/(4i+2)σk+1, (4)

where σk+1 is the (k + 1)th greatest singular value of A, and i is a nonnegative integer in Algorithm 1
specified by the user to enhance the decay of the singular values, and it is sufficient with i = 1 or 2 in
many applications of PCA [42].

Algorithm 1 Randomized algorithm for PCA.

1. Form a real l × m Gaussian random matrix Ω, and compute Y = Ω(AAT )iA for some positive
integer i ≥ 1.
2. Using the SVD of Y , form a real n× k matrix Q with orthonormal columns, such that there exists
Z satisfying ||QZ − Y T || ≤ σk+1(Y ).
3. Compute the m× k matrix B = AQ.
4. Form the SVD of B: B = UΣWT .
5. Compute V = QW , and obtain the approximation A ≈ UΣV T .

The integer l in Algorithm 1 is usually selected such that k < l ≤ m − k, for example, l = k + 12
[42]. Though the algorithm is randomized, the estimate (4) holds with very high probability (typically
1 − 10−15); see [42] for the details and different variants of this algorithm. More about randomized
algorithms can be found in the recent review article [20]. The following Algorithm 2 gives an important
variant of Algorithm 1, which will be fundamental to our subsequent studies. This variant provides an
approximation of SVD of matrix A, and was analyzed in [20]. We shall call it the randomized SVD (or
RSVD).

In Algorithm 2, the index l is usually selected in the form l = k + p, where p is an oversampling
parameter, and k corresponds to the rank k specified in advance for the best rank-k approximation of A
[20]. To understand Algorithm 2 more, we make some remark about each step of the algorithm. Step 2
is used to extract the column information, i.e., the range of A, and yields a matrix with much smaller
columns (l < n). In Step 3, an orthogonal matrix Q is formed to represent the range of A, and it also
gives the first approximation of the left singular vectors of A. The matrix A is reduced to a smaller
matrix in Step 4, and the matrix BT provides the information on R(AT ) = N(A)⊥, or the range of right
singular vectors. After SVD on the small matrix in Step 5, the first left singular vector approximation Q
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Algorithm 2 (RSVD). Given A ∈ Rm×n(m ≥ n) and l < n, compute an approximate SVD: A ≈ UΣV T

with U ∈ Rm×l, Σ ∈ Rl×l and V ∈ Rn×l.
1. Generate an n× l Gaussian random matrix Ω.
2. Form the m× l matrix Y = AΩ.
3. Compute the m× l orthonormal matrix Q via QR factorization Y = QR.
4. Form the l × n matrix B such that B = QTA.
5. Compute the SVD of the small matrix B: B = WΣV T .
6. Form the m× l matrix U = QW , then A ≈ UΣV T .

is modified by W in Step 6 to get the final approximation of the left singular vectors, leading to an SVD
approximation.

For the matrices of size m × n with m < n, we propose a variant of Algorithm 2, i.e., the following
Algorithm 3.

Algorithm 3 (RSVD*). Given A ∈ Rm×n(m < n) and l < m, compute an approximate rank-l SVD:
A ≈ UΣV T with U ∈ Rm×l, Σ ∈ Rl×l and V ∈ Rn×l.

1. Generate an l ×m Gaussian random matrix Ω .
2. Compute the l × n matrix Y = ΩA.
3. Compute the n× l orthonormal matrix Q via QR factorization Y T = QR.
4. Form the m× l matrix B = AQ.
5. Compute the SVD of a small matrix B: B = UΣWT .
6. Form the n× l matrix V = QW , then A ≈ UΣV T .

We have tried several other similar variants of Algorithms 2 and 3. For example, we may randomly
choose l columns to form the matrix Y in Algorithm 2. In this way, we can avoid the matrix-matrix
multiplication in Step 2, therefore reduce the computational costs nearly by half. Our numerical tests
have shown that this variant can succeed for some cases but may fail to give a good SVD approximation
for more difficult problems, especially when l is small. We have also tried the double projection of the
form QQTAPPT , where Q is defined as in Algorithm 2, and P has the similar role to Q, i.e., the range
of P should be a good approximation of R(AT ), or N(A)⊥. That is, we can use A ≈ QQTAPPT

for the approximate SVD of A. This variant works well in our numerical experiments in locating the
regularization parameters and finding the regularized solutions, but it nearly doubles the computational
costs of Algorithm 2. Among all different variants we have tried numerically, we find Algorithms 2 and
3 most efficient and robust. Therefore we shall mainly focus on these two algorithms in the rest of this
work.

2.2 Approximate regularized solutions by randomized SVD

In this section we propose an algorithm that combines the randomized SVD addressed in the previous
section with some regularization techniques to solve the large-scale regularized discrete inverse system
(2). This seems to be the first time in literature to solve the discrete inverse problems in such a manner.

As discussed in the Introduction, we can use the SVD to determine a desired regularization parameter
and find the corresponding solution to the regularized system (2). However, it may not be feasible or
efficient to use the SVD for large-scale systems. But in the rest of this section we show that it is possible
to solve the large-scale systems efficiently, with the help of the newly introduced randomized SVD.

Suppose that we have an approximate SVD of matrix A, i.e., A ≈ UΣV T , where U ∈ Rm×l, Σ ∈
Rl×l, and V ∈ Rn×l. Then by replacing A by its approximate SVD, the regularized system (2) can be
approximated by

(V Σ2V T + µ2I)x = V ΣUT b , (5)
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which gives an approximate regularized solution of (2):

xµ = V (Σ2 + µ2I)−1ΣUT b. (6)

For convenience, we set s = (σ1, · · · , σl)T , and t = (UT b)./s, where ./ is the componentwise division.
Let .∗ be the componentwise multiplication, and f = (f1, · · · , fl)T with fi = σ2

i /(σ
2
i + µ2). Then the

approximate regularized solution (6), its norm η and residual norm ρ can be evaluated respectively by

xµ = V (f. ∗ t) ,
η = ||xµ|| = ||f. ∗ t|| ,
ρ = ||b−Axµ|| = ||b− UΣ(f. ∗ t)||

=
√
||(I − UUT )b||2 + ||UUT b− UΣ(f. ∗ t)||2

=
√
||(I − UUT )b||2 + ||UUT b− U(f. ∗ (UT b))||2

=

√
β2
0 + ||(1− f). ∗ b̂||2,

where b̂ = UT b and β2
0 = ||(I − UUT )b||2 = ||b||2 − ||b̂||2.

Using the above formulae and the approximate SVD of A, the entire process of finding a desired
regularization parameter µ and an approximate regularized solution of (2) can be summarized in the
following algorithm.

Algorithm 4 Given A ∈ Rm×n, and b ∈ Rm, compute a regularized solution xµ.

1. Apply RSVD (Algorithm 2 for m ≥ n or Algorithm 3 for m < n) for an approximate rank-l SVD of
A ≈ UΣV T .
2. Choose the regularization parameter µ:

2.1 Compute b̂ = UT b, t = b̂./s, β2
0 = ||b||2 − ||b̂||2 ;

2.2 Select p values of µ: µ1, µ2, · · · , µp ;
For i = 1 : p, compute

f = (f1, · · · , fl) with fj = σ2
j /(σ

2
j + µ2

i ),
ηi = ||f. ∗ t||,
ρi =

√
β2
0 + ||(1− f). ∗ b̂||2.

End
2.3 Form the L-curve by (log ρi, log ηi) and locate the corner of L-curve and the corresponding

regularization parameter µ.
3. Compute the approximate regularized solution xµ:

3.1 Calculate f = (f1, · · · , fl) with fj = σ2
j /(σ

2
j + µ2) (j = 1, · · · , l) ;

3.2 Form the regularized solution xµ = V (f. ∗ t).

Choosing a reasonable regularization parameter is crucial for the success of the Tikhonov regulariza-
tion. There exist many regularization parameter choice rules in literature that suit Algorithm 4, but we
have used only the L-curve rule [26, 31] in the description of the algorithm. The L-curve rule determines
a parameter by the plot of (log ||Axµ − b||, log ||xµ||) over a range of µ.

Next we briefly review a few other regularization parameter choice rules. The generalized cross-
validation (GCV) function [15] is a choice rule that determines the regularization parameter by minimizing
the GCV function

G =
||(I −A(ATA+ µ2I)−1AT )b||2

(tr(I −A(ATA+ µ2I)−1AT ))2
=

||Axµ − b||2

(m− n+ Σni=1µ
2/(σ2

i + µ2))
2 , (7)

where we have used (2) and the SVD of A to derive the numerator and denominator (for m ≥ n)
respectively. The GCV method intends to balance the data error and the regularization error [26, 29].
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Historically, the quasi-optimality criterion [46, 47] might be the first heuristic parameter choice rule.
Recently a family of error estimators Ei and Êi of the form

E2
i = ci−10 c6−2i1 ci−42 , Ê2

i = ci−10 c6−2i1 ĉi−42

were proposed in [4] for any positive integer i, where Ei and Êi are the estimators of the error ||e|| :=
||x− xµ|| and c0, c1, c2 and ĉ2 are 4 constants given by

c0 = 〈rµ, rµ〉, c1 = 〈rµ, Arµ〉, c2 = 〈Arµ, Arµ〉, ĉ2 = 〈AT rµ, AT rµ〉,

with rµ = b−Axµ being the residual. Note that Ê3, called the Auchmuty estimator, is a lower bound of
||e||, and can be written explicitly as

Ê3 = ||rµ||2||xµ||−1µ−2

by using the fact that AT rµ = µ2xµ. In general, E3 and Ê3 are the best ones among all the estimators

Ei and Êi [4].
All these above rules do not require the data on the noise level explicitly. They are simple to apply,

popular and effective in many practical applications, despite some of their drawbacks [3, 23, 34, 48, 49].
For instance, the L-curve corner may not exist. It is under-smoothing for smooth solutions [23], and not
convergent in the stochastic discrete data setting as the sample size goes to infinity, where it leads to
over-smoothing [49]. On the other hand, GCV rule may be unstable for correlated noise, resulting in
under-smoothing [3].

When the noise level is known, the discrepancy principle [39, 41], the monotone error rule [45], and the
balancing principle [35, 38] can be applied instead. The discrepancy principle selects the regularization
parameter such that the residual norm of the regularized solution is about the same as the noise level in
the data. The monotone error rule seeks the largest computable regularization parameter µ0 such that
the error of the regularized solution in (1) decreases monotonically as µ goes from 0 to µ0. For iterative
methods of the form xk+1 = xk + ATwk, the monotone error rule chooses the regularization parameter
to be the first index k satisfying 〈rk + rk+1, wk〉/(2||wk||) ≤ ε, with ε being the noise level [22]. The
balancing principle aims to balance the regularization error and the propagation noise error.

Comparisons of different parameter choice rules were given in [3, 21, 22], including some recently
proposed rules to ensure the convergence of the regularized approximation in case that the noise level is
many times under- or overestimated [22]. It is noted [3] that the best heuristic rules may perform better
than the ones that use the noise level.

When iterative methods are used, such as CGLS, LSQR, Landweber’s method, or Kaczmarz’s method,
the iterations may be terminated appropriately so that the errors are controlled. In these cases the
iteration number plays the role of the regularization parameter [28, 29].

A well-known result of Bakushinskii [1] states that for an infinite dimensional ill-posed problem, a
parameter choice rule that does not explicitly use the noise level cannot yield a convergent regularization
method as the noise level tends to zero. Nevertheless, the exact noise level is often not available for
practical problems and the classical parameter choice rules as the discrepancy principle are not applicable.
So the heuristic rules are rather popular and often work reasonably in practice [3, 22].

2.3 Computational complexity

In this section we shall discuss the computational complexity of the algorithms presented in Subsec-
tions 2.1. The cost of each step of Algorithm 2 (RSVD) is listed in Table 1. Note that we use an
economic QR factorization [17] to explicitly form the factor Q in Step 3, and apply a thin SVD [17] in
Step 5. For a given matrix A ∈ Rm×n, the flops count of the classical SVD based on R-bidiagonalization
is about 6mn2 + 20n3 [7, 17], while the cost of Algorithm 2 is only about 4mnl. For the cases where
singular values decay rapidly, we can choose l� n. According to the flops, the ratio of the cost for RSVD
over that for the classical SVD is of the order O( ln ). Hence Algorithm 2 (RSVD) may be essentially less
expensive than the classical SVD (CSVD).
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RSVD RSVD* RRQR-SVD
Step 1 O(nl) O(ml) 4mnl − 2(m+ n)l2 + 4

3 l
3

Step 2 2mnl 2mnl 6nl2 + 20l3

Step 3 4ml2 − 4
3 l

3 4nl2 − 4
3 l

3 2ml2

Step 4 2mnl 2mnl 0
Step 5 6nl2 + 20l3 6ml2 + 20l3 -
Step 6 2ml2 2nl2 -

Table 1: Computational complexity.

The above statements can be applied to Algorithm 3 (RSVD*), which is a variant of Algorithm 2 for
the case m < n. We can see that the major difference lies in Step 5, where SVD is applied on a small
matrix. Recall that our aim is to perform the SVD for a matrix that has a much smaller size compared
to the original discrete system.

Note that if one uses a special structured random sampling matrix, for instance, a subsampled random
Fourier transform (SRFT) [50], one may have a substantial gain in terms of execution time and the
asymptotic complexity reduces to the order O(mn log l) for Step 2 in Algorithm 2.

In order to better understand the performance of the randomized algorithms (Algorithms 2 and
3), we shall compare them with a deterministic method based on the rank revealing QR (RRQR) with
column pivoting. The rank revealing factorization has been widely applied in total least-squares problems,
subset selection, regularization, low rank approximation and nonsymmetric eigenproblems; see [8] and
the references therein. Though RRQR factorization may fail to reveal the numerical rank in some cases,
it works quite well in practice, like Gaussian elimination with partial pivoting applied to a linear system.
In the l-th step of RRQR, we first find the column of largest norm and swap it with the l-th column. Then
the l-th orthogonal transformation, for example, Householder matrix, is performed [11]. The RRQR with
column pivoting yields

AΠ = Q

[
R11 R12

0 R22

]
,

where Π is a permutation matrix, R11 is a well-conditioned l × l upper triangular matrix and R22 is
sufficiently small. Let σl be the l-th largest singular value. From the Courant-Fischer minimax theorem
[17], we know that σl(A) ≥ σmin(R11) and σl+1(A) ≤ σmax(R22). Hence if ||R22|| is small, then A has
at least n− l small singular values, and it can be considered to have the numerical rank l, and the first
l columns of AΠ form a well-conditioned basis for the range of A within an approximate accuracy of
σl+1(A) [19].

In Algorithm 5, we use RRQR to achieve an approximate rank-l SVD. If we write the matrix [R11, R12]
as Rl×n and drop the small term R22, we have the truncated RRQR [28], i.e., Am×nΠ ≈ Qm×lRl×n. One
may improve the performance of the algorithm by using the Stewart’s pivoted QLP decomposition [44],
but it will increase the total computational complexity.

Algorithm 5 (RRQR-SVD). Given A ∈ Rm×n, use RRQR to achieve an SVD approximation A ≈ UΣV T

with U ∈ Rm×l, Σ ∈ Rl×l and V ∈ Rn×l.
1. Generate the Householder QR factorization of A with column pivoting: AΠ ≈ QR.
2. Generate the thin SVD: RT = V̂ ΣÛT , where V̂ ∈ Rn×l, Σ, Û ∈ Rl×l.
3. Compute the m× l matrix U = QÛ .
4. Form the n× l matrix V = ΠV̂ via the permutation.

The flops of Algorithm 5 (RRQR-SVD) is also given in Table 1, where the Householder QR with
column pivoting for an m× n matrix with rank l needs 4mnl − 2(m+ n)l2 + 4

3 l
3 flops [17]. We can see

that its computational complexity is about the same order as Algorithm 2. But it is very time-consuming
to permute the data required in RRQR, while the most flops for RSVD are spent on the matrix-matrix
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multiplications which is the so-called nice BLAS-3 operations, and the original large-scale matrix A is
visited only twice. Furthermore, RSVD works as robust and accurate as RRQR-SVD for almost all the
numerical examples that we have tried; see Section 4.

The new Algorithm 4 can greatly reduce the size of the original problem by using the randomized
techniques. There exist other reduction processes, e.g., the ones using the projection onto Krylov sub-
spaces to reduce the size of the original discrete system (2), and iterative methods based on the Arnoldi
process [6] are good examples. The application of l steps of the Arnoldi process to the matrix A with
initial vector b yields the decomposition

AWl = WlHl + ηl+1wl+1e
T
l ≡Wl+1H̄l,

where WT
l Wl = I,Wle1 = b/||b||,WT

l wl+1 = 0, Hl is an l × l upper Hessenberg matrix, and H̄l is the
upper Hessenberg-like matrix formed by Hl and ηl+1e

T
l . We then seek an approximate solution of the

form xµ = Wlz by minimizing ∣∣∣∣∣∣∣∣[H̄l

µI

]
z − ||b||e1

∣∣∣∣∣∣∣∣ .
As H̄l is of size (l + 1)× l, this is a problem of smaller size.

For a large matrix, another solver based on the Lanczos bidiagonalization and the quadrature rules
can be used for the problem reduction [5]. The Lanczos bidiagonalization procedure can be expressed as

AVl = UlCl + δl+1ul+1e
T
l , ATUl = VlC

T
l ,

where V Tl Vl = I, UTl Ul = I, UTl ul+1 = 0, U1e1 = u1 = b/||b||, and Cl is an l× l lower bidiagonal matrix.
Then the regularization techniques are applied for Cl [40]. This is a hybrid regularization using projection
first and regularization second, instead of the direct or iterative regularization [28]. The central idea is to
reduce the large problem to a much smaller one by projecting A onto some suitably chosen left and right
subspaces like TSVD and TGSVD methods [28]. On the other hand, Gauss quadrature rules [16, 18] can
be also used to estimate the solution and residual norms. Let φ(t) = (t + µ)−2, then we can verify that
||b − Axµ||2 = µ2bTφ(AAT )b, which can be estimated by µ2||b||2eT1 φ(ClC

T
l )e1 by applying the l-point

Gaussian quadrature rule [5, 33]. We then need to calculate (ClC
T
l +µI)−1e1, which can be obtained by

minimizing ∣∣∣∣∣∣∣∣[ CTlµ1/2I

]
y − µ1/2el+1

∣∣∣∣∣∣∣∣ .
This reduction process enables us again to solve a problem of smaller size. Here the l-point Gaussian
quadrature gives a lower bound of the residual norm, while the (l + 1)-point Gauss-Radau quadrature
provides a upper bound. The quality of the bounds depends on how well the function φ can be approx-
imated by a polynomial on the spectrum of A [33]. Similarly we can estimate the norm ||xµ|| of the
regularized solution and obtain its lower and upper bounds; see [5, 33] for details.

As seen from above, the Krylov subspace methods based on Arnoldi process or Lanczos procedure
can also greatly reduce the size of the large-scale regularized system (2), through which we can seek
the approximate solution of the original system (2) by solving a series of smaller problems. But these
reduction methods need to access the coefficient matrix A by l or 2l times and use the BLAS-2 operations,
i.e., the matrix-vector multiplications. The Lanczos procedure even requires the evaluation of matrix-
vector products involving the transpose of matrix A and reorthogonalization of the columns of Ul and Vl
[6]. These are the processes which are known to require essential CPU times when the size of A is very
large.

3 Error estimates

Our proposed regularization method combined with randomized SVD (i.e., Algorithm 4) consists of two
stages. The first one is a stochastic process, which generates an approximate SVD of matrix A by a
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randomized algorithm, while the second stage is deterministic, using the resulting SVD approximation
to select the regularization parameter and compute the regularized solution. In order to find out the
performance of this new algorithm, we should understand the accuracy of the approximate regularized
solution it provides and its performance compared with the classical methods. The accuracies of the
randomized SVD and the approximate regularized solution will be analyzed in the rest of this section,
while its performance will be carried out numerically in the next section. We first introduce an important
estimate [20, 42].

Lemma 1 [20, Corollary 10.9] Suppose that A ∈ Rm×n has the singular values σ1 ≥ · · · ≥ σn. Let Ω be
an n × (k + p) standard Gaussian matrix with k + p ≤ min{m,n} and p ≥ 4, and Q be an orthonormal
basis for the range of the sampled matrix AΩ. Then

||A−QQTA|| ≤
(

1 + 6
√

(k + p)p log p
)
σk+1 + 3

√
k + p

(
Σj>kσ

2
j

)1/2
(8)

with probability not less than 1− 3p−p.

Under a very mild assumption on p, the estimate (8) can be simplified [20]:

||A−QQTA|| ≤
(

1 + 9
√
k + p

√
min{m,n}

)
σk+1. (9)

We see from Algorithm 2 that UΣV T = QWΣV T = QBT = QQTA, hence ||A − UΣV T || = ||A −
QQTA||, and Lemma 1 indicates that we can obtain a good SVD approximation with very high probability.

Next we study the accuracy of the regularized solution xµ generated by Algorithm 4 through the
approximated SVD. First we recall that the condition number measures the sensitivity of the least-
squares solution and demonstrates how the least-squares solution is affected by the perturbations in A
and b.

Lemma 2 [17, Theorem 5.3.1] Suppose A is of full rank, xls and x̂ls are given by

xls = argmin||Ax− b||, x̂ls = argmin||(A+ δA)x̂− (b+ δb)||,

where A and δA are in Rm×n with m > n, b and δb are in Rm, and ||δA|| < σn(A). Define θ ∈ (0, π/2)

by sin θ = ||b−Axls||
||b|| and let ε = max

{
||δA||
||A|| ,

||δb||
||b||

}
. Then we have

||x̂ls − xls||
||xls||

≤ ε[νls sec θ + (1 + νls tan θ)κ(A)] +O(ε2), (10)

where κ(A) is the condition number κ(A) = σ1(A)/σn(A), and νls = ||Axls||/(σn(A)||xls||).

Noting that νls ≤ κ(A), the upper bound in (10) can be changed to the following one:

||x̂ls − xls||
||xls||

≤ ε
(
2 sec θ κ(A) + tan θ κ(A)2

)
+O(ε2). (11)

The sensitivity of the least-squares solution is roughly proportional to the quantity κ(A) + ρlsκ(A)2,
where ρls = ||b−Axls||, and the factor κ(A)2 cannot be improved [17].

Now consider the regularized system (2). Clearly its regularized solution xµ solves

min

∣∣∣∣∣∣∣∣[AµI
]
x−

[
b
0

]∣∣∣∣∣∣∣∣ . (12)

Let A =
[
A
µI

]
, and its condition number is given by κ(A) = ||A|| ||A†||, where A† is the Moore-Penrose

generalized inverse [17]. We can establish the following important estimate on κ(A).

9



Lemma 3 Suppose A is of full rank. Then the condition number of A associated with the problem (12)
is bounded by

κ(A) ≤
√
σ2
1 + µ2

(
µ

σ2
n + µ2

+ max
1≤i≤n

σi
σ2
i + µ2

)
, (13)

where σ1, σ2, · · · , σn are the singular values of A, and σ1 ≥ · · · ≥ σn.

Proof. Since A has full column rank, its Moore-Penrose inverse can be expressed as

A† = (ATA)−1AT = (ATA+ µ2I)−1[AT , µI].

The upper bound of the 2-norm of A† can be estimated as follows:

||A†|| = max
||y||=1

||(ATA+ µ2I)−1[AT , µI]y||

= max
||[yT1 ,yT2 ]||=1

||(ATA+ µ2I)−1AT y1 + µ(ATA+ µ2I)−1y2||

≤ max
||[yT1 ,yT2 ]||=1

||(ATA+ µ2I)−1AT y1||+ max
||[yT1 ,yT2 ]||=1

µ||(ATA+ µ2I)−1y2||

≤ max
||[yT1 ,yT2 ]||=1

||(ATA+ µ2I)−1AT y1||
||y1||

+ max
||[yT1 ,yT2 ]||=1

µ||(ATA+ µ2I)−1y2||
||y2||

≤ max
y1

||(ATA+ µ2I)−1AT y1||
||y1||

+ max
y2

µ||(ATA+ µ2I)−1y2||
||y2||

= ||(ATA+ µ2I)−1AT ||+ µ||(ATA+ µ2I)−1||.

Consider the SVD of A, namely A = UΣV T , where Σ = diag(σ1, · · · , σn) ∈ Rm×n, U ∈ Rm×m and
V ∈ Rn×n are orthogonal matrices. We can check that

ATA+ µ2I = V (Σ2 + µ2I)V T ,

and
(ATA+ µ2I)−1AT = V (Σ2 + µ2I)−1ΣUT ,

which implies

||(ATA+ µ2I)−1AT || = max
1≤i≤n

σi
σ2
i + µ2

, ||(ATA+ µ2I)−1|| = 1

σ2
n + µ2

.

The 2-norm of A can be obtained by

||A|| = max
x

||Ax||
||x||

=

√
max
x

||Ax||2
||x||2

+ µ2 =
√
σ1(A)2 + µ2.

From the above we derive that

κ(A) = ||A|| ||A†|| ≤
√
σ2
1 + µ2

(
µ

σ2
n + µ2

+ max
1≤i≤n

σi
σ2
i + µ2

)
.

�
Note that the assumption that A has full rank in Lemma 3 is unnecessary since A is obviously of full

column rank when µ 6= 0. Because of the simple fact that σi
σ2
i+µ

2 ≤ 1
2µ (µ 6= 0) for all σi(1 ≤ i ≤ n), we

have the following simplified bound:

κ(A) ≤
√
σ2
1 + µ2

(
µ

σ2
n + µ2

+
1

2µ

)
,
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which can be further reduced to κ(A) ≤ 3
2µ

√
σ2
1 + µ2. A slightly tighter upper bound can be obtained

for the case with µ ≤ σn:

κ(A) ≤ σn + µ

σ2
n + µ2

√
σ2
1 + µ2, (14)

by noting that σi
σ2
i+µ

2 ≤ σn
σ2
n+µ

2 for µ ≤ σn.

For the extreme case of µ = 0, namely without the regularization, the upper bounds in (13)-(14)
are reduced to σ1/σn, which is quite large for the ill-conditioned inverse system. Under an appropriate
regularization, the condition number κ(A) can be well bounded as it is seen from (13)-(14).

By Algorithm 2, we obtain an approximate SVD of A, i.e., A ≈ Ã = UΣV T . Then Algorithm 4 uses
the approximation Ã to determine the regularization parameter for the use in the least-squares system

min

∣∣∣∣∣∣∣∣[ ÃµI
]
x−

[
b
0

]∣∣∣∣∣∣∣∣ . (15)

This can be regarded as a perturbed version of (12). For the sake of simplicity, we define Ã =
[
Ã
µI

]
.

Then we have the following relation for the perturbation

||Ã − A|| = ||Ã−A|| = ||UΣV T −A|| = ||A−QQTA||.

This can be estimated by Lemma 1, and we know that it is bounded by the smallest singular values of A.
Now using Lemmata 1–3, we can derive the following estimate.

Theorem 1 Let σ1 ≥ · · · ≥ σn be the singular values of matrix A, and

c = 1 + 6
√

(k + p)p log p+ 3
√

(k + p)(n− k) , C = c/σ1 .

Assume that Algorithm 2 is performed with the Gaussian matrix Ω ∈ Rn×(k+p) to achieve the SVD
approximation of matrix A, xµ and x̂µ are the solutions of (12) and (15) respectively with respect to the
regularization parameter µ. Then we have

||x̂µ − xµ||
||xµ||

≤ C
(
2 sec θ κ+ tan θ κ2

)
σk+1 +O(σ2

k+1) (16)

with probability not less than 1−3p−p, where κ is the upper bound of κ(A) given by (13), and θ is defined
by sin θ = ρls/||b||2 with ρls =

√
||b−Axµ||2 + µ2||xµ||2.

Proof. Assuming that Ã = UΣV T is the SVD approximation of A achieved by Algorithm 2 using the
Gaussian matrix Ω ∈ Rn×(k+p), we have

Ã = UΣV T = QQTA.

Then it follows from Lemma 1 that

||Ã−A|| = ||A−QQTA|| ≤ cσk+1

with probability not less than 1− 3p−p.

Let A =
[
A
µI

]
, and define δA =

[
Ã
µI

]
−
[
A
µI

]
. We can check that ||δA|| = ||Ã−A|| ≤ cσk+1(A). Using

the fact that σ1(A) ≥ σ1(A), we have

||δA||
||A||

≤ cσk+1

σ1(A)
≤ Cσk+1. (17)

Let B = [ b0 ]. By definitions, xµ and x̂µ are given respectively by

xµ = argmin||Ax− B||, x̂µ = argmin||(A+ δA)x− B||.

11



Then using (17) and (11) or Lemma 2, we obtain

||x̂µ − xµ||
||xµ||

≤ Cσk+1

(
2 sec θ κ+ tan θ κ2

)
+O(σ2

k+1),

where the upper bound κ =
√
σ2
1 + µ2

(
µ

σ2
n+µ

2 + max
1≤i≤n

σi
σ2
i+µ

2

)
is given by Lemma 3, and sin θ = ρls/||b||2

with ρls = ||B − Axµ|| =
√
||b−Axµ||2 + µ2||xµ||2.

�
Since κ is well bounded using the regularization parameter, the upper bound in (16) is of order

O(σk+1). Hence the relative error of the regularized solution obtained from Algorithm 4 and the regu-
larized solution generated by the classical methods is small.

Remark 3.1 The right-hand side b in Theorem 1 can be regarded as the measured data containing noise.
To explicitly take into account the noisy data, we use b to stand for the exact data while bδ for the noisy
data. Then we can consider the regularized solutions of the following two problems (with Bδ = [bδ, 0]T ):

xµ = argmin||Ax− Bδ||, x̂µ = argmin||(A+ δA)x− Bδ||,

and obtain the same error estimates to (16) by following the arguments in the proof of Theorem 1. More

explicitly, if we assume the relative noise level of the form δ = ||bδ−b||
||b|| ≤ Cσk+1, and consider the solutions

to the following two problems:

xµ = argmin||Ax− B||, x̂µ = argmin||(A+ δA)x− Bδ|| ,

then we have ε = max{ ||δA||||A|| , δ} ≤ Cσk+1 by using (17), and obtain similar error estimates to (16) by

using Lemma 2. We note that xµ above is the regularized solution of the original problem without noise,
and x̂µ is the regularized solution of our randomized algorithm for the noise contaminated problem.

4 Numerical experiments

In this section we apply the newly proposed Algorithm 4 to 14 examples of different linear inverse problems
to illustrate the performance of the algorithm for solving the discrete large-scale inverse system Ax = b,
which is converted to the solution of the least-squares system (2).

Example 1 (Cmrs, [6]). Let Cn be an auxiliary matrix Cn such that Cn = (cjk)nj,k=1 with entries

cjk = exp

(
π

2j − 1

4n− 2
cosπ

2k − 1

2n− 1

)
.

Suppose Cn has the SVD, Cn = UnΣnV
T
n , then we define the testing matrix A ∈ R2n×n to be A =

U2nΣV Tn , where Σ ∈ R2n×n is a diagonal matrix with its diagonal elements being exp(− 2
5 (j − 1)) for

j = 1, 2, · · · , n, U2n and Vn are the left and right orthogonal matrices in the SVDs of C2n and Cn,
respectively. Let x be a vector with standard normal distributed entries, i.e., x = randn(n, 1), then we
define the right-hand side vector to be b = Ax.

Example 2 (Rst, [42]). We form matrix A by A = UAΣAV
T
A , where UA and VA are a 2n × 2n

Hadamard matrix (a unitary matrix with entries ±1/
√

2n) and an n× n Hadamard matrix respectively,
and ΣA is a 2n× n diagonal matrix with its diagonal entries given by

σj =

{
(σk+1)bj/2c/5, j = 1, 2, · · · , 10,

σk+1
n−j
n−11 , j = 11, 12, · · · , n,

where bjc is the greatest integer less than or equal to j. In our testings, we choose k = 10 and σk+1 =
1.0e− 6, and form vector b by b = Ax with x being a vector of all ones.
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Examples 3–14 (Matrices from the Regularization Tools, [30]). We choose the remaining 12 testing
problems from P. C. Hansen’s Regularization Tools (version 4.1) [27, 30]; see Table 2. The parameter Nσ
in the 3rd column of Table 2 represents the number of singular values which are not less than 10−6 when
the matrix sizes are chosen to be n = 100 except in Parallax and Rst. Among these 12 matrices, there
are 3 matrices, namely Deriv2, Heat and Phillips, in which the singular values are not well separated
and decay slowly, while the singular values of other matrices decay rapidly; see Figure 1.

In all our numerical experiments, the observation data bδ is generated from the exact data b by adding
the noise in the form

bδ = b+ δ||b|| s
||s||

= b+ ε
s

||s||
,

where s is a random vector, s = randn(n, 1) if not specified otherwise, ε = δ||b|| is the so-called noise
level, and δ is the relative noise level [29].
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Figure 1: The decay of singular values of the 14 testing problems, with the matrix size set to 100× 100
except that Parallax, Cmrs and Rst are of sizes 26× 100, 100× 50 and 96× 48, respectively.

We shall compare the performance of the new Algorithm 4 with some other algorithms, and test
2 different regularization techniques, i.e., Tikhonov regularization and truncated SVD, and 5 different
parameter choice strategies, i.e., the L-curve rule, the GCV rule, the quasi-optimality criterion, the
Auchmuty estimator Ê3, and the discrepancy principle. The algorithmic performance is checked in
the following aspects: the computed regularization parameters compared with the optimal parameters,
the accuracies of the regularized solutions compared with the optimal solutions, and the CPU times of
algorithms.

In the subsequent numerical tables we shall use the following notations. µ stands for the regularization
parameter, err for the relative error ||x−xµ||2/||x||2 of the regularized solution xµ and the exact solution x,
and the optimal parameter µ for Tikhonov regularization is the minimizer of ψ(ρ) = ||x−xµ|| with µ = 10ρ

by the fminsearch function of Matlab, using as a starting point the logarithm of the parameter furnished
by the GCV [4]. The optimal solution for TSVD regularization and its corresponding regularization
parameter k are achieved similarly, i.e., we compute the regularized solutions with a range of parameters
k and choose the optimal one to minimize the norm of the error between the regularized and exact
solutions; ratio stands for the norm of the error of the regularized solution divided by the norm of the
error corresponding to the optimal solution when the same regularization technique is used with various
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Figure 2: The Tikhonov regularized solutions for Example Shaw of size n = 100, 000 using RSVD
(l = 50), with 1% relative noise.

No. Matrix Nσ Descriptions (see also [30])
1 Baart 6 Discretization of the 1st kind Fredholm integral equation
2 Cmrs 35 Matrix of size n× (n/2) adapted from Example 4.1 in [6]
3 Deriv2 100 Computation of second derivative
4 Foxgood 9 Severely ill-posed test problem
5 Gravity 25 1D gravity surveying problem
6 Heat 95 Inverse heat equation
7 I laplace 17 Inverse Laplace transformation
8 Parallax 15 Stellar parallax problem with the size of 26× n
9 Phillips 100 Phillips’ famous test problem

10 Rst 10 Matrix of size n× (n/2) adapted from the example in [42]
11 Shaw 12 1D image restoration model
12 Spikes 14 Test problem with a “spiky” solution
13 Ursell 4 Integral equation with no square integrable solution
14 Wing 4 Test problem with a discontinuous solution

Table 2: The 14 testing matrices, with Nσ being the number of singular values larger than 10−6.
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regularization parameter choice rules; ratio∗ stands for the error norm of the approximate solution
obtained via RSVD divided by the error norm of the approximate solution to the original large-scale
system via CSVD when the same regularization technique and same parameter choice rule are used.

Table 3 shows the numerical results when the Tikhonov regularization using RSVD and the classical
SVD, respectively, are applied to Example 5, Gravity, for size n = 1000, while Table 4 shows the same
as Table 3 except that Tikhonov regularization is replaced by the truncated SVD. One can observe from
these two tables that the results by the new algorithm using RSVD are quite comparable with that by
CSVD. But as we shall find out later on (cf. Tables 6-8), the new algorithm is much less expensive.

When the matrices are too large, the classical SVD does not work, either due to the memory limitation
or the numerical instability of smallest singular values. For the supercomputer that is accessible to us, we
find that when the matrix size reaches about 8, 000, either CSVD does not work or it generates singular
values with very poor accuracies. But the new Algorithm 4 with help of the randomized SVD works well
up to the matrix size n = 100, 000. Table 5 shows the results by the Tikhonov regularization combined
with RSVD (i.e., Algorithm 4) and the TSVD regularization combined with the RSVD for 4 examples
with the matrix sizes n = 30, 000 and n = 100, 000. The regularization parameters k (for TSVD) or µ
(for RSVD), the relative errors and the ratios are also given in Table 5, but not the ‘ratio*’, since the
matrix sizes are too large to run for the classical SVD. Figure 2 gives the computed solutions for Example
11, Shaw, with n = 100, 000, when the Tikhonov regularization is applied with 5 different regularization
parameter choice strategies. We can see from both Table 5 and Figure 2 that the new Algorithm 4 with
RSVD works quite satisfactorily even the index l is very small, l = 50, and all the computed solutions by
different regularization parameter choice rules are indistinguishable, except for the one by the Auchmuty
estimator.

Next we carry out some numerical experiments to compare the CPU times of different algorithms.
The relative noise level is set to be δ = 1% unless otherwise specified. The sizes of the testing matrices
are all set to be n = 1000 except that the matrices for Parallax, Cmrs and Rst are of sizes 26× 1000,
1000× 500 and 1024× 512, respectively. The actual CPU times are recorded, and all the tests are done
using Matlab R2008b in a laptop with Intel Core 2 Duo P8400 2.26G and 2GB DDR2.

Tables 7 and 8 show the following CPU times: tCSVD and tRSVD for computing the classical SVD and
the randomized SVD respectively, tLc (resp. tGCV ) for generating the L-curve (resp. the GCV curve).
In addition, the computed regularization parameters µLc or µGCV and the relative errors “ err ” of the
regularized solutions are also presented. We have used the P. C. Hansen’s Regularization Tools with 200
points to generate each L-curve or GCV curve [30].

As we can see from the total CPU times, i.e., column “ T ” in Table 7, the new algorithm using RSVD
is about 30 times faster than the method using the classical SVD when the L-curve rule is used; the new
algorithm is about 100 times faster when the GCV rule is used; see Table 8. If we just compare the CPU
times of SVD, not counting any regularization technique, we find that RSVD (with l = 20) is almost 500
times faster than CSVD. The advantage of the new algorithm with RSVD becomes much more significant
when the sizes of the systems become larger. For example, when the matrix size is 5,000, RSVD is about
1000 times faster than the classical SVD.

We have also compared our randomized algorithm with the deterministic method, Algorithm 5
(RRQR-SVD). In order to ensure the fairness of the comparisons for the CPU times, we have imple-
mented Step 1 in Algorithm 5 in language C by calling the mexFunction in Matlab. For the matrix of
size 2000, CSVD needs more that 80 seconds on the average, and RRQR-SVD is about 60 times faster
than CSVD to achieve an SVD approximation, while RSVD is more than 1000 times faster; see Table
6. In terms of CPU times, RRQR-SVD performs faster than CSVD, but much slower and less efficient
than RSVD, since it needs to access the data many times to choose the columns of maximum norm and
to permute the data, while the product involving A in the randomized algorithm can be evaluated in a
single sweep and is amenable to the BLAS-3 operations.

Finally we make a remark that one may use the GPU technique to accelerate the computation of
RSVD, especially Step 2 and Step 4 in Algorithm 2. These two steps are the most expensive steps in
RSVD, though they are just two matrix-matrix multiplications. These two steps are well suited for the
GPU implementation [32, 43]. We can use the mexFunction in Matlab and CUDA programming to
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Tikhonov + CSVD

optimal L-curve GCV quasiopt Ê3 discrep optimal L-curve GCV quasiopt Ê3 discrep
δ = 10−4 µ 6.10E-3 5.84E-4 3.99E-3 6.65E-3 4.37E-2 7.99E-3 5.00E-3 5.84E-4 8.92E-4 1.08E-2 4.29E-2 9.04E-3

err 5.22E-3 2.29E-2 5.82E-3 5.24E-3 1.24E-2 5.41E-3 3.53E-3 3.70E-2 2.79E-2 5.66E-3 1.24E-2 4.98E-3
ratio 1 4.39 1.11 1.00 2.38 1.04 1 10.5 7.91 1.60 3.51 1.41

δ = 10−2 µ 4.24E-2 4.72E-2 7.58E-2 9.25E-2 5.42E-1 1.21E-1 1.11E-1 5.44E-2 6.55E-2 1.23E-1 5.42E-1 1.29E-1
err 1.59E-2 1.61E-2 2.00E-2 2.22E-2 5.75E-2 2.54E-2 2.67E-2 3.44E-2 3.09E-2 2.68E-2 5.65E-2 2.70E-2

ratio 1 1.01 1.26 1.40 3.62 1.60 1 1.29 1.16 1.00 2.12 1.01
Tikhonov + RSVD(l = 20)

optimal L-curve GCV quasiopt Ê3 discrep optimal L-curve GCV quasiopt Ê3 discrep
δ = 10−4 µ 6.12E-3 1.55E-4 3.99E-3 6.66E-3 4.37E-2 8.27E-3 4.99E-3 2.86E-4 8.57E-4 1.08E-2 4.29E-2 8.89Ee-3

err 5.23E-3 5.05E-2 5.84E-3 5.25E-3 1.24E-2 5.46E-3 3.51E-3 5.18E-2 2.87E-2 5.66E-3 1.24E-2 4.91E-3
ratio 1 9.66 1.12 1.00 2.37 1.04 1 14.8 8.17 1.61 3.53 1.40
ratio* 1.00 2.21 1.00 1.00 1.00 1.01 0.99 1.40 1.03 1.00 1.00 0.99

δ = 10−2 µ 4.24E-2 8.77E-3 7.58E-2 9.26E-2 5.42E-1 1.21E-1 1.12E-1 8.24E-3 6.54E-2 1.23E-1 5.42E-1 1.29E-1
err 1.59E-2 8.36E-2 2.00E-2 2.22E-2 5.75E-2 2.54E-2 2.67E-2 2.20E-1 3.09E-2 2.68E-2 5.65E-2 2.70E-2

ratio 1 5.26 1.26 1.40 3.62 1.60 1 8.26 1.16 1.00 2.12 1.01
ratio* 1.00 5.19 1.00 1.00 1.00 1.00 1.00 6.40 1.00 1.00 1.00 1.00

Table 3: Tikhonov regularization using CSVD and RSVD on the matrix Gravity with size n = 1000.
Notations ‘err’, ‘ratio’ and ‘ratio*’ are defined in Section 4. The results in columns 3-8 on the left
correspond to the Gaussian noise, while the results in columns 9-14 on the right correspond to the
uniformly distributed noise in [-1,1].

implement these two steps on GPU.

5 Concluding remarks

In this work we have proposed an algorithm for solving large-scale discrete ill-conditioned linear problems
arising from the discretization of linear and nonlinear inverse problems, based on the randomized SVD and
some existing regularization techniques. The algorithm preserves basically the same successful locations of
the regularization parameters and achieves about the same accurate regularized solutions as the classical
SVD, but with much less computational efforts. More importantly, the classical SVD may not work
or work very poorly for large-scale discrete inverse systems due to the computational complexity, the
numerical instability and memory limitation. Compared with the deterministic approach, such as the
rank revealing QR factorization, the new algorithm also demonstrates much better performance. RRQR
based SVD approximation is slower since it needs to access the data many times to choose the columns of
maximum norm and permute the data. By combining the randomized SVD with classical regularization
techniques, our new algorithm can convert the large-scale problems to small-scale ones so that the SVD
type methods can be still applied, and with a reasonably acceptable accuracy for the approximated
solution. The error estimates of the approximate solutions have been derived, and many numerical
experiments have demonstrated that the new algorithm can indeed reduce the problem size greatly and
save the entire computational time essentially. The new algorithm admits obvious out-of-core and parallel
implementation, hence is also well suited for the GPU acceleration.
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TSVD + CSVD

optimal L-curve GCV quasiopt Ê3 optimal L-curve GCV quasiopt Ê3

δ = 10−4 k 13 15 12 20 8 13 15 15 13 8
err 3.30E-3 2.65E-2 4.68E-3 2.08E-1 1.93E-2 4.53E-3 4.39E-2 4.39E-2 4.53E-3 1.93E-2

ratio 1 8.03 1.42 63.0 5.85 1 9.69 9.69 1.00 4.27
δ = 10−2 k 9 10 7 8 3 8 8 8 7 3

err 1.71E-2 2.94E-2 2.88E-2 2.19E-2 1.65E-1 2.24E-2 2.24E-2 2.24E-2 2.93E-2 1.65E-1
ratio 1 1.72 1.68 1.28 9.65 1 1.00 1.00 1.31 7.35

TSVD + RSVD(l = 20)

optimal L-curve GCV quasiopt Ê3 optimal L-curve GCV quasiopt Ê3

δ = 10−4 k 13 16 12 16 8 13 14 15 17 8
err 3.30E-3 2.71E-2 4.68E-3 2.71E-2 1.93E-2 4.53E-3 1.66E-2 4.43E-2 4.68E-2 1.93E-2

ratio 1 8.21 1.42 8.21 5.85 1 3.66 9.78 1.03 4.27
ratio* 1.00 1.02 1.00 0.13 1.00 1.00 0.38 1.01 1.03 1.00

δ = 10−2 k 9 7 7 8 3 8 8 8 7 3
err 1.71E-2 2.88E-2 2.88E-2 2.19E-2 1.65E-1 2.24E-2 2.24E-2 2.24E-2 2.93E-2 1.65E-1

ratio 1 1.68 1.68 1.28 9.65 1 1.00 1.00 1.31 7.35
ratio* 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 4: TSVD regularization using CSVD and RSVD on the matrix Gravity with size n = 1000.
Notations k, ‘err’, ‘ratio’ and ‘ratio*’ are defined in Section 4. The results in columns 3-7 on the left
correspond to the Gaussian noise, while the results in columns 8-12 on the right correspond to the
uniformly distributed noise in [-1,1].

(n = 30000, δ = 10−4) Tikhonov regularization + RSVD(l = 50) TSVD regularization + RSVD(l = 50)

optimal L-curve GCV quasiopt Ê3 optimal L-curve GCV quasiopt Ê3

Foxgood µ or k 1.45E-04 3.95E-06 1.57E-04 2.17E-04 4.53E-03 5 6 5 5 2
err 3.67E-04 8.63E-02 3.94E-04 7.78E-04 1.19E-02 1.03E-03 2.33E-03 1.03E-03 1.03E-03 3.11E-02

ratio 1 236 1.07 2.12 32.5 1 2.26 1.00 1.00 30.3
Gravity µ or k 2.86E-03 2.59E-05 5.99E-04 2.22E-03 4.37E-02 14 15 14 15 8

err 3.04E-03 6.55E-02 8.17E-03 3.17E-03 1.24E-02 2.76E-03 4.18E-03 2.76E-03 4.18E-03 1.93E-02
ratio 1 21.5 2.68 1.04 4.09 1 1.52 1.00 1.52 7.01

Phillips µ or k 5.95E-03 1.34E-03 4.75E-03 5.36E-03 4.14E-02 25 32 21 4 9
err 1.46E-03 4.16E-03 1.42E-03 1.38E-03 5.94E-03 1.35E-03 2.59E-03 1.62E-03 3.30E-01 1.29E-02

ratio 1 2.85 0.97 0.95 4.07 1 1.93 1.21 245 9.60
Shaw µ or k 1.11E-05 1.46E-05 1.28E-04 2.39E-04 7.23E-03 11 9 9 11 6

err 1.84E-02 1.94E-02 2.93E-02 3.10E-02 4.74E-02 2.25E-02 3.21E-02 3.21E-02 2.25E-02 1.10E-01
ratio 1 1.05 1.59 1.68 2.57 1 1.43 1.43 1.00 4.90

(n = 100000, δ = 10−5) Tikhonov regularization + RSVD(l = 100) TSVD regularization + RSVD(l = 100)

optimal L-curve GCV quasiopt Ê3 optimal L-curve GCV quasiopt Ê3

Foxgood µ or k 3.45E-05 3.22E-07 2.94E-05 5.33E-05 1.20E-03 6 8 6 8 3
err 1.98E-04 6.48E-02 2.21E-04 3.16E-04 4.45E-03 3.77E-04 8.90E-04 3.77E-04 8.90E-04 7.21E-03

ratio 1 327 1.11 1.59 22.46 1 2.36 1.00 2.36 19.14
Gravity µ or k 2.64E-04 1.84E-06 1.98E-04 2.01E-04 1.11E-02 17 19 16 19 10

err 1.03E-03 4.07E-02 1.06E-03 1.05E-03 5.92E-03 8.73E-04 1.25E-03 1.18E-03 1.25E-03 9.47E-03
ratio 1 39.6 1.03 1.03 5.75 1 1.43 1.35 1.43 10.84

Phillips µ or k 1.38E-03 1.62E-04 1.01E-03 1.52E-03 1.18E-02 37 74 37 4 12
err 4.50E-04 2.73E-03 4.91E-04 4.50E-04 2.06E-03 4.56E-04 2.39E-03 4.56E-04 3.30E-01 4.19E-03

ratio 1 6.07 1.09 1.00 4.58 1 5.24 1.00 725 9.19
Shaw µ or k 2.32E-06 8.51E-07 1.04E-05 1.51E-05 2.69E-03 12 13 10 11 7

err 6.49E-03 3.51E-02 1.78E-02 1.86E-02 4.25E-02 1.71E-02 1.37E-01 1.94E-02 1.92E-02 4.76E-02
ratio 1 5.41 2.74 2.86 6.56 1 8.03 1.14 1.13 2.79

Table 5: Tikhonov regularization and TSVD regularization using RSVD for two large-scale cases of sizes
n = 30, 000 and n = 100, 000.
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RRQR-SVD RSVD
Matrix tRRQR-SVD errLc errGCV tRSVD errLc errGCV

Baart 1.37 3.91E-01 3.88E-01 0.057 1.53E-01 1.63E-01
Deriv2 1.36 2.55E-01 2.54E-01 0.057 1.90E-01 2.11E-01
Foxgood 1.38 2.84E-01 2.84E-01 0.057 7.78E-02 3.05E-02
Gravity 1.37 1.58E-01 1.48E-01 0.057 2.95E-01 2.06E-02
Heat 1.39 1.14E-01 1.14E-01 0.058 1.21E-01 9.19E-02
I laplace 1.36 5.26E-01 5.26E-01 0.130 2.92E-01 2.21E-01
Phillips 1.35 1.15E-01 1.13E-01 0.057 3.37E-02 1.48E-02
Shaw 1.36 2.15E-01 2.15E-01 0.058 4.44E-02 4.85E-02
Spikes 1.66 5.46E-01 5.28E-01 0.057 5.57E-01 5.23E-01
Wing 1.33 8.25E-01 8.25E-01 0.057 5.97E-01 6.04E-01

Table 6: Comparison of the computation time and solution accuracy when using RRQR-SVD and RSVD.
The size of testing matrices is 2000, and l = 20. The CPU time for Algorithm 5 to achieve the approx-
imated SVD is tRRQR-SVD (in seconds); and tRSVD is the CPU time of RSVD. Here errLc and errGCV are
the computed relative errors via using the L-curve and the GCV function respectively.

CSVD + L-curve RSVD + L-curve
Matrix tCSVD tLc T (sec) µLc err tRSVD tLc T (sec) µLc err
Baart 10.7 0.142 10.8 1.39E-02 1.53E-01 0.019 0.251 0.270 1.63E-03 1.36E-01
Cmrs 1.51 0.129 1.63 1.37E-03 9.83E-01 0.012 0.278 0.290 6.60E-02 9.93E-01
Deriv2 10.7 0.125 10.8 6.74E-04 2.00E-01 0.020 0.240 0.260 3.89E-04 1.96E-01
Foxgood 11.1 0.125 11.3 4.50E-03 1.78E-02 0.019 0.247 0.266 1.19E-03 3.91E-02
Gravity 10.7 0.118 10.9 4.72E-02 1.61E-02 0.020 0.245 0.264 8.77E-03 8.36E-02
Heat 8.35 0.125 8.47 3.19E-01 8.35E-01 0.019 0.234 0.253 2.12E-03 1.28E-01
I Laplace 5.28 0.214 5.49 6.81E+00 8.46E-01 0.046 0.253 0.299 1.43E-03 3.41E-01
Parallax 0.01 0.185 0.19 6.61E-02 – 0.005 0.255 0.260 6.33E-02 –
Phillips 8.98 0.150 9.13 5.15E-02 3.24E-02 0.024 0.297 0.321 2.75E-02 5.76E-02
Rst 3.60 0.156 3.75 6.85E-03 1.14E-02 0.013 0.308 0.321 1.86E-03 4.42E-02
Shaw 10.7 0.148 10.8 1.74E-02 6.05E-02 0.020 0.252 0.271 1.69E-03 1.07E-01
Spikes 10.7 0.148 10.8 5.37E-01 6.47E-01 0.020 0.251 0.271 5.05E-02 6.68E-01
Ursell 11.8 0.153 11.9 1.83E-03 – 0.019 0.246 0.265 3.52E-05 –
Wing 10.8 0.152 10.9 1.57E-03 6.02E-01 0.019 0.249 0.268 2.35E-04 6.08E-01

Table 7: Comparison of the computation times for the matrix of size 1000 with the L-curve to locate the
regularization parameter. In RSVD we choose l = 20. T = tCSVD + tLc or tRSVD + tLc. µLc stands for
the regularization parameter that corresponds to the L-curve’s corner. And err is the relative error of
the computed solution. There are no exact solutions for the cases Parallax and Ursell.
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CSVD + GCV RSVD + GCV
Matrix tCSVD tGCV T (sec) µGCV err tRSVD tGCV T (sec) µGCV err
Baart 10.6 0.053 10.7 5.63E-03 1.23E-01 0.016 0.072 0.088 5.63E-03 1.23E-01
Cmrs 1.45 0.058 1.51 6.98E-04 9.83E-01 0.009 0.097 0.106 5.65E-04 9.83E-01
Deriv2 10.7 0.087 10.8 4.42E-04 1.87E-01 0.016 0.081 0.097 4.11E-04 1.92E-01
Foxgood 11.2 0.053 11.2 6.07E-03 2.06E-02 0.018 0.079 0.098 6.09E-03 2.06E-02
Gravity 10.8 0.053 10.9 7.58E-02 2.00E-02 0.017 0.081 0.097 7.58E-02 2.00E-02
Heat 8.19 0.092 8.29 1.73E-03 6.62E-02 0.016 0.085 0.101 2.52E-03 9.24E-02
I Laplace 5.26 0.068 5.33 2.06E-02 2.04E-01 0.043 0.072 0.115 2.06E-02 2.04E-01
Parallax 0.00 0.077 0.08 5.33E-15 – 0.003 0.078 0.081 1.14E-02 –
Phillips 8.99 0.070 9.06 7.76E-02 2.12E-02 0.017 0.095 0.112 7.78E-02 1.93E-02
Rst 3.59 0.070 3.66 1.21E-02 4.96E-03 0.010 0.093 0.103 1.21E-02 4.96E-03
Shaw 10.7 0.073 10.8 9.41E-03 5.18E-02 0.016 0.075 0.091 9.42E-03 5.18E-02
Spikes 10.7 0.070 10.7 5.11E-01 6.47E-01 0.016 0.072 0.089 5.11E-01 6.47E-01
Ursell 11.8 0.081 11.8 4.52E-08 – 0.016 0.067 0.083 4.13E-08 –
Wing 10.8 0.070 10.8 1.48E-03 6.02E-01 0.017 0.072 0.089 1.48E-03 6.02E-01

Table 8: Comparison of the computation time for the matrices of size 1000 when using CSVD or RSVD
(l = 20) together with GCV. Here µGCV is the regularization parameter which minimizes the GCV
function. Other parameters are similar to those in Table 7.
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